201
|
Yang J, Wang Q, Zheng W, Tuli J, Li Q, Wu Y, Hussein S, Dai XQ, Shafiei S, Li XG, Shen PY, Tu JC, Chen XZ. Receptor for activated C kinase 1 (RACK1) inhibits function of transient receptor potential (TRP)-type channel Pkd2L1 through physical interaction. J Biol Chem 2011; 287:6551-61. [PMID: 22174419 DOI: 10.1074/jbc.m111.305854] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pkd2L1 (also called TRPP3) is a non-selective cation channel permeable to Ca(2+), Na(+), and K(+) and is activated by Ca(2+). It is also part of an acid-triggered off-response cation channel complex. We previously reported roles of the Pkd2L1 C-terminal fragments in its channel function, but the role of the N terminus remains unclear. Using a yeast two-hybrid screening, we found that the Pkd2L1 N terminus interacts with the receptor for activated C kinase 1 (RACK1), a scaffolding/anchoring protein implicated in various cellular functions. This interaction requires the last two Trp-Asp (WD) motifs of RACK1 and fragment Ala(19)-Pro(45) of Pkd2L1. The interaction was confirmed by GST pulldown, blot overlay, and co-immunoprecipitation assays. By (45)Ca tracer uptake and two-microelectrode voltage clamp electrophysiology, we found that in Xenopus oocytes with RACK1 overexpression Pkd2L1 channel activity is abolished or substantially reduced. Combining with oocyte surface biotinylation experiments, we demonstrated that RACK1 inhibits the function of Pkd2L1 channel on the plasma membrane in addition to reducing its total and plasma membrane expression. Overexpressing Pkd2L1 N- or C-terminal fragments as potential blocking peptides for the Pkd2L1-RACK1 interaction, we found that Pkd2L1 N-terminal fragment Met(1)-Pro(45), but not Ile(40)-Ile(97) or C-terminal fragments, abolishes the inhibition of Pkd2L1 channel by overexpressed and oocyte-native RACK1 likely through disrupting the Pkd2L1-RACK1 association. Taken together, our study demonstrated that RACK1 inhibits Pkd2L1 channel function through binding to domain Met(1)-Pro(45) of Pkd2L1. Thus, Pkd2L1 is a novel target channel whose function is regulated by the versatile scaffolding protein RACK1.
Collapse
Affiliation(s)
- Jungwoo Yang
- Department of Physiology, University of Alberta, 7-29 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Adeli K. Translational control mechanisms in metabolic regulation: critical role of RNA binding proteins, microRNAs, and cytoplasmic RNA granules. Am J Physiol Endocrinol Metab 2011; 301:E1051-64. [PMID: 21971522 DOI: 10.1152/ajpendo.00399.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulated cell metabolism involves acute and chronic regulation of gene expression by various nutritional and endocrine stimuli. To respond effectively to endogenous and exogenous signals, cells require rapid response mechanisms to modulate transcript expression and protein synthesis and cannot, in most cases, rely on control of transcriptional initiation that requires hours to take effect. Thus, co- and posttranslational mechanisms have been increasingly recognized as key modulators of metabolic function. This review highlights the critical role of mRNA translational control in modulation of global protein synthesis as well as specific protein factors that regulate metabolic function. First, the complex lifecycle of eukaryotic mRNAs will be reviewed, including our current understanding of translational control mechanisms, regulation by RNA binding proteins and microRNAs, and the role of RNA granules, including processing bodies and stress granules. Second, the current evidence linking regulation of mRNA translation with normal physiological and metabolic pathways and the associated disease states are reviewed. A growing body of evidence supports a key role of translational control in metabolic regulation and implicates translational mechanisms in the pathogenesis of metabolic disorders such as type 2 diabetes. The review also highlights translational control of apolipoprotein B (apoB) mRNA by insulin as a clear example of endocrine modulation of mRNA translation to bring about changes in specific metabolic pathways. Recent findings made on the role of 5'-untranslated regions (5'-UTR), 3'-UTR, RNA binding proteins, and RNA granules in mediating insulin regulation of apoB mRNA translation, apoB protein synthesis, and hepatic lipoprotein production are discussed.
Collapse
Affiliation(s)
- Khosrow Adeli
- Program in Molecular Structure & Function, Research Institute, The Hospital for Sick Children, Atrium 3653, 555 University Ave., Toronto, ON, M5G 1X8 Canada.
| |
Collapse
|
203
|
Kouba T, Rutkai E, Karásková M, Valášek LS. The eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of translation preinitiation complexes. Nucleic Acids Res 2011; 40:2683-99. [PMID: 22123745 PMCID: PMC3315329 DOI: 10.1093/nar/gkr1083] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Several subunits of the multifunctional eukaryotic translation initiation factor 3 (eIF3) contain well-defined domains. Among them is the conserved bipartite PCI domain, typically serving as the principal scaffold for multisubunit 26S proteasome lid, CSN and eIF3 complexes, which constitutes most of the C-terminal region of the c/NIP1 subunit. Interestingly, the c/NIP1-PCI domain is exceptional in that its deletion, despite being lethal, does not affect eIF3 integrity. Here, we show that a short C-terminal truncation and two clustered mutations directly disturbing the PCI domain produce lethal or slow growth phenotypes and significantly reduce amounts of 40S-bound eIF3 and eIF5 in vivo. The extreme C-terminus directly interacts with blades 1–3 of the small ribosomal protein RACK1/ASC1, which is a part of the 40S head, and, consistently, deletion of the ASC1 coding region likewise affects eIF3 association with ribosomes. The PCI domain per se shows strong but unspecific binding to RNA, for the first time implicating this typical protein–protein binding domain in mediating protein–RNA interactions also. Importantly, as our clustered mutations severely reduce RNA binding, we conclude that the c/NIP1 C-terminal region forms an important intermolecular bridge between eIF3 and the 40S head region by contacting RACK1/ASC1 and most probably 18S rRNA.
Collapse
Affiliation(s)
- Tomáš Kouba
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AVCR, v.v.i., Prague, the Czech Republic
| | | | | | | |
Collapse
|
204
|
Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 2011; 334:941-8. [PMID: 22052974 DOI: 10.1126/science.1211204] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Protein synthesis in all organisms is catalyzed by ribosomes. In comparison to their prokaryotic counterparts, eukaryotic ribosomes are considerably larger and are subject to more complex regulation. The large ribosomal subunit (60S) catalyzes peptide bond formation and contains the nascent polypeptide exit tunnel. We present the structure of the 60S ribosomal subunit from Tetrahymena thermophila in complex with eukaryotic initiation factor 6 (eIF6), cocrystallized with the antibiotic cycloheximide (a eukaryotic-specific inhibitor of protein synthesis), at a resolution of 3.5 angstroms. The structure illustrates the complex functional architecture of the eukaryotic 60S subunit, which comprises an intricate network of interactions between eukaryotic-specific ribosomal protein features and RNA expansion segments. It reveals the roles of eukaryotic ribosomal protein elements in the stabilization of the active site and the extent of eukaryotic-specific differences in other functional regions of the subunit. Furthermore, it elucidates the molecular basis of the interaction with eIF6 and provides a structural framework for further studies of ribosome-associated diseases and the role of the 60S subunit in the initiation of protein synthesis.
Collapse
Affiliation(s)
- Sebastian Klinge
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
205
|
Adams DR, Ron D, Kiely PA. RACK1, A multifaceted scaffolding protein: Structure and function. Cell Commun Signal 2011; 9:22. [PMID: 21978545 PMCID: PMC3195729 DOI: 10.1186/1478-811x-9-22] [Citation(s) in RCA: 349] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/06/2011] [Indexed: 12/17/2022] Open
Abstract
The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease.
Collapse
Affiliation(s)
- David R Adams
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.
| | | | | |
Collapse
|
206
|
Otsuka M, Takata A, Yoshikawa T, Kojima K, Kishikawa T, Shibata C, Takekawa M, Yoshida H, Omata M, Koike K. Receptor for activated protein kinase C: requirement for efficient microRNA function and reduced expression in hepatocellular carcinoma. PLoS One 2011; 6:e24359. [PMID: 21935400 PMCID: PMC3174171 DOI: 10.1371/journal.pone.0024359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/07/2011] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression that control physiological and pathological processes. A global reduction in miRNA abundance and function is a general trait of human cancers, playing a causal role in the transformed phenotype. Here, we sought to newly identify genes involved in the regulation of miRNA function by performing a genetic screen using reporter constructs that measure miRNA function and retrovirus-based random gene disruption. Of the six genes identified, RACK1, which encodes "receptor for activated protein kinase C" (RACK1), was confirmed to be necessary for full miRNA function. RACK1 binds to KH-type splicing regulatory protein (KSRP), a member of the Dicer complex, and is required for the recruitment of mature miRNAs to the RNA-induced silencing complex (RISC). In addition, RACK1 expression was frequently found to be reduced in hepatocellular carcinoma. These findings suggest the involvement of RACK1 in miRNA function and indicate that reduced miRNA function, due to decreased expression of RACK1, may have pathologically relevant roles in liver cancers.
Collapse
Affiliation(s)
- Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Translational control gone awry: a new mechanism of tumorigenesis and novel targets of cancer treatments. Biosci Rep 2011; 31:1-15. [PMID: 20964625 DOI: 10.1042/bsr20100077] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Translational control is one of primary regulation mechanisms of gene expression. Eukaryotic translational control mainly occurs at the initiation step, the speed-limiting step, which involves more than ten translation initiation factors [eIFs (eukaryotic initiation factors)]. Changing the level or function of these eIFs results in abnormal translation of specific mRNAs and consequently abnormal growth of cells that leads to human diseases, including cancer. Accumulating evidence from recent studies showed that the expression of many eIFs was associated with malignant transformation, cancer prognosis, as well as gene expression regulation. In the present paper, we perform a critical review of recent advances in understanding the role and mechanism of eIF action in translational control and cancer as well as the possibility of targeting eIFs for therapeutic development.
