201
|
Miao J, Li J, Fan Q, Li X, Li X, Cui L. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J Cell Sci 2010; 123:1039-49. [PMID: 20197405 DOI: 10.1242/jcs.059824] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Translation regulation plays an important role during gametocytogenesis in the malaria parasite, a process that is obligatory for the transmission of the parasite through mosquito vectors. In this study we determined the function of PfPuf2, a member of the Puf family of translational repressors, in gametocytogenesis of Plasmodium falciparum. Tagging of the endogenous PfPuf2 protein with green fluorescent protein showed that PfPuf2 was expressed in both male and female gametocytes, and the protein was localized in the cytoplasm of the parasite. Targeted disruption of the PfPuf2 gene did not affect asexual growth of the parasite, but promoted the formation of gametocytes and differentiation of male gametocytes. Complementation studies were performed to confirm that the resultant phenotypic changes were due to disruption of the PfPuf2 gene. Episomal expression of PfPuf2 under its cognate promoter almost restored the gametocytogenesis rate in a PfPuf2 disruptant to the level of the wild-type parasite. It also partially restored the effect of PfPuf2 disruption on male-female sex ratio. In addition, episomal overexpression of PfPuf2 under its cognate promoter but with a higher concentration of the selection drug or under the constitutive hsp86 promoter in both the PfPuf2-disruptant and wild-type 3D7 lines, further dramatically reduced gametocytogenesis rates and sex ratios. These findings suggest that in this early branch of eukaryotes the function of PfPuf2 is consistent with the ancestral function of suppressing differentiation proposed for Puf-family proteins.
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
202
|
Peidis P, Giannakouros T, Burow ME, Williams RW, Scott RE. Systems genetics analyses predict a transcription role for P2P-R: molecular confirmation that P2P-R is a transcriptional co-repressor. BMC SYSTEMS BIOLOGY 2010; 4:14. [PMID: 20184719 PMCID: PMC2843647 DOI: 10.1186/1752-0509-4-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 02/25/2010] [Indexed: 12/31/2022]
Abstract
Background The 250 kDa P2P-R protein (also known as PACT and Rbbp6) was cloned over a decade ago and was found to bind both the p53 and Rb1 tumor suppressor proteins. In addition, P2P-R has been associated with multiple biological functions, such as mitosis, mRNA processing, translation and ubiquitination. In the current studies, the online GeneNetwork system was employed to further probe P2P-R biological functions. Molecular studies were then performed to confirm the GeneNetwork evaluations. Results GeneNetwork and associated gene ontology links were used to investigate the coexpression of P2P-R with distinct functional sets of genes in an adipocyte genetic reference panel of HXB/BXH recombinant strains of rats and an eye genetic reference panel of BXD recombinant inbred strains of mice. The results establish that biological networks of 75 and 135 transcription-associated gene products that include P2P-R are co-expressed in a genetically-defined manner in rat adipocytes and in the mouse eye, respectively. Of this large set of transcription-associated genes, >10% are associated with hormone-mediated transcription. Since it has been previously reported that P2P-R can bind the SRC-1 transcription co-regulatory factor (steroid receptor co-activator 1, [Ncoa1]), the possible effects of P2P-R on estrogen-induced transcription were evaluated. Estrogen-induced transcription was repressed 50-70% by the transient transfection of P2P-R plasmid constructs into four different cell types. In addition, knockdown of P2P-R expression using an antisense oligonucleotide increased estrogen-mediated transcription. Co-immunoprecipitation assays confirmed that P2P-R interacts with SRC-1 and also demonstrated that P2P-R interacts with estrogen receptor α. Conclusions The findings presented in this study provide strong support for the value of systems genetics, especially GeneNetwork, in discovering new functions of genes that can be confirmed by molecular analysis. More specifically, these data provide evidence that the expression of P2P-R co-varies in a genetically-defined manner with large transcription networks and that P2P-R can function as a co-repressor of estrogen-dependent transcription.
Collapse
Affiliation(s)
- Philippos Peidis
- Laboratory of Biochemistry, Department of Chemistry, The Aristotle University, 54124 Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
203
|
Kershner AM, Kimble J. Genome-wide analysis of mRNA targets for Caenorhabditis elegans FBF, a conserved stem cell regulator. Proc Natl Acad Sci U S A 2010; 107:3936-41. [PMID: 20142496 PMCID: PMC2840422 DOI: 10.1073/pnas.1000495107] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stem cells are essential for tissue generation during the development of multicellular creatures, and for tissue homeostasis in adults. The great therapeutic promise of stem cells makes understanding their regulation a high priority. PUF RNA-binding proteins have a conserved role in promoting self-renewal of germline stem cells. Here we use a genome-wide approach to identify putative target mRNAs for the Caenorhabditis elegans PUF protein known as FBF. We find that putative FBF targets represent approximately 7% of all protein-coding genes in C. elegans, implicating FBF as a broad-spectrum gene regulator. These putative FBF targets are enriched for regulators of meiotic entry and other components of the meiotic program as well as regulators of key developmental pathways. We suggest that these targets may be critical for FBF's role in stem cell maintenance. Comparison of likely FBF target mRNAs with putative PUF target mRNAs from Drosophila and humans reveals 40 shared targets, including several established stem cell regulators. We speculate that shared PUF targets represent part of a broadly used module of stem cell control.
Collapse
Affiliation(s)
| | - Judith Kimble
- Program in Cellular and Molecular Biology
- Department of Biochemistry, and
- Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
204
|
Ewen-Campen B, Schwager EE, Extavour CGM. The molecular machinery of germ line specification. Mol Reprod Dev 2010; 77:3-18. [PMID: 19790240 DOI: 10.1002/mrd.21091] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germ cells occupy a unique position in animal reproduction, development, and evolution. In sexually reproducing animals, only they can produce gametes and contribute genetically to subsequent generations. Nonetheless, germ line specification during embryogenesis is conceptually the same as the specification of any somatic cell type: germ cells must activate a specific gene regulatory network in order to differentiate and go through gametogenesis. While many genes with critical roles in the germ line have been characterized with respect to expression pattern and genetic interactions, it is the molecular interactions of the relevant gene products that are ultimately responsible for germ cell differentiation. This review summarizes the current state of knowledge on the molecular functions and biochemical connections between germ line gene products. We find that homologous genes often interact physically with the same conserved molecular partners across the metazoans. We also point out cases of nonhomologous genes from different species whose gene products play analogous biological roles in the germ line. We suggest a preliminary molecular definition of an ancestral "pluripotency module" that could have been modified during metazoan evolution to become specific to the germ line.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
205
|
Racher H, Hansen D. Translational control in the C. elegans hermaphrodite germ line. Genome 2010; 53:83-102. [DOI: 10.1139/g09-090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The formation of a fully developed gamete from an undifferentiated germ cell requires progression through numerous developmental stages and cell fate decisions. The precise timing and level of gene expression guides cells through these stages. Translational regulation is highly utilized in the germ line of many species, including Caenorhabditis elegans , to regulate gene expression and ensure the proper formation of gametes. In this review, we discuss some of the developmental stages and cell fate decisions involved in the formation of functional gametes in the C. elegans germ line in which translational control has been implicated. These stages include the mitosis versus meiosis decision, the sperm/oocyte decision, and gamete maturation. We also discuss some of the techniques used to identify mRNA targets; the identification of these targets is necessary to clearly understand the role each RNA-binding protein plays in these decisions. Relatively few mRNA targets have been identified, thus providing a major focus for future research. Finally, we propose some reasons why translational control may be utilized so heavily in the germ line. Given that many species have this substantial reliance on translational regulation for the control of gene expression in the germ line, an understanding of translational regulation in the C. elegans germ line is likely to increase our understanding of gamete formation in general.
Collapse
Affiliation(s)
- Hilary Racher
- University of Calgary, 2500 University Drive, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| | - Dave Hansen
- University of Calgary, 2500 University Drive, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
206
|
Lee MH, Schedl T. C. elegans star proteins, GLD-1 and ASD-2, regulate specific RNA targets to control development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 693:106-22. [PMID: 21189689 DOI: 10.1007/978-1-4419-7005-3_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A comprehensive understanding of the C. elegans STAR proteins GLD-1 and ASD-2 is emerging from a combination of studies. Those employing genetic analysis reveal in vivo function, others involving biochemical approaches pursue the identification of mRNA targets through which these proteins act. Lastly, mechanistic studies provide the molecular pathway of target mRNA regulation.
