201
|
RNAi-based therapies for Huntington's disease: delivery challenges and opportunities. Ther Deliv 2012; 3:1061-76. [PMID: 23035592 DOI: 10.4155/tde.12.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Huntington's disease (HD) is a polyglutamine neurodegenerative disease caused by a mutation in the HTT gene coding for the Huntingtin protein (HTT). Unfortunately, there is no cure for HD and there is also no known way to modify the disease progression. RNAi approaches offer the promise of a certain degree of control over the disease. However, there are several challenges in potential use of RNAi in the treatment of HD. This article will discuss the details of RNAi technology as applied to the treatment of HD, and novel approaches to overcome the drug delivery challenges.
Collapse
|
202
|
A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials 2012; 34:807-16. [PMID: 23111335 DOI: 10.1016/j.biomaterials.2012.10.023] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/07/2012] [Indexed: 01/13/2023]
Abstract
Lack of affordable technologies for delivering microRNAs and siRNAs into cells on a large scale has hindered our efforts to rapidly parse through hundreds of dysregulated genes/microRNAs in order to identify drivers of complex diseases. The instability and polyanionic nature of naked microRNAs impede efficient cellular uptake and reduce half-life. Viral delivery requires cloning, microRNA mimics/inhibitors require costly modifications, and both require toxic lipofection or electroporation. To address these challenges, we developed a robust method for delivering unmodified microRNAs into cells on cysteamine-functionalized gold nanoparticles (AuNPs). We validated our method in two different tumor models and found that the best formulation of miR(1)-AuNP(10)-S-PEG(0.5) had the highest payload (10-20 fold higher than lipofection), lowest toxicity (98% of cell viability following treatment), efficient uptake (96% of cells took it), fastest endosomal escape and increased half-lives (at least 5 days) impacting cell proliferation and patterns of target gene expression.
Collapse
|
203
|
Levina AS, Repkova MN, Ismagilov ZR, Shikina NV, Malygin EG, Mazurkova NA, Zinov'ev VV, Evdokimov AA, Baiborodin SI, Zarytova VF. High-performance method for specific effect on nucleic acids in cells using TiO2~DNA nanocomposites. Sci Rep 2012; 2:756. [PMID: 23091696 PMCID: PMC3477653 DOI: 10.1038/srep00756] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/27/2012] [Indexed: 11/11/2022] Open
Abstract
Nanoparticles are used to solve the current drug delivery problem. We present a high-performance method for efficient and selective action on nucleic acid target in cells using unique TiO2·PL-DNA nanocomposites (polylysine-containing DNA fragments noncovalently immobilized onto TiO2 nanoparticles capable of transferring DNA). These nanocomposites were used for inhibition of human influenza A (H3N2) virus replication in infected MDCK cells. They showed a low toxicity (TC50 ≈ 1800 μg/ml) and a high antiviral activity (>99.9% inhibition of the virus replication). The specificity factor (antisense effect) appeared to depend on the delivery system of DNA fragments. This factor for nanocomposites is ten-times higher than for DNA in the presence of lipofectamine. IC50 for nanocomposites was estimated to be 1.5 μg/ml (30 nM for DNA), so its selectivity index was calculated as ~1200. Thus, the proposed nanocomposites are prospective for therapeutic application.
Collapse
Affiliation(s)
- Asya S Levina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Plasmid DNA is internalized from the apical plasma membrane of the salivary gland epithelium in live animals. Histochem Cell Biol 2012; 138:201-13. [PMID: 22544351 DOI: 10.1007/s00418-012-0959-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
Non-viral-mediated gene delivery represents an alternative way to express the gene of interest without inducing immune responses or other adverse effects. Understanding the mechanisms by which plasmid DNAs are delivered to the proper target in vivo is a fundamental issue that needs to be addressed in order to design more effective strategies for gene therapy. As a model system, we have used the submandibular salivary glands in live rats and we have recently shown that reporter transgenes can be expressed in different cell populations of the glandular epithelium, depending on the modality of administration of plasmid DNA. Here, by using a combination of immunofluorescence and intravital microscopy, we have explored the relationship between the pattern of transgenes expression and the internalization of plasmid DNA. We found that plasmid DNA is internalized: (1) by all the cells in the salivary gland epithelium, when administered alone, (2) by large ducts, when mixed with empty adenoviral particles, and (3) by acinar cells upon stimulation of compensatory endocytosis. Moreover, we showed that plasmid DNA utilizes different routes of internalization, and evades both the lysosomal degradative pathway and the retrograde pathway towards the Golgi apparatus. This study clearly shows that in vivo approaches have the potential to address fundamental questions on the cellular mechanisms regulating gene delivery.