Collapse
|
208
|
Stumpf CR, Ruggero D. The cancerous translation apparatus. Curr Opin Genet Dev 2011; 21:474-83. [PMID: 21543223 PMCID: PMC3481834 DOI: 10.1016/j.gde.2011.03.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/25/2011] [Indexed: 01/04/2023]
Abstract
Deregulations in translational control are critical features of cancer initiation and progression. Activation of key oncogenic pathways promotes rapid and dramatic translational reprogramming, not simply by increasing overall protein synthesis, but also by modulating specific mRNA networks that promote cellular transformation. Additionally, ribosomopathies caused by mutations in ribosome components alter translational regulation leading to specific pathological features, including cancer susceptibility. Exciting advances in our understanding of translational control in cancer have illuminated a striking specificity innate to the translational apparatus. Characterizing this specificity will provide novel insights into how cells normally utilize translational control to modulate gene expression, how it is deregulated in cancer, and how these processes can be targeted to develop new cancer therapies.
Collapse
Affiliation(s)
- Craig R. Stumpf
- School of Medicine and Department of Urology, Helen Diller Family, Comprehensive Cancer Center, University of California, San Francisco, Helen, Diller Family Cancer Research Building Room 386, 1450 3rd Street, San Francisco, CA 94158-3110
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family, Comprehensive Cancer Center, University of California, San Francisco, Helen, Diller Family Cancer Research Building Room 386, 1450 3rd Street, San Francisco, CA 94158-3110
| |
Collapse
|
209
|
Hoque M, Shamanna RA, Guan D, Pe’ery T, Mathews MB. HIV-1 replication and latency are regulated by translational control of cyclin T1. J Mol Biol 2011; 410:917-32. [PMID: 21763496 PMCID: PMC3164259 DOI: 10.1016/j.jmb.2011.03.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus (HIV) exploits cellular proteins during its replicative cycle and latent infection. The positive transcription elongation factor b (P-TEFb) is a key cellular transcription factor critical for these viral processes and is a drug target. During viral replication, P-TEFb is recruited via interactions of its cyclin T1 subunit with the HIV Tat (transactivator of transcription) protein and TAR (transactivation response) element. Through RNA silencing and over-expression experiments, we discovered that nuclear factor 90 (NF90), a cellular RNA binding protein, regulates P-TEFb expression. NF90 depletion reduced cyclin T1 protein levels by inhibiting translation initiation. Regulation was mediated by the 3' untranslated region of cyclin T1 mRNA independently of microRNAs. Cyclin T1 induction is involved in the escape of HIV-1 from latency. We show that the activation of viral replication by phorbol ester in latently infected monocytic cells requires the posttranscriptional induction of NF90 and cyclin T1, implicating NF90 in protein kinase C signaling pathways. This investigation reveals a novel mechanism of cyclin T1 regulation and establishes NF90 as a regulator of HIV-1 replication during both productive infection and induction from latency.
Collapse
Affiliation(s)
- Mainul Hoque
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
| | - Raghavendra A. Shamanna
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
- Graduate School of Biomedical Sciences, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
| | - Deyu Guan
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
| | - Tsafi Pe’ery
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
- Department of Medicine, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
- Graduate School of Biomedical Sciences, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
| | - Michael B. Mathews
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
- Graduate School of Biomedical Sciences, UMDNJ-New Jersey Medical School, PO Box 1709, Newark, New Jersey 07101-1709, USA
| |
Collapse
|
210
|
Islas-Flores T, Guillén G, Alvarado-Affantranger X, Lara-Flores M, Sánchez F, Villanueva MA. PvRACK1 loss-of-function impairs cell expansion and morphogenesis in Phaseolus vulgaris L. root nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:819-26. [PMID: 21425924 DOI: 10.1094/mpmi-11-10-0261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Receptor for activated C kinase (RACK1) is a highly conserved, eukaryotic protein of the WD-40 repeat family. Its peculiar β-propeller structure allows its interaction with multiple proteins in various plant signal-transduction pathways, including those arising from hormone responses, development, and environmental stress. During Phaseolus vulgaris root development, RACK1 (PvRACK1) mRNA expression was induced by auxins, abscissic acid, cytokinin, and gibberellic acid. In addition, during P. vulgaris nodule development, PvRACK1 mRNA was highly accumulated at 12 to 15 days postinoculation, suggesting an important role after nodule meristem initiation and Rhizobium nodule infection. PvRACK1 transcript accumulation was downregulated by a specific RNA interference construct which was expressed in transgenic roots of composite plants of P. vulgaris inoculated with Rhizobium tropici. PvRACK1 downregulated transcript levels were monitored by quantitative reverse-transcription polymerase chain reaction analysis in individual transgenic roots and nodules. We observed a clear phenotype in PvRACK1-knockdown nodules, in which nodule number and nodule cell expansion were impaired, resulting in altered nodule size. Microscopic analysis indicated that, in PvRACK1-knockdown nodules, infected and uninfected cells were considerably smaller (80 and 60%, respectively) than in control nodules. In addition, noninfected cells and symbiosomes in silenced nodules showed significant defects in membrane structure under electron microscopy analysis. These findings indicate that PvRACK1 has a pivotal role in cell expansion and in symbiosome and bacteroid integrity during nodule development.
Collapse
Affiliation(s)
- Tania Islas-Flores
- Departamento de Biologia Molecular de Plantas, Universidad Nacional Autonoma de Mexico, Morelos, Mexico
| | | | | | | | | | | |
Collapse
|
211
|
Johnson AW, Ellis SR. Of blood, bones, and ribosomes: is Swachman-Diamond syndrome a ribosomopathy? Genes Dev 2011; 25:898-900. [PMID: 21536731 DOI: 10.1101/gad.2053011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mutations in the human SBDS (Shwachman-Bodian-Diamond syndrome) gene are the most common cause of Shwachman-Diamond syndrome, an inherited bone marrow failure syndrome. In this issue of Genes & Development, Finch and colleagues (pp. 917-929) establish that SBDS functions in ribosome synthesis by promoting the recycling of eukaryotic initiation factor 6 (eIF6) in a GTP-dependent manner. This work supports the idea that a ribosomopathy may underlie this syndrome.
Collapse
Affiliation(s)
- Arlen W Johnson
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Texas 78712, USA.
| | | |
Collapse
|
212
|
Structure of the RACK1 dimer from Saccharomyces cerevisiae. J Mol Biol 2011; 411:486-98. [PMID: 21704636 DOI: 10.1016/j.jmb.2011.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/06/2011] [Accepted: 06/10/2011] [Indexed: 11/20/2022]
Abstract
Receptor for activated C-kinase 1 (RACK1) serves as a scaffolding protein in numerous signaling pathways involving kinases and membrane-bound receptors from different cellular compartments. It exists simultaneously as a cytosolic free form and as a ribosome-bound protein. As part of the 40S ribosomal subunit, it triggers translational regulation by establishing a direct link between protein kinase C and the protein synthesis machinery. It has been suggested that RACK1 could recruit other signaling molecules onto the ribosome, providing a signal-specific modulation of the translational process. RACK1 is able to dimerize both in vitro and in vivo. This homodimer formation has been observed in several processes including the regulation of the N-methyl-d-aspartate receptor by the Fyn kinase in the brain and the oxygen-independent degradation of hypoxia-inducible factor 1. The functional relevance of this dimerization is, however, still unclear and the question of a possible dimerization of the ribosome-bound protein is still pending. Here, we report the first structure of a RACK1 homodimer, as determined from two independent crystal forms of the Saccharomyces cerevisiae RACK1 protein (also known as Asc1p) at 2.9 and 3.9 Å resolution. The structure reveals an atypical mode of dimerization where monomers intertwine on blade 4, thus exposing a novel surface of the protein to potential interacting partners. We discuss the significance of the dimer structure for RACK1 function.
Collapse
|
213
|
Miluzio A, Beugnet A, Grosso S, Brina D, Mancino M, Campaner S, Amati B, de Marco A, Biffo S. Impairment of cytoplasmic eIF6 activity restricts lymphomagenesis and tumor progression without affecting normal growth. Cancer Cell 2011; 19:765-75. [PMID: 21665150 DOI: 10.1016/j.ccr.2011.04.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/14/2011] [Accepted: 04/29/2011] [Indexed: 12/13/2022]
Abstract
Eukaryotic Initiation Factor 6 (eIF6) controls translation by regulating 80S subunit formation. eIF6 is overexpressed in tumors. Here, we demonstrate that eIF6 inactivation delays tumorigenesis and reduces tumor growth in vivo. eIF6(+/-) mice resist to Myc-induced lymphomagenesis and have prolonged tumor-free survival and reduced tumor growth. eIF6(+/-) mice are also protected by p53 loss. Myc-driven lymphomas contain PKCβII and phosphorylated eIF6; eIF6 is phosphorylated by tumor-derived PKCβII, but not by the eIF4F activator mTORC1. Mutation of PKCβII phosphosite of eIF6 reduces tumor growth. Thus, eIF6 is a rate-limiting controller of initiation of translation, able to affect tumorigenesis and tumor growth. Modulation of eIF6 activity, independent from eIF4F complex, may lead to a therapeutical avenue in tumor therapy.
