201
|
Lavoie H, Li JJ, Thevakumaran N, Therrien M, Sicheri F. Dimerization-induced allostery in protein kinase regulation. Trends Biochem Sci 2014; 39:475-86. [PMID: 25220378 DOI: 10.1016/j.tibs.2014.08.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 12/12/2022]
Abstract
The ability of protein kinases to switch between inactive and active states is critical to control the outputs of cellular signaling pathways. In several protein kinases, the conformation of helix αC is a key hub on which regulatory inputs converge to induce catalytic switching. An emerging mechanism involved in regulating helix αC orientation is the allosteric coupling with kinase domain surfaces involved in homo- or heterodimerization. In this review, we discuss dimerization-mediated regulation of the rapidly accelerated fibrosarcoma (RAF) and eIF2α kinase families and draw parallels with the analogous behavior of the epidermal growth factor receptor (EGFR) and serine/threonine-protein kinase endoribonuclease 1 (IRE1)/ribonuclease L (RNAse L) kinase families. Given that resistance to RAF-targeted therapeutics often stems from dimerization-dependent mechanisms, we suggest that a better understanding of dimerization-induced allostery may assist in developing alternate therapeutic strategies.
Collapse
Affiliation(s)
- Hugo Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - John J Li
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Neroshan Thevakumaran
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, H3C 3J7, Canada.
| | - Frank Sicheri
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
202
|
Chylek LA, Akimov V, Dengjel J, Rigbolt KTG, Hu B, Hlavacek WS, Blagoev B. Phosphorylation site dynamics of early T-cell receptor signaling. PLoS One 2014; 9:e104240. [PMID: 25147952 PMCID: PMC4141737 DOI: 10.1371/journal.pone.0104240] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022] Open
Abstract
In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites with central roles in TCR signaling. The model was used to generate predictions suggesting unexpected roles for the phosphatase PTPN6 (SHP-1) and shortcut recruitment of the actin regulator WAS. Predictions were validated experimentally. This integration of proteomics and modeling illustrates a novel, generalizable framework for solidifying quantitative understanding of a signaling network and for elucidating missing links.
Collapse
Affiliation(s)
- Lily A. Chylek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Jörn Dengjel
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Kristoffer T. G. Rigbolt
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Bin Hu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
203
|
Moroco JA, Craigo JK, Iacob RE, Wales TE, Engen JR, Smithgall TE. Differential sensitivity of Src-family kinases to activation by SH3 domain displacement. PLoS One 2014; 9:e105629. [PMID: 25144189 PMCID: PMC4140816 DOI: 10.1371/journal.pone.0105629] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/22/2014] [Indexed: 02/07/2023] Open
Abstract
Src-family kinases (SFKs) are non-receptor protein-tyrosine kinases involved in a variety of signaling pathways in virtually every cell type. The SFKs share a common negative regulatory mechanism that involves intramolecular interactions of the SH3 domain with the PPII helix formed by the SH2-kinase linker as well as the SH2 domain with a conserved phosphotyrosine residue in the C-terminal tail. Growing evidence suggests that individual SFKs may exhibit distinct activation mechanisms dictated by the relative strengths of these intramolecular interactions. To elucidate the role of the SH3:linker interaction in the regulation of individual SFKs, we used a synthetic SH3 domain-binding peptide (VSL12) to probe the sensitivity of downregulated c-Src, Hck, Lyn and Fyn to SH3-based activation in a kinetic kinase assay. All four SFKs responded to VSL12 binding with enhanced kinase activity, demonstrating a conserved role for SH3:linker interaction in the control of catalytic function. However, the sensitivity and extent of SH3-based activation varied over a wide range. In addition, autophosphorylation of the activation loops of c-Src and Hck did not override regulatory control by SH3:linker displacement, demonstrating that these modes of activation are independent. Our results show that despite the similarity of their downregulated conformations, individual Src-family members show diverse responses to activation by domain displacement which may reflect their adaptation to specific signaling environments in vivo.
Collapse
Affiliation(s)
- Jamie A. Moroco
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jodi K. Craigo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Roxana E. Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
204
|
Alvarado JJ, Tarafdar S, Yeh JI, Smithgall TE. Interaction with the Src homology (SH3-SH2) region of the Src-family kinase Hck structures the HIV-1 Nef dimer for kinase activation and effector recruitment. J Biol Chem 2014; 289:28539-53. [PMID: 25122770 DOI: 10.1074/jbc.m114.600031] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HIV-1 Nef supports high titer viral replication in vivo and is essential for AIDS progression. Nef function depends on interactions with multiple host cell effectors, including Hck and other Src-family kinases. Here we describe the x-ray crystal structure of Nef in complex with the Hck SH3-SH2 regulatory region to a resolution of 1.86 Å. The complex crystallized as a dimer of complexes, with the conserved Nef PXXPXR motif engaging the Hck SH3 domain. A new intercomplex contact was found between SH3 Glu-93, and Nef Arg-105. Mutagenesis of Hck SH3 Glu-93 interfered with Nef·Hck complex formation and kinase activation in cells. The Hck SH2 domains impinge on the N-terminal region of Nef to stabilize a dimer conformation that exposes Asp-123, a residue critical for Nef function. Our results suggest that in addition to serving as a kinase effector for Nef, Hck binding may reorganize the Nef dimer for functional interaction with other signaling partners.
Collapse
Affiliation(s)
- John Jeff Alvarado
- From the Departments of Microbiology and Molecular Genetics and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| | - Sreya Tarafdar
- From the Departments of Microbiology and Molecular Genetics and Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Joanne I Yeh
- Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| | | |
Collapse
|
205
|
Irtegun S, Wood R, Lackovic K, Schweiggert J, Ramdzan YM, Huang DCS, Mulhern TD, Hatters DM. A biosensor of SRC family kinase conformation by exposable tetracysteine useful for cell-based screening. ACS Chem Biol 2014; 9:1426-31. [PMID: 24828008 DOI: 10.1021/cb500242q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a new approach to distinguish distinct protein conformations in live cells. The method, exposable tetracysteine (XTC), involved placing an engineered tetracysteine motif into a target protein that has conditional access to biarsenical dye binding by conformational state. XTC was used to distinguish open and closed regulatory conformations of Src family kinases. Substituting just four residues with cysteines in the conserved SH2 domain of three Src-family kinases (c-Src, Lck, Lyn) enabled open and closed conformations to be monitored on the basis of binding differences to biarsenical dyes FlAsH or ReAsH. Fusion of the kinases with a fluorescent protein tracked the kinase presence, and the XTC approach enabled simultaneous assessment of regulatory state. The c-Src XTC biosensor was applied in a boutique screen of kinase inhibitors, which revealed six compounds to induce conformational closure. The XTC approach demonstrates new potential for assays targeting conformational changes in key proteins in disease and biology.
Collapse
Affiliation(s)
| | | | - Kurt Lackovic
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | | - David C. S. Huang
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
206
|
Structural dynamic analysis of apo and ATP-bound IRAK4 kinase. Sci Rep 2014; 4:5748. [PMID: 25034608 PMCID: PMC4103033 DOI: 10.1038/srep05748] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/02/2014] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 receptor-associated kinases (IRAKs) are Ser/Thr protein kinases that play an important role as signaling mediators in the signal transduction facilitated by the Toll-like receptor (TLR) and interleukin-1 receptor families. Among IRAK family members, IRAK4 is one of the drug targets for diseases related to the TLR and IL-1R signaling pathways. Experimental evidence suggests that the IRAK4 kinase domain is phosphorylated in its activation loop at T342, T345, and S346 in the fully activated state. However, the molecular interactions of subdomains within the active and inactive IRAK4 kinase domain are poorly understood. Hence, we employed a long-range molecular dynamics (MD) simulation to compare apo IRAK4 kinase domains (phosphorylated and unphosphorylated) and ATP-bound phosphorylated IRAK4 kinase domains. The MD results strongly suggested that lobe uncoupling occurs in apo unphosphorylated IRAK4 kinase via the disruption of the R334/T345 and R310/T345 interaction. In addition, apo unphosphorylated trajectory result in high mobility, particularly in the N lobe, activation segment, helix αG, and its adjoining loops. The Asp-Phe-Gly (DFG) and His-Arg-Asp (HRD) conserved kinase motif analysis showed the importance of these motifs in IRAK4 kinase activation. This study provides important information on the structural dynamics of IRAK4 kinase, which will aid in inhibitor development.