Collapse
Affiliation(s)
- Min-Ho Lee
- Department of Biological Sciences, University at Albany, SUNY, Albany, New York 12222, USA.
| | | |
Collapse
|
207
|
A 5' cytosine binding pocket in Puf3p specifies regulation of mitochondrial mRNAs. Proc Natl Acad Sci U S A 2009; 106:20192-7. [PMID: 19918084 DOI: 10.1073/pnas.0812079106] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A single regulatory protein can control the fate of many mRNAs with related functions. The Puf3 protein of Saccharomyces cerevisiae is exemplary, as it binds and regulates more than 100 mRNAs that encode proteins with mitochondrial function. Here we elucidate the structural basis of that specificity. To do so, we explore the crystal structures of Puf3p complexes with 2 cognate RNAs. The key determinant of Puf3p specificity is an unusual interaction between a distinctive pocket of the protein with an RNA base outside the "core" PUF-binding site. That interaction dramatically affects binding affinity in vitro and is required for regulation in vivo. The Puf3p structures, combined with those of Puf4p in the same organism, illuminate the structural basis of natural PUF-RNA networks. Yeast Puf3p binds its own RNAs because they possess a -2C and is excluded from those of Puf4p which contain an additional nucleotide in the core-binding site.
Collapse
|
208
|
Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein. Proc Natl Acad Sci U S A 2009; 106:20186-91. [PMID: 19901328 DOI: 10.1073/pnas.0812076106] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short region of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.
Collapse
|
209
|
Translational control during early development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:211-54. [PMID: 20374743 DOI: 10.1016/s1877-1173(09)90006-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translational control of specific messenger RNAs, which themselves are often asymmetrically localized within the cytoplasm of a cell, underlies many events in germline development, and in embryonic axis specification. This comprehensive, but by no means exhaustive, review attempts to present a picture of the present state of knowledge about mechanisms underlying mRNA localization and translational control of specific mRNAs that are mediated by trans-acting protein factors. While RNA localization and translational control are widespread in evolution and have been studied in many experimental systems, this article will focus mainly on three particularly well-characterized systems: Drosophila, Caenorhabditis elegans, and Xenopus. In keeping with the overall theme of this volume, instances in which translational control factors have been linked to human disease states will also be discussed.
Collapse
|
210
|
Nadarajan S, Govindan JA, McGovern M, Hubbard EJA, Greenstein D. MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans. Development 2009; 136:2223-34. [PMID: 19502484 DOI: 10.1242/dev.034603] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fertility depends on germline stem cell proliferation, meiosis and gametogenesis, yet how these key transitions are coordinated is unclear. In C. elegans, we show that GLP-1/Notch signaling functions in the germline to modulate oocyte growth when sperm are available for fertilization and the major sperm protein (MSP) hormone is present. Reduction-of-function mutations in glp-1 cause oocytes to grow abnormally large when MSP is present and Galpha(s)-adenylate cyclase signaling in the gonadal sheath cells is active. By contrast, gain-of-function glp-1 mutations lead to the production of small oocytes. Surprisingly, proper oocyte growth depends on distal tip cell signaling involving the redundant function of GLP-1 ligands LAG-2 and APX-1. GLP-1 signaling also affects two cellular oocyte growth processes, actomyosin-dependent cytoplasmic streaming and oocyte cellularization. glp-1 reduction-of-function mutants exhibit elevated rates of cytoplasmic streaming and delayed cellularization. GLP-1 signaling in oocyte growth depends in part on the downstream function of the FBF-1/2 PUF RNA-binding proteins. Furthermore, abnormal oocyte growth in glp-1 mutants, but not the inappropriate differentiation of germline stem cells, requires the function of the cell death pathway. The data support a model in which GLP-1 function in MSP-dependent oocyte growth is separable from its role in the proliferation versus meiotic entry decision. Thus, two major germline signaling centers, distal GLP-1 activation and proximal MSP signaling, coordinate several spatially and temporally distinct processes by which germline stem cells differentiate into functional oocytes.
Collapse
Affiliation(s)
- Saravanapriah Nadarajan
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
211
|
Byrd DT, Kimble J. Scratching the niche that controls Caenorhabditis elegans germline stem cells. Semin Cell Dev Biol 2009; 20:1107-13. [PMID: 19765664 DOI: 10.1016/j.semcdb.2009.09.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/18/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
Abstract
The Caenorhabditis elegans gonad provides a well-defined model for a stem cell niche and its control of self-renewal and differentiation. The distal tip cell (DTC) forms a mesenchymal niche that controls germline stem cells (GSCs), both to generate the germline tissue during development and to maintain it during adulthood. The DTC uses GLP-1/Notch signaling to regulate GSCs; germ cells respond to Notch signaling with a network of RNA regulators to control the decision between self-renewal and entry into the meiotic cell cycle.
Collapse
Affiliation(s)
- Dana T Byrd
- Department of Biochemistry and Howard Hughes Medical Institute, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA.
| | | |
Collapse
|
212
|
Francischini CW, Quaggio RB. Molecular characterization of Arabidopsis thaliana PUF proteins - binding specificity and target candidates. FEBS J 2009; 276:5456-70. [DOI: 10.1111/j.1742-4658.2009.07230.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
213
|
Aki T, Yanagisawa S. Application of Rice Nuclear Proteome Analysis to the Identification of Evolutionarily Conserved and Glucose-Responsive Nuclear Proteins. J Proteome Res 2009; 8:3912-24. [DOI: 10.1021/pr900187e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Toshihiko Aki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Shuichi Yanagisawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
214
|
Minasaki R, Puoti A, Streit A. The DEAD-box protein MEL-46 is required in the germ line of the nematode Caenorhabditis elegans. BMC DEVELOPMENTAL BIOLOGY 2009; 9:35. [PMID: 19534797 PMCID: PMC2711086 DOI: 10.1186/1471-213x-9-35] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 06/17/2009] [Indexed: 01/09/2023]
Abstract
Background In the hermaphrodite of the nematode Caenorhabditis elegans, the first germ cells differentiate as sperm. Later the germ line switches to the production of oocytes. This process requires the activity of a genetic regulatory network that includes among others the fem, fog and mog genes. The function of some of these genes is germline specific while others also act in somatic tissues. DEAD box proteins have been shown to be involved in the control of gene expression at different steps such as transcription and pre-mRNA processing. Results We show that the Caenorhabditis elegans gene mel-46 (maternal effect lethal) encodes a DEAD box protein that is related to the mammalian DDX20/Gemin3/DP103 genes. mel-46 is expressed throughout development and mutations in mel-46 display defects at multiple developmental stages. Here we focus on the role of mel-46 in the hermaphrodite germ line. mel-46(yt5) mutant hermaphrodites are partially penetrant sterile and fully penetrant maternal effect lethal. The germ line of mutants shows variable defects in oogenesis. Further, mel-46(yt5) suppresses the complete feminization caused by mutations in fog-2 and fem-3, two genes that are at the top and the center, respectively, of the genetic germline sex determining cascade, but not fog-1 that is at the bottom of this cascade. Conclusion The C. elegans gene mel-46 encodes a DEAD box protein that is required maternally for early embryogenesis and zygotically for postembryonic development. In the germ line, it is required for proper oogenesis. Although it interacts genetically with genes of the germline sex determination machinery its primary function appears to be in oocyte differentiation rather than sex determination.
Collapse
Affiliation(s)
- Ryuji Minasaki
- Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | | | | |
Collapse
|
215
|
Koh YY, Opperman L, Stumpf C, Mandan A, Keles S, Wickens M. A single C. elegans PUF protein binds RNA in multiple modes. RNA (NEW YORK, N.Y.) 2009; 15:1090-9. [PMID: 19369425 PMCID: PMC2685523 DOI: 10.1261/rna.1545309] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
PUF proteins specifically bind mRNAs to regulate their stability and translation. Here we focus on the RNA-binding specificity of a C. elegans PUF protein, PUF-11. Our findings reveal that PUF-11 binds RNA in multiple modes, in which the protein can accommodate variable spacings between two distinct recognition elements. We propose a structural model in which flexibility in the central region of the protein enables the protein to adopt at least two distinct structures, one of which results in base flipping.