Collapse
|
205
|
Lentiviral vectors and cardiovascular diseases: a genetic tool for manipulating cardiomyocyte differentiation and function. Gene Ther 2012; 19:642-8. [DOI: 10.1038/gt.2012.19] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
206
|
de Backer MWA, Garner KM, Luijendijk MCM, Adan RAH. Recombinant adeno-associated viral vectors. Methods Mol Biol 2012; 789:357-76. [PMID: 21922421 DOI: 10.1007/978-1-61779-310-3_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Recombinant adeno-associated viral (rAAV) vectors can be used to locally or systemically enhance or silence gene expression. They are relatively nonimmunogenic and can transduce dividing and nondividing cells, and different rAAV serotypes may transduce diverse cell types. Therefore, rAAV vectors are excellent tools to study the function of neuropeptides in local brain areas. In this chapter, we describe a protocol to produce high-titer, in vivo grade, rAAV vector stocks. The protocol includes an Iodixanol gradient, an anion exchange column and a desalting/concentration step and can be used for every serotype. In addition, a short protocol for rAAV injections into the brain and directions on how to detect and localize transduced cells are given.
Collapse
Affiliation(s)
- Marijke W A de Backer
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, Utrecht University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
207
|
Abstract
Lentiviral vectors are vectors of choice for many gene therapy applications. Recently, efficient targeting of lentiviral vectors pseudotyped with the Measles virus (MV) glycoproteins has been reported. However, MV antibodies in patients might limit the clinical use of these vectors. We demonstrate here that lentiviral vectors can also be pseudotyped with the glycoproteins of Tupaia paramyxovirus (TPMV), the hemagglutinin (H) and fusion (F) protein. As this animal paramyxovirus has no known close relatives in humans, we do not expect TPMV antibodies in patients. Because TPMV normally does not infect human cells, 'detargeting' from natural receptors is unnecessary. Similar to the MV system, TPMV glycoproteins can mediate targeted cell entry by displaying different single-chain antibodies (scAb) directed against surface molecules on target cells on the viral hemagglutinin. We generated a panel of H and F proteins with truncated cytoplasmic tails and determined the variants that efficiently pseudotyped lentiviral vectors. The B-cell marker CD20 was used as a model antigen, and CD20-targeted TPMV vectors selectively transduced CD20-positive cells, including quiescent primary human B-cells. Lentiviral vectors pseudotyped with targeted TPMV envelope proteins might be a valuable vector choice when systemic application of targeted lentiviral vectors in humans is required.
Collapse
|
208
|
Escors D, Kochan G, Stephenson H, Breckpot K. Cell and Tissue Gene Targeting with Lentiviral Vectors. SPRINGERBRIEFS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012. [PMCID: PMC7122860 DOI: 10.1007/978-3-0348-0402-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One of the main advantages of using lentivectors is their capacity to transduce a wide range of cell types, independently from the cell cycle stage. However, transgene expression in certain cell types is sometimes not desirable, either because of toxicity, cell transformation, or induction of transgene-specific immune responses. In other cases, specific targeting of only cancerous cells within a tumor is sought after for the delivery of suicide genes. Consequently, great effort has been invested in developing strategies to control transgene delivery/expression in a cell/tissue-specific manner. These strategies can broadly be divided in three; particle pseudotyping (surface targeting), which entails modification of the envelope glycoprotein (ENV); transcriptional targeting, which utilizes cell-specific promoters and/or inducible promoters; and posttranscriptional targeting, recently applied in lentivectors by introducing sequence targets for cell-specific microRNAs. In this chapter we describe each of these strategies providing some illustrative examples.
