201
|
Dambacher CM, Worden EJ, Herzik MA, Martin A, Lander GC. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife 2016; 5:e13027. [PMID: 26744777 PMCID: PMC4749569 DOI: 10.7554/elife.13027] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/07/2016] [Indexed: 12/20/2022] Open
Abstract
The 26S proteasome is responsible for the selective, ATP-dependent degradation of polyubiquitinated cellular proteins. Removal of ubiquitin chains from targeted substrates at the proteasome is a prerequisite for substrate processing and is accomplished by Rpn11, a deubiquitinase within the 'lid' sub-complex. Prior to the lid's incorporation into the proteasome, Rpn11 deubiquitinase activity is inhibited to prevent unwarranted deubiquitination of polyubiquitinated proteins. Here we present the atomic model of the isolated lid sub-complex, as determined by cryo-electron microscopy at 3.5 Å resolution, revealing how Rpn11 is inhibited through its interaction with a neighboring lid subunit, Rpn5. Through mutagenesis of specific residues, we describe the network of interactions that are required to stabilize this inhibited state. These results provide significant insight into the intricate mechanisms of proteasome assembly, outlining the substantial conformational rearrangements that occur during incorporation of the lid into the 26S holoenzyme, which ultimately activates the deubiquitinase for substrate degradation.
Collapse
Affiliation(s)
- Corey M Dambacher
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Evan J Worden
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,QB3 Institute, University of California, Berkeley, Berkeley, United States
| | - Mark A Herzik
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,QB3 Institute, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
202
|
Bueno AN, Shrestha RK, Ronau JA, Babar A, Sheedlo MJ, Fuchs JE, Paul LN, Das C. Dynamics of an Active-Site Flap Contributes to Catalysis in a JAMM Family Metallo Deubiquitinase. Biochemistry 2016; 54:6038-51. [PMID: 26368668 DOI: 10.1021/acs.biochem.5b00631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endosome-associated deubiquitinase (DUB) AMSH is a member of the JAMM family of zinc-dependent metallo isopeptidases with high selectivity for Lys63-linked polyubiquitin chains, which play a key role in endosomal-lysosomal sorting of activated cell surface receptors. The catalytic domain of the enzyme features a flexible flap near the active site that opens and closes during its catalytic cycle. Structural analysis of its homologues, AMSH-LP (AMSH-like protein) and the fission yeast counterpart, Sst2, suggests that a conserved Phe residue in the flap may be critical for substrate binding and/or catalysis. To gain insight into the contribution of this flap in substrate recognition and catalysis, we generated mutants of Sst2 and characterized them using a combination of enzyme kinetics, X-ray crystallography, molecular dynamics simulations, and isothermal titration calorimetry (ITC). Our analysis shows that the Phe residue in the flap contributes key interactions during the rate-limiting step but not to substrate binding, since mutants of Phe403 exhibit a defect only in kcat but not in KM. Moreover, ITC studies show Phe403 mutants have similar KD for ubiquitin compared to the wild-type enzyme. The X-ray structures of both Phe403Ala and the Phe403Trp, in both the free and ubiquitin bound form, reveal no appreciable structural change that might impair substrate or alter product binding. We observed that the side chain of the Trp residue is oriented identically with respect to the isopeptide moiety of the substrate as the Phe residue in the wild-type enzyme, so the loss of activity seen in this mutant cannot be explained by the absence of a group with the ability to provide van der Waals interactions that facilitate the hyrdolysis of the Lys63-linked diubiquitin. Molecular dynamics simulations indicate that the flap in the Trp mutant is quite flexible, allowing almost free rotation of the indole side chain. Therefore, it is possible that these different dynamic properties of the flap in the Trp mutant, compared to the wild-type enzyme, manifest as a defect in interactions that facilitate the rate-limiting step. Consistent with this notion, the Trp mutant was able to cleave Lys48-linked and Lys11-linked diubiquitin better than the wild-type enzyme, indicating altered mobility and hence reduced selectivity.
Collapse
Affiliation(s)
- Amy N Bueno
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Rashmi K Shrestha
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Judith A Ronau
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Aditya Babar
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Michael J Sheedlo
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Julian E Fuchs
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Lake N Paul
- Bindley Biosciences Center, Purdue University , West Lafayette, Indiana 47907, United States
| | - Chittaranjan Das
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
203
|
Abstract
Both proteolytic and nonproteolytic functions of ubiquitination are essential regulatory mechanisms for promoting DNA repair and the DNA damage response in mammalian cells. Deubiquitinating enzymes (DUBs) have emerged as key players in the maintenance of genome stability. In this minireview, we discuss the recent findings on human DUBs that participate in genome maintenance, with a focus on the role of DUBs in the modulation of DNA repair and DNA damage signaling.
Collapse
|
204
|
Finley D, Chen X, Walters KJ. Gates, Channels, and Switches: Elements of the Proteasome Machine. Trends Biochem Sci 2015; 41:77-93. [PMID: 26643069 DOI: 10.1016/j.tibs.2015.10.009] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
Abstract
The proteasome has emerged as an intricate machine that has dynamic mechanisms to regulate the timing of its activity, its selection of substrates, and its processivity. The 19-subunit regulatory particle (RP) recognizes ubiquitinated proteins, removes ubiquitin, and injects the target protein into the proteolytic chamber of the core particle (CP) via a narrow channel. Translocation into the CP requires substrate unfolding, which is achieved through mechanical force applied by a hexameric ATPase ring of the RP. Recent cryoelectron microscopy (cryoEM) studies have defined distinct conformational states of the RP, providing illustrative snapshots of what appear to be progressive steps of substrate engagement. Here, we bring together this new information with molecular analyses to describe the principles of proteasome activity and regulation.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | - Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
205
|
Isasa M, Suñer C, Díaz M, Puig-Sàrries P, Zuin A, Bichman A, Gygi SP, Rebollo E, Crosas B. Cold Temperature Induces the Reprogramming of Proteolytic Pathways in Yeast. J Biol Chem 2015; 291:1664-1675. [PMID: 26601941 DOI: 10.1074/jbc.m115.698662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 11/06/2022] Open
Abstract
Despite much evidence of the involvement of the proteasome-ubiquitin signaling system in temperature stress response, the dynamics of the ubiquitylome during cold response has not yet been studied. Here, we have compared quantitative ubiquitylomes from a strain deficient in proteasome substrate recruitment and a reference strain during cold response. We have observed that a large group of proteins showing increased ubiquitylation in the proteasome mutant at low temperature is comprised by reverses suppressor of Ty-phenotype 5 (Rsp5)-regulated plasma membrane proteins. Analysis of internalization and degradation of plasma membrane proteins at low temperature showed that the proteasome becomes determinant for this process, whereas, at 30 °C, the proteasome is dispensable. Moreover, our observations indicate that proteasomes have increased capacity to interact with lysine 63-polyubiquitylated proteins during low temperature in vivo. These unanticipated observations indicate that, during cold response, there is a proteolytic cellular reprogramming in which the proteasome acquires a role in the endocytic-vacuolar pathway.
Collapse
Affiliation(s)
- Marta Isasa
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Clara Suñer
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Miguel Díaz
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Pilar Puig-Sàrries
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Alice Zuin
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Anne Bichman
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Elena Rebollo
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and
| | - Bernat Crosas
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain and.
| |
Collapse
|
206
|
|
207
|
Sin O, Nollen EAA. Regulation of protein homeostasis in neurodegenerative diseases: the role of coding and non-coding genes. Cell Mol Life Sci 2015; 72:4027-47. [PMID: 26190021 PMCID: PMC4605983 DOI: 10.1007/s00018-015-1985-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/10/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022]
Abstract
Protein homeostasis is fundamental for cell function and survival, because proteins are involved in all aspects of cellular function, ranging from cell metabolism and cell division to the cell's response to environmental challenges. Protein homeostasis is tightly regulated by the synthesis, folding, trafficking and clearance of proteins, all of which act in an orchestrated manner to ensure proteome stability. The protein quality control system is enhanced by stress response pathways, which take action whenever the proteome is challenged by environmental or physiological stress. Aging, however, damages the proteome, and such proteome damage is thought to be associated with aging-related diseases. In this review, we discuss the different cellular processes that define the protein quality control system and focus on their role in protein conformational diseases. We highlight the power of using small organisms to model neurodegenerative diseases and how these models can be exploited to discover genetic modulators of protein aggregation and toxicity. We also link findings from small model organisms to the situation in higher organisms and describe how some of the genetic modifiers discovered in organisms such as worms are functionally conserved throughout evolution. Finally, we demonstrate that the non-coding genome also plays a role in maintaining protein homeostasis. In all, this review highlights the importance of protein and RNA homeostasis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Olga Sin
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Centre Groningen, 9700 AD, Groningen, The Netherlands
- Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003, Porto, Portugal
| | - Ellen A A Nollen
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Centre Groningen, 9700 AD, Groningen, The Netherlands.