Collapse
Affiliation(s)
- Yvonne Yiling Koh
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
216
|
Rybarska A, Harterink M, Jedamzik B, Kupinski AP, Schmid M, Eckmann CR. GLS-1, a novel P granule component, modulates a network of conserved RNA regulators to influence germ cell fate decisions. PLoS Genet 2009; 5:e1000494. [PMID: 19461891 PMCID: PMC2679207 DOI: 10.1371/journal.pgen.1000494] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 04/24/2009] [Indexed: 11/19/2022] Open
Abstract
Post-transcriptional regulatory mechanisms are widely used to influence cell fate decisions in germ cells, early embryos, and neurons. Many conserved cytoplasmic RNA regulatory proteins associate with each other and assemble on target mRNAs, forming ribonucleoprotein (RNP) complexes, to control the mRNAs translational output. How these RNA regulatory networks are orchestrated during development to regulate cell fate decisions remains elusive. We addressed this problem by focusing on Caenorhabditis elegans germline development, an exemplar of post-transcriptional control mechanisms. Here, we report the discovery of GLS-1, a new factor required for many aspects of germline development, including the oocyte cell fate in hermaphrodites and germline survival. We find that GLS-1 is a cytoplasmic protein that localizes in germ cells dynamically to germplasm (P) granules. Furthermore, its functions depend on its ability to form a protein complex with the RNA-binding Bicaudal-C ortholog GLD-3, a translational activator and P granule component important for similar germ cell fate decisions. Based on genetic epistasis experiments and in vitro competition experiments, we suggest that GLS-1 releases FBF/Pumilio from GLD-3 repression. This facilitates the sperm-to-oocyte switch, as liberated FBF represses the translation of mRNAs encoding spermatogenesis-promoting factors. Our proposed molecular mechanism is based on the GLS-1 protein acting as a molecular mimic of FBF/Pumilio. Furthermore, we suggest that a maternal GLS-1/GLD-3 complex in early embryos promotes the expression of mRNAs encoding germline survival factors. Our work identifies GLS-1 as a fundamental regulator of germline development. GLS-1 directs germ cell fate decisions by modulating the availability and activity of a single translational network component, GLD-3. Hence, the elucidation of the mechanisms underlying GLS-1 functions provides a new example of how conserved machinery can be developmentally manipulated to influence cell fate decisions and tissue development.
Collapse
Affiliation(s)
- Agata Rybarska
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Martin Harterink
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Britta Jedamzik
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Adam P. Kupinski
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Mark Schmid
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Christian R. Eckmann
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
- * E-mail:
| |
Collapse
|
217
|
Bam and Bgcn antagonize Nanos-dependent germ-line stem cell maintenance. Proc Natl Acad Sci U S A 2009; 106:9304-9. [PMID: 19470484 DOI: 10.1073/pnas.0901452106] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The balance between germ-line stem cell (GSC) self-renewal and differentiation in Drosophila ovaries is mediated by the antagonistic relationship between the Nanos (Nos)-Pumilio translational repressor complex, which promotes GSC self-renewal, and expression of Bam, a key differentiation factor. Here, we find that Bam and Nos proteins are expressed in reciprocal patterns in young germ cells. Repression of Nos in Bam-expressing cells depends on sequences in the nos 3'-UTR, suggesting that Nos is regulated by translational repression. Ectopic Bam causes differentiation of GSCs, and this activity depends on the endogenous nos 3'-UTR sequence. Previous evidence showed that Bgcn is an obligate factor for the ability of Bam to drive differentiation, and we now report that Bam forms a complex with Bgcn, a protein related to the RNA-interacting DExH-box polypeptides. Together, these observations suggest that Bam-Bgcn act together to antagonize Nos expression; thus, derepressing cystoblast-promoting factors. These findings emphasize the importance of translational repression in balancing stem cell self-renewal and differentiation.
Collapse
|
218
|
She3p possesses a novel activity required for ASH1 mRNA localization in Saccharomyces cerevisiae. EUKARYOTIC CELL 2009; 8:1072-83. [PMID: 19429778 DOI: 10.1128/ec.00084-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intracellular and intercellular polarity requires that specific proteins be sorted to discreet locations within and between cells. One mechanism for sorting proteins is through RNA localization. In Saccharomyces cerevisiae, ASH1 mRNA localizes to the distal tip of the bud, resulting in the asymmetric sorting of the transcriptional repressor Ash1p. ASH1 mRNA localization requires four cis-acting localization elements and the trans-acting factors Myo4p, She3p, and She2p. Myo4p is a type V myosin motor that functions to directly transport ASH1 mRNA to the bud. She2p is an RNA-binding protein that directly interacts with the ASH1 mRNA cis-acting elements. Currently, the role for She3p in ASH1 mRNA localization is as an adaptor protein, since it can simultaneously associate with Myo4p and She2p. Here, we present data for two novel mutants of She3p, S348E and the double mutant S343E S361E, that are defective for ASH1 mRNA localization, and yet both of these mutants retain the ability to associate with Myo4p and She2p. These observations suggest that She3p possesses a novel activity required for ASH1 mRNA localization, and our data imply that this function is related to the ability of She3p to associate with ASH1 mRNA. Interestingly, we determined that She3p is phosphorylated, and global mass spectrometry approaches have determined that Ser 343, 348, and 361 are sites of phosphorylation, suggesting that the novel function for She3p could be negatively regulated by phosphorylation. The present study reveals that the current accepted model for ASH1 mRNA localization does not fully account for the function of She3p in ASH1 mRNA localization.
Collapse
|
219
|
Discovering structural cis-regulatory elements by modeling the behaviors of mRNAs. Mol Syst Biol 2009; 5:268. [PMID: 19401680 PMCID: PMC2683727 DOI: 10.1038/msb.2009.24] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 03/17/2009] [Indexed: 12/29/2022] Open
Abstract
Gene expression is regulated at each step from chromatin remodeling through translation and degradation. Several known RNA-binding regulatory proteins interact with specific RNA secondary structures in addition to specific nucleotides. To provide a more comprehensive understanding of the regulation of gene expression, we developed an integrative computational approach that leverages functional genomics data and nucleotide sequences to discover RNA secondary structure-defined cis-regulatory elements (SCREs). We applied our structural cis-regulatory element detector (StructRED) to microarray and mRNA sequence data from Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. We recovered the known specificities of Vts1p in yeast and Smaug in flies. In addition, we discovered six putative SCREs in flies and three in humans. We characterized the SCREs based on their condition-specific regulatory influences, the annotation of the transcripts that contain them, and their locations within transcripts. Overall, we show that modeling functional genomics data in terms of combined RNA structure and sequence motifs is an effective method for discovering the specificities and regulatory roles of RNA-binding proteins.
Collapse
|
220
|
Abstract
FBF, a PUF RNA-binding protein, is a key regulator of the mitosis/meiosis decision in the Caenorhabditis elegans germline. Genetically, FBF has a dual role in this decision: it maintains germ cells in mitosis, but it also facilitates entry into meiosis. In this article, we explore the molecular basis of that dual role. Previous work showed that FBF downregulates gld-1 expression to promote mitosis and that the GLD-2 poly(A) polymerase upregulates gld-1 expression to reinforce the decision to enter meiosis. Here we ask whether FBF can act as both a negative regulator and a positive regulator of gld-1 expression and also investigate its molecular mechanisms of control. We first show that FBF co-immunoprecipitates with gld-1 mRNA, a result that complements previous evidence that FBF directly controls gld-1 mRNA. Then we show that FBF represses gld-1 expression, that FBF physically interacts with the CCF-1/Pop2p deadenylase and can stimulate deadenylation in vitro, and that CCF-1 is partially responsible for maintaining low GLD-1 in the mitotic region. Finally, we show that FBF can elevate gld-1 expression, that FBF physically interacts with the GLD-2 poly(A) polymerase, and that FBF can enhance GLD-2 poly(A) polymerase activity in vitro. We propose that FBF can affect polyadenylation either negatively by its CCF-1 interaction or positively by its GLD-2 interaction.