Collapse
Affiliation(s)
- David Escors
- University College London, Rayne Building, 5 University Street, London, WC1E 6JF UK
| | - Grazyna Kochan
- Oxford Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building. Roosevelt Drive, Headington, Oxford, OX3 7DQ UK
| | - Holly Stephenson
- Institute of Child Health, University College London, Great Ormond Street, London, WC1N 3JH UK
| | | |
Collapse
|
209
|
Abstract
Current gene therapies are predominantly based on a handful of viral vectors. The limited choice of delivery vectors has been one of the stumbling blocks to the advancement of gene therapy. Therefore, the development of novel recombinant vectors should facilitate the application of gene therapies. In this study, we examined coxsackievirus B3 (CVB3) as a novel recombinant vector for the delivery and expression of a foreign gene in vitro and in vivo. A recombinant CVB3 complementary DNA was constructed by inserting a gene encoding human fibroblast growth factor 2 (FGF2). The recombinant virus (CVB3-FGF2) efficiently expressed FGF2 in HeLa cells and human cardiomyocytes in vitro and in mouse hindlimbs in vivo. The injection of the recombinant virus into mice with ischemic hindlimbs protected the hindlimbs from ischemic necrosis. CVB3-FGF2 injection significantly improved the blood flow in the ischemic limbs for over 3 weeks compared with that in the phosphate-buffered saline- or CVB3-injected controls, suggesting that FGF2 expressed from CVB3-FGF2 is functional and therapeutically effective. The virulence of CVB3 was also drastically attenuated in the recombinant virus. Thus, CVB3 can be modified to express a functional foreign protein, supporting its use as a novel viral vector for gene therapy.
Collapse
|
210
|
Arce F, Breckpot K, Collins M, Escors D. Targeting lentiviral vectors for cancer immunotherapy. CURRENT CANCER THERAPY REVIEWS 2011; 7:248-260. [PMID: 22983382 DOI: 10.2174/157339411797642605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Delivery of tumour-associated antigens (TAA) in a way that induces effective, specific immunity is a challenge in anti-cancer vaccine design. Circumventing tumour-induced tolerogenic mechanisms in vivo is also critical for effective immunotherapy. Effective immune responses are induced by professional antigen presenting cells, in particular dendritic cells (DC). This requires presentation of the antigen to both CD4(+) and CD8(+) T cells in the context of strong co-stimulatory signals. Lentiviral vectors have been tested as vehicles, for both ex vivo and in vivo delivery of TAA and/or activation signals to DC, and have been demonstrated to induce potent T cell mediated immune responses that can control tumour growth. This review will focus on the use of lentiviral vectors for in vivo gene delivery to DC, introducing strategies to target DC, either targeting cell entry or gene expression to improve safety of the lentiviral vaccine or targeting dendritic cell activation pathways to enhance performance of the lentiviral vaccine. In conclusion, this review highlights the potential of lentiviral vectors as a generally applicable 'off-the-shelf' anti-cancer immunotherapeutic.
Collapse
Affiliation(s)
- Frederick Arce
- Division of Infection and Immunity, Medical School of the Royal Free and University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom
| | | | | | | |
Collapse
|
211
|
Bagutti C, Alt M, Schmidlin M, Vogel G, Vögeli U, Brodmann P. Detection of adeno- and lentiviral (HIV1) contaminations on laboratory surfaces as a tool for the surveillance of biosafety standards. J Appl Microbiol 2011; 111:70-82. [PMID: 21535333 DOI: 10.1111/j.1365-2672.2011.05042.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AIMS As a biosafety laboratory, we survey the handling of adenovirus type 5 (Ad5) and HIV1-derived lentivirus in contained-use facilities in Switzerland to identify insufficiencies of the safety precautions taken by the laboratories. METHODS AND RESULTS In the past 9 years, we took 430 swab samples from various types of surfaces in research laboratories. Samples were examined for Ad5 contaminations by real-time PCR and infectivity assay or for the presence of lentivirus (HIV1) nucleic acids by real-time (RT) PCR. Samples collected from centrifuges did not only contain Ad5 DNA more frequently but also exhibited higher numbers of Ad5 and lentiviral (HIV1) DNA copies than swabs from any other area of sampling. Five of ten samples containing infectious Ad5 particles or lentivirus (HIV1) RNA were found in samples taken from centrifuges. Ad5 contamination rates were higher in the tube holder and lower on the inner wall of the rotor chamber in centrifuges that were fitted with aerosol tight covers compared to centrifuges without covers. CONCLUSIONS Our results allowed the comparison of hygiene standards of different laboratories and lead to the identification of centrifuges as hotspots for contaminations. SIGNIFICANCE AND IMPACT OF THE STUDY Based on our results, we propose to use the collected data as a tool for rating future swab results. Furthermore, the amount of Ad5 and HIV1-derived lentivirus DNA could serve as an indicator of the level of good laboratory practice in contained-use laboratories handling these viral vectors.