| |
Collapse
|
208
|
Wang B, Ma A, Zhang L, Jin WL, Qian Y, Xu G, Qiu B, Yang Z, Liu Y, Xia Q, Liu Y. POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation. Nat Commun 2015; 6:8704. [PMID: 26510456 PMCID: PMC4846323 DOI: 10.1038/ncomms9704] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/23/2015] [Indexed: 12/29/2022] Open
Abstract
Hyperactivation of the transcriptional factor E2F1 occurs frequently in human cancers and contributes to malignant progression. E2F1 activity is regulated by proteolysis mediated by the ubiquitin–proteasome system. However, the deubiquitylase that controls E2F1 ubiquitylation and stability remains undefined. Here we demonstrate that the deubiquitylase POH1 stabilizes E2F1 protein through binding to and deubiquitylating E2F1. Conditional knockout of Poh1 alleles results in reduced E2F1 expression in primary mouse liver cells. The POH1-mediated regulation of E2F1 expression strengthens E2F1-downstream prosurvival signals, including upregulation of Survivin and FOXM1 protein levels, and efficiently facilitates tumour growth of liver cancer cells in nude mice. Importantly, human hepatocellular carcinomas (HCCs) recapitulate POH1 regulation of E2F1 expression, as nuclear abundance of POH1 is increased in HCCs and correlates with E2F1 overexpression and tumour growth. Thus, our study suggests that the hyperactivated POH1–E2F1 regulation may contribute to the development of liver cancer. The transcription factor E2F1 controls the expression of multiple genes and is frequently overactivated in cancer. Here, the authors show that E2F1 is deubiquitinated by POH1 and that this enhances the role of E2F1 in cell survival, and contributes to the pathogenesis of liver cancer.
Collapse
Affiliation(s)
- Boshi Wang
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Aihui Ma
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Li Zhang
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Yu Qian
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Guiqin Xu
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Bijun Qiu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200217, China
| | - Zhaojuan Yang
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Yun Liu
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200217, China
| | - Yongzhong Liu
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| |
Collapse
|
209
|
Grigoreva TA, Tribulovich VG, Garabadzhiu AV, Melino G, Barlev NA. The 26S proteasome is a multifaceted target for anti-cancer therapies. Oncotarget 2015; 6:24733-49. [PMID: 26295307 PMCID: PMC4694792 DOI: 10.18632/oncotarget.4619] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/10/2015] [Indexed: 12/30/2022] Open
Abstract
Proteasomes play a critical role in the fate of proteins that are involved in major cellular processes, including signal transduction, gene expression, cell cycle, replication, differentiation, immune response, cellular response to stress, etc. In contrast to non-specific degradation by lysosomes, proteasomes are highly selective and destroy only the proteins that are covalently labelled with small proteins, called ubiquitins. Importantly, many diseases, including neurodegenerative diseases and cancers, are intimately connected to the activity of proteasomes making them an important pharmacological target. Currently, the vast majority of inhibitors are aimed at blunting the proteolytic activities of proteasomes. However, recent achievements in solving structures of proteasomes at very high resolution provided opportunities to design new classes of small molecules that target other physiologically-important enzymatic activities of proteasomes, including the de-ubiquitinating one. This review attempts to catalog the information available to date about novel classes of proteasome inhibitors that may have important pharmacological ramifications.
Collapse
Affiliation(s)
- Tatyana A Grigoreva
- St. Petersburg State Technological Institute (Technical University), St. Petersburng, Russia
| | | | | | - Gerry Melino
- St. Petersburg State Technological Institute (Technical University), St. Petersburng, Russia
- University of Rome Tor Vergata, Roma, Italy
| | | |
Collapse
|
210
|
Liu Y, Liu N, Yin Y, Chen Y, Jiang J, Ma Z. Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses inFusarium graminearum. Environ Microbiol 2015; 17:4615-30. [DOI: 10.1111/1462-2920.12993] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Ye Liu
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Na Liu
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Yanni Yin
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Yun Chen
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Jinhua Jiang
- Institute of Quality and Standard for Agro-products; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021 Zhejiang China
| | - Zhonghua Ma
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
211
|
Citterio E. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work. Front Genet 2015; 6:282. [PMID: 26442100 PMCID: PMC4561801 DOI: 10.3389/fgene.2015.00282] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/23/2015] [Indexed: 01/23/2023] Open
Abstract
Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin (ub) are crucial for the cellular response to DNA double-strand breaks (DSBs), one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ub ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs), as supported by the implication of a growing number of DUBs in DNA damage response processes. Here, we discuss the current knowledge of how ub-mediated signaling at DSBs is controlled by DUBs, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer.
Collapse
Affiliation(s)
- Elisabetta Citterio
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam Netherlands
| |
Collapse
|
212
|
Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat Struct Mol Biol 2015; 22:712-9. [PMID: 26301997 PMCID: PMC4560640 DOI: 10.1038/nsmb.3075] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022]
Abstract
Substrates are targeted for proteasomal degradation through the attachment of ubiquitin chains that need to be removed by proteasomal deubiquitinases prior to substrate processing. In budding yeast, the deubiquitinase Ubp6 trims ubiquitin chains and affects substrate processing by the proteasome, but the underlying mechanisms and its location within the holoenzyme remained elusive. Here we show that Ubp6 activity strongly responds to interactions with the base ATPase and the conformational state of the proteasome. Electron-microscopy analyses reveal that ubiquitin-bound Ubp6 contacts the N-ring and AAA+ ring of the ATPase hexamer, in close proximity to the deubiquitinase Rpn11. Ubiquitin-bound Ubp6 inhibits substrate deubiquitination by Rpn11, stabilizes the substrate-engaged conformation of the proteasome, and allosterically interferes with the engagement of a subsequent substrate. Ubp6 may thus act as an ubiquitin-dependent timer to coordinate individual processing steps at the proteasome and modulate substrate degradation.
Collapse
|
213
|
Delicate coordination of TRIM21’s dual activity in virus neutralization and signaling. Proc Natl Acad Sci U S A 2015; 112:9797-8. [DOI: 10.1073/pnas.1512642112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
214
|
Burcoglu J, Zhao L, Enenkel C. Nuclear Import of Yeast Proteasomes. Cells 2015; 4:387-405. [PMID: 26262643 PMCID: PMC4588042 DOI: 10.3390/cells4030387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/28/2015] [Indexed: 01/16/2023] Open
Abstract
Proteasomes are highly conserved protease complexes responsible for the degradation of aberrant and short-lived proteins. In highly proliferating yeast and mammalian cells, proteasomes are predominantly nuclear. During quiescence and cell cycle arrest, proteasomes accumulate in granules in close proximity to the nuclear envelope/ER. With prolonged quiescence in yeast, these proteasome granules pinch off as membraneless organelles, and migrate as stable entities through the cytoplasm. Upon exit from quiescence, the proteasome granules clear and the proteasomes are rapidly transported into the nucleus, a process reflecting the dynamic nature of these multisubunit complexes. Due to the scarcity of studies on the nuclear transport of mammalian proteasomes, we summarised the current knowledge on the nuclear import of yeast proteasomes. This pathway uses canonical nuclear localisation signals within proteasomal subunits and Srp1/Kap95, and the canonical import receptor, named importin/karyopherin αβ. Blm10, a conserved 240 kDa protein, which is structurally related to Kap95, provides an alternative import pathway. Two models exist upon which either inactive precursor complexes or active holo-enzymes serve as the import cargo. Here, we reconcile both models and suggest that the import of inactive precursor complexes predominates in dividing cells, while the import of mature enzymes mainly occurs upon exit from quiescence.