Collapse
|
207
|
Cordek DG, Croom-Perez TJ, Hwang J, Hargittai MRS, Subba-Reddy CV, Han Q, Lodeiro MF, Ning G, McCrory TS, Arnold JJ, Koc H, Lindenbach BD, Showalter SA, Cameron CE. Expanding the proteome of an RNA virus by phosphorylation of an intrinsically disordered viral protein. J Biol Chem 2014; 289:24397-416. [PMID: 25031324 DOI: 10.1074/jbc.m114.589911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human proteome contains myriad intrinsically disordered proteins. Within intrinsically disordered proteins, polyproline-II motifs are often located near sites of phosphorylation. We have used an unconventional experimental paradigm to discover that phosphorylation by protein kinase A (PKA) occurs in the intrinsically disordered domain of hepatitis C virus non-structural protein 5A (NS5A) on Thr-2332 near one of its polyproline-II motifs. Phosphorylation shifts the conformational ensemble of the NS5A intrinsically disordered domain to a state that permits detection of the polyproline motif by using (15)N-, (13)C-based multidimensional NMR spectroscopy. PKA-dependent proline resonances were lost in the presence of the Src homology 3 domain of c-Src, consistent with formation of a complex. Changing Thr-2332 to alanine in hepatitis C virus genotype 1b reduced the steady-state level of RNA by 10-fold; this change was lethal for genotype 2a. The lethal phenotype could be rescued by changing Thr-2332 to glutamic acid, a phosphomimetic substitution. Immunofluorescence and transmission electron microscopy showed that the inability to produce Thr(P)-2332-NS5A caused loss of integrity of the virus-induced membranous web/replication organelle. An even more extreme phenotype was observed in the presence of small molecule inhibitors of PKA. We conclude that the PKA-phosphorylated form of NS5A exhibits unique structure and function relative to the unphosphorylated protein. We suggest that post-translational modification of viral proteins containing intrinsic disorder may be a general mechanism to expand the viral proteome without a corresponding expansion of the genome.
Collapse
Affiliation(s)
| | | | - Jungwook Hwang
- the Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 133-791, Korea
| | | | - Chennareddy V Subba-Reddy
- the Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, and
| | - Qingxia Han
- From the Department of Biochemistry and Molecular Biology
| | | | - Gang Ning
- the Huck Institutes of the Life Sciences, and
| | | | - Jamie J Arnold
- From the Department of Biochemistry and Molecular Biology
| | - Hasan Koc
- the Department of Pharmaceutical Science and Research, Marshall University School of Pharmacy, Huntington, West Virginia 25755
| | - Brett D Lindenbach
- the Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, and
| | - Scott A Showalter
- the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | | |
Collapse
|
208
|
Muhlrad PJ, Clark JN, Nasri U, Sullivan NG, LaMunyon CW. SPE-8, a protein-tyrosine kinase, localizes to the spermatid cell membrane through interaction with other members of the SPE-8 group spermatid activation signaling pathway in C. elegans. BMC Genet 2014; 15:83. [PMID: 25022984 PMCID: PMC4105102 DOI: 10.1186/1471-2156-15-83] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/03/2014] [Indexed: 01/04/2023] Open
Abstract
Background The SPE-8 group gene products transduce the signal for spermatid activation initiated by extracellular zinc in C. elegans. Mutations in the spe-8 group genes result in hermaphrodite-derived spermatids that cannot activate to crawling spermatozoa, although spermatids from mutant males activate through a pathway induced by extracellular TRY-5 protease present in male seminal fluid. Results Here, we identify SPE-8 as a member of a large family of sperm-expressed non-receptor-like protein-tyrosine kinases. A rescuing SPE-8::GFP translational fusion reporter localizes to the plasma membrane in all spermatogenic cells from the primary spermatocyte stage through spermatids. Once spermatids become activated to spermatozoa, the reporter moves from the plasma membrane to the cytoplasm. Mutations in the spe-8 group genes spe-12, spe-19, and spe-27 disrupt localization of the reporter to the plasma membrane, while localization appears near normal in a spe-29 mutant background. Conclusions These results suggest that the SPE-8 group proteins form a functional complex localized at the plasma membrane, and that SPE-8 is correctly positioned only when all members of the SPE-8 group are present, with the possible exception of SPE-29. Further, SPE-8 is released from the membrane when the activation signal is transduced into the spermatid.
Collapse
Affiliation(s)
| | | | | | | | - Craig W LaMunyon
- Department of Biological Science, California State Polytechnic University, 3801 W, Temple Ave, Pomona, CA 91768, USA.
| |
Collapse
|
209
|
Bartolomé RA, Díaz-Martínez M, Coló GP, Arellano-Sánchez N, Torres-Ayuso P, Kleinovink JW, Mérida I, Teixidó J. A Blk-p190RhoGAP signaling module downstream of activated Gα13 functionally opposes CXCL12-stimulated RhoA activation and cell invasion. Cell Signal 2014; 26:2551-61. [PMID: 25025568 DOI: 10.1016/j.cellsig.2014.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 11/27/2022]
Abstract
Activation of the GTPase RhoA linked to cell invasion can be tightly regulated following Gα13 stimulation. We have used a cellular model displaying Gα13-dependent inhibition of RhoA activation associated with defective cell invasion to the chemokine CXCL12 to characterize the molecular players regulating these processes. Using both RNAi transfection approaches and protein overexpression experiments here we show that the Src kinase Blk is involved in Gα13-activated tyrosine phosphorylation of p190RhoGAP, which causes RhoA inactivation and ultimately leads to deficient cell invasion. Characterization of molecular interplays between Gα13, Blk and p190RhoGAP revealed that Blk binds Gα13, and that Blk-mediated p190RhoGAP phosphorylation upon Gα13 activation correlates with weakening of Gα13-Blk association connected to increased Blk-p190RhoGAP assembly. These results place Blk upstream of the p190RhoGAP-RhoA pathway in Gα13-activated cells, overall representing an opposing signaling module during CXCL12-triggered invasion. In addition, analyses with Blk- or Gα13-knockdown cells indicated that Blk can also mediate CXCL12-triggered phosphorylation of p190RhoGAP independently of Gα13. However, even if CXCL12 induces the Blk-mediated GAP phosphorylation, the simultaneous stimulation of the guanine-nucleotide exchange factor Vav1 by the chemokine, as earlier reported, leads to a net increase in RhoA activation. Therefore, when Gα13 is concurrently stimulated with CXCL12 there appears to be sufficient Blk activity to promote adequate levels of p190RhoGAP tyrosine phosphorylation to inactivate RhoA and to impair cell invasiveness.
Collapse
Affiliation(s)
- Rubén A Bartolomé
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Marta Díaz-Martínez
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Georgina P Coló
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Nohemí Arellano-Sánchez
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Pedro Torres-Ayuso
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - Jan Willem Kleinovink
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | - Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - Joaquin Teixidó
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain.
| |
Collapse
|
210
|
Amata I, Maffei M, Pons M. Phosphorylation of unique domains of Src family kinases. Front Genet 2014; 5:181. [PMID: 25071818 PMCID: PMC4075076 DOI: 10.3389/fgene.2014.00181] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/29/2014] [Indexed: 12/11/2022] Open
Abstract
Members of the Src family of kinases (SFKs) are non-receptor tyrosine kinases involved in numerous signal transduction pathways. The catalytic, SH3 and SH2 domains are attached to the membrane-anchoring SH4 domain through the intrinsically disordered "Unique" domains, which exhibit strong sequence divergence among SFK members. In the last decade, structural and biochemical studies have begun to uncover the crucial role of the Unique domain in the regulation of SFK activity. This mini-review discusses what is known about the phosphorylation events taking place on the SFK Unique domains, and their biological relevance. The modulation by phosphorylation of biologically relevant inter- and intra- molecular interactions of Src, as well as the existence of complex phosphorylation/dephosphorylation patterns observed for the Unique domain of Src, reinforces the important functional role of the Unique domain in the regulation mechanisms of the Src kinases and, in a wider context, of intrinsically disordered regions in cellular processes.
Collapse
Affiliation(s)
- Irene Amata
- Biomolecular NMR Laboratory, Department of Organic Chemistry, University of Barcelona Barcelona, Spain
| | - Mariano Maffei
- Biomolecular NMR Laboratory, Department of Organic Chemistry, University of Barcelona Barcelona, Spain
| | - Miquel Pons
- Biomolecular NMR Laboratory, Department of Organic Chemistry, University of Barcelona Barcelona, Spain
| |
Collapse
|
211
|
Tisdale EJ, Shisheva A, Artalejo CR. Overexpression of atypical protein kinase C in HeLa cells facilitates macropinocytosis via Src activation. Cell Signal 2014; 26:1235-42. [PMID: 24582589 PMCID: PMC4149413 DOI: 10.1016/j.cellsig.2014.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/18/2014] [Indexed: 01/08/2023]
Abstract
Atypical protein kinase C (aPKC) is the first recognized kinase oncogene. However, the specific contribution of aPKC to cancer progression is unclear. The pseudosubstrate domain of aPKC is different from the other PKC family members, and therefore a synthetic peptide corresponding to the aPKC pseudosubstrate (aPKC-PS) sequence, which specifically blocks aPKC kinase activity, is a valuable tool to assess the role of aPKC in various cellular processes. Here, we learned that HeLa cells incubated with membrane permeable aPKC-PS peptide displayed dilated heterogeneous vesicles labeled with peptide that were subsequently identified as macropinosomes. A quantitative membrane binding assay revealed that aPKC-PS peptide stimulated aPKC recruitment to membranes and activated Src. Similarly, aPKC overexpression in transfected HeLa cells activated Src and induced macropinosome formation. Src-aPKC interaction was essential; substitution of the proline residues in aPKC that associate with the Src-SH3 binding domain rendered the mutant kinase unable to induce macropinocytosis in transfected cells. We propose that aPKC overexpression is a contributing factor to cell transformation by interacting with and consequently promoting Src activation and constitutive macropinocytosis, which increases uptake of extracellular factors, required for altered cell growth and accelerated cell migration.