Collapse
Affiliation(s)
- C Bagutti
- State Laboratory Basel-City, Biosafety Laboratory, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
212
|
Bokara KK, Kwon KH, Nho Y, Lee WT, Park KA, Lee JE. Retroviral Expression of Arginine Decarboxylase Attenuates Oxidative Burden in Mouse Cortical Neural Stem Cells. Stem Cells Dev 2011; 20:527-37. [DOI: 10.1089/scd.2010.0312] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kiran Kumar Bokara
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Ki Hyo Kwon
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoonmi Nho
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyung Ah Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, South Korea
| |
Collapse
|
213
|
Yermolina MV, Wang J, Caffrey M, Rong LL, Wardrop DJ. Discovery, synthesis, and biological evaluation of a novel group of selective inhibitors of filoviral entry. J Med Chem 2011; 54:765-81. [PMID: 21204524 PMCID: PMC3081529 DOI: 10.1021/jm1008715] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report the development of an antifiloviral screening system, based on a pseudotyping strategy, and its application in the discovery of a novel group of small molecules that selectively inhibit the Ebola and Marburg glycoprotein (GP)-mediated infection of human cells. Using Ebola Zaire GP-pseudotyped HIV particles bearing a luciferase reporter gene and 293T cells, a library of 237 small molecules was screened for inhibition of GP-mediated viral entry. From this assay, lead compound 8a was identified as a selective inhibitor of filoviral entry with an IC(50) of 30 μM. To analyze functional group requirements for efficacy, a structure-activity relationship analysis of this 3,5-disubstituted isoxazole was then conducted with 56 isoxazole and triazole derivatives prepared using "click" chemistry. This study revealed that while the isoxazole ring can be replaced by a triazole system, the 5-(diethylamino)acetamido substituent found in 8a is required for inhibition of viral-cell entry. Variation of the 3-aryl substituent provided a number of more potent antiviral agents with IC(50) values ranging to 2.5 μM. Lead compound 8a and three of its derivatives were also found to block the Marburg glycoprotein (GP)-mediated infection of human cells.
Collapse
Affiliation(s)
- Maria V. Yermolina
- Department of Chemistry, University of Illinois, 845 West Taylor Street, Chicago, Illinois 60607
| | - Jizhen Wang
- Department of Microbiology & Immunology, University of Illinois at Chicago, 835 South Wolcott, Chicago, Illinois 60612
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland, Chicago, IL 60607
| | - Lijun L. Rong
- Department of Microbiology & Immunology, University of Illinois at Chicago, 835 South Wolcott, Chicago, Illinois 60612
| | - Duncan J. Wardrop
- Department of Chemistry, University of Illinois, 845 West Taylor Street, Chicago, Illinois 60607
| |
Collapse
|
214
|
Abstract
Viral vector is the most effective means of gene transfer to modify specific cell type or tissue and can be manipulated to express therapeutic genes. Several virus types are currently being investigated for use to deliver genes to cells to provide either transient or permanent transgene expression. These include adenoviruses (Ads), retroviruses (γ-retroviruses and lentiviruses), poxviruses, adeno-associated viruses, baculoviruses, and herpes simplex viruses. The choice of virus for routine clinical use will depend on the efficiency of transgene expression, ease of production, safety, toxicity, and stability. This chapter provides an introductory overview of the general characteristics of viral vectors commonly used in gene transfer and their advantages and disadvantages for gene therapy use.