Collapse
|
221
|
Kaye JA, Rose NC, Goldsworthy B, Goga A, L'Etoile ND. A 3'UTR pumilio-binding element directs translational activation in olfactory sensory neurons. Neuron 2009; 61:57-70. [PMID: 19146813 DOI: 10.1016/j.neuron.2008.11.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 05/15/2008] [Accepted: 11/05/2008] [Indexed: 01/25/2023]
Abstract
Prolonged stimulation leads to specific and stable changes in an animal's behavior. In interneurons, this plasticity requires spatial and temporal control of neuronal protein synthesis. Whether such translational control occurs in sensory neurons is not known. Adaptation of the AWC olfactory sensory neurons of C. elegans requires the cGMP-dependent protein kinase EGL-4. Here, we show that the RNA-binding PUF protein FBF-1 is required in the adult AWC for adaptation. In the odor-adapted animal, it increases translation via binding to the egl-4 3' UTR. Further, the PUF protein may localize translation near the sensory cilia and cell body. Although the RNA-binding PUF proteins have been shown to promote plasticity in development by temporally and spatially repressing translation, this work reveals that in the adult nervous system, they can work in a different way to promote experience-dependent plasticity by activating translation in response to environmental stimulation.
Collapse
Affiliation(s)
- Julia A Kaye
- Cellular and Developmental Biology Program, 1 Shields Drive, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
222
|
Ginter-Matuszewska B, Spik A, Rembiszewska A, Koyias C, Kupryjanczyk J, Jaruzelska J. The SNARE-associated component SNAPIN binds PUMILIO2 and NANOS1 proteins in human male germ cells. Mol Hum Reprod 2009; 15:173-9. [PMID: 19168546 DOI: 10.1093/molehr/gap004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been reported that a highly conserved human protein PUMILIO2 forms a complex with NANOS1 in human male germ cells, as does the Drosophila ancestor Pumilio, which binds Nanos to regulate translation of specific mRNAs. Here, we found that PUMILIO2 interacts also with SNAPIN, a modulator of SNARE complex assembly, which is involved in vesicle trafficking. We demonstrated that SNAPIN interacts additionally with NANOS1 protein. This is the first report demonstrating that the N-terminal region of NANOS1 is necessary for protein binding. In human testis, SNAPIN co-localizes with PUMILIO2 and NANOS1 in prenatal and also in spermatogenic germ cells of the adult. We describe for the first time the expression of SNAPIN in germ cells which raises possibility that SNAPIN plays an extra role in mammals which is germ cell specific. The presence of a coiled-coil domain responsible for protein-protein interaction could enable SNAPIN to be an adaptor of PUMILIO2 and NANOS1, binding other factors to regulate translation in the development of the human germ cells.
Collapse
|
223
|
Abstract
A number of major adaptations in animals have been mediated by alteration of germ cells and their immediate derivatives, the gametes. Here, several such cases are discussed, including examples from echinoderms, vertebrates, insects, and nematodes. A feature of germ cells that make their development (and hence evolution) distinct from the soma is the prominent role played by posttranscriptional controls of mRNA translation in the regulation of proliferation and differentiation. This presents a number of special challenges for investigation of the evolution of germline development. Caenorhabditis nematodes represent a particularly favorable system for addressing these challenges, both because of technical advantages and (most importantly) because of natural variation in mating system that is rooted in alterations of germline sex determination. Recent studies that employ comparative genetic methods in this rapidly maturing system are discussed, and likely areas for future progress are identified.
Collapse
Affiliation(s)
- Eric S. Haag
- Department of Biology, University of Maryland, College Park, MD 20742, phone: 301-405-8534, fax: 301-314-9358
| |
Collapse
|
224
|
Abstract
Gene regulation often plays by different rules in the germline compared to the soma. In Caenorhabditis elegans, the spatial and temporal expression of germline genes is controlled post-transcriptionally via the 3' UTR rather than transcriptionally via the promoter.
Collapse
Affiliation(s)
- Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
225
|
Callister DM, Winter AD, Page AP, Maizels RM. Four abundant novel transcript genes from Toxocara canis with unrelated coding sequences share untranslated region tracts implicated in the control of gene expression. Mol Biochem Parasitol 2008; 162:60-70. [PMID: 18703093 DOI: 10.1016/j.molbiopara.2008.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 07/14/2008] [Accepted: 07/14/2008] [Indexed: 11/23/2022]
Abstract
The Toxocara canis "abundant novel transcripts" (ant) are four highly expressed products, constituting >18% of ESTs from the infective stage of this widely prevalent nematode parasite. Using 5' RACE, we determined full-length sequences for each ant gene, between 1.8 and 2.8kb. The four genes (termed ant-3, -5, -30 and -34), share no coding sequence similarity, although their 3'UTRs (untranslated regions) are homologous. Predicted ANT-5 and ANT-30 proteins show distant similarity to RNA regulatory proteins, RNA-dependent RNA polymerase and DEAH-box helicase, respectively. Surprisingly, ant-3 appears to be bi-cistronic, encoding two ORFs (ANT-3.1 and -3.2), each with a predicted N-terminal signal sequence. Antibodies raised to recombinant proteins did not react with native parasite products, indicating that protein expression did not accord with transcript abundance. However, antibody reactivity to two gene products (ANT-3.1 and ANT-34) was present in patient sera, suggesting that these proteins are synthesized later in infection. To test whether 3'UTRs may regulate expression, the ant-34 3'UTR sequence was inserted adjacent to enhanced green fluorescent protein (EGFP) for transformation of Caenorhabditis elegans. The ant-34 3'UTR greatly reduced EGFP expression, inhibiting both transcription and translation. We identified a tract in this UTR with significant sequence complementarity to the C. elegans micro-RNA lin-4. While infective stage parasites stockpile high levels of the ant transcripts, we suggest that translation is repressed, possibly by a mechanism involving 3' UTR motifs shared by the four genes.
Collapse
Affiliation(s)
- Deborah M Callister
- Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | | | | | | |
Collapse
|
226
|
Farley BM, Ryder SP. Regulation of Maternal mRNAs in Early Development. Crit Rev Biochem Mol Biol 2008; 43:135-62. [PMID: 18365862 DOI: 10.1080/10409230801921338] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
227
|
Galgano A, Forrer M, Jaskiewicz L, Kanitz A, Zavolan M, Gerber AP. Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. PLoS One 2008; 3:e3164. [PMID: 18776931 PMCID: PMC2522278 DOI: 10.1371/journal.pone.0003164] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 08/18/2008] [Indexed: 12/03/2022] Open
Abstract
Genome-wide identification of mRNAs regulated by RNA-binding proteins is crucial to uncover post-transcriptional gene regulatory systems. The conserved PUF family RNA-binding proteins repress gene expression post-transcriptionally by binding to sequence elements in 3′-UTRs of mRNAs. Despite their well-studied implications for development and neurogenesis in metazoa, the mammalian PUF family members are only poorly characterized and mRNA targets are largely unknown. We have systematically identified the mRNAs associated with the two human PUF proteins, PUM1 and PUM2, by the recovery of endogenously formed ribonucleoprotein complexes and the analysis of associated RNAs with DNA microarrays. A largely overlapping set comprised of hundreds of mRNAs were reproducibly associated with the paralogous PUM proteins, many of them encoding functionally related proteins. A characteristic PUF-binding motif was highly enriched among PUM bound messages and validated with RNA pull-down experiments. Moreover, PUF motifs as well as surrounding sequences exhibit higher conservation in PUM bound messages as opposed to transcripts that were not found to be associated, suggesting that PUM function may be modulated by other factors that bind conserved elements. Strikingly, we found that PUF motifs are enriched around predicted miRNA binding sites and that high-confidence miRNA binding sites are significantly enriched in the 3′-UTRs of experimentally determined PUM1 and PUM2 targets, strongly suggesting an interaction of human PUM proteins with the miRNA regulatory system. Our work suggests extensive connections between the RBP and miRNA post-transcriptional regulatory systems and provides a framework for deciphering the molecular mechanism by which PUF proteins regulate their target mRNAs.