Collapse
Affiliation(s)
- Ellen J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield Ave., 6374 Scott Hall, Detroit, MI 48201, USA.
| | - Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield Ave., 5374 Scott Hall, Detroit, MI 48201, USA
| | - Cristina R Artalejo
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield Ave., 6374 Scott Hall, Detroit, MI 48201, USA
| |
Collapse
|
212
|
Tarafdar S, Poe JA, Smithgall TE. The accessory factor Nef links HIV-1 to Tec/Btk kinases in an Src homology 3 domain-dependent manner. J Biol Chem 2014; 289:15718-28. [PMID: 24722985 PMCID: PMC4140925 DOI: 10.1074/jbc.m114.572099] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 04/09/2014] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 Nef virulence factor interacts with multiple host cell-signaling proteins. Nef binds to the Src homology 3 domains of Src family kinases, resulting in kinase activation important for viral infectivity, replication, and MHC-I down-regulation. Itk and other Tec family kinases are also present in HIV target cells, and Itk has been linked to HIV-1 infectivity and replication. However, the molecular mechanism linking Itk to HIV-1 is unknown. In this study, we explored the interaction of Nef with Tec family kinases using a cell-based bimolecular fluorescence complementation assay. In this approach, interaction of Nef with a partner kinase juxtaposes nonfluorescent YFP fragments fused to the C terminus of each protein, resulting in YFP complementation and a bright fluorescent signal. Using bimolecular fluorescence complementation, we observed that Nef interacts with the Tec family members Bmx, Btk, and Itk but not Tec or Txk. Interaction with Nef occurs through the kinase Src homology 3 domains and localizes to the plasma membrane. Allelic variants of Nef from all major HIV-1 subtypes interacted strongly with Itk in this assay, demonstrating the highly conserved nature of this interaction. A selective small molecule inhibitor of Itk kinase activity (BMS-509744) potently blocked wild-type HIV-1 infectivity and replication, but not that of a Nef-defective mutant. Nef induced constitutive Itk activation in transfected cells that was sensitive to inhibitor treatment. Taken together, these results provide the first evidence that Nef interacts with cytoplasmic tyrosine kinases of the Tec family and suggest that Nef provides a mechanistic link between HIV-1 and Itk signaling in the viral life cycle.
Collapse
Affiliation(s)
- Sreya Tarafdar
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and the Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261
| | - Jerrod A Poe
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| | - Thomas E Smithgall
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219 and
| |
Collapse
|
213
|
D'Abramo M, Besker N, Chillemi G, Grottesi A. Modeling conformational transitions in kinases by molecular dynamics simulations: achievements, difficulties, and open challenges. Front Genet 2014; 5:128. [PMID: 24860596 PMCID: PMC4026744 DOI: 10.3389/fgene.2014.00128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/22/2014] [Indexed: 12/26/2022] Open
Abstract
Protein kinases work because their flexibility allows to continuously switch from inactive to active form. Despite the large number of structures experimentally determined in such states, the mechanism of their conformational transitions as well as the transition pathways are not easily to capture. In this regard, computational methods can help to shed light on such an issue. However, due to the intrinsic sampling limitations, much efforts have been done to model in a realistic way the conformational changes occurring in protein kinases. In this review we will address the principal biological achievements and structural aspects in studying kinases conformational transitions and will focus on the main challenges related to computational approaches such as molecular modeling and MD simulations.
Collapse
Affiliation(s)
- Marco D'Abramo
- CINECA Rome, Italy ; Dipartimento di Chimica, Sapienza University of Rome Rome, Italy
| | - Neva Besker
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata," Rome, Italy
| | | | | |
Collapse
|
214
|
Meyer C, Hoeger B, Temmerman K, Tatarek-Nossol M, Pogenberg V, Bernhagen J, Wilmanns M, Kapurniotu A, Köhn M. Development of accessible peptidic tool compounds to study the phosphatase PTP1B in intact cells. ACS Chem Biol 2014; 9:769-76. [PMID: 24387659 DOI: 10.1021/cb400903u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein tyrosine phosphatases (PTPs) play crucial roles in health and disease. Chemical modulators of their activity are vital tools to study their function. An important aspect is the accessibility of these tools, which is usually limited or not existent due to the required, often complex synthesis of the molecules. We describe here a strategy for the development of cellular active inhibitors and in-cell detection tools for PTP1B as a model PTP, which plays important roles in diabetes, obesity, and cancer. The tool compounds are based on a peptide sequence from PTP1B's substrate Src, and the resulting compounds are commercially accessible through standard peptide synthesis. The peptide inhibitor is remarkably selective against a panel of PTPs. We provide the co-crystal structure of PTP1B with the sequence from Src and the optimized peptide inhibitor, showing the molecular basis of the interaction of PTP1B with part of its natural substrate and explaining the crucial interactions to enhance binding affinity, which are made possible by simple optimization of the sequence. Our approach enables the broad accessibility of PTP1B tools to researchers and has the potential for the systematic development of accessible PTP modulators to enable the study of PTPs.
Collapse
Affiliation(s)
- Christoph Meyer
- Genome
Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Birgit Hoeger
- Genome
Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Koen Temmerman
- Hamburg
Outstation, European Molecular Biology Laboratory, c/o DESY, Hamburg, Germany
| | - Marianna Tatarek-Nossol
- Institute
of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Vivian Pogenberg
- Hamburg
Outstation, European Molecular Biology Laboratory, c/o DESY, Hamburg, Germany
| | - Jürgen Bernhagen
- Institute
of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Matthias Wilmanns
- Hamburg
Outstation, European Molecular Biology Laboratory, c/o DESY, Hamburg, Germany
| | - Aphrodite Kapurniotu
- Division
of Peptide Biochemistry, Technische Universität München, Freising, Germany
| | - Maja Köhn
- Genome
Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
215
|
Li B, Xu L, Shen Q, Gu X, Fu W. Discovery of novel small-molecule Src kinase inhibitors via a kinase-focused druglikeness rule and structure-based virtual screening. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2013.809717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
216
|
Yamada E, Bastie CC. Disruption of Fyn SH3 domain interaction with a proline-rich motif in liver kinase B1 results in activation of AMP-activated protein kinase. PLoS One 2014; 9:e89604. [PMID: 24586906 PMCID: PMC3934923 DOI: 10.1371/journal.pone.0089604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
Fyn-deficient mice display increased AMP-activated Protein Kinase (AMPK) activity as a result of Fyn-dependent regulation of Liver Kinase B1 (LKB1) in skeletal muscle. Mutation of Fyn-specific tyrosine sites in LKB1 results in LKB1 export into the cytoplasm and increased AMPK activation site phosphorylation. This study characterizes the structural elements responsible for the physical interaction between Fyn and LKB1. Effects of point mutations in the Fyn SH2/SH3 domains and in the LKB1 proline-rich motif on 1) Fyn and LKB1 binding, 2) LKB1 subcellular localization and 3) AMPK phosphorylation were investigated in C2C12 muscle cells. Additionally, novel LKB1 proline-rich motif mimicking cell permeable peptides were generated to disrupt Fyn/LKB1 binding and investigate the consequences on AMPK activity in both C2C12 cells and mouse skeletal muscle. Mutation of either Fyn SH3 domain or the proline-rich motif of LKB1 resulted in the disruption of Fyn/LKB1 binding, re-localization of 70% of LKB1 signal in the cytoplasm and a 2-fold increase in AMPK phosphorylation. In vivo disruption of the Fyn/LKB1 interaction using LKB1 proline-rich motif mimicking cell permeable peptides recapitulated Fyn pharmacological inhibition. We have pinpointed the structural elements within Fyn and LKB1 that are responsible for their binding, demonstrating the functionality of this interaction in regulating AMPK activity.
Collapse
Affiliation(s)
- Eijiro Yamada
- Diabetes Research and Training Center, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Claire C. Bastie
- Diabetes Research and Training Center, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
217
|
Schultheiss KP, Craddock BP, Suga H, Miller WT. Regulation of Src and Csk nonreceptor tyrosine kinases in the filasterean Ministeria vibrans. Biochemistry 2014; 53:1320-9. [PMID: 24520931 PMCID: PMC4033911 DOI: 10.1021/bi4016499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The development of the phosphotyrosine-based signaling system predated the evolution of multicellular animals. Single-celled choanoflagellates, the closest living relatives to metazoans, possess numerous tyrosine kinases, including Src family nonreceptor tyrosine kinases. Choanoflagellates also have Csk (C-terminal Src kinase), the enzyme that regulates Src in metazoans; however, choanoflagellate Csk kinases fail to repress the cognate Src. Here, we have cloned and characterized Src and Csk kinases from Ministeria vibrans, a filasterean (the sister group to metazoans and choanoflagellates). The two Src kinases (MvSrc1 and MvSrc2) are enzymatically active Src kinases, although they have low activity toward mammalian cellular proteins. Unexpectedly, MvSrc2 has significant Ser/Thr kinase activity. The Csk homologue (MvCsk) is enzymatically inactive and fails to repress MvSrc activity. We suggest that the low activity of MvCsk is due to sequences in the SH2-kinase interface, and we show that a point mutation in this region partially restores MvCsk activity. The inactivity of filasterean Csk kinases is consistent with a model in which the stringent regulation of Src family kinases arose more recently in evolution, after the split between choanoflagellates and multicellular animals.