Collapse
Affiliation(s)
- Annarita Miluzio
- Histology and Cell Growth, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Abstract
The translation initiation step in eukaryotes is highly regulated and rate-limiting. During this process, the 40S ribosomal subunit is usually recruited to the 5' terminus of the mRNA. It then migrates towards the initiation codon, where it is joined by the 60S ribosomal subunit to form the 80S initiation complex. Secondary structures in the 5' untranslated region (UTR) can impede binding and movement of the 40S ribosome. The canonical eukaryotic translation initiation factor eIF4A (also known as DDX2), together with its accessory proteins eIF4B and eIF4H, is thought to act as a helicase that unwinds secondary structures in the mRNA 5' UTR. Growing evidence suggests that other helicases are also important for translation initiation and may promote the scanning processivity of the 40S subunit, synergize with eIF4A to 'melt' secondary structures or facilitate translation of a subset of mRNAs.
Collapse
|
215
|
Trypanosomatid RACK1 Orthologs Show Functional Differences Associated with Translation Despite Similar Roles in Leishmania Pathogenesis. PLoS One 2011; 6:e20710. [PMID: 21677780 PMCID: PMC3108995 DOI: 10.1371/journal.pone.0020710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 05/11/2011] [Indexed: 11/22/2022] Open
Abstract
RACK1 proteins belong to the eukaryote WD40-repeat protein family and function as spatial regulators of multiple cellular events, including signaling pathways, the cell cycle and translation. For this latter role, structural and genetic studies indicate that RACK1 associates with the ribosome through two conserved positively charged amino acids in its first WD40 domain. Unlike RACK1s, including Trypanosoma brucei RACK1 (TbRACK1), only one of these two positively-charged residues is conserved in the first WD40 domain of the Leishmania major RACK1 ortholog, LACK. We compared virulence-attenuated LACK single copy (LACK/-) L. major, with L. major expressing either two LACK copies (LACK/LACK), or one copy each of LACK and TbRACK1 (LACK/TbRACK1), to evaluate the function of these structurally distinct RACK1 orthologs with respect to translation, viability at host temperatures and pathogenesis. Our results indicate that although the ribosome-binding residues are not fully conserved in LACK, both LACK and TbRACK1 co-sedimented with monosomes and polysomes in LACK/LACK and LACK/TbRACK1 L. major, respectively. LACK/LACK and LACK/TbRACK1 strains differed in their sensitivity to translation inhibitors implying that minor sequence differences between the RACK1 proteins can alter their functional properties. While biochemically distinguishable, both LACK/LACK and LACK/TbRACK1 lines were more tolerant of elevated temperatures, resistant to translation inhibitors, and displayed robust pathogenesis in vivo, contrasting to LACK/- parasites.
Collapse
|
216
|
De Marco N, Tussellino M, Vitale A, Campanella C. Eukaryotic initiation factor 6 (eif6) overexpression affects eye development in Xenopus laevis. Differentiation 2011; 82:108-15. [PMID: 21601348 DOI: 10.1016/j.diff.2011.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/27/2011] [Accepted: 05/02/2011] [Indexed: 01/13/2023]
Abstract
The translation initiation factor eif6 has been implicated as a regulator of ribosome assembly, selective mRNA translation and apoptosis. Many of these activities depend upon the phosphorylation of eif6 serine 235 by PKC. Previous data showed that eif6 binds to the 60S ribosomal subunit when unphosphorylated, inhibiting assembly with the 40S subunit. Phosphorylation of Ser235 releases eif6 from the 60S subunit and allows assembly. eif6 acts as an anti-apoptotic factor via regulation of the bcl2/bax balance and acts selectively upstream of bcl2. This activity also depends upon phosphorylation of eif6 Ser235. One of the consequences of eif6 overexpression in Xenopus embryos is aberrant eye development. Here we evaluate the eye phenotype and show that it is transient. We show that the whole eye, particularly the retina layers, of the embryos injected with eif6-encoding mRNA recover by stage 42. Embryos over-expressing eif6 have normal expression of anterior- and brain-specific markers, indicating that outside the eye field, other neural regions appear unaffected by the eif6 injection. No eye defect was detected when morpholinos were used to reduce eif6 protein synthesis. We tested how two known pathways of eif6 function with respect to alteration of eye development. We found that injection of bcl2 did not produce the eye phenotype and eif6-bax co-injection did not rescue the eye defect, suggesting that the eye phenotype is not bearing on the anti-apoptotic role played by eif6 is not linked to its role as an anti-apoptotic factor. We also determined that PKC-dependant phosphorylation of Ser235 in eif6 is not required to produce defective eye development. These results indicate that the aberrant eye phenotype, produced by eif6 overexpression, is not directly linked to the PKC-regulated effects of eif6 on translation and ribosomal subunit interaction or on eif6 anti-apoptotic properties.
Collapse
Affiliation(s)
- N De Marco
- Department of Structural and Functional Biology, University of Naples Federico II, Naples, Italy.
| | | | | | | |
Collapse
|
217
|
Guo J, Jin Z, Yang X, Li JF, Chen JG. Eukaryotic initiation factor 6, an evolutionarily conserved regulator of ribosome biogenesis and protein translation. PLANT SIGNALING & BEHAVIOR 2011; 6:766-71. [PMID: 21543889 PMCID: PMC3172860 DOI: 10.4161/psb.6.5.15438] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We recently identified Receptor for Activated C Kinase 1 (RACK1) as one of the molecular links between abscisic acid (ABA) signaling and its regulation on protein translation. Moreover, we identified Eukaryotic Initiation Factor 6 (eIF6) as an interacting partner of RACK1. Because the interaction between RACK1 and eIF6 in mammalian cells is known to regulate the ribosome assembly step of protein translation initiation, it was hypothesized that the same process of protein translation in Arabidopsis is also regulated by RACK1 and eIF6. In this article, we analyzed the amino acid sequences of eIF6 in different species from different lineages and discovered some intriguing differences in protein phosphorylation sites that may contribute to its action in ribosome assembly and biogenesis. In addition, we discovered that, distinct from non-plant organisms in which eIF6 is encoded by a single gene, all sequenced plant genomes contain two or more copies of eIF6 genes. While one copy of plant eIF6 is expressed ubiquitously and might possess the conserved function in ribosome biogenesis and protein translation, the other copy seems to be only expressed in specific organs and therefore may have gained some new functions. We proposed some important studies that may help us better understand the function of eIF6 in plants.
Collapse
Affiliation(s)
- Jianjun Guo
- Department of Genetics; Harvard Medical School; Boston, MA USA
- Department of Molecular Biology; Massachusetts General Hospital; Boston, MA USA
| | - Zhaoqing Jin
- Biosciences Division; Oak Ridge National Laboratory; Oak Ridge, TN USA
| | - Xiaohan Yang
- Biosciences Division; Oak Ridge National Laboratory; Oak Ridge, TN USA
| | - Jian-Feng Li
- Department of Genetics; Harvard Medical School; Boston, MA USA
- Department of Molecular Biology; Massachusetts General Hospital; Boston, MA USA
| | - Jin-Gui Chen
- Biosciences Division; Oak Ridge National Laboratory; Oak Ridge, TN USA
| |
Collapse
|
218
|
Finch AJ, Hilcenko C, Basse N, Drynan LF, Goyenechea B, Menne TF, González Fernández A, Simpson P, D'Santos CS, Arends MJ, Donadieu J, Bellanné-Chantelot C, Costanzo M, Boone C, McKenzie AN, Freund SMV, Warren AJ. Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome. Genes Dev 2011; 25:917-29. [PMID: 21536732 PMCID: PMC3084026 DOI: 10.1101/gad.623011] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/15/2011] [Indexed: 02/07/2023]
Abstract
Removal of the assembly factor eukaryotic initiation factor 6 (eIF6) is critical for late cytoplasmic maturation of 60S ribosomal subunits. In mammalian cells, the current model posits that eIF6 release is triggered following phosphorylation of Ser 235 by activated protein kinase C. In contrast, genetic studies in yeast indicate a requirement for the ortholog of the SBDS (Shwachman-Bodian-Diamond syndrome) gene that is mutated in the inherited leukemia predisposition disorder Shwachman-Diamond syndrome (SDS). Here, by isolating late cytoplasmic 60S ribosomal subunits from Sbds-deleted mice, we show that SBDS and the GTPase elongation factor-like 1 (EFL1) directly catalyze eIF6 removal in mammalian cells by a mechanism that requires GTP binding and hydrolysis by EFL1 but not phosphorylation of eIF6 Ser 235. Functional analysis of disease-associated missense variants reveals that the essential role of SBDS is to tightly couple GTP hydrolysis by EFL1 on the ribosome to eIF6 release. Furthermore, complementary NMR spectroscopic studies suggest unanticipated mechanistic parallels between this late step in 60S maturation and aspects of bacterial ribosome disassembly. Our findings establish a direct role for SBDS and EFL1 in catalyzing the translational activation of ribosomes in all eukaryotes, and define SDS as a ribosomopathy caused by uncoupling GTP hydrolysis from eIF6 release.