Collapse
Affiliation(s)
- Alessia Galgano
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Michael Forrer
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Alexander Kanitz
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - André P. Gerber
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
228
|
Konishi T, Uodome N, Sugimoto A. TheCaenorhabditis elegansDDX-23, a homolog of yeast splicing factor PRP28, is required for the sperm-oocyte switch and differentiation of various cell types. Dev Dyn 2008; 237:2367-77. [DOI: 10.1002/dvdy.21649] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
229
|
Stumpf CR, Kimble J, Wickens M. A Caenorhabditis elegans PUF protein family with distinct RNA binding specificity. RNA (NEW YORK, N.Y.) 2008; 14:1550-7. [PMID: 18579869 PMCID: PMC2491472 DOI: 10.1261/rna.1095908] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
PUF proteins comprise a highly conserved family of sequence-specific RNA binding proteins that regulate target mRNAs via binding directly to their 3'UTRs. The Caenorhabditis elegans genome encodes several PUF proteins, which cluster into four groups based on sequence similarity; all share amino acids that interact with the RNA in the cocrystal of human Pumilio with RNA. Members of the FBF and the PUF-8/9 groups bind different but related RNA sequences. We focus here on the binding specificity of representatives of a third cluster, comprising PUF-5, -6, and -7. We performed in vivo selection experiments using the yeast three-hybrid system to identify RNA sequences that bind PUF-5 and PUF-6, and we confirmed binding to optimal sites in vitro. The consensus sequences derived from the screens are similar for PUF-5 and PUF-6 but differ from those of the FBF or PUF-8/-9 groups. Similarly, neither PUF-5 nor PUF-6 bind the recognition sites preferred by the other clusters. Mutagenesis studies confirmed the unique RNA specificity of PUF-5/-6. Using the PUF-5 consensus derived from our experiments, we searched a database of C. elegans 3'UTRs to identify potential targets of PUF-5, several of which indeed bind PUF-5. Therefore the consensus has predictive value and provides a route to finding genuine targets of these proteins.
Collapse
Affiliation(s)
- Craig R Stumpf
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
230
|
Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 2008; 582:1977-86. [PMID: 18342629 PMCID: PMC2858862 DOI: 10.1016/j.febslet.2008.03.004] [Citation(s) in RCA: 1032] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 03/03/2008] [Indexed: 01/11/2023]
Abstract
RNAs in cells are associated with RNA-binding proteins (RBPs) to form ribonucleoprotein (RNP) complexes. The RBPs influence the structure and interactions of the RNAs and play critical roles in their biogenesis, stability, function, transport and cellular localization. Eukaryotic cells encode a large number of RBPs (thousands in vertebrates), each of which has unique RNA-binding activity and protein-protein interaction characteristics. The remarkable diversity of RBPs, which appears to have increased during evolution in parallel to the increase in the number of introns, allows eukaryotic cells to utilize them in an enormous array of combinations giving rise to a unique RNP for each RNA. In this short review, we focus on the RBPs that interact with pre-mRNAs and mRNAs and discuss their roles in the regulation of post-transcriptional gene expression.
Collapse
Affiliation(s)
| | | | - Jeongsik Yong
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics University of Pennsylvania School of Medicine Philadelphia, Pennsylvania 19104-6148
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics University of Pennsylvania School of Medicine Philadelphia, Pennsylvania 19104-6148
| |
Collapse
|
231
|
Ribonomic analysis of human Pum1 reveals cis-trans conservation across species despite evolution of diverse mRNA target sets. Mol Cell Biol 2008; 28:4093-103. [PMID: 18411299 DOI: 10.1128/mcb.00155-08] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PUF family proteins are among the best-characterized regulatory RNA-binding proteins in nonmammalian species, but relatively little is known about mRNA targets or functions of mammalian PUF proteins. In this study, we used ribonomic analysis to identify and analyze mRNAs associated with ribonucleoproteins containing an endogenous human PUF protein, Pum1. Pum1-associated mRNAs were highly enriched for genes encoding proteins that function in transcriptional regulation and cell cycle/proliferation, results consistent with the posttranscriptional RNA regulon model and the proposed ancestral functions of PUF proteins in stem cell biology. Analysis of 3' untranslated region sequences of Pum1-associated mRNAs revealed a core Pum1 consensus sequence, UGUAHAUA. Pum1 knockdown demonstrated that Pum1 enhances decay of associated mRNAs, and relocalization of Pum1 to stress granules suggested that Pum1 functions in repression of translation. This study is the first in vivo genome-wide mRNA target identification of a mammalian PUF protein and provides direct evidence that human PUF proteins regulate stability of associated mRNAs. Comparison of Pum1-associated mRNAs to mRNA targets of PUF proteins from Saccharomyces cerevisiae and Drosophila melanogaster demonstrates how a well-conserved RNA-binding domain and cognate binding sequence have been evolutionarily rewired to regulate the collective expression of different sets of functionally related genes.
Collapse
|
232
|
Miller MT, Higgin JJ, Hall TMT. Basis of altered RNA-binding specificity by PUF proteins revealed by crystal structures of yeast Puf4p. Nat Struct Mol Biol 2008; 15:397-402. [PMID: 18327269 PMCID: PMC2802072 DOI: 10.1038/nsmb.1390] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 01/15/2008] [Indexed: 01/26/2023]
Abstract
Pumilio/FBF (PUF) family proteins are found in eukaryotic organisms and regulate gene expression post-transcriptionally by binding to sequences in the 3' untranslated region of target transcripts. PUF proteins contain an RNA binding domain that typically comprises eight alpha-helical repeats, each of which recognizes one RNA base. Some PUF proteins, including yeast Puf4p, have altered RNA binding specificity and use their eight repeats to bind to RNA sequences with nine or ten bases. Here we report the crystal structures of Puf4p alone and in complex with a 9-nucleotide (nt) target RNA sequence, revealing that Puf4p accommodates an 'extra' nucleotide by modest adaptations allowing one base to be turned away from the RNA binding surface. Using structural information and sequence comparisons, we created a mutant Puf4p protein that preferentially binds to an 8-nt target RNA sequence over a 9-nt sequence and restores binding of each protein repeat to one RNA base.
Collapse
Affiliation(s)
- Matthew T Miller
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Building 101, Room F363, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
233
|
Gupta YK, Nair DT, Wharton RP, Aggarwal AK. Structures of human Pumilio with noncognate RNAs reveal molecular mechanisms for binding promiscuity. Structure 2008; 16:549-57. [PMID: 18328718 DOI: 10.1016/j.str.2008.01.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 12/29/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
Pumilio is a founder member of the evolutionarily conserved Puf family of RNA-binding proteins that control a number of physiological processes in eukaryotes. A structure of human Pumilio (hPum) Puf domain bound to a Drosophila regulatory sequence showed that each Puf repeat recognizes a single nucleotide. Puf domains in general bind promiscuously to a large set of degenerate sequences, but the structural basis for this promiscuity has been unclear. Here, we describe the structures of hPum Puf domain complexed to two noncognate RNAs, CycB(reverse) and Puf5. In each complex, one of the nucleotides is ejected from the binding surface, in effect, acting as a "spacer." The complexes also reveal the plasticity of several Puf repeats, which recognize noncanonical nucleotides. Together, these complexes provide a molecular basis for recognition of degenerate binding sites, which significantly increases the number of mRNAs targeted for regulation by Puf proteins in vivo.