Collapse
Affiliation(s)
- Julianne Burcoglu
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Liang Zhao
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Cordula Enenkel
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
215
|
Abstract
Intracellular proteins tagged with ubiquitin chains are targeted to the 26S proteasome for degradation. The two subunits, Rpn10 and Rpn13, function as ubiquitin receptors of the proteasome. However, differences in roles between Rpn10 and Rpn13 in mammals remains to be understood. We analyzed mice deficient for Rpn13 and Rpn10. Liver-specific deletion of either Rpn10 or Rpn13 showed only modest impairment, but simultaneous loss of both caused severe liver injury accompanied by massive accumulation of ubiquitin conjugates, which was recovered by re-expression of either Rpn10 or Rpn13. We also found that mHR23B and ubiquilin/Plic-1 and -4 failed to bind to the proteasome in the absence of both Rpn10 and Rpn13, suggesting that these two subunits are the main receptors for these UBL-UBA proteins that deliver ubiquitinated proteins to the proteasome. Our results indicate that Rpn13 mostly plays a redundant role with Rpn10 in recognition of ubiquitinated proteins and maintaining homeostasis in Mus musculus. At least two major ubiquitin receptor subunits that directly capture ubiquitin chains have been identified in the proteasome: Rpn10 and Rpn13. Analyses in Saccharomyces cerevisiae have suggested only a modest role of Rpn10 and Rpn13 in the recruitment of ubiquitinated proteins, as double deletion of Rpn10 and Rpn13 causes very mild phenotypes. Considering that ubiquitin recognition is an essential process for protein degradation by the proteasome and that failure in degradation of ubiquitinated proteins leads to human diseases such as neurodegeneration, it is important to evaluate the role of Rpn10 and Rpn13 in mammals. Liver-specific deletion of either Rpn10 or Rpn13 showed modest impairment, but simultaneous loss of both Rpn10 and Rpn13 caused severe liver injury accompanied by massive accumulation of ubiquitin conjugates and failure in recruiting mHR23B and ubiquilin/Plic-1 and -4 proteins, which deliver ubiquitinated proteins to the proteasome. Our findings indicate that the largely redundant roles of Rpn10 and Rpn13 in ubiquitin recognition and recruitment of mHR23B and ubiquilin/Plic-1 and -4 are essential for cellular homeostasis in mammals and should provide information for understanding the mechanism of ubiquitin recognition by the 26S proteasome in mammals and for development of therapeutic agents targeting protein degradation.
Collapse
|
216
|
Aufderheide A, Unverdorben P, Baumeister W, Förster F. Structural disorder and its role in proteasomal degradation. FEBS Lett 2015; 589:2552-60. [PMID: 26226424 DOI: 10.1016/j.febslet.2015.07.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
The ubiquitin proteasome system is responsible for the controlled degradation of a vast number of intracellular proteins. It targets misfolded or otherwise aberrant proteins as well as proteins no longer needed at a given point in time. The 26S proteasome is a large macromolecular machine comprising 33 distinct subunits as well as a number of transiently associating cofactors. Being essentially a non-specific protease, specificity is conferred by the ubiquitin system, which selects and marks substrates for degradation. Here, we review our current understanding of the structure and function of the 26S proteasome; in doing so we highlight the role of disordered protein regions. Disordered segments in substrates promote their degradation, whereas low complexity regions prevent their proteolysis. In the 26S proteasome itself a main role of disordered segments seems to be rendering the ubiquitin receptors mobile, possibly supporting recruitment of polyubiquitylated substrates. Thus, these structural features of substrates as well as of the 26S proteasome itself likely play important roles at different stages of the protein degradation process.
Collapse
Affiliation(s)
- Antje Aufderheide
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Martinsried, Germany
| | - Pia Unverdorben
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Martinsried, Germany
| | - Wolfgang Baumeister
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Martinsried, Germany.
| | - Friedrich Förster
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Martinsried, Germany.
| |
Collapse
|
217
|
Moonlighting and pleiotropy within two regulators of the degradation machinery: the proteasome lid and the CSN. Biochem Soc Trans 2015; 42:1786-91. [PMID: 25399607 DOI: 10.1042/bst20140227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The distinction between pleiotrotic and moonlighting roles of proteins is challenging; however, this distinction may be clearer when it comes to multiprotein complexes. Two examples are the proteasome lid and the COP9 signalosome (CSN), which are twin enzymes with 1:1 paralogy between subunits. In each complex, one out of eight subunits harbours a JAMM/MPN⁺ metalloprotease motif. This motif contributes the canonical activity of each complex: hydrolysis of covalently attached ubiquitin by Rpn11 in the proteasome lid and hydrolysis of ubiquitin-related 1 (Rub1/Nedd8) from Cullins by Csn5 in the CSN. In both complexes, executing this activity suggests pleiotropic effects and requires an assembled full complex. However, beyond canonical functions, both Rpn11 and Csn5 are involved in additional unique, complex-independent functions, herein referred to as moonlighting activities.
Collapse
|
218
|
Sequential ubiquitination and deubiquitination enzymes synchronize the dual sensor and effector functions of TRIM21. Proc Natl Acad Sci U S A 2015; 112:10014-9. [PMID: 26150489 DOI: 10.1073/pnas.1507534112] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tripartite motif (TRIM) 21 is a cytosolic antibody receptor that neutralizes antibody-coated viruses that penetrate the cell and simultaneously activates innate immunity. Here we show that the conjugation of TRIM21 with K63-linked ubiquitin (Ub-(63)Ub) catalyzed by the sequential activity of nonredundant E2 Ub enzymes is required for its dual antiviral functions. TRIM21 is first labeled with monoubiquitin (monoUb) by the E2 Ube2W. The monoUb is a substrate for the heterodimeric E2 Ube2N/Ube2V2, resulting in TRIM21-anchored Ub-(63)Ub. Depletion of either E2 abolishes Ub-(63)Ub and Ub-(48)Ub conjugation of TRIM21, NF-κB signaling, and virus neutralization. The formation of TRIM21-Ub-(63)Ub precedes proteasome recruitment, and we identify an essential role for the 19S-resident and degradation-coupled deubiquitinase Poh1 in TRIM21 neutralization, signaling, and cytokine induction. This study elucidates a complex mechanism of step-wise ubiquitination and deubiquitination activities that allows contemporaneous innate immune signaling and neutralization by TRIM21.
Collapse
|
219
|
Inhibition of proteasome deubiquitinase activity: a strategy to overcome resistance to conventional proteasome inhibitors? Drug Resist Updat 2015; 21-22:20-9. [DOI: 10.1016/j.drup.2015.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/22/2015] [Accepted: 06/27/2015] [Indexed: 11/19/2022]
|
220
|
Structural characterization of the interaction of Ubp6 with the 26S proteasome. Proc Natl Acad Sci U S A 2015; 112:8626-31. [PMID: 26130806 DOI: 10.1073/pnas.1510449112] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotic cells, the 26S proteasome is responsible for the regulated degradation of intracellular proteins. Several cofactors interact transiently with this large macromolecular machine and modulate its function. The deubiquitylating enzyme ubiquitin C-terminal hydrolase 6 [Ubp6; ubiquitin-specific protease (USP) 14 in mammals] is the most abundant proteasome-interacting protein and has multiple roles in regulating proteasome function. Here, we investigate the structural basis of the interaction between Ubp6 and the 26S proteasome in the presence and absence of the inhibitor ubiquitin aldehyde. To this end we have used single-particle electron cryomicroscopy in combination with cross-linking and mass spectrometry. Ubp6 binds to the regulatory particle non-ATPase (Rpn) 1 via its N-terminal ubiquitin-like domain, whereas its catalytic USP domain is positioned variably. Addition of ubiquitin aldehyde stabilizes the binding of the USP domain in a position where it bridges the proteasome subunits Rpn1 and the regulatory particle triple-A ATPase (Rpt) 1. The USP domain binds to Rpt1 in the immediate vicinity of the Ubp6 active site, which may effect its activation. The catalytic triad is positioned in proximity to the mouth of the ATPase module and to the deubiquitylating enzyme Rpn11, strongly implying their functional linkage. On the proteasome side, binding of Ubp6 favors conformational switching of the 26S proteasome into an intermediate-energy conformational state, in particular upon the addition of ubiquitin aldehyde. This modulation of the conformational space of the 26S proteasome by Ubp6 explains the effects of Ubp6 on the kinetics of proteasomal degradation.
Collapse
|
221
|
Liu N, Huang H, Dou QP, Liu J. Inhibition of 19S proteasome-associated deubiquitinases by metal-containing compounds. Oncoscience 2015; 2:457-66. [PMID: 26097878 PMCID: PMC4468331 DOI: 10.18632/oncoscience.167] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/24/2015] [Indexed: 12/31/2022] Open
Abstract
Copper and gold complexes have clinical activity in several diseases including cancer. Recently, we have reported that the anti-cancer activity of copper (II) pyrithione CuPT and gold (I) complex auranofin is associated with targeting the 19S proteasome-associated deubiquitinases (DUBs), UCHL5 and USP14. Here we discuss metal DUB inhibitors in treating cancer and other diseases. (from Editor). Several copper and gold complexes have clinical activity in treating some human diseases including cancer. Recently, we have reported that the anti-cancer activity of copper (II) pyrithione CuPT and gold (I) complex auranofin is tightly associated with their ability to target and inhibit the 19S proteasome-associated deubiquitinases (DUBs), UCHL5 and USP14. In this article we review small molecule inhibitors of DUBs and 19S proteasome-associated DUBs. We then describe and discuss the ubique nature of CuPT and auranofin, which is inhibition of 19S proteasome-associated UCHL5 and USP14. We finally suggest the potential to develop novel, specific metal-based DUB inhibitors for treating cancer and other diseases.