Collapse
Affiliation(s)
- Kira P Schultheiss
- Department of Physiology and Biophysics, Stony Brook University , Stony Brook, New York 11794, United States
| | | | | | | |
Collapse
|
218
|
Unlocking Doors without Keys: Activation of Src by Truncated C-terminal Intracellular Receptor Tyrosine Kinases Lacking Tyrosine Kinase Activity. Cells 2014; 3:92-111. [PMID: 24709904 PMCID: PMC3980740 DOI: 10.3390/cells3010092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 01/07/2023] Open
Abstract
One of the best examples of the renaissance of Src as an open door to cancer has been the demonstration that just five min of Src activation is sufficient for transformation and also for induction and maintenance of cancer stem cells [1]. Many tyrosine kinase receptors, through the binding of their ligands, become the keys that unlock the structure of Src and activate its oncogenic transduction pathways. Furthermore, intracellular isoforms of these receptors, devoid of any tyrosine kinase activity, still retain the ability to unlock Src. This has been shown with a truncated isoform of KIT (tr-KIT) and a truncated isoform of VEGFR-1 (i21-VEGFR-1), which are intracellular and require no ligand binding, but are nonetheless able to activate Src and induce cell migration and invasion of cancer cells. Expression of the i21-VEGFR-1 is upregulated by the Notch signaling pathway and repressed by miR-200c and retinoic acid in breast cancer cells. Both Notch inhibitors and retinoic acid have been proposed as potential therapies for invasive breast cancer.
Collapse
|
219
|
Gangoso E, Thirant C, Chneiweiss H, Medina JM, Tabernero A. A cell-penetrating peptide based on the interaction between c-Src and connexin43 reverses glioma stem cell phenotype. Cell Death Dis 2014; 5:e1023. [PMID: 24457967 PMCID: PMC4040690 DOI: 10.1038/cddis.2013.560] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/06/2013] [Accepted: 12/13/2013] [Indexed: 01/09/2023]
Abstract
Connexin43 (Cx43), the main gap junction channel-forming protein in astrocytes, is downregulated in malignant gliomas. These tumors are composed of a heterogeneous population of cells that include many with stem-cell-like properties, called glioma stem cells (GSCs), which are highly tumorigenic and lack Cx43 expression. Interestingly, restoring Cx43 reverses GSC phenotype and consequently reduces their tumorigenicity. In this study, we investigated the mechanism by which Cx43 exerts its antitumorigenic effects on GSCs. We have focused on the tyrosine kinase c-Src, which interacts with the intracellular carboxy tail of Cx43. We found that Cx43 regulates c-Src activity and proliferation in human GSCs expanded in adherent culture. Thus, restoring Cx43 in GSCs inhibited c-Src activity, which in turn promoted the downregulation of the inhibitor of differentiation Id1. Id1 sustains stem cell phenotype as it controls the expression of Sox2, responsible for stem cell self-renewal, and promotes cadherin switching, which has been associated to epithelial–mesenchymal transition. Our results show that both the ectopic expression of Cx43 and the inhibition of c-Src reduced Id1, Sox2 expression and promoted the switch from N- to E-cadherin, suggesting that Cx43, by inhibiting c-Src, downregulates Id1 with the subsequent changes in stem cell phenotype. On the basis of this mechanism, we found that a cell-penetrating peptide, containing the region of Cx43 that interacts with c-Src, mimics the effect of Cx43 on GSC phenotype, confirming the relevance of the interaction between Cx43 and c-Src in the regulation of the malignant phenotype and pinpointing this interaction as a promising therapeutic target.
Collapse
Affiliation(s)
- E Gangoso
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| | - C Thirant
- Laboratoire Plasticité Gliale, Centre de Psychiatrie et de Neuroscience-INSERM U894, Paris 75014, France
| | - H Chneiweiss
- Laboratoire Plasticité Gliale, Centre de Psychiatrie et de Neuroscience-INSERM U894, Paris 75014, France
| | - J M Medina
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| | - A Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
220
|
Abstract
The mammalian ABL1 gene encodes the ubiquitously expressed nonreceptor tyrosine kinase ABL. In response to growth factors, cytokines, cell adhesion, DNA damage, oxidative stress, and other signals, ABL is activated to stimulate cell proliferation or differentiation, survival or death, retraction, or migration. ABL also regulates specialized functions such as antigen receptor signaling in lymphocytes, synapse formation in neurons, and bacterial adhesion to intestinal epithelial cells. Although discovered as the proto-oncogene from which the Abelson leukemia virus derived its Gag-v-Abl oncogene, recent results have linked ABL kinase activation to neuronal degeneration. This body of knowledge on ABL seems confusing because it does not fit the one-gene-one-function paradigm. Without question, ABL capabilities are encoded by its gene sequence and that molecular blueprint designs this kinase to be regulated by subcellular location-dependent interactions with inhibitors and substrate activators. Furthermore, ABL shuttles between the nucleus and the cytoplasm where it binds DNA and actin--two biopolymers with fundamental roles in almost all biological processes. Taken together, the cumulated results from analyses of ABL structure-function, ABL mutant mouse phenotypes, and ABL substrates suggest that this tyrosine kinase does not have its own agenda but that, instead, it has evolved to serve a variety of tissue-specific and context-dependent biological functions.
Collapse
|
221
|
Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through β-sheet formation. Cell Signal 2013; 25:2702-8. [DOI: 10.1016/j.cellsig.2013.08.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 08/30/2013] [Indexed: 01/17/2023]
|
222
|
Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Cold Spring Harb Perspect Biol 2013; 5:a008987. [PMID: 24296166 DOI: 10.1101/cshperspect.a008987] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Intracellular signaling is mediated by reversible posttranslational modifications (PTMs) that include phosphorylation, ubiquitination, and acetylation, among others. In response to extracellular stimuli such as growth factors, receptor tyrosine kinases (RTKs) typically dimerize and initiate signaling through phosphorylation of their cytoplasmic tails and downstream scaffolds. Signaling effectors are recruited to these phosphotyrosine (pTyr) sites primarily through Src homology 2 (SH2) domains and pTyr-binding (PTB) domains. This review describes how these conserved domains specifically recognize pTyr residues and play a major role in mediating precise downstream signaling events.
Collapse
|
223
|
Xie JX, Li X, Xie Z. Regulation of renal function and structure by the signaling Na/K-ATPase. IUBMB Life 2013; 65:991-8. [PMID: 24323927 PMCID: PMC5375025 DOI: 10.1002/iub.1229] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/08/2013] [Indexed: 12/23/2022]
Abstract
The Na/K-ATPase as an essential ion pump was discovered more than 50 years ago (Skou (1989) Biochim. Biophys. Acta 1000, 439-446; Feraille and Doucet (2001) Physiol. Rev. 81, 345-418). The signaling function of Na/K-ATPase has been gradually appreciated over the last 20 years, first from the studies of regulatory effects of ouabain on cardiac cell growth. Several reviews on this topic have been written during the last few years (Schoner and Scheiner-Bobis (2007) Am. J. Physiol. Cell. Physiol. 293, C509-C536; Xie and Cai (2003) Mol. Interv. 3, 157 - 168; Bagrov et al. (2009) Pharmacol. Rev. 61, 9-38; Tian and Xie (2008) Physiology 23, 205-211; Fontana et al. (2013) FEBS J. 280, 5450-5455; Blanco and Wallace (2013) Am. J. Physiol. Renal Physiol. 305, F797-F812). This article will focus on the molecular mechanism of Na/K-ATPase-mediated signal transduction and its potential regulatory role in renal physiology and diseases.
Collapse
Affiliation(s)
- Jeffrey X Xie
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA
| | | | | |
Collapse
|
224
|
Abstract
Tyrosine phosphorylation is one of the key covalent modifications that occur in multicellular organisms. Since its discovery more than 30 years ago, tyrosine phosphorylation has come to be understood as a fundamentally important mechanism of signal transduction and regulation in all eukaryotic cells. The tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase) plays a crucial role in the T-cell response by transducing early activation signals triggered by TCR (T-cell receptor) engagement. These signals result in the phosphorylation of immunoreceptor tyrosine-based activation motifs present within the cytosolic tails of the TCR-associated CD3 subunits that, once phosphorylated, serve as scaffolds for the assembly of a large supramolecular signalling complex responsible for T-cell activation. The existence of membrane nano- or micro-domains or rafts as specialized platforms for protein transport and cell signalling has been proposed. The present review discusses the signals that target Lck to membrane rafts and the importance of these specialized membranes in the transport of Lck to the plasma membrane, the regulation of Lck activity and the phosphorylation of the TCR.