Collapse
Affiliation(s)
- Yogesh K Gupta
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | |
Collapse
|
234
|
Kelleher DF, de Carvalho CE, Doty AV, Layton M, Cheng AT, Mathies LD, Pilgrim D, Haag ES. Comparative genetics of sex determination: masculinizing mutations in Caenorhabditis briggsae. Genetics 2008; 178:1415-29. [PMID: 18245372 PMCID: PMC2278099 DOI: 10.1534/genetics.107.073668] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 12/29/2007] [Indexed: 01/09/2023] Open
Abstract
The nematodes Caenorhabditis elegans and C. briggsae independently evolved self-fertile hermaphroditism from gonochoristic ancestors. C. briggsae has variably divergent orthologs of nearly all genes in the C. elegans sex determination pathway. Their functional characterization has generally relied on reverse genetic approaches, such as RNA interference and cross-species transgene rescue and more recently on deletion mutations. We have taken an unbiased forward mutagenesis approach to isolating zygotic mutations that masculinize all tissues of C. briggsae hermaphrodites. The screens identified loss-of-function mutations in the C. briggsae orthologs of tra-1, tra-2, and tra-3. The somatic and germline phenotypes of these mutations are largely identical to those of their C. elegans homologs, including the poorly understood germline feminization of tra-1(lf) males. This overall conservation of Cb-tra phenotypes is in contrast to the fem genes, with which they directly interact and which are significantly divergent in germline function. In addition, we show that in both C. briggsae and C. elegans large C-terminal truncations of TRA-1 that retain the DNA-binding domain affect sex determination more strongly than somatic gonad development. Beyond these immediate results, this collection of mutations provides an essential foundation for further comparative genetic analysis of the Caenorhabditis sex determination pathway.
Collapse
Affiliation(s)
- Danielle F Kelleher
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Lee JY, Lim JM, Kim DK, Zheng YH, Moon S, Han BK, Song KD, Kim H, Han JY. Identification and gene expression profiling of the Pum1 and Pum2 members of the Pumilio family in the chicken. Mol Reprod Dev 2008; 75:184-90. [PMID: 17474090 DOI: 10.1002/mrd.20765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Members of the Pumilio (Pum) family of RNA-binding proteins act as translational repressors and are required for germ cell development and asymmetric division. We identified the chicken Pum1 and Pum2 genes and analyzed their expression patterns in various tissues. Comparative sequence analysis of the Pum1 and Pum2 proteins from the drosophila, chicken, mouse, and human revealed a high degree of evolutionary conservation in terms of the levels of homology of the peptide sequences and the structure of Pumilio homology domain (PUM-HD), C-terminal RNA-binding domain, with similar spacing between the adjacent Pum eight tandem repeats. In addition, phylogenetic patterns of pumilio family showed that Pum 1 and 2 of chicken are more closely related to those of mouse and human than other species and Pum1 is more conserved than Pum2. Using real-time RT-PCR, the expression levels of the Pum1 and Pum2 genes were found to be highest in hatched female gonads, and high-level expression of Pum2 was detected in 12-day and hatched gonads among the various chicken embryonic tissues tested. In adult tissues, the expression levels of Pum1 and Pum2 were expressed at higher levels in the testis and muscle than in any other tissue. The characteristics of the tissue-specific expression of Pum genes suggest that Pum1 and Pum2 have effects crucially in particular stage during development of chicken gonads depending on sexual maturation.
Collapse
Affiliation(s)
- Jee Young Lee
- Department of Agricultural Biotechnology, Division of Animal Genetic Engineering, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Lee MH, Hook B, Pan G, Kershner AM, Merritt C, Seydoux G, Thomson JA, Wickens M, Kimble J. Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet 2008; 3:e233. [PMID: 18166083 PMCID: PMC2323325 DOI: 10.1371/journal.pgen.0030233] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 11/14/2007] [Indexed: 01/06/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) and PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins control many cellular processes critical for animal development and tissue homeostasis. In the present work, we report that PUF proteins act directly on MAPK/ERK-encoding mRNAs to downregulate their expression in both the Caenorhabditis elegans germline and human embryonic stem cells. In C. elegans, FBF/PUF binds regulatory elements in the mpk-1 3′ untranslated region (3′ UTR) and coprecipitates with mpk-1 mRNA; moreover, mpk-1 expression increases dramatically in FBF mutants. In human embryonic stem cells, PUM2/PUF binds 3′UTR elements in both Erk2 and p38α mRNAs, and PUM2 represses reporter constructs carrying either Erk2 or p38α 3′ UTRs. Therefore, the PUF control of MAPK expression is conserved. Its biological function was explored in nematodes, where FBF promotes the self-renewal of germline stem cells, and MPK-1 promotes oocyte maturation and germ cell apoptosis. We found that FBF acts redundantly with LIP-1, the C. elegans homolog of MAPK phosphatase (MKP), to restrict MAPK activity and prevent apoptosis. In mammals, activated MAPK can promote apoptosis of cancer cells and restrict stem cell self-renewal, and MKP is upregulated in cancer cells. We propose that the dual negative regulation of MAPK by both PUF repression and MKP inhibition may be a conserved mechanism that influences both stem cell maintenance and tumor progression. The mitogen-activated protein (MAP) kinase (MAPK) enzyme is crucial for regulation of both stem cell maintenance and tumorigenesis. Two conserved controls of MAPK include its activation by RAS signaling and a kinase cascade as well as its inactivation by MAPK phosphatases (MKPs). We identify a third mode of conserved MAPK regulation. We demonstrate that PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins repress mRNAs encoding MAPK enzymes in both the Caenorhabditis elegans germline and human embryonic stem cells. PUF proteins have emerged as conserved regulators of germline stem cells in C. elegans, Drosophila, and probably vertebrates. Their molecular mode of action relies on binding to sequence elements in the 3′ untranslated region of target mRNAs. We report that PUF proteins bind and repress mRNAs encoding C. elegans MPK-1 as well as human ERK2 and p38α. We also report that PUF repression and MKP inactivation function redundantly in the C. elegans germline to restrict MPK-1/MAPK activity and prevent germ cell apoptosis. We suggest that this dual regulation of MAPK activity by PUF and MKP proteins may be a conserved mechanism for the control of growth and differentiation during animal development and tissue homeostasis.
Collapse
Affiliation(s)
- Myon-Hee Lee
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brad Hook
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Guangjin Pan
- Genome Centre of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Aaron M Kershner
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christopher Merritt
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - James A Thomson
- Genome Centre of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Judith Kimble
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
237
|
Ulbricht RJ, Olivas WM. Puf1p acts in combination with other yeast Puf proteins to control mRNA stability. RNA (NEW YORK, N.Y.) 2008; 14:246-62. [PMID: 18094119 PMCID: PMC2212245 DOI: 10.1261/rna.847408] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The eukaryotic Puf proteins bind 3' untranslated region (UTR) sequence elements to regulate the stability and translation of their target transcripts, and such regulatory events are critical for cell growth and development. Several global genome analyses have identified hundreds of potential mRNA targets of the Saccharomyces cerevisiae Puf proteins; however, only three mRNA targets for these proteins have been characterized thus far. After direct testing of nearly 40 candidate mRNAs, we established two of these as true mRNA targets of Puf-mediated decay in yeast, HXK1 and TIF1. In a novel finding, multiple Puf proteins, including Puf1p, regulate both of these mRNAs in combination. TIF1 mRNA decay can be stimulated individually by Puf1p and Puf5p, but the combination of both proteins is required for full regulation. This Puf-mediated decay requires the presence of two UGUA binding sites within the TIF1 3' UTR, with one site regulated by Puf5p and the other by both Puf1p and Puf5p. Alteration of the UGUA site in the tif1 3' UTR to more closely resemble the Puf3p binding site broadens the specificity to include regulation by Puf3p. The stability of the endogenously transcribed HXK1 mRNA, cellular levels of Hxk1 protein activity, and HXK1 3' UTR-directed decay are affected by Puf1p and Puf5p as well as Puf4p. Together these results identify the first mRNA targets of Puf1p-mediated decay, describe similar yet distinct combinatorial control of two new target mRNAs by the yeast Puf proteins, and suggest the importance of direct testing to evaluate RNA-regulatory mechanisms.