Collapse
Affiliation(s)
- Ningning Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong, China ; Guangzhou Research Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hongbiao Huang
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong, China
| | - Q Ping Dou
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong, China ; The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jinbao Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong, China
| |
Collapse
|
222
|
Abstract
Ubiquitin (Ub) is a versatile signaling molecule that plays important roles in a variety of cellular processes. Cellular Ub pools, which are composed of free Ub and Ub conjugates, are in dynamic equilibrium inside cells. In particular, increasing evidence suggests that Ub homeostasis, or the maintenance of free Ub above certain threshold levels, is important for cellular function and survival under normal or stress conditions. Accurate determination of various Ub species, including levels of free Ub and specific Ub chain linkages, have become possible in biological specimens as a result of the introduction of the proteomic approach using mass spectrometry. This technology has facilitated research on dynamic properties of cellular Ub pools and has provided tools for in-depth investigation of Ub homeostasis. In this review, we have also discussed the consequences of the disruption of Ub pool dynamics and homeostasis via deletion of polyubiquitin genes or mutations of deubiquitinating enzymes. The common consequence was a reduced availability of free Ub and a significant impact on the function and viability of cells. These observations further indicate that the levels of free Ub are important determinants for cellular protection. [BMB Reports 2014; 47(9): 475-482]
Collapse
Affiliation(s)
- Chul-Woo Park
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| |
Collapse
|
223
|
Tsimokha AS, Kulichkova VA, Karpova EV, Zaykova JJ, Aksenov ND, Vasilishina AA, Kropotov AV, Antonov A, Barlev NA. DNA damage modulates interactions between microRNAs and the 26S proteasome. Oncotarget 2015; 5:3555-67. [PMID: 25004448 PMCID: PMC4116502 DOI: 10.18632/oncotarget.1957] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
26S proteasomes are known as major non-lysosomal cellular machines for coordinated and specific destruction of ubiquitinylated proteins. The proteolytic activities of proteasomes are controlled by various post-translational modifications in response to environmental cues, including DNA damage. Besides proteolysis, proteasomes also associate with RNA hydrolysis and splicing. Here, we extend the functional diversity of proteasomes by showing that they also dynamically associate with microRNAs (miRNAs) both in the nucleus and cytoplasm of cells. Moreover, DNA damage induced by an anti-cancer drug, doxorubicin, alters the repertoire of proteasome-associated miRNAs, enriching the population of miRNAs that target cell cycle checkpoint regulators and DNA repair proteins. Collectively, these data uncover yet another potential mode of action for proteasomes in the cell via their dynamic association with microRNAs.
Collapse
Affiliation(s)
- Anna S Tsimokha
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | | | | | | | | | | | | | | | - Nikolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; Department of Biochemistry, University of Leicester, Leicester, LE1 9HN; Molecular Pharmacology laboratory, Saint-Petersburg Institute of Technology, Saint-Petersburg 190013, Russia
| |
Collapse
|
224
|
Clague MJ, Heride C, Urbé S. The demographics of the ubiquitin system. Trends Cell Biol 2015; 25:417-26. [PMID: 25906909 DOI: 10.1016/j.tcb.2015.03.002] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/17/2022]
Abstract
The ubiquitin system is a major coordinator of cellular physiology through regulation of both protein degradation and signalling pathways. A key building block of a systems-level understanding has been generated by global proteomic studies, which provide copy number estimates for each component. The aggregate of ubiquitin, conjugating enzymes (E1, E2, and E3s), and deubiquitylases (DUBs) represents ∼1.3% of total cellular protein. Complementary approaches have generated quantitative measurements of various ubiquitin pools and further subdivision into different ubiquitin chain topologies. Systematic studies aimed at associating specific enzymes (E2s and DUBs) with the dynamics of these different pools have also made significant progress. Here, we delineate the emerging picture of the most significant determinants of the cellular ubiquitin economy.
Collapse
Affiliation(s)
- Michael J Clague
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK.
| | - Claire Heride
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Sylvie Urbé
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| |
Collapse
|
225
|
Lu Y, Lee BH, King RW, Finley D, Kirschner MW. Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science 2015; 348:1250834. [PMID: 25859050 DOI: 10.1126/science.1250834] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To address how the configuration of conjugated ubiquitins determines the recognition of substrates by the proteasome, we analyzed the degradation kinetics of substrates with chemically defined ubiquitin configurations. Contrary to the view that a tetraubiquitin chain is the minimal signal for efficient degradation, we find that distributing the ubiquitins as diubiquitin chains provides a more efficient signal. To understand how the proteasome actually discriminates among ubiquitin configurations, we developed single-molecule assays that distinguished intermediate steps of degradation kinetically. The level of ubiquitin on a substrate drives proteasome-substrate interaction, whereas the chain structure of ubiquitin affects translocation into the axial channel on the proteasome. Together these two features largely determine the susceptibility of substrates for proteasomal degradation.
Collapse
Affiliation(s)
- Ying Lu
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Byung-hoon Lee
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Randall W King
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
226
|
Abstract
The post-translational modification of proteins with ubiquitin represents a complex signalling system that co-ordinates essential cellular functions, including proteolysis, DNA repair, receptor signalling and cell communication. DUBs (deubiquitinases), the enzymes that disassemble ubiquitin chains and remove ubiquitin from proteins, are central to this system. Reflecting the complexity and versatility of ubiquitin signalling, DUB activity is controlled in multiple ways. Although several lines of evidence indicate that aberrant DUB function may promote human disease, the underlying molecular mechanisms are often unclear. Notwithstanding, considerable interest in DUBs as potential drug targets has emerged over the past years. The future success of DUB-based therapy development will require connecting the basic science of DUB function and enzymology with drug discovery. In the present review, we discuss new insights into DUB activity regulation and their links to disease, focusing on the role of DUBs as regulators of cell identity and differentiation, and discuss their potential as emerging drug targets.
Collapse
|
227
|
Abstract
Loss of protein homeostasis (proteostasis) is a common feature of aging and disease that is characterized by the appearance of nonnative protein aggregates in various tissues. Protein aggregation is routinely suppressed by the proteostasis network (PN), a collection of macromolecular machines that operate in diverse ways to maintain proteome integrity across subcellular compartments and between tissues to ensure a healthy life span. Here, we review the composition, function, and organizational properties of the PN in the context of individual cells and entire organisms and discuss the mechanisms by which disruption of the PN, and related stress response pathways, contributes to the initiation and progression of disease. We explore emerging evidence that disease susceptibility arises from early changes in the composition and activity of the PN and propose that a more complete understanding of the temporal and spatial properties of the PN will enhance our ability to develop effective treatments for protein conformational diseases.
Collapse
Affiliation(s)
- Johnathan Labbadia
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208;
| | | |
Collapse
|
228
|
Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther 2015; 147:32-54. [DOI: 10.1016/j.pharmthera.2014.11.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 12/27/2022]
|
229
|
Nanduri P, Hao R, Fitzpatrick T, Yao TP. Chaperone-mediated 26S proteasome remodeling facilitates free K63 ubiquitin chain production and aggresome clearance. J Biol Chem 2015; 290:9455-64. [PMID: 25713068 DOI: 10.1074/jbc.m114.627950] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Indexed: 11/06/2022] Open
Abstract
Efficient elimination of misfolded proteins by the proteasome system is critical for proteostasis. Inadequate proteasome capacity can lead to aberrant aggregation of misfolded proteins and inclusion body formation, a hallmark of neurodegenerative disease. The proteasome system cannot degrade aggregated proteins; however, it stimulates autophagy-dependent aggregate clearance by producing unanchored lysine (K)63-linked ubiquitin chains via the proteasomal deubiquitinating enzyme Poh1. The canonical function of Poh1, which removes ubiquitin chains en bloc from proteasomal substrates prior to their degradation, requires intact 26S proteasomes. Here we present evidence that during aggresome clearance, 20S proteasomes dissociate from protein aggregates, while Poh1 and selective subunits of 19S proteasomes are retained. The dissociation of 20S proteasome components requires the molecular chaperone Hsp90. Hsp90 inhibition suppresses 26S proteasome remodeling, unanchored ubiquitin chain production, and aggresome clearance. Our results suggest that 26S proteasomes undergo active remodeling to generate a Poh1-dependent K63-deubiquitinating enzyme to facilitate protein aggregate clearance.