Collapse
Affiliation(s)
- James N Warnock
- School of Chemical & Bioprocess Engineering and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
215
|
Shim SH, Kim YJ, Kim DS, Nam JH. Development of a Gene Therapy Method for Cervical Cancer Using Attenuated Coxsackievirus B3 as a Vector System. ACTA ACUST UNITED AC 2011. [DOI: 10.4167/jbv.2011.41.2.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Seung-Hyun Shim
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| | - Yeon-Jung Kim
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| | - Dae-Sun Kim
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| |
Collapse
|
216
|
Ottobrini L, Martelli C, Trabattoni DL, Clerici M, Lucignani G. In vivo imaging of immune cell trafficking in cancer. Eur J Nucl Med Mol Imaging 2010; 38:949-68. [PMID: 21170525 DOI: 10.1007/s00259-010-1687-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 11/15/2010] [Indexed: 12/14/2022]
Abstract
Tumour establishment, progression and regression can be studied in vivo using an array of imaging techniques ranging from MRI to nuclear-based and optical techniques that highlight the intrinsic behaviour of different cell populations in the physiological context. Clinical in vivo imaging techniques and preclinical specific approaches have been used to study, both at the macroscopic and microscopic level, tumour cells, their proliferation, metastasisation, death and interaction with the environment and with the immune system. Fluorescent, radioactive or paramagnetic markers were used in direct protocols to label the specific cell population and reporter genes were used for genetic, indirect labelling protocols to track the fate of a given cell subpopulation in vivo. Different protocols have been proposed to in vivo study the interaction between immune cells and tumours by different imaging techniques (intravital and whole-body imaging). In particular in this review we report several examples dealing with dendritic cells, T lymphocytes and macrophages specifically labelled for different imaging procedures both for the study of their physiological function and in the context of anti-neoplastic immunotherapies in the attempt to exploit imaging-derived information to improve and optimise anti-neoplastic immune-based treatments.
Collapse
Affiliation(s)
- Luisa Ottobrini
- Department of Biomedical Sciences and Technologies, University of Milan, Milan, Italy
| | | | | | | | | |
Collapse
|
217
|
CNS-targeted viral delivery of G-CSF in an animal model for ALS: improved efficacy and preservation of the neuromuscular unit. Mol Ther 2010; 19:284-92. [PMID: 21139572 DOI: 10.1038/mt.2010.271] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motoneurons. We have recently uncovered a new neurotrophic growth factor, granulocyte-colony stimulating factor (G-CSF), which protects α-motoneurons, improves functional outcome, and increases life expectancy of SOD-1 (G93A) mice when delivered subcutaneously. However, chronic systemic delivery of G-CSF is complicated by elevation of neutrophilic granulocytes. Here, we used adeno-associated virus (AAV) to directly target and confine G-CSF expression to the spinal cord. Whereas intramuscular injection of AAV failed to transduce motoneurons retrogradely, and caused a high systemic load of G-CSF, intraspinal delivery led to a highly specific enrichment of G-CSF in the spinal cord with moderate peripheral effects. Intraspinal delivery improved motor functions, delayed disease progression, and increased survival by 10%, longer than after systemic delivery. Mechanistically, we could show that G-CSF in addition to rescuing motoneurons improved neuromuscular junction (NMJ) integrity and enhanced motor axon regeneration after nerve crush injury. Collectively, our results show that intraspinal delivery improves efficacy of G-CSF treatment in an ALS mouse model while minimizing the systemic load of G-CSF, suggesting a new therapeutic option for ALS treatment.