Collapse
Affiliation(s)
- Randi J Ulbricht
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri 63121, USA
| | | |
Collapse
|
238
|
Abstract
Sexual identity is one of the most important factors that determine how an animal will develop. Although it controls many dimorphic tissues in the body, its most ancient role is in the germ line, where it species that some cells become sperm, and others become eggs. In most animals, these two fates occur in distinct sexes. However, certain nematodes like C. elegans produce XX hermaphrodites, which make both types of gametes. In these animals, a core sex-determination pathway regulates the development of both the body and the germ line. However, modifier genes alter the activity of this pathway in germ cells, and these changes are critical for allowing XX animals to produce oocytes and sperm in an otherwise female body. In this review, I focus on (1) the core sex-determination pathway, (2) the activity of the transcription factor TRA-1 and its immediate targets fog-1 and fog-3 in germ cells, (3) how the regulation of tra-2 activity allows XX spermatogenesis, and (4) how the regulation of fem-3 activity maintains the appropriate balance between TRA-2 and FEM-3 in the germ line. Finally, I consider the major questions in this field that are driving new research.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, School of Osteopathic Medicine, B303 Science Center, The University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA
| |
Collapse
|
239
|
Stumpf CR, Opperman L, Wickens M. Chapter 14. Analysis of RNA-protein interactions using a yeast three-hybrid system. Methods Enzymol 2008; 449:295-315. [PMID: 19215764 DOI: 10.1016/s0076-6879(08)02414-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
RNA-protein interactions play an essential role in the maturation and regulation of RNAs within eukaryotic organisms. The three-hybrid system provides a simple, yet powerful means to study RNA-protein interactions within the eukaryote Saccharomyces cerevisiae. This chapter describes the basis of the system and applications in both examining specific RNA-protein interactions and screening libraries for novel interactions. We provide a detailed discussion on affinity versus reporter output, variations on library screening (e.g., randomization studies), some adaptations of the system, and updated reagents and protocols.
Collapse
Affiliation(s)
- Craig R Stumpf
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
240
|
Potential role of Nanos3 in maintaining the undifferentiated spermatogonia population. Dev Biol 2008; 313:725-38. [DOI: 10.1016/j.ydbio.2007.11.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 10/29/2007] [Accepted: 11/08/2007] [Indexed: 01/15/2023]
|
241
|
Salinas LS, Maldonado E, Macías-Silva M, Blackwell TK, Navarro RE. The DEAD box RNA helicase VBH-1 is required for germ cell function in C. elegans. Genesis 2007; 45:533-46. [PMID: 17868112 DOI: 10.1002/dvg.20323] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Vasa and Belle are conserved DEAD box RNA helicases required for germ cell function. Homologs of this group of proteins in several species, including mammals, are able to complement a mutation in yeast (DED1) suggesting that their function is highly conserved. It has been proposed that these proteins are required for mRNA translation regulation, but their specific mechanism of action is still unknown. Here we describe functions of VBH-1, a C. elegans protein closely related to Belle and Vasa. VBH-1 is expressed specifically in the C. elegans germline, where it is associated with P granules, the C. elegans germ plasm counterpart. vbh-1(RNAi) animals produce fewer offspring than wild type because of defects in oocyte and sperm production, and embryonic lethality. We also find that VBH-1 participates in the sperm/oocyte switch in the hermaphrodite gonad. We conclude that VBH-1 and its orthologs may perform conserved roles in fertility and development.
Collapse
Affiliation(s)
- L Silvia Salinas
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., 04510 México
| | | | | | | | | |
Collapse
|
242
|
Kimble J, Crittenden SL. Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu Rev Cell Dev Biol 2007; 23:405-33. [PMID: 17506698 DOI: 10.1146/annurev.cellbio.23.090506.123326] [Citation(s) in RCA: 300] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Caenorhabditis elegans germ line provides an exceptional model for analysis of the molecular controls governing stem cell maintenance, the cell cycle transition from mitosis to meiosis, and the choice of sexual identity-sperm or oocyte. Germline stem cells are maintained in an undifferentiated state within a well-defined niche formed by a single somatic cell, the distal tip cell (DTC). In both sexes, the DTC employs GLP-1/Notch signaling and FBF/PUF RNA-binding proteins to maintain stem cells and promote mitotic divisions, three additional RNA regulators (GLD-1/quaking, GLD-2/poly(A) polymerase, and GLD-3/Bicaudal-C) control entry into meiosis, and FOG-1/CPEB and FOG-3/Tob proteins govern sperm specification. These key regulators are part of a robust regulatory network that controls germ cell proliferation, stem cell maintenance, and sex determination. Parallels with controls in other organisms include the use of PUF proteins for stem cell maintenance and the prominence of mRNA regulation for the control of germline development.
Collapse
Affiliation(s)
- Judith Kimble
- Department of Biochemistry and Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706-1544, USA.
| | | |
Collapse
|
243
|
Thomson E, Rappsilber J, Tollervey D. Nop9 is an RNA binding protein present in pre-40S ribosomes and required for 18S rRNA synthesis in yeast. RNA (NEW YORK, N.Y.) 2007; 13:2165-74. [PMID: 17956976 PMCID: PMC2080597 DOI: 10.1261/rna.747607] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proteomic analyses in yeast have identified a large number of proteins that are associated with preribosomal particles. However, the product of the yeast ORF YJL010C, herein designated as Nop9, failed to be identified in any previous physical or genetic analysis of preribosomes. Here we report that Nop9 is a nucleolar protein, which is associated with 90S and 40S preribosomes. In cells depleted of Nop9p, early cleavages of the 35S pre-rRNA are inhibited, resulting in the nucleolar retention of accumulated precursors and a failure to synthesize 18S rRNA. Nop9 contains multiple pumilio-like putative RNA binding repeats and displays robust in vitro RNA binding activity. The identification of Nop9p as a novel, essential factor in the nuclear maturation of 90S and pre-40S ribosomal subunits shows that the complement of ribosome synthesis factors remains incomplete.
Collapse
Affiliation(s)
- Emma Thomson
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | | | | |
Collapse
|
244
|
Cho S, Rogers KW, Fay DS. The C. elegans glycopeptide hormone receptor ortholog, FSHR-1, regulates germline differentiation and survival. Curr Biol 2007; 17:203-12. [PMID: 17276913 DOI: 10.1016/j.cub.2006.12.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 01/28/2023]
Abstract
BACKGROUND The mammalian glycopeptide hormone receptors (GPHRs) are key regulators of reproductive development, and their homologs are widely distributed throughout the animal kingdom. The C. elegans genome encodes a single GPHR family member, FSHR-1, which shares equal identity to the FSH, LH, and TSH receptors from mammals. RESULTS Because loss of fshr-1 function does not produce a visible phenotype in C. elegans, we conducted a genome-wide RNAi-feeding screen to identify genes that perform functions that overlap with those of fshr-1. This approach led to the identification of the PUF family members fbf-1 and fbf-2 (the fbfs). Whereas a weak reduction in fbf activity caused little or no discernable effect in the wild-type, an equivalent loss in the fshr-1(0) mutant background resulted in a highly penetrant germline-masculinization phenotype. Furthermore, many fshr-1(0);fbf(RNAi) animals failed to maintain a germline stem cell niche. We also show that fshr-1 and the fbfs promote germline survival and prevent apoptosis with fog-1 and fog-3 and that simultaneous loss of fshr-1 and the fbfs can override the canonical requirement for fog-1 and fog-3 in the execution of the male-germline fate. Finally, we provide evidence that FSHR-1 controls germline processes nonautonomously via the soma and that FSHR-1 acts through a canonical signaling pathway involving Galpha(s) and adenyl cyclase. CONCLUSIONS Our results indicate a conserved role for GPHR family receptors in controlling germline development and fertility. Our data suggest a model whereby FSHR-1 signaling acts in parallel to the known sex-determination pathway to control multiple aspects of germline development.
Collapse
Affiliation(s)
- Saeyoull Cho
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Department 3944, 1000 E. University Avenue, Laramie, Wyoming 82071, USA
| | | | | |
Collapse
|
245
|
Nolde MJ, Saka N, Reinert KL, Slack FJ. The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3'UTR-mediated repression of the let-7 microRNA target gene, hbl-1. Dev Biol 2007; 305:551-63. [PMID: 17412319 PMCID: PMC2096746 DOI: 10.1016/j.ydbio.2007.02.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/19/2007] [Accepted: 02/27/2007] [Indexed: 12/19/2022]
Abstract
The Puf family of RNA-binding proteins directs cell fates by regulating gene expression at the level of translation and RNA stability. Here, we report that the Caenorhabditis elegans pumilio homolog, puf-9, controls the differentiation of epidermal stem cells at the larval-to-adult transition. Genetic analysis reveals that loss-of-function mutations in puf-9 enhance the lethality and heterochronic phenotypes caused by mutations in the let-7 microRNA (miRNA), while suppressing the heterochronic phenotypes of lin-41, a let-7 target and homolog of Drosophila Brat. puf-9 interacts with another known temporal regulator hbl-1, the Caenorhabditis elegans ortholog of hunchback. We present evidence demonstrating that puf-9 is required for the 3'UTR-mediated regulation of hbl-1, in both the hypodermis and the ventral nerve cord. Finally, we show that this regulation is dependent on a region of the hbl-1 3'UTR that contains putative Puf family binding sites as well as binding sites for the let-7 miRNA family, suggesting that puf-9 and let-7 may mediate hypodermal seam cell differentiation by regulating common targets.