Collapse
Affiliation(s)
- Andrew J Finch
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Ceman S, Saugstad J. MicroRNAs: Meta-controllers of gene expression in synaptic activity emerge as genetic and diagnostic markers of human disease. Pharmacol Ther 2011; 130:26-37. [PMID: 21256154 PMCID: PMC3043141 DOI: 10.1016/j.pharmthera.2011.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 12/18/2022]
Abstract
MicroRNAs are members of the non-protein-coding family of RNAs. They serve as regulators of gene expression by modulating the translation and/or stability of messenger RNA targets. The discovery of microRNAs has revolutionized the field of cell biology, and has permanently altered the prevailing view of a linear relationship between gene and protein expression. The increased complexity of gene regulation is both exciting and daunting, as emerging evidence supports a pervasive role for microRNAs in virtually every cellular process. This review briefly describes microRNA processing and formation of RNA-induced silencing complexes, with a focus on the role of RNA binding proteins in this process. We also discuss mechanisms for microRNA-mediated regulation of translation, particularly in dendritic spine formation and function, and the role of microRNAs in synaptic plasticity. We then discuss the evidence for altered microRNA function in cognitive brain disorders, and the effect of gene mutations revealed by single nucleotide polymorphism analysis on altered microRNA function and human disease. Further, we present evidence that altered microRNA expression in circulating fluids such as plasma/serum can correlate with, and serve as, novel diagnostic biomarkers of human disease.
Collapse
Affiliation(s)
- Stephanie Ceman
- University of Illinois, Department of Cell & Developmental Biology, Urbana IL 61801, United States
| | - Julie Saugstad
- Legacy Research Institute, RS Dow Neurobiology Labs, Portland, OR 97232, United States
| |
Collapse
|
220
|
Jastrzebski K, Hannan KM, House CM, Hung SSC, Pearson RB, Hannan RD. A phospho-proteomic screen identifies novel S6K1 and mTORC1 substrates revealing additional complexity in the signaling network regulating cell growth. Cell Signal 2011; 23:1338-47. [PMID: 21440620 DOI: 10.1016/j.cellsig.2011.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/16/2011] [Indexed: 01/09/2023]
Abstract
S6K1, a critical downstream substrate of mTORC1, has been implicated in regulating protein synthesis and a variety of processes that impinge upon cell growth and proliferation. While the role of the cytoplasmic p70(S6K1) isoform in the regulation of translation has been intensively studied, the targets and function of the nuclear p85(S6K1) isoform remain unclear. Therefore, we carried out a phospho-proteomic screen to identify novel p85(S6K1) substrates. Four novel putative p85(S6K1) substrates, GRP75, CCTβ, PGK1 and RACK1, and two mTORC1 substrates, ANXA4 and PSMA6 were identified, with diverse roles in chaperone function, ribosome maturation, metabolism, vesicle trafficking and the proteasome, respectively. The chaperonin subunit CCTβ was further investigated and the site of phosphorylation mapped to serine 260, a site located in the chaperonin apical domain. Consistent with this domain being involved in folding substrate interactions, we found that phosphorylation of serine 260 modulates chaperonin folding activity.
Collapse
Affiliation(s)
- Katarzyna Jastrzebski
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Locked Bag 1, A'Beckett Street, Victoria 8006, Australia
| | | | | | | | | | | |
Collapse
|
221
|
Burwick N, Shimamura A, Liu JM. Non-Diamond Blackfan anemia disorders of ribosome function: Shwachman Diamond syndrome and 5q- syndrome. Semin Hematol 2011; 48:136-43. [PMID: 21435510 PMCID: PMC3072806 DOI: 10.1053/j.seminhematol.2011.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A number of human disorders, dubbed ribosomopathies, are linked to impaired ribosome biogenesis or function. These include but are not limited to Diamond Blackfan anemia (DBA), Shwachman Diamond syndrome (SDS), and the 5q- myelodysplastic syndrome (MDS). This review focuses on the latter two non-DBA disorders of ribosome function. Both SDS and 5q- syndrome lead to impaired hematopoiesis and a predisposition to leukemia. SDS, due to bi-allelic mutations of the SBDS gene, is a multi-system disorder that also includes bony abnormalities, and pancreatic and neurocognitive dysfunction. SBDS associates with the 60S subunit in human cells and has a role in subunit joining and translational activation in yeast models. In contrast, 5q- syndrome is associated with acquired haplo-insufficiency of RPS14, a component of the small 40S subunit. RPS14 is critical for 40S assembly in yeast models, and depletion of RPS14 in human CD34(+) cells is sufficient to recapitulate the 5q- erythroid defect. Both SDS and the 5q- syndrome represent important models of ribosome function and may inform future treatment strategies for the ribosomopathies.
Collapse
Affiliation(s)
- Nicholas Burwick
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Akiko Shimamura
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA
| | - Johnson M. Liu
- The Feinstein Institute for Medical Research, Manhasset, NY
- Steven and Alexandra Cohen Children’s Medical Center of New York, New Hyde Park, NY
| |
Collapse
|
222
|
Ricciardi S, Boggio EM, Grosso S, Lonetti G, Forlani G, Stefanelli G, Calcagno E, Morello N, Landsberger N, Biffo S, Pizzorusso T, Giustetto M, Broccoli V. Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model. Hum Mol Genet 2011; 20:1182-96. [PMID: 21212100 DOI: 10.1093/hmg/ddq563] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder with no efficient treatment that is caused in the majority of cases by mutations in the gene methyl-CpG binding-protein 2 (MECP2). RTT becomes manifest after a period of apparently normal development and causes growth deceleration, severe psychomotor impairment and mental retardation. Effective animal models for RTT are available and show morphofunctional abnormalities of synaptic connectivity. However, the molecular consequences of MeCP2 disruption leading to neuronal and synaptic alterations are not known. Protein synthesis regulation via the mammalian target of the rapamycin (mTOR) pathway is crucial for synaptic organization, and its disruption is involved in a number of neurodevelopmental diseases. We investigated the phosphorylation of the ribosomal protein (rp) S6, whose activation is highly dependent from mTOR activity. Immunohistochemistry showed that rpS6 phosphorylation is severely affected in neurons across the cortical areas of Mecp2 mutants and that this alteration precedes the severe symptomatic phase of the disease. Moreover, we found a severe defect of the initiation of protein synthesis in the brain of presymptomatic Mecp2 mutant that was not restricted to a specific subset of transcripts. Finally, we provide evidence for a general dysfunction of the Akt/mTOR, but not extracellular-regulated kinase, signaling associated with the disease progression in mutant brains. Our results indicate that defects in the AKT/mTOR pathway are responsible for the altered translational control in Mecp2 mutant neurons and disclosed a novel putative biomarker of the pathological process. Importantly, this study provides a novel context of therapeutic interventions that can be designed to successfully restrain or ameliorate the development of RTT.
Collapse
Affiliation(s)
- Sara Ricciardi
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Hao Y, Kong X, Ruan Y, Gan H, Chen H, Zhang C, Ren S, Gu J. CDK11p46 and RPS8 associate with each other and suppress translation in a synergistic manner. Biochem Biophys Res Commun 2011; 407:169-74. [PMID: 21371428 DOI: 10.1016/j.bbrc.2011.02.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 02/26/2011] [Indexed: 12/31/2022]
Abstract
CDK11p46, a 46kDa isoform of the PITSLRE kinase family, is a key mediator of cell apoptosis, while the precise mechanism remains to be elucidated. By using His pull-down and mass spectrometry analysis, we identified the ribosomal protein S8 (RPS8), a member of the small subunit ribosome, as an interacting partner of CDK11p46. Further analysis confirmed the association of CDK11p46 and RPS8 in vitro and in vivo, and revealed that RPS8 was not a substrate of CDK11p46. Moreover, RPS8 and CDK11p46 synergize to inhibit the translation process both in cap- and internal ribosomal entry site (IRES)-dependent way, and sensitize cells to Fas ligand-induced apoptosis. Taken together, our results provide evidence for the novel role of CDK11p46 in the regulation of translation and cell apoptosis.
Collapse
Affiliation(s)
- Yuqing Hao
- Department of Biochemistry and Molecular Biology, Shanghai, Medical College, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Activation of mTORC2 by Association with the Ribosome. Cell 2011; 144:757-68. [DOI: 10.1016/j.cell.2011.02.014] [Citation(s) in RCA: 517] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/20/2010] [Accepted: 02/07/2011] [Indexed: 12/27/2022]
|
225
|
Guo J, Wang S, Valerius O, Hall H, Zeng Q, Li JF, Weston DJ, Ellis BE, Chen JG. Involvement of Arabidopsis RACK1 in protein translation and its regulation by abscisic acid. PLANT PHYSIOLOGY 2011; 155:370-83. [PMID: 21098678 PMCID: PMC3075769 DOI: 10.1104/pp.110.160663] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 11/18/2010] [Indexed: 05/20/2023]
Abstract
Earlier studies have shown that RACK1 functions as a negative regulator of abscisic acid (ABA) responses in Arabidopsis (Arabidopsis thaliana), but the molecular mechanism of the action of RACK1 in these processes remains elusive. Global gene expression profiling revealed that approximately 40% of the genes affected by ABA treatment were affected in a similar manner by the rack1 mutation, supporting the view that RACK1 is an important regulator of ABA responses. On the other hand, coexpression analysis revealed that more than 80% of the genes coexpressed with RACK1 encode ribosome proteins, implying a close relationship between RACK1's function and the ribosome complex. These results implied that the regulatory role for RACK1 in ABA responses may be partially due to its putative function in protein translation, which is one of the major cellular processes that mammalian and Saccharomyces cerevisiae RACK1 is involved in. Consistently, all three Arabidopsis RACK1 homologous genes, namely RACK1A, RACK1B, and RACK1C, complemented the growth defects of the S. cerevisiae cross pathway control2/rack1 mutant. In addition, RACK1 physically interacts with Arabidopsis Eukaryotic Initiation Factor6 (eIF6), whose mammalian homolog is a key regulator of 80S ribosome assembly. Moreover, rack1 mutants displayed hypersensitivity to anisomycin, an inhibitor of protein translation, and displayed characteristics of impaired 80S functional ribosome assembly and 60S ribosomal subunit biogenesis in a ribosome profiling assay. Gene expression analysis revealed that ABA inhibits the expression of both RACK1 and eIF6. Taken together, these results suggest that RACK1 may be required for normal production of 60S and 80S ribosomes and that its action in these processes may be regulated by ABA.