Collapse
Affiliation(s)
- Priyaanka Nanduri
- From the Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710
| | - Rui Hao
- From the Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710
| | - Thomas Fitzpatrick
- From the Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710
| | - Tso-Pang Yao
- From the Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710
| |
Collapse
|
230
|
Abstract
Deubiquitinases (DUBs) play important roles and therefore are potential drug targets in various diseases including cancer and neurodegeneration. In this review, we recapitulate structure-function studies of the most studied DUBs including USP7, USP22, CYLD, UCHL1, BAP1, A20, as well as ataxin 3 and connect them to regulatory mechanisms and their growing protein interaction networks. We then describe DUBs that have been associated with endocrine carcinogenesis with a focus on prostate, ovarian, and thyroid cancer, pheochromocytoma, and adrenocortical carcinoma. The goal is enhancing our understanding of the connection between dysregulated DUBs and cancer to permit the design of therapeutics and to establish biomarkers that could be used in diagnosis and prognosis.
Collapse
Affiliation(s)
- Roland Pfoh
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| | - Ira Kay Lacdao
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| | - Vivian Saridakis
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| |
Collapse
|
231
|
MERIT40 deficiency expands hematopoietic stem cell pools by regulating thrombopoietin receptor signaling. Blood 2015; 125:1730-8. [PMID: 25636339 DOI: 10.1182/blood-2014-07-588145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cell (HSC) self-renewal and multilineage reconstitution are controlled by positive and negative signaling cues with perturbations leading to disease. Lnk is an essential signaling adaptor protein that dampens signaling by the cytokine thrombopoietin (Tpo) to limit HSC expansion. Here, we show that MERIT40 (Mediator of RAP80 Interactions and Targeting 40 kDa [M40]), a core subunit of an Lnk-associated Lys63 deubiquitinating (DUB) complex, attenuates HSC expansion. M40 deficiency increases the size of phenotypic and functional HSC pools. M40(-/-) HSCs are more resistant to cytoablative stress, and exhibit superior repopulating ability and self-renewal upon serial transplantation. M40(-/-) HSCs display increased quiescence and decelerated cell cycle kinetics accompanied by downregulation of gene sets associated with cell division. Mechanistically, M40 deficiency triggers hypersensitivity to Tpo stimulation and the stem cell phenotypes are abrogated on a background null for the Tpo receptor Mpl. These results establish M40-containing DUB complexes as novel HSC regulators of HSC expansion, implicate Lys63 ubiquitination in HSC signaling, and point to DUB-specific inhibitors as reagents to expand stem cell populations.
Collapse
|
232
|
Hu Y, Wu Y, Li Q, Zhang W, Jin C. Solution structure of yeast Rpn9: insights into proteasome lid assembly. J Biol Chem 2015; 290:6878-89. [PMID: 25631053 DOI: 10.1074/jbc.m114.626762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulatory particle (RP) of the 26 S proteasome functions in preparing polyubiquitinated substrates for degradation. The lid complex of the RP contains an Rpn8-Rpn11 heterodimer surrounded by a horseshoe-shaped scaffold formed by six proteasome-COP9/CSN-initiation factor (PCI)-containing subunits. The PCI domains are essential for lid assembly, whereas the detailed molecular mechanisms remain elusive. Recent cryo-EM studies at near-atomic resolution provided invaluable information on the RP architecture in different functional states. Nevertheless, atomic resolution structural information on the RP is still limited, and deeper understanding of RP assembly mechanism requires further studies on the structures and interactions of individual subunits or subcomplexes. Herein we report the high-resolution NMR structures of the PCI-containing subunit Rpn9 from Saccharomyces cerevisiae. The 45-kDa protein contains an all-helical N-terminal domain and a C-terminal PCI domain linked via a semiflexible hinge. The N-terminal domain mediates interaction with the ubiquitin receptor Rpn10, whereas the PCI domain mediates interaction with the neighboring PCI subunit Rpn5. The Rpn9-Rpn5 interface highlights two structural motifs on the winged helix module forming a hydrophobic center surrounded by ionic pairs, which is a common pattern for all PCI-PCI interactions in the lid. The results suggest that divergence in surface composition among different PCI pairs may contribute to the modulation of lid assembly.
Collapse
Affiliation(s)
- Yunfei Hu
- From the Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering
| | - Yujie Wu
- From the Beijing Nuclear Magnetic Resonance Center, College of Life Sciences, and
| | - Qianwen Li
- From the Beijing Nuclear Magnetic Resonance Center, College of Life Sciences, and
| | - Wenbo Zhang
- From the Beijing Nuclear Magnetic Resonance Center, College of Life Sciences, and
| | - Changwen Jin
- From the Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, College of Life Sciences, and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
233
|
Base-CP proteasome can serve as a platform for stepwise lid formation. Biosci Rep 2015; 35:BSR20140173. [PMID: 26182356 PMCID: PMC4438304 DOI: 10.1042/bsr20140173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/26/2015] [Indexed: 12/14/2022] Open
Abstract
26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11–m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11–Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes. Defective proteasome 19S regulatory particles (RPs) were identified in rpn11f–m1, a proteasomal mutant with mitochondrial phenotypes. The Rpn11 subunit initiates assembly of a five-subunit lid module competent to integrate into pre-assembled base-20S core particle (CP), with subsequent recruitment of remaining lid subunits.
Collapse
|
234
|
Brnjic S, Mazurkiewicz M, Fryknäs M, Sun C, Zhang X, Larsson R, D'Arcy P, Linder S. Induction of tumor cell apoptosis by a proteasome deubiquitinase inhibitor is associated with oxidative stress. Antioxid Redox Signal 2014; 21:2271-85. [PMID: 24011031 PMCID: PMC4241954 DOI: 10.1089/ars.2013.5322] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS b-AP15 is a recently described inhibitor of the USP14/UCHL5 deubiquitinases (DUBs) of the 19S proteasome. Exposure to b-AP15 results in blocking of proteasome function and accumulation of polyubiquitinated protein substrates in cells. This novel mechanism of proteasome inhibition may potentially be exploited for cancer therapy, in particular for treatment of malignancies resistant to currently used proteasome inhibitors. The aim of the present study was to characterize the cellular response to b-AP15-mediated proteasome DUB inhibition. RESULTS We report that b-AP15 elicits a similar, but yet distinct, cellular response as the clinically used proteasome inhibitor bortezomib. b-AP15 induces a rapid apoptotic response, associated with enhanced induction of oxidative stress and rapid activation of Jun-N-terminal kinase 1/2 (JNK)/activating protein-1 signaling. Scavenging of reactive oxygen species and pharmacological inhibition of JNK reduced b-AP15-induced apoptosis. We further report that endoplasmic reticulum (ER) stress is induced by b-AP15 and is involved in apoptosis induction. In contrast to bortezomib, ER stress is associated with induction of α-subunit of eukaryotic initiation factor 2 phosphorylation. INNOVATION The findings establish that different modes of proteasome inhibition result in distinct cellular responses, a finding of potential therapeutic importance. CONCLUSION Our data show that enhanced oxidative stress and ER stress are major determinants of the strong apoptotic response elicited by the 19S DUB inhibitor b-AP15.
Collapse
Affiliation(s)
- Slavica Brnjic
- 1 Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute , Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Gu ZC, Enenkel C. Proteasome assembly. Cell Mol Life Sci 2014; 71:4729-45. [PMID: 25107634 PMCID: PMC11113775 DOI: 10.1007/s00018-014-1699-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
In eukaryotic cells, proteasomes are highly conserved protease complexes and eliminate unwanted proteins which are marked by poly-ubiquitin chains for degradation. The 26S proteasome consists of the proteolytic core particle, the 20S proteasome, and the 19S regulatory particle, which are composed of 14 and 19 different subunits, respectively. Proteasomes are the second-most abundant protein complexes and are continuously assembled from inactive precursor complexes in proliferating cells. The modular concept of proteasome assembly was recognized in prokaryotic ancestors and applies to eukaryotic successors. The efficiency and fidelity of eukaryotic proteasome assembly is achieved by several proteasome-dedicated chaperones that initiate subunit incorporation and control the quality of proteasome assemblies by transiently interacting with proteasome precursors. It is important to understand the mechanism of proteasome assembly as the proteasome has key functions in the turnover of short-lived proteins regulating diverse biological processes.