Collapse
Affiliation(s)
- Mona J Nolde
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
246
|
Jiang SY, Cai M, Ramachandran S. ORYZA SATIVA MYOSIN XI B controls pollen development by photoperiod-sensitive protein localizations. Dev Biol 2007; 304:579-92. [PMID: 17289016 DOI: 10.1016/j.ydbio.2007.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/29/2006] [Accepted: 01/04/2007] [Indexed: 11/22/2022]
Abstract
Myosins are actin-based motor proteins responsible for various motility and signal transduction. Only a small set of myosin classes is present inplants, and little is known about their functions. Here we showed how a rice myosin gene controlled pollen development by sensing changed environmental factors. The analysis is based on a gene-trapped Ds insertion mutant Oryza sativa myosin XI B (osmyoXIB). This mutant showed male sterility under short day length (SD) conditions and fertility under long day length (LD) conditions. Under both SD and LD conditions, the OSMYOXIB transcript was detected in whole anthers. However, under SD conditions, the OSMYOXIB-GUS fusion protein was localized only in the epidermal layer of anthers due to the lack of 3'-untranslated region (3'-UTR) and to dilute (DIL) domain sequences following the Ds insertion. As a result, mutant pollen development was affected, leading to male sterility. By contrast, under LD conditions, the fusion protein was localized normally in anthers. Despite normal localization, the protein was only partially functional due to the lack of DIL domain sequences, resulting in limited recovery of pollen fertility. This study also provides a case for a novel molecular aspect of gene expression, i.e., cell layer-specific translation in anthers.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link, the National University of Singapore 117604, Singapore
| | | | | |
Collapse
|
247
|
Lamont LB, Kimble J. Developmental expression of FOG-1/CPEB protein and its control in the Caenorhabditis elegans hermaphrodite germ line. Dev Dyn 2007; 236:871-9. [PMID: 17279572 PMCID: PMC1852432 DOI: 10.1002/dvdy.21081] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The specification of a germ cell as sperm or oocyte and determination of cell number remain unsolved questions in developmental biology. This paper examines Caenorhabditis elegans FOG-1, a CPEB-related RNA-binding protein that controls the sperm fate. We find that abundant FOG-1 protein is observed transiently in germ cells just prior to their expression of an early sperm-differentiation marker. As the germline tissue elongates, abundant FOG-1 appears more and more distally as sperm become specified, but disappears when the germ line switches to oogenesis. This dynamic pattern is controlled by both globally acting and germline-specific sex-determining regulators. Importantly, the extent of FOG-1 expression corresponds roughly to sperm number in wild-type and mutants, altering sperm number. By contrast, three other key regulators of the sperm/oocyte decision do not similarly correspond to sperm number. We suggest that FOG-1 is precisely modulated in both time and space to specify sperm fate and control sperm number.
Collapse
Affiliation(s)
- Liana B. Lamont
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
248
|
Stewart MS, Krause SA, McGhie J, Gray JV. Mpt5p, a stress tolerance- and lifespan-promoting PUF protein in Saccharomyces cerevisiae, acts upstream of the cell wall integrity pathway. EUKARYOTIC CELL 2007; 6:262-70. [PMID: 17172436 PMCID: PMC1797943 DOI: 10.1128/ec.00188-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 12/06/2006] [Indexed: 11/20/2022]
Abstract
Pumilio family (PUF) proteins affect specific genes by binding to, and inhibiting the translation or stability of, their transcripts. The PUF domain is required and sufficient for this function. One Saccharomyces cerevisiae PUF protein, Mpt5p (also called Puf5p or Uth4p), promotes stress tolerance and replicative life span (the maximum number of doublings a mother cell can undergo before entering into senescence) by an unknown mechanism thought to partly overlap with, but to be independent of, the cell wall integrity (CWI) pathway. Here, we found that mpt5Delta mutants also display a short chronological life span (the time cells stay alive in saturated cultures in synthetic medium), a defect that is suppressed by activation of CWI signaling. We found that Mpt5p is an upstream activator of the CWI pathway: mpt5Delta mutants display the appropriate phenotypes and genetic interactions, display low basal activity of the pathway, and are defective in activation of the pathway upon thermal stress. A set of mRNAs that specifically bind to Mpt5p was recently reported. One such putative target, LRG1, encodes a GTPase-activating protein for Rho1p that directly links Mpt5p to CWI signaling: Lrg1p inhibits CWI signaling, LRG1 mRNA contains a consensus Mpt5p-binding site in its putative 3' untranslated region, loss of Lrg1p suppresses the temperature sensitivity and CWI signaling defects of mpt5Delta mutants, and LRG1 mRNA abundance is inhibited by Mpt5p. We conclude that Mpt5p is required for normal replicative and chronological life spans and that the CWI pathway is a key and direct downstream target of this PUF protein.
Collapse
Affiliation(s)
- Mark S Stewart
- Division of Molecular Genetics, Faculty of Biomedical and Life Sciences, University of Glasgow, Anderson College Complex, 56 Dumbarton Road, Glasgow G11 6NU, United Kingdom
| | | | | | | |
Collapse
|
249
|
Weston AJ, Baines RA. Translational regulation of neuronal electrical properties. INVERTEBRATE NEUROSCIENCE 2007; 7:75-86. [PMID: 17221234 DOI: 10.1007/s10158-006-0037-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 12/12/2006] [Indexed: 12/01/2022]
Abstract
The nervous system has an in-built capability to adjust its responsiveness to excitation according to the history of electrical activity faced by the neurons embedded within its networks. This control over excitability represents a form of homeostasis and is exhibited at multiple stages in the flow of information from the genome to the expression and modification of protein products. Information on the nature of the homeostatic phenomenon at some of these stages is still limited and emerging. This article outlines the various stages at which such neuronal intrinsic plasticity has been observed and draws particular attention to the role of the translation repressor protein, Pumilio, as an important factor in the process. The study of this protein is providing insights into the regulation of neuronal excitability and offers an important research target with benefits to investigators in many areas of neuroscience.
Collapse
Affiliation(s)
- Andrew J Weston
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|
250
|
García-Rodríguez LJ, Gay AC, Pon LA. Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast. ACTA ACUST UNITED AC 2007; 176:197-207. [PMID: 17210948 PMCID: PMC2063939 DOI: 10.1083/jcb.200606054] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Puf3p binds preferentially to messenger RNAs (mRNAs) for nuclear-encoded mitochondrial proteins. We find that Puf3p localizes to the cytosolic face of the mitochondrial outer membrane. Overexpression of PUF3 results in reduced mitochondrial respiratory activity and reduced levels of Pet123p, a protein encoded by a Puf3p-binding mRNA. Puf3p levels are reduced during the diauxic shift and growth on a nonfermentable carbon source, conditions that stimulate mitochondrial biogenesis. These findings support a role for Puf3p in mitochondrial biogenesis through effects on mRNA interactions. In addition, Puf3p links the mitochore, a complex required for mitochondrial-cytoskeletal interactions, to the Arp2/3 complex, the force generator for actin-dependent, bud-directed mitochondrial movement. Puf3p, the mitochore, and the Arp2/3 complex coimmunoprecipitate and have two-hybrid interactions. Moreover, deletion of PUF3 results in reduced interaction between the mitochore and the Arp2/3 complex and defects in mitochondrial morphology and motility similar to those observed in Arp2/3 complex mutants. Thus, Puf3p is a mitochondrial protein that contributes to the biogenesis and motility of the organelle.
Collapse
Affiliation(s)
- Luis J García-Rodríguez
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|