Collapse
|
218
|
Wonganan P, Clemens CC, Brasky K, Pastore L, Croyle MA. Species differences in the pharmacology and toxicology of PEGylated helper-dependent adenovirus. Mol Pharm 2010; 8:78-92. [PMID: 20822161 DOI: 10.1021/mp100216h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinically relevant doses of helper-dependent adenoviruses (HDAds) provoke the host response against capsid proteins in primates and rodents. To determine if PEGylation truly affects this, baboons and mice were given either HDAd or PEG-HDAd expressing beta-galactosidase at 5 × 10¹¹ or 3 × 10¹² virus particles per kilogram (vp/kg) by iv infusion. Serum cytokines and blood chemistries were assessed for 96 h. PEG-HDAd reduced IL-6 6-fold in mice and 3-fold in the primate. This vector reduced IL-12 by 50% in both animal models. PEGylation reduced serum transaminases by approximately 50% at each dose in the primate and the mouse. PEGylation did not alter hepatic transduction efficiency in the mouse but did reduce transduction efficiency in the liver and the spleen of primates. Unmodified and PEGylated virus suppressed hepatic CYP3A activity in both animal models. PEGylation doubled the half-life (t(½)) of the virus in the mouse and cut plasma clearance (CL) in half without affecting the half-life in primates. These results suggest that there are notable species-specific differences in the biodistribution of and response to PEG-modified vectors which may be linked to differences in binding properties to coagulation factors, receptor density and tissue architecture in the liver.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Division of Pharmaceutics, College of Pharmacy, and Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
219
|
Zhou T, Kamimura K, Zhang G, Liu D. Intracellular gene transfer in rats by tail vein injection of plasmid DNA. AAPS JOURNAL 2010; 12:692-8. [PMID: 20859713 DOI: 10.1208/s12248-010-9231-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/09/2010] [Indexed: 11/30/2022]
Abstract
In this study, we examined the effect of various factors on gene delivery efficiency of tail vein injection of plasmid DNA into rats. We measured the level of reporter gene expression in the internal organs including the lung, heart, spleen, kidney, and liver as function of injection volume, injection time, and DNA dose. Persistency of reporter gene expression in transfected animals was also examined. We demonstrated that plasmid delivery to rats by the tail vein is effective as long as the volume of injected DNA solution is adjusted to 7-8% of body weight with an injection time of less than 10 s. With the exception of a short-term increase in serum concentration of alanine aminotransferase and transient irregularity in cardiac function during and soon after the injection, the procedure is well tolerated. Lac Z staining of the liver from transfected animals showed approximately 5-10% positive cells. Persistency test for transgene expression in animals using plasmid carrying cDNA of human alpha 1 antitrypsin gene driven by chicken beta actin gene promoter with CMV enhancers showed peak level of transgene product 1 day after the injection followed by a gradual decline with time. Peak level was regained by a second injection performed on day 38 after the first injection. These results show that tail vein injection is an effective means for introducing plasmid DNA into liver cells in rats. We believe that this procedure will be extremely useful for gene function studies in the context of whole animal in rats.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
220
|
Cepurniene K, Ruzgys P, Treinys R, Satkauskiene I, Satkauskas S. Influence of plasmid concentration on DNA electrotransfer in vitro using high-voltage and low-voltage pulses. J Membr Biol 2010; 236:81-5. [PMID: 20623115 DOI: 10.1007/s00232-010-9270-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 06/11/2010] [Indexed: 11/29/2022]
Abstract
DNA electrotransfer in vivo for gene therapy is a promising method. For further clinical developments, the efficiency of the method should be increased. It has been shown previously that high efficiency of gene electrotransfer in vivo can be achieved using high-voltage (HV) and low-voltage (LV) pulses. In this study we evaluated whether HV and LV pulses could be optimized in vitro for efficient DNA electrotransfer. Experiments were performed using Chinese hamster ovary (CHO) cells. To evaluate the efficiency of DNA electrotransfer, two different plasmids coding for GFP and luciferase were used. For DNA electrotransfer experiments 50 microl of CHO cell suspension containing 100, 10 or 1 microg/ml of the plasmid were placed between plate electrodes and subjected to various combinations of HV and LV pulses. The results showed that at 100 microg/ml plasmid concentration LV pulse delivered after HV pulse increased neither the percentage of transfected cells nor the total transfection efficiency (luciferase activity). The contribution of the LV pulse was evident only at reduced concentration (10 and 1 microg/ml) of the plasmid. In comparison to HV (1,200 V/cm, 100 micros) pulse, addition of LV (100 V/cm, 100 ms) pulse increased transfection efficiency severalfold at 10 microg/ml and fivefold at 1 microg/ml. At 10 microg/ml concentration of plasmid, application of four LV pulses after HV pulse increased transfection efficiency by almost 10-fold. Thus, these results show that contribution of electrophoretic forces to DNA electrotransfer can be investigated in vitro using HV and LV pulses.