Collapse
|
226
|
Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M, Roux PP, Su B, Jacinto E. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 2010; 29:3939-51. [PMID: 21045808 PMCID: PMC3020639 DOI: 10.1038/emboj.2010.271] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 10/14/2010] [Indexed: 12/22/2022] Open
Abstract
The mechanisms that couple translation and protein processing are poorly understood in higher eukaryotes. Although mammalian target of rapamycin (mTOR) complex 1 (mTORC1) controls translation initiation, the function of mTORC2 in protein synthesis remains to be defined. In this study, we find that mTORC2 can colocalize with actively translating ribosomes and can stably interact with rpL23a, a large ribosomal subunit protein present at the tunnel exit. Exclusively during translation of Akt, mTORC2 mediates phosphorylation of the nascent polypeptide at the turn motif (TM) site, Thr450, to avoid cotranslational Akt ubiquitination. Constitutive TM phosphorylation occurs because the TM site is accessible, whereas the hydrophobic motif (Ser473) site is concealed in the ribosomal tunnel. Thus, mTORC2 can function cotranslationally by phosphorylating residues in nascent chains that are critical to attain proper conformation. Our findings reveal that mTOR links protein production with quality control.
Collapse
Affiliation(s)
- Won Jun Oh
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Chang -chih Wu
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Sung Jin Kim
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Valeria Facchinetti
- Department of Immunology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Louis -André Julien
- Department of Pathology and Cell Biology, Université de Montréal, Institute for Research in Immunology and Cancer, Montréal, Quebec, Canada
| | - Monica Finlan
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Philippe P Roux
- Department of Pathology and Cell Biology, Université de Montréal, Institute for Research in Immunology and Cancer, Montréal, Quebec, Canada
| | - Bing Su
- Department of Immunobiology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Estela Jacinto
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
227
|
Chamousset D, De Wever V, Moorhead GB, Chen Y, Boisvert FM, Lamond AI, Trinkle-Mulcahy L. RRP1B targets PP1 to mammalian cell nucleoli and is associated with Pre-60S ribosomal subunits. Mol Biol Cell 2010; 21:4212-26. [PMID: 20926688 PMCID: PMC2993749 DOI: 10.1091/mbc.e10-04-0287] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 09/27/2010] [Accepted: 09/29/2010] [Indexed: 01/23/2023] Open
Abstract
A pool of protein phosphatase 1 (PP1) accumulates within nucleoli and accounts for a large fraction of the serine/threonine protein phosphatase activity in this subnuclear structure. Using a combination of fluorescence imaging with quantitative proteomics, we mapped the subnuclear localization of the three mammalian PP1 isoforms stably expressed as GFP-fusions in live cells and identified RRP1B as a novel nucleolar targeting subunit that shows a specificity for PP1β and PP1γ. RRP1B, one of two mammalian orthologues of the yeast Rrp1p protein, shows an RNAse-dependent localization to the granular component of the nucleolus and distributes in a similar manner throughout the cell cycle to proteins involved in later steps of rRNA processing. Quantitative proteomic analysis of complexes containing both RRP1B and PP1γ revealed enrichment of an overlapping subset of large (60S) ribosomal subunit proteins and pre-60S nonribosomal proteins involved in mid-late processing. Targeting of PP1 to this complex by RRP1B in mammalian cells is likely to contribute to modulation of ribosome biogenesis by mechanisms involving reversible phosphorylation events, thus playing a role in the rapid transduction of cellular signals that call for regulation of ribosome production in response to cellular stress and/or changes in growth conditions.
Collapse
MESH Headings
- Blotting, Far-Western
- Blotting, Northern
- Cell Line, Tumor
- Cell Nucleolus/metabolism
- Chromosomal Proteins, Non-Histone
- Gene Knockdown Techniques
- Green Fluorescent Proteins
- HeLa Cells
- Humans
- Mass Spectrometry
- Nuclear Proteins/metabolism
- Protein Phosphatase 1/metabolism
- Proteomics
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Interfering
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Delphine Chamousset
- *Department of Cellular and Molecular Biology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Veerle De Wever
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada; and
| | - Greg B. Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada; and
| | - Yan Chen
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada; and
| | - Francois-Michel Boisvert
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK
| | - Angus I. Lamond
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK
| | - Laura Trinkle-Mulcahy
- *Department of Cellular and Molecular Biology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
228
|
Biswas A, Mukherjee S, Das S, Shields D, Chow CW, Maitra U. Opposing action of casein kinase 1 and calcineurin in nucleo-cytoplasmic shuttling of mammalian translation initiation factor eIF6. J Biol Chem 2010; 286:3129-38. [PMID: 21084295 DOI: 10.1074/jbc.m110.188565] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor 6 (eIF6), a highly conserved protein from yeast to mammals, is essential for 60 S ribosome biogenesis and assembly. Both yeast and mammalian eIF6 are phosphorylated at Ser-174 and Ser-175 by the nuclear isoform of casein kinase 1 (CK1). The molecular basis of eIF6 phosphorylation, however, remains elusive. In the present work, we show that subcellular distribution of eIF6 in the nuclei and the cytoplasm of mammalian cells is mediated by dephosphorylation and phosphorylation, respectively. This nucleo-cytoplasmic shuttling is dependent on the phosphorylation status at Ser-174 and Ser-175 of eIF6. We demonstrate that Ca(2+)-activated calcineurin phosphatase binds to and promotes nuclear localization of eIF6. Increase in intracellular concentration of Ca(2+) leads to rapid translocation of eIF6 from the cytoplasm to the nucleus, an event that is blocked by specific calcineurin inhibitors cyclosporin A or FK520. Nuclear export of eIF6 is regulated by phosphorylation at Ser-174 and Ser-175 by the nuclear isoform of CK1. Mutation of eIF6 at the phosphorylatable Ser-174 and Ser-175 to alanine or treatment of cells with the CK1 inhibitor, D4476 inhibits nuclear export of eIF6 and results in nuclear accumulation of eIF6. Together, these results establish eIF6 as a substrate for calcineurin and suggest a novel paradigm for calcineurin function in 60 S ribosome biogenesis via regulating the nuclear accumulation of eIF6.
Collapse
Affiliation(s)
- Arunima Biswas
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
229
|
Gallo S, Beugnet A, Biffo S. Tagging of functional ribosomes in living cells by HaloTag® technology. In Vitro Cell Dev Biol Anim 2010; 47:132-8. [PMID: 21082278 DOI: 10.1007/s11626-010-9370-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 10/20/2010] [Indexed: 01/20/2023]
Abstract
Ribosomal proteins and ribosomal associated proteins are complicated subjects to target and study because of their high conservation through evolution which led to highly structured and regulated proteins. Tagging of ribosomal proteins may allow following of protein synthesis in vivo and isolating translated mRNAs. HaloTag® is a new technology which allows detection in living cells, biochemical purification, and localization studies. In the present work, we tested HaloTag®-based ribosomal tagging. We focused on eIF6 (eukaryotic Initiation Factor 6 free 60S ribosomal marker), RACK1 (Receptor for Activated C Kinase 1; 40S and polysomes, not nuclear), and rpS9 (40S ribosomes, both in the nucleus and in the cytoplasm). Experiments performed on HEK293 cells included ribosomal profiles and Western blot on the fractions, purification of HaloTag® proteins, and fluorescence with time-lapse microscopy. We show that tagged proteins can be incorporated on ribosomes and followed by time-lapse microscopy. eIF6 properly accumulates in the nucleolus, and it is redistributed upon actinomycin D treatment. RACK1 shows a specific cytoplasmic localization, whereas rpS9 is both nucleolar and cytoplasmic. However, efficiency of purification varies due to steric hindrances. In addition, the level of overexpression and degradation may vary upon different constructs. In summary, HaloTag® technology is highly suitable to ribosome tagging, but requires prior characterization for each construct.
Collapse
Affiliation(s)
- Simone Gallo
- San Raffaele Scientific Institute-DIBIT, via Olgettina 58, 20132, Milan, Italy.
| | | | | |
Collapse
|
230
|
Receptor for activated C kinase 1 stimulates nascent polypeptide-dependent translation arrest. EMBO Rep 2010; 11:956-61. [PMID: 21072063 DOI: 10.1038/embor.2010.169] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 09/26/2010] [Accepted: 10/05/2010] [Indexed: 11/08/2022] Open
Abstract
Nascent peptide-dependent translation arrest is crucial for the quality control of eukaryotic gene expression. Here we show that the receptor for activated C kinase 1 (RACK1) participates in nascent peptide-dependent translation arrest, and that its binding to the 40S subunit is crucial for this. Translation arrest by a nascent peptide results in Dom34/Hbs1-independent endonucleolytic cleavage of mRNA, and this is stimulated by RACK1. We propose that RACK1 stimulates the translation arrest that is induced by basic amino-acid sequences that leads to endonucleolytic cleavage of the mRNA, as well as to co-translational protein degradation.