Collapse
|
225
|
Reynolds AB, Kanner SB, Bouton AH, Schaller MD, Weed SA, Flynn DC, Parsons JT. SRChing for the substrates of Src. Oncogene 2013; 33:4537-47. [PMID: 24121272 DOI: 10.1038/onc.2013.416] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/12/2022]
Abstract
By the mid 1980's, it was clear that the transforming activity of oncogenic Src was linked to the activity of its tyrosine kinase domain and attention turned to identifying substrates, the putative next level of control in the pathway to transformation. Among the first to recognize the potential of phosphotyrosine-specific antibodies, Parsons and colleagues launched a risky shotgun-based approach that led ultimately to the cDNA cloning and functional characterization of many of today's best-known Src substrates (for example, p85-Cortactin, p110-AFAP1, p130Cas, p125FAK and p120-catenin). Two decades and over 6000 citations later, the original goals of the project may be seen as secondary to the enormous impact of these protein substrates in many areas of biology. At the request of the editors, this review is not restricted to the current status of the substrates, but reflects also on the anatomy of the project itself and some of the challenges and decisions encountered along the way.
Collapse
Affiliation(s)
- A B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - S B Kanner
- Arrowhead Research Corporation, Madison, WI, USA
| | - A H Bouton
- Departments of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - M D Schaller
- Department of Biochemistry, 3124 HSN, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - S A Weed
- Department of Neurobiology and Anatomy, 1833 Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - D C Flynn
- Department of Medical Lab Sciences, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - J T Parsons
- Departments of Microbiology, Immunology and Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
226
|
Ho M, Wilson BA, Peterson JW. Bacterially Expressed Raf-1 Catalytic Domain is Highly Associated with GroEL. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199900101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
227
|
Xu J, Shen C, Wang T, Quan J. Structural basis for the inhibition of Polo-like kinase 1. Nat Struct Mol Biol 2013; 20:1047-53. [PMID: 23893132 DOI: 10.1038/nsmb.2623] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/30/2013] [Indexed: 01/29/2023]
Abstract
Polo-like kinase 1 (PLK1) is a master regulator of mitosis and is considered a potential drug target for cancer therapy. PLK1 is characterized by an N-terminal kinase domain (KD) and a C-terminal Polo-box domain (PBD). The KD and PBD are mutually inhibited, but the molecular mechanisms of the autoinhibition remain unclear. Here we report the 2.3-Å crystal structure of the complex of the Danio rerio KD and PBD together with a PBD-binding motif of Drosophila melanogaster microtubule-associated protein 205 (Map205(PBM)). The structure reveals that the PBD binds and rigidifies the hinge region of the KD in a distinct conformation from that of the phosphopeptide-bound PBD. This structure provides a framework for understanding the autoinhibitory mechanisms of PLK1 and also sheds light on the activation mechanisms of PLK1 by phosphorylation or phosphopeptide binding.
Collapse
Affiliation(s)
- Jun Xu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | | | | |
Collapse
|
228
|
Byrum JN, Van Komen JS, Rodgers W. CD28 sensitizes TCR Ca²⁺ signaling during Ag-independent polarization of plasma membrane rafts. THE JOURNAL OF IMMUNOLOGY 2013; 191:3073-81. [PMID: 23966623 DOI: 10.4049/jimmunol.1300485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T cells become polarized during initial interactions with an APC to form an Ag-independent synapse (AIS) composed of membrane rafts, TCR, and TCR-proximal signaling molecules. AISs occur temporally before TCR triggering, but their role in downstream TCR signaling is not understood. Using both human and murine model systems, we studied the signals that activate AIS formation and the effect of these signals on TCR-dependent responses. We show that CD28 produces AISs detectable by spinning disc confocal microscopy seconds following initial interactions between the T cell and APC. AIS formation by CD28 coincided with costimulatory signaling, evidenced by a cholesterol-sensitive activation of the MAPK ERK that potentiated Ca²⁺ signaling in response to CD3 cross-linking. CD45 also enriched in AISs but to modulate Src kinase activity, because localization of CD45 at the cell interface reduced the activation of proximal Lck. In summary, we show that signaling by CD28 during first encounters between the T cell and APC both sensitizes TCR Ca²⁺ signaling by an Erk-dependent mechanism and drives formation of an AIS that modulates the early signaling until TCR triggering occurs. Thus, early Ag-independent encounters are an important window for optimizing T cell responses to Ag by CD28.
Collapse
Affiliation(s)
- Jennifer N Byrum
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
229
|
Tyrosine 416 is phosphorylated in the closed, repressed conformation of c-Src. PLoS One 2013; 8:e71035. [PMID: 23923048 PMCID: PMC3724807 DOI: 10.1371/journal.pone.0071035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/26/2013] [Indexed: 12/19/2022] Open
Abstract
c-Src kinase activity is regulated by phosphorylation of Y527 and Y416. Y527 phosphorylation stabilizes a closed conformation, which suppresses kinase activity towards substrates, whereas phosphorylation at Y416 promotes an elevated kinase activity by stabilizing the activation loop in a manner permissive for substrate binding. Here we investigated the correlation of Y416 phosphorylation with c-Src activity when c-Src was locked into the open and closed conformations (by mutations Y527F and Q528E, P529E, G530I respectively). Consistent with prior findings, we found Y416 to be more greatly phosphorylated when c-Src was in an open, active conformation. However, we also observed an appreciable amount of Y416 was phosphorylated when c-Src was in a closed, repressed conformation under conditions by which c-Src was unable to phosphorylate substrate STAT3. The phosphorylation of Y416 in the closed conformation arose by autophosphorylation, since abolishing kinase activity by mutating the ATP binding site (K295M) prevented phosphorylation. Basal Y416 phosphorylation correlated positively with cellular levels of c-Src suggesting autophosphorylation depended on self-association. Using sedimentation velocity analysis on cell lysate with fluorescence detection optics, we confirmed that c-Src forms monomers and dimers, with the open conformation also forming a minor population of larger mass complexes. Collectively, our studies suggest a model by which dimerization of c-Src primes c-Src via Y416 phosphorylation to enable rapid potentiation of activity when Src adopts an open conformation. Once in the open conformation, c-Src can amplify the response by recruiting and phosphorylating substrates such as STAT3 and increasing the extent of autophosphorylation.
Collapse
|
230
|
Bolduc D, Rahdar M, Tu-Sekine B, Sivakumaren SC, Raben D, Amzel LM, Devreotes P, Gabelli SB, Cole P. Phosphorylation-mediated PTEN conformational closure and deactivation revealed with protein semisynthesis. eLife 2013; 2:e00691. [PMID: 23853711 PMCID: PMC3707082 DOI: 10.7554/elife.00691] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/07/2013] [Indexed: 12/23/2022] Open
Abstract
The tumor suppressor PIP3 phosphatase PTEN is phosphorylated on four clustered Ser/Thr on its C-terminal tail (aa 380–385) and these phosphorylations are proposed to induce a reduction in PTEN’s plasma membrane recruitment. How these phosphorylations affect the structure and enzymatic function of PTEN is poorly understood. To gain insight into the mechanistic basis of PTEN regulation by phosphorylation, we generated semisynthetic site-specifically tetra-phosphorylated PTEN using expressed protein ligation. By employing a combination of biophysical and enzymatic approaches, we have found that purified tail-phosphorylated PTEN relative to its unphosphorylated counterpart shows reduced catalytic activity and membrane affinity and undergoes conformational compaction likely involving an intramolecular interaction between its C-tail and the C2 domain. Our results suggest that there is a competition between membrane phospholipids and PTEN phospho-tail for binding to the C2 domain. These findings reveal a key aspect of PTEN’s regulation and suggest pharmacologic approaches for direct PTEN activation. DOI:http://dx.doi.org/10.7554/eLife.00691.001 PTEN is an enzyme that is found in almost every tissue in the body, and its job is to stop cells dividing. If it fails to perform this job, the uncontrolled proliferation of cells can lead to the growth of tumors. PTEN stops cells dividing by localizing at the plasma membrane of a cell and removing a phosphate group from a lipid called PIP3: this sends a signal, via the PI3K pathway, that suppresses the replication and survival of cells. Three regions of PTEN are thought to be central to its biological functions: one of these regions, the phosphatase domain, is directly responsible for removing a phosphate group from the lipid PIP3; a second region, called the C2 domain, is known to be critical for PTEN binding to the cell membrane; however, the role of third region, called the C-terminal domain, is poorly understood. Many proteins are regulated by the addition and removal of phosphate groups, and PTEN is no exception. In particular, it seems as if the addition of phosphate groups to four amino acid residues in the C-terminal domain can switch off the activity of PTEN, but the details of this process have been elusive. Now, Bolduc et al. have employed a variety of biochemical and biophysical techniques to explore this process, finding that the addition of the phosphate groups reduced PTEN’s affinity for the plasma membrane. At the same time, interactions between the C-terminal and C2 domains of the PTEN cause the shape of the enzyme to change in a way that ‘buries’ the residues to which the phosphate groups have been added. In addition to offering new insights into PTEN, the work of Bolduc et al. could help efforts to identify compounds with clinical anti-cancer potential. DOI:http://dx.doi.org/10.7554/eLife.00691.002
Collapse
Affiliation(s)
- David Bolduc
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , Baltimore , United States
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Tintori C, Laurenzana I, La Rocca F, Falchi F, Carraro F, Ruiz A, Esté JA, Kissova M, Crespan E, Maga G, Biava M, Brullo C, Schenone S, Botta M. Identification of Hck inhibitors as hits for the development of antileukemia and anti-HIV agents. ChemMedChem 2013; 8:1353-60. [PMID: 23813855 DOI: 10.1002/cmdc.201300204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Indexed: 12/16/2022]
Abstract
Hematopoietic cell kinase (Hck) is a member of the Src family of non-receptor protein tyrosine kinases. High levels of Hck are associated with drug resistance in chronic myeloid leukemia. Furthermore, Hck activity has been connected with HIV-1. Herein, structure-based drug design efforts were aimed at identifying novel Hck inhibitors. First, an in-house library of pyrazolo[3,4-d]pyrimidine derivatives, which were previously shown to be dual Abl and c-Src inhibitors, was analyzed by docking studies within the ATP binding site of Hck to select the best candidates to be tested in a cell-free assay. Next, the same computational protocol was applied to screen a database of commercially available compounds. As a result, most of the selected compounds were found active against Hck, with Ki values ranging from 0.14 to 18.4 μM, confirming the suitability of the computational approach adopted. Furthermore, selected compounds showed an interesting antiproliferative activity profile against the human leukemia cell line KU-812, and one compound was found to block HIV-1 replication at sub-toxic concentrations.