Collapse
Affiliation(s)
- Karolina Cepurniene
- Biophysical Research Group, Biology Department, Vytautas Magnus University, Vileikos 8, Kaunas, 44404, Lithuania
| | | | | | | | | |
Collapse
|
221
|
Jackaman C, Nelson DJ. Cytokine-armed vaccinia virus infects the mesothelioma tumor microenvironment to overcome immune tolerance and mediate tumor resolution. Cancer Gene Ther 2010; 17:429-40. [PMID: 20150930 DOI: 10.1038/cgt.2009.85] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intratumoral (i.t.) administration of cytokine genes expressed by viral vectors represents a rational approach that induces cytokine secretion at the site they are needed, and i.t. vaccinia virus (VV) has shown promise in mesothelioma patients. However, we and others have shown that the mesothelioma tumor microenvironment includes macrophages, dendritic cells (DCs), and T cells. Therefore, we investigated which of these cell types are infected after exposure to VV or Fowlpox virus (FPV)-cytokine gene constructs. In vitro studies showed that mesothelioma tumor cells were resistant to FPV infection yet highly permissive to infection by VV vectors resulting in significant cytokine production and impaired proliferation. Macrophages secreted low levels of cytokine suggestive of resistance to overt infection. DCs transiently secreted virally derived cytokines, but did not mature during VV infection. VV inhibition of T cell proliferation was rescued by the interleukin (IL)-2 and IL-12 VV constructs. In vivo studies of murine mesotheliomas showed that i.t. injection of the parent VV could not hinder tumor progression. In contrast, the VV-cytokine constructs induced profound tumor regression. These data suggest that i.t. VV-cytokine gene constructs retard tumor growth by infecting mesothelioma cells and targeting the immune system through tumor-infiltrating DC and T cells.
Collapse
Affiliation(s)
- C Jackaman
- Curtin University, School of Biomedical Sciences, Bentley, Perth, Western Australia, Australia
| | | |
Collapse
|
222
|
Escors D, Breckpot K. Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp (Warsz) 2010; 58:107-19. [PMID: 20143172 DOI: 10.1007/s00005-010-0063-4] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/06/2009] [Indexed: 12/28/2022]
Abstract
The concept of gene therapy originated in the mid twentieth century and was perceived as a revolutionary technology with the promise to cure almost any disease of which the molecular basis was understood. Since then, several gene vectors have been developed and the feasibility of gene therapy has been shown in many animal models of human disease. However, clinical efficacy could not be demonstrated until the beginning of the new century in a small-scale clinical trial curing an otherwise fatal immunodeficiency disorder in children. This first success, achieved after retroviral therapy, was later overshadowed by the occurrence of vector-related leukemia in a significant number of the treated children, demonstrating that the future success of gene therapy depends on our understanding of vector biology. This has led to the development of later-generation vectors with improved efficiency, specificity, and safety. Amongst these are HIV-1 lentivirus-based vectors (lentivectors), which are being increasingly used in basic and applied research. Human gene therapy clinical trials are currently underway using lentivectors in a wide range of human diseases. The intention of this review is to describe the main scientific steps leading to the engineering of HIV-1 lentiviral vectors and place them in the context of current human gene therapy.
Collapse
Affiliation(s)
- David Escors
- Division of Infection and Immunity, Medical School of the Royal Free and University College London, London W1T 4JF, UK.
| | | |
Collapse
|
223
|
Hajitou A. Targeted systemic gene therapy and molecular imaging of cancer contribution of the vascular-targeted AAVP vector. ADVANCES IN GENETICS 2010; 69:65-82. [PMID: 20807602 DOI: 10.1016/s0065-2660(10)69008-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy and molecular-genetic imaging have faced a major problem: the lack of an efficient systemic gene delivery vector. Unquestionably, eukaryotic viruses have been the vectors of choice for gene delivery to mammalian cells; however, they have had limited success in systemic gene therapy. This is mainly due to undesired uptake by the liver and reticuloendothelial system, broad tropism for mammalian cells causing toxicity, and their immunogenicity. On the other hand, prokaryotic viruses such as bacteriophage (phage) have no tropism for mammalian cells, but can be engineered to deliver genes to these cells. However, phage-based vectors have inherently been considered poor vectors for mammalian cells. We have reported a new generation of vascular-targeted systemic hybrid prokaryotic-eukaryotic vectors as chimeras between an adeno-associated virus (AAV) and targeted bacteriophage (termed AAV/phage; AAVP). In this hybrid vector, the targeted bacteriophage serves as a shuttle to deliver the AAV transgene cassette inserted in an intergenomic region of the phage DNA genome. As a proof of concept, we assessed the in vivo efficacy of vector in animal models of cancer by displaying on the phage capsid the cyclic Arg-Gly-Asp (RGD-4C) ligand that binds to alphav integrin receptors specifically expressed on the angiogenic blood vessels of tumors. The ligand-directed vector was able to specifically deliver imaging and therapeutic transgenes to tumors in mice, rats, and dogs while sparing the normal organs. This chapter reviews some gene transfer strategies and the potential of the vascular-targeted AAVP vector for enhancing the effectiveness of existing systemic gene delivery and genetic-imaging technologies.