Collapse
Affiliation(s)
- Zhu Chao Gu
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
236
|
Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex. Biomolecules 2014; 4:994-1025. [PMID: 25412285 PMCID: PMC4279167 DOI: 10.3390/biom4040994] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/02/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023] Open
Abstract
The proteasome is responsible for the breakdown of cellular proteins. Proteins targeted for degradation are allowed inside the proteasome particle, where they are cleaved into small peptides and released in the cytosol to be degraded into amino acids. In vertebrates, some of these peptides escape degradation in the cytosol, are loaded onto class I molecules of the major histocompatibility complex (MHC) and displayed at the cell surface for scrutiny by the immune system. The proteasome therefore plays a key role for the immune system: it provides a continued sampling of intracellular proteins, so that CD8-positive T-lymphocytes can kill cells expressing viral or tumoral proteins. Consequently, the repertoire of peptides displayed by MHC class I molecules at the cell surface depends on proteasome activity, which may vary according to the presence of proteasome subtypes and regulators. Besides standard proteasomes, cells may contain immunoproteasomes, intermediate proteasomes and thymoproteasomes. Cells may also contain regulators of proteasome activity, such as the 19S, PA28 and PA200 regulators. Here, we review the effects of these proteasome subtypes and regulators on the production of antigenic peptides. We also discuss an unexpected function of the proteasome discovered through the study of antigenic peptides: its ability to splice peptides.
Collapse
|
237
|
Mansour W, Nakasone MA, von Delbrück M, Yu Z, Krutauz D, Reis N, Kleifeld O, Sommer T, Fushman D, Glickman MH. Disassembly of Lys11 and mixed linkage polyubiquitin conjugates provides insights into function of proteasomal deubiquitinases Rpn11 and Ubp6. J Biol Chem 2014; 290:4688-4704. [PMID: 25389291 DOI: 10.1074/jbc.m114.568295] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein homeostasis is largely dependent on proteolysis by the ubiquitin-proteasome system. Diverse polyubiquitin modifications are reported to target cellular proteins to the proteasome. At the proteasome, deubiquitination is an essential preprocessing event that contributes to degradation efficiency. We characterized the specificities of two proteasome-associated deubiquitinases (DUBs), Rpn11 and Ubp6, and explored their impact on overall proteasome DUB activity. This was accomplished by constructing a panel of well defined ubiquitin (Ub) conjugates, including homogeneous linkages of varying lengths as well as a heterogeneously modified target. Rpn11 and Ubp6 processed Lys(11) and Lys(63) linkages with comparable efficiencies that increased with chain length. In contrast, processing of Lys(48) linkages by proteasome was inversely correlated to chain length. Fluorescently labeled tetra-Ub chains revealed endo-chain preference for Ubp6 acting on Lys(48) and random action for Rpn11. Proteasomes were more efficient at deconjugating identical substrates than their constituent DUBs by roughly 2 orders of magnitude. Incorporation into proteasomes significantly enhanced enzymatic efficiency of Rpn11, due in part to alleviation of the autoinhibitory role of its C terminus. The broad specificity of Rpn11 could explain how proteasomes were more effective at disassembling a heterogeneously modified conjugate compared with homogeneous Lys(48)-linked chains. The reduced ability to disassemble homogeneous Lys(48)-linked chains longer than 4 Ub units may prolong residency time on the proteasome.
Collapse
Affiliation(s)
- Wissam Mansour
- From the Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Mark A Nakasone
- From the Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel,; the Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland 20742
| | - Maximilian von Delbrück
- the Max-Delbrück-Zentrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany, and
| | - Zanlin Yu
- From the Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Daria Krutauz
- From the Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Noa Reis
- From the Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Oded Kleifeld
- the Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| | - Thomas Sommer
- the Max-Delbrück-Zentrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany, and
| | - David Fushman
- the Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland 20742
| | - Michael H Glickman
- From the Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel,.
| |
Collapse
|
238
|
Piterman R, Braunstein I, Isakov E, Ziv T, Navon A, Cohen S, Stanhill A. VWA domain of S5a restricts the ability to bind ubiquitin and Ubl to the 26S proteasome. Mol Biol Cell 2014; 25:3988-98. [PMID: 25318673 PMCID: PMC4263443 DOI: 10.1091/mbc.e13-11-0697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The only stoichiometric proteasomal subunit found to reside outside the proteasome is the ubiquitin receptor S5a. S5a-dependent binding of substrates and shuttle factors is restricted to occur only on the proteasome, thus increasing efficiency of substrate degradation by the 26S proteasome. The 26S proteasome recognizes a vast number of ubiquitin-dependent degradation signals linked to various substrates. This recognition is mediated mainly by the stoichiometric proteasomal resident ubiquitin receptors S5a and Rpn13, which harbor ubiquitin-binding domains. Regulatory steps in substrate binding, processing, and subsequent downstream proteolytic events by these receptors are poorly understood. Here we demonstrate that mammalian S5a is present in proteasome-bound and free states. S5a is required for efficient proteasomal degradation of polyubiquitinated substrates and the recruitment of ubiquitin-like (Ubl) harboring proteins; however, S5a-mediated ubiquitin and Ubl binding occurs only on the proteasome itself. We identify the VWA domain of S5a as a domain that limits ubiquitin and Ubl binding to occur only upon proteasomal association. Multiubiquitination events within the VWA domain can further regulate S5a association. Our results provide a molecular explanation to how ubiquitin and Ubl binding to S5a is restricted to the 26S proteasome.
Collapse
Affiliation(s)
- Ravit Piterman
- Department of Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ilana Braunstein
- Department of Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Elada Isakov
- Department of Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ami Navon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shenhav Cohen
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ariel Stanhill
- Department of Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
239
|
Ristic G, Tsou WL, Todi SV. An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Front Mol Neurosci 2014; 7:72. [PMID: 25191222 PMCID: PMC4137239 DOI: 10.3389/fnmol.2014.00072] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023] Open
Abstract
The Ubiquitin-Proteasome Pathway (UPP), which is critical for normal function in the nervous system and is implicated in various neurological diseases, requires the small modifier protein ubiquitin to accomplish its duty of selectively degrading short-lived, abnormal or misfolded proteins. Over the past decade, a large class of proteases collectively known as deubiquitinating enzymes (DUBs) has increasingly gained attention in all manners related to ubiquitin. By cleaving ubiquitin from another protein, DUBs ensure that the UPP functions properly. DUBs accomplish this task by processing newly translated ubiquitin so that it can be used for conjugation to substrate proteins, by regulating the "where, when, and why" of UPP substrate ubiquitination and subsequent degradation, and by recycling ubiquitin for re-use by the UPP. Because of the reliance of the UPP on DUB activities, it is not surprising that these proteases play important roles in the normal activities of the nervous system and in neurodegenerative diseases. In this review, we summarize recent advances in understanding the functions of DUBs in the nervous system. We focus on their role in the UPP, and make the argument that understanding the UPP from the perspective of DUBs can yield new insight into diseases that result from anomalous intra-cellular processes or inter-cellular networks. Lastly, we discuss the relevance of DUBs as therapeutic options for disorders of the nervous system.
Collapse
Affiliation(s)
- Gorica Ristic
- Department of Pharmacology, Wayne State University School of Medicine Detroit, MI, USA
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine Detroit, MI, USA ; Department of Neurology, Wayne State University School of Medicine Detroit, MI, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine Detroit, MI, USA ; Department of Neurology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
240
|
Förster F, Schuller JM, Unverdorben P, Aufderheide A. Emerging mechanistic insights into AAA complexes regulating proteasomal degradation. Biomolecules 2014; 4:774-94. [PMID: 25102382 PMCID: PMC4192671 DOI: 10.3390/biom4030774] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/11/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022] Open
Abstract
The 26S proteasome is an integral element of the ubiquitin-proteasome system (UPS) and, as such, responsible for regulated degradation of proteins in eukaryotic cells. It consists of the core particle, which catalyzes the proteolysis of substrates into small peptides, and the regulatory particle, which ensures specificity for a broad range of substrates. The heart of the regulatory particle is an AAA-ATPase unfoldase, which is surrounded by non-ATPase subunits enabling substrate recognition and processing. Cryo-EM-based studies revealed the molecular architecture of the 26S proteasome and its conformational rearrangements, providing insights into substrate recognition, commitment, deubiquitylation and unfolding. The cytosol proteasomal degradation of polyubiquitylated substrates is tuned by various associating cofactors, including deubiquitylating enzymes, ubiquitin ligases, shuttling ubiquitin receptors and the AAA-ATPase Cdc48/p97. Cdc48/p97 and its cofactors function upstream of the 26S proteasome, and their modular organization exhibits some striking analogies to the regulatory particle. In archaea PAN, the closest regulatory particle homolog and Cdc48 even have overlapping functions, underscoring their intricate relationship. Here, we review recent insights into the structure and dynamics of the 26S proteasome and its associated machinery, as well as our current structural knowledge on the Cdc48/p97 and its cofactors that function in the ubiquitin-proteasome system (UPS).