Collapse
Affiliation(s)
- Cristina Tintori
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. De Gasperi 2, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Src activation by β-adrenoreceptors is a key switch for tumour metastasis. Nat Commun 2013; 4:1403. [PMID: 23360994 PMCID: PMC3561638 DOI: 10.1038/ncomms2413] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 12/19/2012] [Indexed: 12/23/2022] Open
Abstract
Norepinephrine (NE) can modulate multiple cellular functions important for cancer progression; however, how this single extracellular signal regulates such a broad array of cellular processes is unknown. Here, we identify Src as a key regulator of phosphoproteomic signaling networks activated in response to beta-adrenergic signaling in cancer cells. These results also identify a new mechanism of Src phosphorylation that mediates beta-adrenergic/PKA regulation of downstream networks, thereby enhancing tumor cell migration, invasion and growth. In human ovarian cancer samples, high tumoral NE levels were correlated with high pSrcY419 levels. Moreover, among cancer patients, the use of beta blockers was significantly associated with reduced cancer-related mortality. Collectively, these data provide a pivotal molecular target for disrupting neural signaling in the tumor microenvironment.
Collapse
|
233
|
Wang X, Deng H, Zou F, Fu Z, Chen Y, Wang Z, Liu L. ER-α36-mediated gastric cancer cell proliferation via the c-Src pathway. Oncol Lett 2013; 6:329-335. [PMID: 24137325 PMCID: PMC3789085 DOI: 10.3892/ol.2013.1416] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/11/2013] [Indexed: 12/23/2022] Open
Abstract
Previously, a novel variant of estrogen receptor (ER)-α, ER-α36, was identified and cloned and reported to mainly mediate non-genomic estrogen signaling. More recently, we identified that ER-α36 is important for the invasion and lymph node metastasis of human gastric cancer. In the present study, the c-Src signaling pathway was demonstrated to be involved in the non-genomic estrogen signaling mediated by ER-α36 in SGC7901 gastric cancer cells. SGC7901 cells were subjected to the siRNA-mediated knockdown of ER-α36 (PLKO.1-PURO-SP6-ER-α36-L) or transfected with an ER-α36 upregulated expression plasmid (PLJM1-ER-α36-H) and treated with 17β-estradiol (E2β) and PP2, a c-Src protein inhibitor. The expression of ER-α36 and c-src/p-c-Src and cyclin D1 was examined by western blot analysis, and tumor cell growth was analyzed by cell proliferation and nude mouse xenograft assays. The ER variant, ER-α36, was shown to enhance gastric cancer cell proliferation through activation of the membrane-initiated c-Src signaling pathways, indicating that ER-α36 is important for the regulation of proliferation in gastric cancer. In addition, ER-α36 was shown to directly interact with c-Src by immunoprecipitation. The results of the present study indicate that the use of ER-α36 may be a targeted therapeutic approach in gastric cancer.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Pathology and Pathophysiology, School of Basic Medical Science of Wuhan University, P.R. China
| | | | | | | | | | | | | |
Collapse
|
234
|
Aten TM, Redmond MM, Weaver SO, Love CC, Joy RM, Lapp AS, Rivera OD, Hinkle KL, Ballif BA. Tyrosine phosphorylation of the orphan receptor ESDN/DCBLD2 serves as a scaffold for the signaling adaptor CrkL. FEBS Lett 2013; 587:2313-8. [DOI: 10.1016/j.febslet.2013.05.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/22/2022]
|
235
|
Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int J Mol Sci 2013; 14:10761-90. [PMID: 23702846 PMCID: PMC3709701 DOI: 10.3390/ijms140610761] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 11/17/2022] Open
Abstract
The Src gene product (Src) and the epidermal growth factor receptor (EGFR) are prototypes of oncogene products and function primarily as a cytoplasmic non-receptor tyrosine kinase and a transmembrane receptor tyrosine kinase, respectively. The identification of Src and EGFR, and the subsequent extensive investigations of these proteins have long provided cutting edge research in cancer and other molecular and cellular biological studies. In 1995, we reported that the human epidermoid carcinoma cells, A431, contain a small fraction of Src and EGFR in which these two kinase were in physical association with each other, and that Src phosphorylates EGFR on tyrosine 845 (Y845) in the Src-EGFR complex. Y845 of EGFR is located in the activation segment of the kinase domain, where many protein kinases contain kinase-activating autophosphorylation sites (e.g., cAMP-dependent protein kinase, Src family kinases, transmembrane receptor type tyrosine kinases) or trans-phosphorylation sites (e.g., cyclin-dependent protein kinase, mitogen-activated protein kinase, Akt protein kinase). A number of studies have demonstrated that Y845 phosphorylation serves an important role in cancer as well as normal cells. Here we compile the experimental facts involving Src phosphorylation of EGFR on Y845, by which cell proliferation, cell cycle control, mitochondrial regulation of cell metabolism, gamete activation and other cellular functions are regulated. We also discuss the physiological relevance, as well as structural insights of the Y845 phosphorylation.
Collapse
|
236
|
Chen X, Ying Z, Lin X, Lin H, Wu J, Li M, Song L. Acylglycerol kinase augments JAK2/STAT3 signaling in esophageal squamous cells. J Clin Invest 2013; 123:2576-89. [PMID: 23676499 DOI: 10.1172/jci68143] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/14/2013] [Indexed: 02/06/2023] Open
Abstract
JAK2 activity is tightly controlled through a self-inhibitory effect via its JAK homology domain 2 (JH2), which restricts the strength and duration of JAK2/STAT3 signaling under physiological conditions. Although multiple mutations within JAK2, which abrogate the function of JH2 and sustain JAK2 activation, are widely observed in hematological malignancies, comparable mutations have not been detected in solid tumors. How solid tumor cells override the autoinhibitory effect of the JH2 domain to maintain constitutive activation of JAK2/STAT3 signaling remains puzzling. Herein, we demonstrate that AGK directly interacted with the JH2 domain to relieve inhibition of JAK2 and activate JAK2/STAT3 signaling. Overexpression of AGK sustained constitutive JAK2/STAT3 activation, consequently promoting the cancer stem cell population and augmenting the tumorigenicity of esophageal squamous cell carcinoma (ESCC) cells both in vivo and in vitro. Furthermore, AGK levels significantly correlated with increased STAT3 phosphorylation, poorer disease-free survival, and shorter overall survival in primary ESCC. More importantly, AGK expression was significantly correlated with JAK2/STAT3 hyperactivation in ESCC, as well as in lung and breast cancer. These findings uncover a mechanism for constitutive activation of JAK2/STAT3 signaling in solid tumors and may represent a prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xiuting Chen
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
237
|
Abstract
Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous hydrogen peroxide (H₂O₂) by membrane-bound NADPH oxidases. In turn, H₂O₂ can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H₂O₂ regarding kinase activity, as well as the components involved in H₂O₂ production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H₂O₂ through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiological and pathological H₂O₂ responses.