Collapse
Affiliation(s)
- Amin Hajitou
- Department of Gene Therapy, Section/ Division of Infectious Diseases, Faculty of Medicine, Imperial College London, Wright-Fleming Institute, St Mary's Campus, Norfolk Place, London, United Kingdom
| |
Collapse
|
224
|
Croyle MA. Long-term virus-induced alterations of CYP3A-mediated drug metabolism: a look at the virology, immunology and molecular biology of a multi-faceted problem. Expert Opin Drug Metab Toxicol 2009; 5:1189-211. [PMID: 19732028 DOI: 10.1517/17425250903136748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Virus infections are on the rise. Although the first description of CYP expression during virus infection was recorded 50 years ago, mechanistic studies of this phenomenon only began to appear in the last decade due to breakthroughs in molecular biology, genomic and transgenic technology. This review describes the relationship(s) among CYP-mediated drug metabolism, virus infection and the immune response and evaluates in vitro and in vivo models for mechanistic studies. The first studies that assessed CYP expression during infection focused on inflammatory mediators and the innate immune response at early time points. Recent studies assessing virus infection and its effect on hepatic CYP expression noted more long-term effects. An obvious approach toward understanding how viruses affect hepatic CYP3A expression and function would be to assess key regulators of CYP during infection. Improvements in techniques to identify post-translational modifications of CYP and systems that focus on virus-receptor interactions which allow subtraction and addition of immunological and regulatory elements that drive CYP will demonstrate that long-term changes in drug metabolism start from the time the virus enters the circulation, are reinforced by virus binding to cellular targets and further solidified by changes in cellular processes long after the virus is cleared.
Collapse
Affiliation(s)
- Maria A Croyle
- The University of Texas at Austin, College of Pharmacy, Division of Pharmaceutics and Institute of Cellular and Molecular Biology, PHR 4.214D, 2409 W University Avenue, Austin, TX 78712-1074, USA.
| |
Collapse
|
225
|
Howarth JL, Lee YB, Uney JB. Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells). Cell Biol Toxicol 2009; 26:1-20. [PMID: 19830583 PMCID: PMC2817806 DOI: 10.1007/s10565-009-9139-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/24/2009] [Indexed: 02/06/2023]
Abstract
In recent years, the development of powerful viral gene transfer techniques has greatly facilitated the study of gene function. This review summarises some of the viral delivery systems routinely used to mediate gene transfer into cell lines, primary cell cultures and in whole animal models. The systems described were originally discussed at a 1-day European Tissue Culture Society (ETCS-UK) workshop that was held at University College London on 1st April 2009. Recombinant-deficient viral vectors (viruses that are no longer able to replicate) are used to transduce dividing and post-mitotic cells, and they have been optimised to mediate regulatable, powerful, long-term and cell-specific expression. Hence, viral systems have become very widely used, especially in the field of neurobiology. This review introduces the main categories of viral vectors, focusing on their initial development and highlighting modifications and improvements made since their introduction. In particular, the use of specific promoters to restrict expression, translational enhancers and regulatory elements to boost expression from a single virion and the development of regulatable systems is described.
Collapse
|
226
|
Abstract
In this issue, the promises, problems and current progress towards gene therapy are examined in a themed set of six reviews. These cover the major methodologies deployed over the last twenty to thirty years to deliver a gene or other potentially therapeutic molecules into an organism. Initial enthusiasm and optimism concerning the prospects for gene therapy and more generally, the delivery of magic bullets, arose after the pioneering discoveries of monoclonal antibodies and retroviral infection during the 1970's and were fuelled by strategies to make synthetic viruses and the advent of chemical vectors over the succeeding twenty years. However, despite significant advances, to date, the early hopes of widespread gene therapy still remain largely unfulfilled.
Collapse
|