Collapse
|
231
|
Khan S, Pereira J, Darbyshire PJ, Holding S, Doré PC, Sewell WAC, Huissoon A. Do ribosomopathies explain some cases of common variable immunodeficiency? Clin Exp Immunol 2010; 163:96-103. [PMID: 21062271 DOI: 10.1111/j.1365-2249.2010.04280.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The considerable clinical heterogeneity of patients with common variable immunodeficiency disorders (CVID) shares some similarity with bone-marrow failure disorders such as Diamond-Blackfan anaemia (DBA) and Shwachman-Diamond syndrome (SDS), now recognized as defects in ribosome biogenesis or ribosomopathies. The recognition of a patient with DBA who subsequently developed CVID lends support to our previous finding of a heterozygous mutation in the SBDS gene of SBDS in another CVID patient, suggesting that ribosome biogenesis defects are responsible for a subset of CVID. Genetic defects in the ribosomal translational machinery responsible for various bone marrow failure syndromes are recognized readily when they manifest in children, but diagnosing these in adults presenting with complex phenotypes and hypogammaglobulinaemia can be a challenge. In this perspective paper, we discuss our clinical experience in CVID patients with ribosomopathies, and review the immunological abnormalities in other conditions associated with ribosomal dysfunction. With genetic testing available for various bone marrow failure syndromes, our hypothesis that ribosomal abnormalities may be present in patients with CVID could be proved in future studies by testing for mutations in specific ribosomal genes. New knowledge might then be translated into novel therapeutic strategies for patients in this group of immunodeficiency disorders.
Collapse
Affiliation(s)
- S Khan
- Department of Immunology, Frimley Park Hospital NHS Foundation Trust, Portsmouth Road, Frimley, Camberley, Surrey, UK.
| | | | | | | | | | | | | |
Collapse
|
232
|
Naarmann IS, Harnisch C, Müller-Newen G, Urlaub H, Ostareck-Lederer A, Ostareck DH. DDX6 recruits translational silenced human reticulocyte 15-lipoxygenase mRNA to RNP granules. RNA (NEW YORK, N.Y.) 2010; 16:2189-204. [PMID: 20884783 PMCID: PMC2957058 DOI: 10.1261/rna.2211110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 08/11/2010] [Indexed: 05/29/2023]
Abstract
Erythroid precursor cells lose the capacity for mRNA synthesis due to exclusion of the nucleus during maturation. Therefore, the stability and translation of mRNAs that code for specific proteins, which function in late stages of maturation when reticulocytes become erythrocytes, are controlled tightly. Reticulocyte 15-lipoxygenase (r15-LOX) initiates the breakdown of mitochondria in mature reticulocytes. Through the temporal restriction of mRNA translation, the synthesis of r15-LOX is prevented in premature cells. The enzyme is synthesized only in mature reticulocytes, although r15-LOX mRNA is already present in erythroid precursor cells. Translation of r15-LOX mRNA is inhibited by hnRNP K and hnRNP E1, which bind to the differentiation control element (DICE) in its 3' untranslated region (3'UTR). The hnRNP K/E1-DICE complex interferes with the joining of the 60S ribosomal subunit to the 40S subunit at the AUG. We took advantage of the inducible human erythroid K562 cell system that fully recapitulates this process to identify so far unknown factors, which are critical for DICE-dependent translational regulation. Applying RNA chromatography with the DICE as bait combined with hnRNP K immunoprecipitation, we specifically purified the DEAD-box RNA helicase 6 (DDX6) that interacts with hnRNP K and hnRNP E1 in a DICE-dependent manner. Employing RNA interference and fluorescence in situ hybridization, we show that DDX6 colocalizes with endogenous human (h)r15-LOX mRNA to P-body-like RNP granules, from which 60S ribosomal subunits are excluded. Our data suggest that in premature erythroid cells translational silencing of hr15-LOX mRNA is maintained by DDX6 mediated storage in these RNP granules.
Collapse
Affiliation(s)
- Isabel S Naarmann
- Department of Intensive Care, Experimental Research Unit, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
233
|
In X. laevis embryos high levels of the anti-apoptotic factor p27BBP/eIF6 are stage-dependently found in BrdU and TUNEL-reactive territories. ZYGOTE 2010; 19:157-63. [PMID: 20663234 DOI: 10.1017/s0967199410000213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
p27BBP/eIF6 (β4 binding protein/eukaryotic initiation factor 6) is a highly conserved protein necessary for cell life. In adult eIF6 mice, a 50% decrease in the protein levels in all tissues is accompanied by a reduction in cell proliferation only in the liver, fat cells and cultured fibroblasts. During X. laevis embryogenesis expression of p27BBP/eIF6 is abundant in high proliferative territories. However, in Xenopus cell proliferation appears unaffected following p27BBP/eIF6 over-expression or down-regulation. Indeed, p27BBP/eIF6 is an anti-apoptotic factor acting upstream of Bcl2 that reduces endogenous apoptosis. We studied p27BBP/eIF6 protein localization in wild type embryos and compared it to proliferation and apoptosis. At the beginning of embryogenesis, high levels of p27BBP/eIF6, proliferation and apoptosis overlap. In later development stages high proliferation levels are present in the same regions where higher p27BBP/eIF6 expression is observed, while apoptosis does not appear specifically concentrated in the same sites. The higher presence of p27BBP/eIF6 would appear related to an increased need of apoptosis control in the regions where cell death is essential for normal development.
Collapse
|
234
|
P body-associated protein Mov10 inhibits HIV-1 replication at multiple stages. J Virol 2010; 84:10241-53. [PMID: 20668078 DOI: 10.1128/jvi.00585-10] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent studies have shown that APOBEC3G (A3G), a potent inhibitor of human immunodeficiency virus type 1 (HIV-1) replication, is localized to cytoplasmic mRNA-processing bodies (P bodies). However, the functional relevance of A3G colocalization with P body marker proteins has not been established. To explore the relationship between HIV-1, A3G, and P bodies, we analyzed the effects of overexpression of P body marker proteins Mov10, DCP1a, and DCP2 on HIV-1 replication. Our results show that overexpression of Mov10, a putative RNA helicase that was previously reported to belong to the DExD superfamily and was recently reported to belong to the Upf1-like group of helicases, but not the decapping enzymes DCP1a and DCP2, leads to potent inhibition of HIV-1 replication at multiple stages. Mov10 overexpression in the virus producer cells resulted in reductions in the steady-state levels of the HIV-1 Gag protein and virus production; Mov10 was efficiently incorporated into virions and reduced virus infectivity, in part by inhibiting reverse transcription. In addition, A3G and Mov10 overexpression reduced proteolytic processing of HIV-1 Gag. The inhibitory effects of A3G and Mov10 were additive, implying a lack of functional interaction between the two inhibitors. Small interfering RNA (siRNA)-mediated knockdown of endogenous Mov10 by 80% resulted in a 2-fold reduction in virus production but no discernible impact on the infectivity of the viruses after normalization for the p24 input, suggesting that endogenous Mov10 was not required for viral infectivity. Overall, these results show that Mov10 can potently inhibit HIV-1 replication at multiple stages.
Collapse
|
235
|
Melamed D, Bar-Ziv L, Truzman Y, Arava Y. Asc1 supports cell-wall integrity near bud sites by a Pkc1 independent mechanism. PLoS One 2010; 5:e11389. [PMID: 20613984 PMCID: PMC2894943 DOI: 10.1371/journal.pone.0011389] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 06/09/2010] [Indexed: 11/18/2022] Open
Abstract
Background The yeast ribosomal protein Asc1 is a WD-protein family member. Its mammalian ortholog, RACK1 was initially discovered as a receptor for activated protein C kinase (PKC) that functions to maintain the active conformation of PKC and to support its movement to target sites. In the budding yeast though, a connection between Asc1p and the PKC signaling pathway has never been reported. Methodology/Principal Findings In the present study we found that asc1-deletion mutant (asc1Δ) presents some of the hallmarks of PKC signaling mutants. These include an increased sensitivity to staurosporine, a specific Pkc1p inhibitor, and susceptibility to cell-wall perturbing treatments such as hypotonic- and heat shock conditions and zymolase treatment. Microscopic analysis of asc1Δ cells revealed cell-wall invaginations near bud sites after exposure to hypotonic conditions, and the dynamic of cells' survival after this stress further supports the involvement of Asc1p in maintaining the cell-wall integrity during the mid-to late stages of bud formation. Genetic interactions between asc1 and pkc1 reveal synergistic sensitivities of a double-knock out mutant (asc1Δ/pkc1Δ) to cell-wall stress conditions, and high basal level of PKC signaling in asc1Δ. Furthermore, Asc1p has no effect on the cellular distribution or redistribution of Pkc1p at optimal or at cell-wall stress conditions. Conclusions/Significance Taken together, our data support the idea that unlike its mammalian orthologs, Asc1p acts remotely from Pkc1p, to regulate the integrity of the cell-wall. We speculate that its role is exerted through translation regulation of bud-site related mRNAs during cells' growth.