Collapse
Affiliation(s)
- Thu H Truong
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
238
|
Smida M, Cammann C, Gurbiel S, Kerstin N, Lingel H, Lindquist S, Simeoni L, Brunner-Weinzierl MC, Suchanek M, Schraven B, Lindquist JA. PAG/Cbp suppression reveals a contribution of CTLA-4 to setting the activation threshold in T cells. Cell Commun Signal 2013; 11:28. [PMID: 23601194 PMCID: PMC3763844 DOI: 10.1186/1478-811x-11-28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/03/2013] [Indexed: 11/12/2022] Open
Abstract
Background PAG/Cbp represents a ubiquitous mechanism for regulating Src family kinases
by recruiting Csk to the plasma membrane, thereby controlling cellular
activation. Since Src kinases are known oncogenes, we used RNA interference
in primary human T cells to test whether the loss of PAG resulted in
lymphocyte transformation. Results PAG-depletion enhanced Src kinase activity and augmented proximal T-cell
receptor signaling; exactly the phenotype expected for loss of this negative
regulator. Surprisingly, rather than becoming hyper-proliferative,
PAG-suppressed T cells became unresponsive. This was mediated by a
Fyn-dependent hyper-phosphorylation of the inhibitory receptor CTLA-4, which
recruited the protein tyrosine phosphatase Shp-1 to lipid rafts.
Co-suppression of CTLA-4 abrogates this inhibition and restores
proliferation to T cells. Conclusion We have identified a fail-safe mechanism as well as a novel contribution of
CTLA-4 to setting the activation threshold in T cells.
Collapse
Affiliation(s)
- Michal Smida
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Leipziger Strasse 44, Magdeburg, 39120, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Brigham JL, Perera BGK, Maly DJ. A hexylchloride-based catch-and-release system for chemical proteomic applications. ACS Chem Biol 2013; 8:691-9. [PMID: 23305300 DOI: 10.1021/cb300623a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioorthogonal ligation methods that allow the selective conjugation of fluorophores or biotin to proteins and small molecule probes that contain inert chemical handles are an important component of many chemical proteomic strategies. Here, we present a new catch-and-release enrichment strategy that utilizes a hexylchloride group as a bioorthogonal chemical handle. Proteins and small molecules that contain a hexylchloride tag can be efficiently captured by an immobilized version of the self-labeling protein HaloTag. Furthermore, by using a HaloTag fusion protein that contains a protease cleavage site, captured proteins can be selectively eluted under mild conditions. We demonstrate the utility of the hexylchloride-based catch-and-release strategy by enriching protein kinases that are covalently and noncovalently bound to ATP-binding site-directed probes from mammalian cell lysates. Our catch-and-release system creates new possibilities for profiling enzyme families and for the identification of the cellular targets of bioactive small molecules.
Collapse
Affiliation(s)
- Jennifer L. Brigham
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - B. Gayani K. Perera
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dustin J. Maly
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
240
|
Xue B, Uversky VN. Structural characterizations of phosphorylatable residues in transmembrane proteins from Arabidopsis thaliana. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e25713. [PMID: 28516016 PMCID: PMC5424800 DOI: 10.4161/idp.25713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/28/2013] [Accepted: 07/10/2013] [Indexed: 12/26/2022]
Abstract
Phosphorylation is a common post-translational modification that plays important roles in a wide range of biochemical and cellular processes. Many enzymes and receptors can be switched “on” or “off” by conformational changes induced by phosphorylation. The phosphorylation process is mediated by a family of enzymes called kinase. Currently, more than 1,000 different kinases have been identified in Arabidopsis thaliana proteome. Kinases interact with each other and with many regulatory proteins forming phosphorylation networks. These phosphorylation networks modulate the signaling processes and control the functions of cells. Normally, kinases phosphorylate serines, threonines, and tyrosines. However, in many proteins, not all of these 3 types of amino acids can be phosphorylated. Therefore, identifying the phosphorylation sites and the possible phosphorylation events is very important in decoding the processes of regulation and the function of phosphorylation networks. In this study, we applied computational and bioinformatics tools to characterize the association between phosphorylation events and structural properties of corresponding proteins by analyzing more than 50 trans-membrane proteins from Arabidopsis thaliana. In addition to the previously established conclusion that phosphorylation sites are closely associated with intrinsic disorder, we found that the phosphorylation process may also be affected by solvent accessibility of phosphorylation sites and further promoted by neighboring modification events.
Collapse
Affiliation(s)
- Bin Xue
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA
| | - Vladimir N Uversky
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA.,USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA.,Institute for Biological Instrumentation; Russian Academy of Sciences; Moscow Region, Russia
| |
Collapse
|
241
|
Abstract
The epidermal growth factor receptor (EGFR) is a key protein in cellular signaling, and its kinase domain (EGFR kinase) is an intensely pursued target of small-molecule drugs. Although both catalytically active and inactive conformations of EGFR kinase have been resolved crystallographically, experimental characterization of the transitions between these conformations remains difficult. Using unbiased, all-atom molecular dynamics simulations, we observed EGFR kinase spontaneously transition from the active to the so-called "Src-like inactive" conformation by way of two sets of intermediate conformations: One corresponds to a previously identified locally disordered state and the other to previously undescribed "extended" conformations, marked by the opening of the ATP-binding site between the two lobes of the kinase domain. We also simulated the protonation-dependent transition of EGFR kinase to another ["Asp-Phe-Gly-out" ("DFG-out")] inactive conformation and observed similar intermediate conformations. A key element observed in the simulated transitions is local unfolding, or "cracking," which supports a prediction of energy landscape theory. We used hydrogen-deuterium (H/D) exchange measurements to corroborate our simulations and found that the simulated intermediate conformations correlate better with the H/D exchange data than existing active or inactive EGFR kinase crystal structures. The intermediate conformations revealed by our simulations of the transition process differ significantly from the existing crystal structures and may provide unique possibilities for structure-based drug discovery.
Collapse
|
242
|
Gorska MM, Alam R. Consequences of a mutation in the UNC119 gene for T cell function in idiopathic CD4 lymphopenia. Curr Allergy Asthma Rep 2013; 12:396-401. [PMID: 22729960 DOI: 10.1007/s11882-012-0281-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The activation of a T cell through T cell receptor (TCR) is fundamental to adaptive immune responses. The lymphocyte specific kinase (LCK) plays a central role in the initiation of signaling from the TCR. TCR activates LCK through the adaptor protein uncoordinated 119 (UNC119). A mutation of human UNC119 impairs LCK activation and is associated with inadequate signaling, diminished T cell responses to TCR stimulation, CD4 lymphopenia, and infections of viral, bacterial, and fungal origin. The above clinical and immunological findings meet the criteria of the idiopathic CD4 lymphopenia (ICL). The discovery of the UNC119 defect provides a molecular mechanism for a subset of patients with this previously unexplained disease. Here we review our recent findings on the UNC119 mutation in ICL.
Collapse
Affiliation(s)
- Magdalena M Gorska
- Department of Medicine, Division of Allergy and Immunology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA.
| | | |
Collapse
|
243
|
Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker. Mol Cell Biol 2013; 33:2188-201. [PMID: 23530057 DOI: 10.1128/mcb.01637-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serial activation of the tyrosine kinases Lck and ZAP-70 initiates signaling downstream of the T cell receptor. We previously reported the structure of an autoinhibited ZAP-70 variant in which two regulatory tyrosine residues (315 and 319) in the SH2-kinase linker were replaced by phenylalanine. We now present a crystal structure of ZAP-70 in which Tyr 315 and Tyr 319 are not mutated, leading to the recognition of a five-residue sequence register error in the SH2-kinase linker of the original crystallographic model. The revised model identifies distinct roles for these two tyrosines. As seen in a recently reported structure of the related tyrosine kinase Syk, Tyr 315 of ZAP-70 is part of a hydrophobic interface between the regulatory apparatus and the kinase domain, and the integrity of this interface would be lost upon engagement of doubly phosphorylated peptides by the SH2 domains. Tyr 319 is not necessarily dislodged by SH2 engagement, which activates ZAP-70 only ∼5-fold in vitro. In contrast, phosphorylation by Lck activates ZAP-70 ∼100-fold. This difference is due to the ability of Tyr 319 to suppress ZAP-70 activity even when the SH2 domains are dislodged from the kinase domain, providing stringent control of ZAP-70 activity downstream of Lck.
Collapse
|
244
|
Crystal Structure and Mechanism of Activation of TANK-Binding Kinase 1. Cell Rep 2013; 3:734-46. [DOI: 10.1016/j.celrep.2013.01.034] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/29/2012] [Accepted: 01/28/2013] [Indexed: 11/17/2022] Open
|
245
|
Sakkiah S, Arullaperumal V, Hwang S, Lee KW. Ligand-based pharmacophore modeling and Bayesian approaches to identify c-Src inhibitors. J Enzyme Inhib Med Chem 2013; 29:69-80. [PMID: 23432516 DOI: 10.3109/14756366.2012.753881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract Cellular Src (c-Src) kinases play a critical role in cell adhesion, proliferation, angiogenesis and cancer. Ligand-based pharmacophore models, used to identify the critical chemical features of c-Src inhibitors, were generated and validated by training, test and decoy sets, respectively. Best pharmacophore model, Hypo1, consists of four features such as HBA, HBD, Hy-Ar and RA. Hypo1 was used in virtual screening of the chemical databases such as Maybridge, Chembridge and NCI. The sorted compounds by Hypo1 were further reduced by applying drug-like properties and ADMET. Totally, 85 compounds which showed the good drug-like properties were selected from three databases and subjected to molecular docking for refinement of the retrieved hits by analysing the suitable orientation of the compounds in the active site of c-Src. Finally, 18 compounds were selected based on consensus scoring and hydrogen bond interactions with critical amino acids such as Met341, Thr338, Glu339 or Asp404. In addition, the Bayesian model was generated from the training set to find suitable fragments for inhibition of the c-Src function. Based on the above finding, we suggested that the Hypo1 and the good fragments from the Bayesian model will be helpful to select the compounds from various databases to identify the novel and potent c-Src inhibitor.