Collapse
Affiliation(s)
- Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried D-82152, Germany.
| | - Jan M Schuller
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried D-82152, Germany.
| | - Pia Unverdorben
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried D-82152, Germany.
| | - Antje Aufderheide
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Martinsried D-82152, Germany.
| |
Collapse
|
241
|
Engel E, Viargues P, Mortier M, Taillebourg E, Couté Y, Thevenon D, Fauvarque MO. Identifying USPs regulating immune signals in Drosophila: USP2 deubiquitinates Imd and promotes its degradation by interacting with the proteasome. Cell Commun Signal 2014; 12:41. [PMID: 25027767 PMCID: PMC4140012 DOI: 10.1186/s12964-014-0041-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid activation of innate immune defences upon microbial infection depends on the evolutionary conserved NF-κB dependent signals which deregulation is frequently associated with chronic inflammation and oncogenesis. These signals are tightly regulated by the linkage of different kinds of ubiquitin moieties on proteins that modify either their activity or their stability. To investigate how ubiquitin specific proteases (USPs) orchestrate immune signal regulation, we created and screened a focused RNA interference library on Drosophila NF-κB-like pathways Toll and Imd in cultured S2 cells, and further analysed the function of selected genes in vivo. RESULTS We report here that USP2 and USP34/Puf, in addition to the previously described USP36/Scny, prevent inappropriate activation of Imd-dependent immune signal in unchallenged conditions. Moreover, USP34 is also necessary to prevent constitutive activation of the Toll pathway. However, while USP2 also prevents excessive Imd-dependent signalling in vivo, USP34 shows differential requirement depending on NF-κB target genes, in response to fly infection by either Gram-positive or Gram-negative bacteria. We further show that USP2 prevents the constitutive activation of signalling by promoting Imd proteasomal degradation. Indeed, the homeostasis of the Imd scaffolding molecule is tightly regulated by the linkage of lysine 48-linked ubiquitin chains (K48) acting as a tag for its proteasomal degradation. This process is necessary to prevent constitutive activation of Imd pathway in vivo and is inhibited in response to infection. The control of Imd homeostasis by USP2 is associated with the hydrolysis of Imd linked K48-ubiquitin chains and the synergistic binding of USP2 and Imd to the proteasome, as evidenced by both mass-spectrometry analysis of USP2 partners and by co-immunoprecipitation experiments. CONCLUSION Our work identified one known (USP36) and two new (USP2, USP34) ubiquitin specific proteases regulating Imd or Toll dependent immune signalling in Drosophila. It further highlights the ubiquitin dependent control of Imd homeostasis and shows a new activity for USP2 at the proteasome allowing for Imd degradation. This study provides original information for the better understanding of the strong implication of USP2 in pathological processes in humans, including cancerogenesis.
Collapse
|
242
|
Zuin A, Isasa M, Crosas B. Ubiquitin signaling: extreme conservation as a source of diversity. Cells 2014; 3:690-701. [PMID: 25014160 PMCID: PMC4197634 DOI: 10.3390/cells3030690] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/20/2014] [Accepted: 07/01/2014] [Indexed: 11/28/2022] Open
Abstract
Around 2 × 103–2.5 × 103 million years ago, a unicellular organism with radically novel features, ancestor of all eukaryotes, dwelt the earth. This organism, commonly referred as the last eukaryotic common ancestor, contained in its proteome the same functionally capable ubiquitin molecule that all eukaryotic species contain today. The fact that ubiquitin protein has virtually not changed during all eukaryotic evolution contrasts with the high expansion of the ubiquitin system, constituted by hundreds of enzymes, ubiquitin-interacting proteins, protein complexes, and cofactors. Interestingly, the simplest genetic arrangement encoding a fully-equipped ubiquitin signaling system is constituted by five genes organized in an operon-like cluster, and is found in archaea. How did ubiquitin achieve the status of central element in eukaryotic physiology? We analyze here the features of the ubiquitin molecule and the network that it conforms, and propose notions to explain the complexity of the ubiquitin signaling system in eukaryotic cells.
Collapse
Affiliation(s)
- Alice Zuin
- Institut de Biologia Molecular de Barcelona, CSIC, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain.
| | - Marta Isasa
- Department of Cell Biology, Harvard Medical School, Longwood, Boston, MA 02115, USA.
| | - Bernat Crosas
- Institut de Biologia Molecular de Barcelona, CSIC, Barcelona Science Park, Baldiri i Reixac 15-21, 08028 Barcelona, Spain.
| |
Collapse
|
243
|
Krutauz D, Reis N, Nakasone MA, Siman P, Zhang D, Kirkpatrick DS, Gygi SP, Brik A, Fushman D, Glickman MH. Extended ubiquitin species are protein-based DUB inhibitors. Nat Chem Biol 2014; 10:664-70. [PMID: 24997605 PMCID: PMC4466224 DOI: 10.1038/nchembio.1574] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 05/27/2014] [Indexed: 01/16/2023]
Abstract
A frameshift mutation in the transcript of the ubiquitin-B gene leads to a C-terminally extended ubiquitin (Ub), UBB(+1). UBB(+1) has been considered to inhibit proteasomes and as such to be the underlying cause for toxic protein buildup correlated with certain neuropathological conditions. We demonstrate that expression of extended Ub variants leads to accumulation of heterogeneously linked polyubiquitin conjugates, indicating a pervasive effect on Ub-dependent turnover. 20S proteasomes selectively proteolyzed Ub extensions, yet no evidence for inhibition of 26S holoenzymes was found. However, among susceptible targets for inhibition was Ubp6, the primary enzyme responsible for disassembly of Lys48 linkages at 26S proteasomes. Processing of Lys48 and Lys63 linkages by other deubiquitinating enzymes (DUBs) was also inhibited. Disruption of Ub-dependent degradation by extended Ub variants may therefore be attributed to their inhibitory effect on select DUBs, thus shifting research efforts related to protein accumulation in neurodegenerative processes from proteasomes to DUBs.
Collapse
Affiliation(s)
- Daria Krutauz
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Noa Reis
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Mark A Nakasone
- 1] Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel. [2] Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | - Peter Siman
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Daoning Zhang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashraf Brik
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | - Michael H Glickman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
244
|
Opazo CM, Greenough MA, Bush AI. Copper: from neurotransmission to neuroproteostasis. Front Aging Neurosci 2014; 6:143. [PMID: 25071552 PMCID: PMC4080678 DOI: 10.3389/fnagi.2014.00143] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/16/2014] [Indexed: 01/23/2023] Open
Abstract
Copper is critical for the Central Nervous System (CNS) development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP) and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (“neuroproteostasis”) in the CNS with focus in the Ubiquitin Proteasome System (UPS), which is particularly relevant to neurological disorders such as Alzheimer’s disease (AD) where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.
Collapse
Affiliation(s)
- Carlos M Opazo
- Oxidation Biology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Melbourne, VIC, Australia
| | - Mark A Greenough
- Oxidation Biology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Melbourne, VIC, Australia
| | - Ashley I Bush
- Oxidation Biology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
245
|
Trang VH, Rodgers ML, Boyle KJ, Hoskins AA, Strieter ER. Chemoenzymatic synthesis of bifunctional polyubiquitin substrates for monitoring ubiquitin chain remodeling. Chembiochem 2014; 15:1563-8. [PMID: 24961813 DOI: 10.1002/cbic.201402059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Indexed: 11/06/2022]
Abstract
Covalent attachment of ubiquitin to target proteins is one of the most pervasive post-translational modifications in eukaryotes. Target proteins are often modified with polymeric ubiquitin chains of defined lengths and linkages that may further undergo dynamic changes in composition in response to cellular signals. Biochemical characterization of the enzymes responsible for building and destroying ubiquitin chains is often thwarted by the lack of methods for preparation of the appropriate substrates containing probes for biochemical or biophysical studies. We have discovered that a yeast ubiquitin C-terminal hydrolase (Yuh1) also catalyzes transamidation reactions that can be exploited to prepare site-specifically modified polyubiquitin chains produced by thiol-ene chemistry. We have used this chemoenzymatic approach to prepare dual-functionalized ubiquitin chains containing fluorophore and biotin modifications. These dual-functionalized ubiquitin chains enabled the first real-time assay of ubiquitin chain disassembly by a human deubiquitinase (DUB) enzyme by single molecule fluorescence microscopy. In summary, this work provides a powerful new tool for elucidating the mechanisms of DUBs and other ubiquitin processing enzymes.