Collapse
Affiliation(s)
- Daniel Melamed
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Lavi Bar-Ziv
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yossi Truzman
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Yoav Arava
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
236
|
He DY, Neasta J, Ron D. Epigenetic regulation of BDNF expression via the scaffolding protein RACK1. J Biol Chem 2010; 285:19043-50. [PMID: 20410295 PMCID: PMC2885182 DOI: 10.1074/jbc.m110.100693] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/05/2010] [Indexed: 12/29/2022] Open
Abstract
Scaffolding proteins are major contributors to the spatial and temporal orchestration of signaling cascades and hence cellular functions. RACK1 is a scaffolding protein that plays an important role in the regulation of, and cross-talk between, various signaling pathways. Here we report that RACK1 is a mediator of chromatin remodeling, resulting in an exon-specific expression of the brain-derived neurotrophic factor (BDNF) gene. Specifically, we found that following the activation of the cAMP pathway, nuclear RACK1 localizes at the promoter IV region of the BDNF gene by its association with histones H3 and H4, leading to the dissociation of the transcription repressor methyl-CpG-binding protein 2 (MeCP2) from the promoter, resulting in the acetylation of histone H4. These chromatin modifications lead to the activation of the promoter and to the subsequent promoter-controlled transcription of BDNF exon IV. Our findings expand our knowledge regarding the function of scaffolding proteins such as RACK1. Furthermore, this novel mechanism for the regulation of exon-specific expression of the BDNF gene by RACK1 could have implications on the neuronal functions of the growth factor including synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Dao-Yao He
- From the Ernest Gallo Research Center and
| | | | - Dorit Ron
- From the Ernest Gallo Research Center and
- Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| |
Collapse
|
237
|
Kato Y, Konishi M, Shigyo M, Yoneyama T, Yanagisawa S. Characterization of plant eukaryotic translation initiation factor 6 (eIF6) genes: The essential role in embryogenesis and their differential expression in Arabidopsis and rice. Biochem Biophys Res Commun 2010; 397:673-8. [PMID: 20570652 DOI: 10.1016/j.bbrc.2010.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 12/26/2022]
Abstract
Eukaryotic translation initiation factor 6 (eIF6) is an essential component of ribosome biogenesis. In our present study, we characterize plant eIF6 genes for the first time. Although a single gene encodes eIF6 in yeast and animals, two genes were found to encode proteins homologous to animal and yeast eIF6 in Arabidopsis and rice, denoted At-eIF6;1 and At-eIF6;2, and Os-eIF6;1 and Os-eIF6;2, respectively. Analysis of the yeast eif6 (tif6) mutant suggested that plant eIF6, at least in the case of At-eIF6;1, can complement the essential function of eIF6 in yeast. Evidence for the essential role of eIF6 in plants was also provided by the embryonic-lethal phenotype of the at-eif6;1 mutant. In contrast, At-eIF6;2 appears not to be essential due to its very low expression level and the normal growth phenotype of the eif6;2 mutants. Consistent with the putative role of plant eIF6 in ribosome biogenesis, At-eIF6;1 is predominately expressed in tissues where cell division actively proceeds under the control of intronic cis-regulatory elements. On the other hand, both Os-eIF6;1 and Os-eIF6;2 are probably active genes because they are expressed at significant expression levels. Interestingly, the supply of ammonium nitrate as a plant nutrient was found to induce specifically the expression of Os-eIF6;2. Our present findings indicate that the eIF6 genes have differently evolved in plant and animal kingdoms and also in distinct plant species.
Collapse
Affiliation(s)
- Yuki Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
238
|
Gonçalves KA, Borges JC, Silva JC, Papa PF, Bressan GC, Torriani IL, Kobarg J. Solution structure of the human signaling protein RACK1. BMC STRUCTURAL BIOLOGY 2010; 10:15. [PMID: 20529362 PMCID: PMC2896345 DOI: 10.1186/1472-6807-10-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 06/08/2010] [Indexed: 01/09/2023]
Abstract
Background The adaptor protein RACK1 (receptor of activated kinase 1) was originally identified as an anchoring protein for protein kinase C. RACK1 is a 36 kDa protein, and is composed of seven WD repeats which mediate its protein-protein interactions. RACK1 is ubiquitously expressed and has been implicated in diverse cellular processes involving: protein translation regulation, neuropathological processes, cellular stress, and tissue development. Results In this study we performed a biophysical analysis of human RACK1 with the aim of obtaining low resolution structural information. Small angle X-ray scattering (SAXS) experiments demonstrated that human RACK1 is globular and monomeric in solution and its low resolution structure is strikingly similar to that of an homology model previously calculated by us and to the crystallographic structure of RACK1 isoform A from Arabidopsis thaliana. Both sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation techniques showed that RACK1 is predominantly a monomer of around 37 kDa in solution, but also presents small amounts of oligomeric species. Moreover, hydrodynamic data suggested that RACK1 has a slightly asymmetric shape. The interaction of RACK1 and Ki-1/57 was tested by sedimentation equilibrium. The results suggested that the association between RACK1 and Ki-1/57(122-413) follows a stoichiometry of 1:1. The binding constant (KB) observed for RACK1-Ki-1/57(122-413) interaction was of around (1.5 ± 0.2) × 106 M-1 and resulted in a dissociation constant (KD) of (0.7 ± 0.1) × 10-6 M. Moreover, the fluorescence data also suggests that the interaction may occur in a cooperative fashion. Conclusion Our SAXS and analytical ultracentrifugation experiments indicated that RACK1 is predominantly a monomer in solution. RACK1 and Ki-1/57(122-413) interact strongly under the tested conditions.
Collapse
Affiliation(s)
- Kaliandra A Gonçalves
- Laboratório Nacional de Biociências (LNBio), Centro de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
239
|
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA Translation and Stability by microRNAs. Annu Rev Biochem 2010; 79:351-79. [PMID: 20533884 DOI: 10.1146/annurev-biochem-060308-103103] [Citation(s) in RCA: 2427] [Impact Index Per Article: 161.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marc Robert Fabian
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec, H3G 1Y6, Canada;
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec, H3G 1Y6, Canada;
| | - Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland;
| |
Collapse
|
240
|
Gartmann M, Blau M, Armache JP, Mielke T, Topf M, Beckmann R. Mechanism of eIF6-mediated inhibition of ribosomal subunit joining. J Biol Chem 2010; 285:14848-14851. [PMID: 20356839 PMCID: PMC2865328 DOI: 10.1074/jbc.c109.096057] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/09/2010] [Indexed: 01/25/2023] Open
Abstract
During the process of ribosomal assembly, the essential eukaryotic translation initiation factor 6 (eIF6) is known to act as a ribosomal anti-association factor. However, a molecular understanding of the anti-association activity of eIF6 is still missing. Here we present the cryo-electron microscopy reconstruction of a complex of the large ribosomal subunit with eukaryotic eIF6 from Saccharomyces cerevisiae. The structure reveals that the eIF6 binding site involves mainly rpL23 (L14p in Escherichia coli). Based on our structural data, we propose that the mechanism of the anti-association activity of eIF6 is based on steric hindrance of intersubunit bridge formation around the dynamic bridge B6.
Collapse
Affiliation(s)
- Marco Gartmann
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Michael Blau
- Institut für Biochemie der Charité, Humboldt Universität Berlin, Monbijoustrasse 2, 10117 Berlin, Germany
| | - Jean-Paul Armache
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Thorsten Mielke
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin; Institut für Medizinische Physik und Biophysik, Charité, Ziegelstrasse 5-9, 10098 Berlin, Germany
| | - Maya Topf
- Institute of Structural and Molecular Biology, School of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| | - Roland Beckmann
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| |
Collapse
|
241
|
Abstract
miRNAs post-transcriptionally regulate gene expression in many eukaryotes and thereby affect a wide range of biological processes. GW182 is a key factor in translation repression and mRNA degradation by miRNAs. In this study we investigate the potential interaction of GW182 and translation or mRNA degradation factors in Drosophila S2 cells. We have identified the decapping activator HP at as a novel factor co-purifying with GW182. Furthermore, we show that the C-terminal domain of GW182, important for gene silencing, is sufficient to form a complex with HP at. Our findings implicate a potential interaction of the miRNA effector component GW182 with the decapping machinery.
Collapse
Affiliation(s)
- Elisabeth Jäger
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry and Cell Biology, Dr. Bohr-Gasse 9/5, A-1030 Vienna, Austria
| | - Silke Dorner
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry and Cell Biology, Dr. Bohr-Gasse 9/5, A-1030 Vienna, Austria
| |
Collapse
|
242
|
Abstract
The inherited marrow failure syndromes are a diverse set of genetic disorders characterized by hematopoietic aplasia and cancer predisposition. The clinical phenotypes are highly variable and much broader than previously recognized. The medical management of the inherited marrow failure syndromes differs from that of acquired aplastic anemia or malignancies arising in the general population. Diagnostic workup, molecular pathogenesis, and clinical treatment are reviewed.
Collapse
|
243
|
Kuystermans D, Dunn MJ, Al-Rubeai M. A proteomic study of cMyc improvement of CHO culture. BMC Biotechnol 2010; 10:25. [PMID: 20307306 PMCID: PMC2859402 DOI: 10.1186/1472-6750-10-25] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 03/22/2010] [Indexed: 02/07/2023] Open
Abstract
Background The biopharmaceutical industry requires cell lines to have an optimal proliferation rate and a high integral viable cell number resulting in a maximum volumetric recombinant protein product titre. Nutrient feeding has been shown to boost cell number and productivity in fed-batch culture, but cell line engineering is another route one may take to increase these parameters in the bioreactor. The use of CHO-K1 cells with a c-myc plasmid allowing for over-expressing c-Myc (designated cMycCHO) gives a higher integral viable cell number. In this study the differential protein expression in cMycCHO is investigated using two-dimensional gel electrophoresis (2-DE) followed by image analysis to determine the extent of the effect c-Myc has on the cell and the proteins involved to give the new phenotype. Results Over 100 proteins that were differentially expressed in cMycCHO cells were detected with high statistical confidence, of which 41 were subsequently identified by tandem mass spectrometry (LC-MS/MS). Further analysis revealed proteins involved in a variety of pathways. Some examples of changes in protein expression include: an increase in nucleolin, involved in proliferation and known to aid in stabilising anti-apoptotic protein mRNA levels, the cytoskeleton and mitochondrial morphology (vimentin), protein biosysnthesis (eIF6) and energy metabolism (ATP synthetase), and a decreased regulation of all proteins, indentified, involved in matrix and cell to cell adhesion. Conclusion These results indicate several proteins involved in proliferation and adhesion that could be useful for future approaches to improve proliferation and decrease adhesion of CHO cell lines which are difficult to adapt to suspension culture.