Collapse
Affiliation(s)
- Sugunadevi Sakkiah
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU) , Jinju , Republic of Korea
| | | | | | | |
Collapse
|
246
|
Stirnweiss A, Hartig R, Gieseler S, Lindquist JA, Reichardt P, Philipsen L, Simeoni L, Poltorak M, Merten C, Zuschratter W, Prokazov Y, Paster W, Stockinger H, Harder T, Gunzer M, Schraven B. T cell activation results in conformational changes in the Src family kinase Lck to induce its activation. Sci Signal 2013; 6:ra13. [PMID: 23423439 DOI: 10.1126/scisignal.2003607] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The lymphocyte-specific Src family protein tyrosine kinase p56(Lck) (Lck) is essential for T cell development and activation and, hence, for adaptive immune responses. The mechanism by which Lck activity is directed toward specific substrates in response to T cell receptor (TCR) activation remains elusive. We used fluorescence lifetime imaging microscopy to assess the activation-dependent spatiotemporal changes in the conformation of Lck in live human T cells. Kinetic analysis of the fluorescence lifetime of Lck biosensors enabled the direct visualization of the dynamic local opening of 20% of the total amount of Lck proteins after activation of T cells with antibody against CD3 or by superantigen-loaded antigen-presenting cells. Parallel biochemical analysis of TCR complexes revealed that the conformational changes in Lck correlated with the induction of Lck enzymatic activity. These data show the dynamic, local activation through conformational change of Lck at sites of TCR engagement.
Collapse
Affiliation(s)
- Anja Stirnweiss
- Institute of Molecular and Clinical Immunology, Otto von Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Xiao H, Bai XH, Wang Y, Kim H, Mak AS, Liu M. MEK/ERK pathway mediates PKC activation-induced recruitment of PKCζ and MMP-9 to podosomes. J Cell Physiol 2013; 228:416-27. [PMID: 22740332 DOI: 10.1002/jcp.24146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Podosomes are adhesive structures on the ventral surface of cells that invade and degrade the extracellular matrix. Recently, we reported that phorbol 12,13-dibutyrate (PDBu), a protein kinase C (PKC) activator, induced podosome formation in normal human bronchial epithelial (NHBE) cells, and atypical PKCζ regulated MMP-9 recruitment to podosomes for its release and activation. The objective of this study was to explore signaling pathways that are involved in PKC activation-induced podosome formation and matrix degradation. Herein, we found that PDBu increased phosphorylation of PI3K p85, Akt, Src, ERK1/2, and JNK. Inhibitors for PI3K, Akt, and Src suppressed PDBu-induced podosome formation and matrix degradation. In contrast, blockers for MEK/ERK or JNK did not inhibit podosome formation but reduced proteolytic activity of podosomes. Inhibition of PKCζ activity with its pseudosubstrate peptide (PS)-inhibited PDBu-induced phosphorylation of MEK/ERK and JNK. On the other hand, inhibition of MEK/ERK or JNK pathway did not affect PKCζ phosphorylation, but reduced the recruitment of PKCζ and MMP-9 to podosomes. We conclude that PKCζ may regulate MEK/ERK and JNK phosphorylation and in turn activated MEK/ERK and JNK may regulate the proteolytic activity of PDBu-induced podosomes by influencing the recruitment of PKCζ and MMP-9 to podosomes.
Collapse
Affiliation(s)
- Helan Xiao
- Division of Cell and Molecular Biology, University Health Network Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
248
|
Gajiwala KS, Maegley K, Ferre R, He YA, Yu X. Ack1: activation and regulation by allostery. PLoS One 2013; 8:e53994. [PMID: 23342057 PMCID: PMC3544672 DOI: 10.1371/journal.pone.0053994] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 12/07/2012] [Indexed: 01/14/2023] Open
Abstract
The non-receptor tyrosine kinase Ack1 belongs to a unique multi-domain protein kinase family, Ack. Ack is the only family of SH3 domain containing kinases to have an SH3 domain following the kinase domain; others have their SH3 domains preceding the kinase domain. Previous reports have suggested that Ack1 does not require phosphorylation for activation and the enzyme activity of the isolated kinase domain is low relative to other kinases. It has been shown to dimerize in the cellular environment, which augments its enzyme activity. The molecular mechanism of activation, however, remains unknown. Here we present structural and biochemical data on Ack1 kinase domain, and kinase domain+SH3 domain that suggest that Ack1 in its monomeric state is autoinhibited, like EGFR and CDK. The activation of the kinase domain may require N-lobe mediated symmetric dimerization, which may be facilitated by the N-terminal SAM domain. Results presented here show that SH3 domain, unlike in Src family tyrosine kinases, does not directly control the activation state of the enzyme. Instead we speculate that the SH3 domain may play a regulatory role by facilitating binding of the MIG6 homologous region to the kinase domain. We postulate that features of Ack1 activation and regulation parallel those of receptor tyrosine kinase EGFR with some interesting differences.
Collapse
Affiliation(s)
- Ketan S Gajiwala
- Cancer Structural Biology within Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, San Diego, California, United States of America.
| | | | | | | | | |
Collapse
|
249
|
Reinhard L, Tidow H, Clausen MJ, Nissen P. Na(+),K (+)-ATPase as a docking station: protein-protein complexes of the Na(+),K (+)-ATPase. Cell Mol Life Sci 2013; 70:205-22. [PMID: 22695678 PMCID: PMC11113973 DOI: 10.1007/s00018-012-1039-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 05/13/2012] [Accepted: 05/23/2012] [Indexed: 12/13/2022]
Abstract
The Na(+),K(+)-ATPase, or sodium pump, is well known for its role in ion transport across the plasma membrane of animal cells. It carries out the transport of Na(+) ions out of the cell and of K(+) ions into the cell and thus maintains electrolyte and fluid balance. In addition to the fundamental ion-pumping function of the Na(+),K(+)-ATPase, recent work has suggested additional roles for Na(+),K(+)-ATPase in signal transduction and biomembrane structure. Several signaling pathways have been found to involve Na(+),K(+)-ATPase, which serves as a docking station for a fast-growing number of protein interaction partners. In this review, we focus on Na(+),K(+)-ATPase as a signal transducer, but also briefly discuss other Na(+),K(+)-ATPase protein-protein interactions, providing a comprehensive overview of the diverse signaling functions ascribed to this well-known enzyme.
Collapse
Affiliation(s)
- Linda Reinhard
- Danish National Research Foundation, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark
| | - Henning Tidow
- Danish National Research Foundation, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark
| | - Michael J. Clausen
- Danish National Research Foundation, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark
| | - Poul Nissen
- Danish National Research Foundation, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Molecular Biology and Genetics, 8000 Aarhus C, Denmark
| |
Collapse
|
250
|
Jin J, Pawson T. Modular evolution of phosphorylation-based signalling systems. Philos Trans R Soc Lond B Biol Sci 2012; 367:2540-55. [PMID: 22889906 DOI: 10.1098/rstb.2012.0106] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phosphorylation sites are formed by protein kinases ('writers'), frequently exert their effects following recognition by phospho-binding proteins ('readers') and are removed by protein phosphatases ('erasers'). This writer-reader-eraser toolkit allows phosphorylation events to control a broad range of regulatory processes, and has been pivotal in the evolution of new functions required for the development of multi-cellular animals. The proteins that comprise this system of protein kinases, phospho-binding targets and phosphatases are typically modular in organization, in the sense that they are composed of multiple globular domains and smaller peptide motifs with binding or catalytic properties. The linkage of these binding and catalytic modules in new ways through genetic recombination, and the selection of particular domain combinations, has promoted the evolution of novel, biologically useful processes. Conversely, the joining of domains in aberrant combinations can subvert cell signalling and be causative in diseases such as cancer. Major inventions such as phosphotyrosine (pTyr)-mediated signalling that flourished in the first multi-cellular animals and their immediate predecessors resulted from stepwise evolutionary progression. This involved changes in the binding properties of interaction domains such as SH2 and their linkage to new domain types, and alterations in the catalytic specificities of kinases and phosphatases. This review will focus on the modular aspects of signalling networks and the mechanism by which they may have evolved.
Collapse
Affiliation(s)
- Jing Jin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada.
| | | |
Collapse
|