Collapse
Affiliation(s)
- Vivian H Trang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, WI 53706 (USA)
| | | | | | | | | |
Collapse
|
246
|
Cascio P. PA28αβ: the enigmatic magic ring of the proteasome? Biomolecules 2014; 4:566-84. [PMID: 24970231 PMCID: PMC4101498 DOI: 10.3390/biom4020566] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/15/2014] [Accepted: 06/08/2014] [Indexed: 11/16/2022] Open
Abstract
PA28αβ is a γ-interferon-induced 11S complex that associates with the ends of the 20S proteasome and stimulates in vitro breakdown of small peptide substrates, but not proteins or ubiquitin-conjugated proteins. In cells, PA28 also exists in larger complexes along with the 19S particle, which allows ATP-dependent degradation of proteins; although in vivo a large fraction of PA28 is present as PA28αβ-20S particles whose exact biological functions are largely unknown. Although several lines of evidence strongly indicate that PA28αβ plays a role in MHC class I antigen presentation, the exact molecular mechanisms of this activity are still poorly understood. Herein, we review current knowledge about the biochemical and biological properties of PA28αβ and discuss recent findings concerning its role in modifying the spectrum of proteasome's peptide products, which are important to better understand the molecular mechanisms and biological consequences of PA28αβ activity.
Collapse
Affiliation(s)
- Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy.
| |
Collapse
|
247
|
|
248
|
Wang X, Stafford W, Mazurkiewicz M, Fryknäs M, Brjnic S, Zhang X, Gullbo J, Larsson R, Arnér ESJ, D'Arcy P, Linder S. The 19S Deubiquitinase inhibitor b-AP15 is enriched in cells and elicits rapid commitment to cell death. Mol Pharmacol 2014; 85:932-45. [PMID: 24714215 DOI: 10.1124/mol.113.091322] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
b-AP15 [(3E,5E)-3,5-bis[(4-nitrophenyl)methylidene]-1-(prop-2-enoyl)piperidin-4-one] is a small molecule inhibitor of the ubiquitin specific peptidase (USP) 14/ubiquitin carboxyl-terminal hydrolase (UCH) L5 deubiquitinases of the 19S proteasome that shows antitumor activity in a number of tumor models, including multiple myeloma. b-AP15 contains an α,β-unsaturated carbonyl unit that is likely to react with intracellular nucleophiles such as cysteine thiolates by Michael addition. We found that binding of b-AP15 to USP14 is partially reversible, and that inhibition of proteasome function is reversible in cells. Despite reversible binding, tumor cells are rapidly committed to apoptosis/cell death after exposure to b-AP15. We show that b-AP15 is rapidly taken up from the medium and enriched in cells. Enrichment provides an explanation of the stronger potency of the compound in cellular assays compared with in vitro biochemical assays. Cellular uptake was impaired by 30-minute pretreatment of cells with low concentrations of N-ethylmaleimide (10 µM), suggesting that enrichment was thiol dependent. We report that in addition to inhibition of deubiquitinases, b-AP15 inhibits the selenoprotein thioredoxin reductase (TrxR). Whereas proteasome inhibition was closely associated with cell death induction, inhibition of TrxR was not. TrxR inhibition is, however, likely to contribute to triggering of oxidative stress observed with b-AP15. Furthermore, we present structure-activity, in vivo pharmacokinetic, and hepatocyte metabolism data for b-AP15. We conclude that the strong enrichment of b-AP15 in cells and a rapid commitment to apoptosis/cell death are factors that likely contribute to the strong antitumor activity of this compound.
Collapse
Affiliation(s)
- Xin Wang
- Department of Oncology and Pathology, Cancer Center Karolinska (X.W., M.M., S.B., X.Z., P.D., S.L.), and Division of Biochemistry, Department of Medical Biochemistry and Biophysics (W.S., E.S.J.A.), Karolinska Institute, Stockholm, Sweden; and Division of Clinical Pharmacology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden (M.F., J.G., R.L., S.L.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Systematic exploration of ubiquitin sequence, E1 activation efficiency, and experimental fitness in yeast. J Mol Biol 2014; 426:2854-70. [PMID: 24862281 DOI: 10.1016/j.jmb.2014.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/13/2014] [Accepted: 05/18/2014] [Indexed: 01/26/2023]
Abstract
The complexity of biological interaction networks poses a challenge to understanding the function of individual connections in the overall network. To address this challenge, we developed a high-throughput reverse engineering strategy to analyze how thousands of specific perturbations (encompassing all point mutations in a central gene) impact both a specific edge (interaction to a directly connected node) and an overall network function. We analyzed the effects of ubiquitin mutations on activation by the E1 enzyme and compared these to effects on yeast growth rate. Using this approach, we delineated ubiquitin mutations that selectively impacted the ubiquitin-E1 edge. We find that the elasticity function relating the efficiency of ubiquitin-E1 interaction to growth rate is non-linear and that a greater than 50-fold decrease in E1 activation efficiency is required to reduce growth rate by 2-fold. Despite the robustness of fitness to decreases in E1 activation efficiency, the effects of most ubiquitin mutations on E1 activation paralleled the effects on growth rate. Our observations indicate that most ubiquitin mutations that disrupt E1 activation also disrupt other functions. The structurally characterized ubiquitin-E1 interface encompasses the interfaces of ubiquitin with most other known binding partners, and we propose that this enables E1 in wild-type cells to selectively activate ubiquitin protein molecules capable of binding to other partners from the cytoplasmic pool of ubiquitin protein that will include molecules with chemical damage and/or errors from transcription and translation.
Collapse
|
250
|
Shrestha RK, Ronau JA, Davies CW, Guenette RG, Strieter ER, Paul LN, Das C. Insights into the mechanism of deubiquitination by JAMM deubiquitinases from cocrystal structures of the enzyme with the substrate and product. Biochemistry 2014; 53:3199-217. [PMID: 24787148 PMCID: PMC4033627 DOI: 10.1021/bi5003162] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
AMSH, a conserved zinc metallo deubiquitinase,
controls downregulation
and degradation of cell-surface receptors mediated by the endosomal
sorting complexes required for transport (ESCRT) machinery. It displays
high specificity toward the Lys63-linked polyubiquitin chain, which
is used as a signal for ESCRT-mediated endosomal–lysosomal
sorting of receptors. Herein, we report the crystal structures of
the catalytic domain of AMSH orthologue Sst2 from fission yeast, its
ubiquitin (product)-bound form, and its Lys63-linked diubiquitin (substrate)-bound
form at 1.45, 1.7, and 2.3 Å, respectively. The structures reveal
that the P-side product fragment maintains nearly all the contacts
with the enzyme as seen with the P portion (distal ubiquitin) of the
Lys63-linked diubiquitin substrate, with additional coordination of
the Gly76 carboxylate group of the product with the active-site Zn2+. One of the product-bound structures described herein is
the result of an attempt to cocrystallize the diubiquitin substrate
bound to an active site mutant presumed to render the enzyme inactive,
instead yielding a cocrystal structure of the enzyme bound to the
P-side ubiquitin fragment of the substrate (distal ubiquitin). This
fragment was generated in situ from the residual
activity of the mutant enzyme. In this structure, the catalytic water
is seen placed between the active-site Zn2+ and the carboxylate
group of Gly76 of ubiquitin, providing what appears to be a snapshot
of the active site when the product is about to depart. Comparison
of this structure with that of the substrate-bound form suggests the
importance of dynamics of a flexible flap near the active site in
catalysis. The crystal structure of the Thr319Ile mutant of the catalytic
domain of Sst2 provides insight into structural basis of microcephaly
capillary malformation syndrome. Isothermal titration calorimetry
yields a dissociation constant (KD) of
10.2 ± 0.6 μM for the binding of ubiquitin to the enzyme,
a value comparable to the KM of the enzyme
catalyzing hydrolysis of the Lys63-linked diubiquitin substrate (∼20
μM). These results, together with the previously reported observation
that the intracellular concentration of free ubiquitin (∼20
μM) exceeds that of Lys63-linked polyubiquitin chains, imply
that the free, cytosolic form of the enzyme remains inhibited by being
tightly bound to free ubiquitin. We propose that when AMSH associates
with endosomes, inhibition would be relieved because of ubiquitin
binding domains present on its endosomal binding partners that would
shift the balance toward better recognition of polyubiquitin chains
via the avidity effect.
Collapse
Affiliation(s)
- Rashmi K Shrestha
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | | | | | | | | | | | | |
Collapse
|