Collapse
Affiliation(s)
- Darrin Kuystermans
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
244
|
Ranzato E, Grosso S, Patrone M, Betta PG, Viarengo A, Biffo S. Spreading of mesothelioma cells is rapamycin-sensitive and requires continuing translation. J Cell Biochem 2010; 108:867-76. [PMID: 19718660 DOI: 10.1002/jcb.22316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The interaction of cancer cells with extracellular matrix (ECM) is important in metastasization. Here we identified the molecules of the ECM expressed by sarcomatous malignant mesothelioma, and their effect on adhesion and spreading. In addition, by analyzing the relationship between translation and attachment to matrix, we found that mesothelioma cells rely on continuing translation to efficiently attach to matrix, and rapamycin inhibition affects spreading and migration of cancer cells. Specifically, we found that sarcomatous cells produce high amounts of fibronectin, able to support the spreading of mesothelioma cells. Spreading of cancer cells on fibronectin does not require de novo transcription but is sensitive to cycloheximide, an inhibitor of protein synthesis. Next, we analyzed the involvement of the mammalian target of rapamycin (mTOR) pathway, a major pathway controlling translation. Cancer cells have a constitutively active mTOR pathway; surprisingly, inhibition of mTOR complex 1 (mTORC1) by rapamycin barely affects the global rate of translation and of initiation of translation, but deeply inhibits mesothelioma spreading on ECM. The effects of rapamycin and cycloheximide on spreading were observed in several mesothelioma cell lines, although with different magnitude. Overall, data suggest that adhesion and spreading of mesothelioma cells on ECM require the translation of pre-synthesized mRNAs, and mTORC1 activity. We speculate that mTORC1 activity is required either for the translation of specific mRNAs or for the direct modulation of cytoskeletal remodeling.
Collapse
Affiliation(s)
- Elia Ranzato
- Department of Environmental and Life Sciences, University of Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | |
Collapse
|
245
|
Expression of receptor for activated C kinase 1 in healing skin and mucosal wounds. Ann Plast Surg 2010; 64:238-41. [PMID: 20098113 DOI: 10.1097/sap.0b013e31819537fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Postnatal (adult) mammalian wound healing results in the formation of scar, whereas fetal mammals are able to effect wound repair without scar. We have investigated the expression pattern of the receptor of activated C kinase 1 (RACK1), a pleiotropic G-protein-like molecule, in healing skin and mucosal wounds in a rabbit model after obtaining a full-length clone of the rabbit RACK1 cDNA. In both adult skin and mucosal wounds, RACK1 mRNA expression is decreased relative to unwounded controls. In contrast, in fetal skin wounds RACK1 expression is unaltered from fetal control. Fibroblasts derived from adult skin tissue express more RACK1 message than fetal skin fibroblasts. These observations suggest that RACK1 may play an important role in distinguishing scarless fetal wound healing from its scirrhous counterpart in adults.
Collapse
|
246
|
Fabian MR, Sundermeier TR, Sonenberg N. Understanding How miRNAs Post-Transcriptionally Regulate Gene Expression. MIRNA REGULATION OF THE TRANSLATIONAL MACHINERY 2010; 50:1-20. [DOI: 10.1007/978-3-642-03103-8_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
247
|
Ikebuchi Y, Takada T, Ito K, Yoshikado T, Anzai N, Kanai Y, Suzuki H. Receptor for activated C-kinase 1 regulates the cellular localization and function of ABCB4. Hepatol Res 2009; 39:1091-107. [PMID: 19674157 DOI: 10.1111/j.1872-034x.2009.00544.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM Multidrug resistance protein 3 (MDR3/ABCB4), located on the bile canalicular membrane of hepatocytes, is responsible for the translocation of phosphatidylcholine across the plasma membrane, and its hereditary defect causes liver disorders, such as progressive familial intrahepatic cholestasis type 3. We aimed to identify the proteins responsible for the surface expression of human ABCB4. METHODS We performed yeast two-hybrid screening with the cytoplasmic linker region of ABCB4 against a human liver cDNA library. This screening allowed us to identify the receptor for activated C-kinase 1 (RACK1) as a novel binding partner of ABCB4. The association of RACK1 with the linker region of ABCB4 was further confirmed by GST-pulldown assay, although we could not find out the interaction of full length of ABCB4 and RACK1 in co-immunoprecipitation assay in HeLa cells. RESULTS Down-regulation of endogenous RACK1 expression by siRNA in HeLa cells resulted in the localization of ABCB4 in the cytosolic compartment as well as reduced protein expression of ABCB4, although mRNA expression and the protein stability of ABCB4 were not affected by the suppression of endogenous RACK1. Similar alterations in cellular localization of ABCB4 were also found by suppressing endogenous RACK1 expression in HepG2 cells. Consequently, ABCB4-mediated phosphatidylcholine translocation activity was significantly reduced when endogenous RACK1 expression was suppressed in HeLa cells. In contrast, the membrane surface localization and the protein expression of ABCB1 were not affected by the suppression of endogenous RACK1 expression. CONCLUSION These results suggest that RACK1 may have a functional significance as a regulatory cofactor of ABCB4 and is indispensable for the plasma membrane localization and translocation function of ABCB4.
Collapse
Affiliation(s)
- Yuki Ikebuchi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
248
|
Meyuhas O, Dreazen A. Ribosomal protein S6 kinase from TOP mRNAs to cell size. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:109-53. [PMID: 20374740 DOI: 10.1016/s1877-1173(09)90003-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ribosomal protein S6 kinase (S6K) has been implicated in the phosphorylation of multiple substrates and is subject to activation by a wide variety of signals that converge at mammalian target of rapamycin (mTOR). In the course of the search for its physiological role, it was proposed that S6K activation and ribosomal protein S6 (rpS6) phosphorylation account for the translational activation of a subgroup of transcripts, the TOP mRNAs. The structural hallmark of these mRNAs is an oligopyrimidine tract at their 5'-terminus, known as the 5'-TOP motif. TOP mRNAs consists of about 90 members that encode multiple components of the translational machinery, such as ribosomal proteins and translation factors. The translation efficiency of TOP mRNAs indeed correlates with S6K activation and rpS6 phosphorylation, yet recent biochemical and genetic studies have established that, although S6K and TOP mRNAs respond to similar signals and are regulated by mTOR, they maintain no cause and effect relationship. Instead, S6K is primarily involved in regulation of cell size, and affects glucose homeostasis, but is dispensable for global protein synthesis, whereas translational efficiency of TOP mRNAs is a determinant of the cellular protein synthesis capacity. Despite extensive studies of their function and mode of regulation, the mechanism underlying the effect of S6K on the cell size, as well as the trans-acting factor that mediates the translational control of TOP mRNAs, still await their identification.
Collapse
Affiliation(s)
- Oded Meyuhas
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
249
|
Fraser CS. The molecular basis of translational control. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:1-51. [PMID: 20374738 DOI: 10.1016/s1877-1173(09)90001-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our current understanding of eukaryotic protein synthesis has emerged from many years of biochemical, genetic and biophysical approaches. Significant insight into the molecular details of the mechanism has been obtained, although there are clearly many aspects of the process that remain to be resolved. Importantly, our understanding of the mechanism has identified a number of key stages in the pathway that contribute to the regulation of general and gene-specific translation. Not surprisingly, translational control is now widely accepted to play a role in aspects of cell stress, growth, development, synaptic function, aging, and disease. This chapter reviews the mechanism of eukaryotic protein synthesis and its relevance to translational control.
Collapse
Affiliation(s)
- Christopher S Fraser
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
250
|
Lam YW, Evans VC, Heesom KJ, Lamond AI, Matthews DA. Proteomics analysis of the nucleolus in adenovirus-infected cells. Mol Cell Proteomics 2009; 9:117-30. [PMID: 19812395 PMCID: PMC2808258 DOI: 10.1074/mcp.m900338-mcp200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Adenoviruses replicate primarily in the host cell nucleus, and it is well
established that adenovirus infection affects the structure and function of host
cell nucleoli in addition to coding for a number of nucleolar targeted viral
proteins. Here we used unbiased proteomics methods, including high throughput
mass spectrometry coupled with stable isotope labeling by amino acids in cell
culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify
quantitative changes in the protein composition of the nucleolus during
adenovirus infection. Two-dimensional gel analysis revealed changes in six
proteins. By contrast, SILAC-based approaches identified 351 proteins with 24
proteins showing at least a 2-fold change after infection. Of those, four were
previously reported to have aberrant localization and/or functional relevance
during adenovirus infection. In total, 15 proteins identified as changing in
amount by proteomics methods were examined in infected cells using confocal
microscopy. Eleven of these proteins showed altered patterns of localization in
adenovirus-infected cells. Comparing our data with the effects of actinomycin D
on the nucleolar proteome revealed that adenovirus infection apparently
specifically targets a relatively small subset of nucleolar antigens at the time
point examined.
Collapse
Affiliation(s)
- Yun W Lam
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | | | | | | | | |
Collapse
|