201
|
Woyke T, Tighe D, Mavromatis K, Clum A, Copeland A, Schackwitz W, Lapidus A, Wu D, McCutcheon JP, McDonald BR, Moran NA, Bristow J, Cheng JF. One bacterial cell, one complete genome. PLoS One 2010; 5:e10314. [PMID: 20428247 PMCID: PMC2859065 DOI: 10.1371/journal.pone.0010314] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/11/2010] [Indexed: 12/03/2022] Open
Abstract
While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200–900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.
Collapse
Affiliation(s)
- Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Damon Tighe
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Konstantinos Mavromatis
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Alicia Clum
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Alex Copeland
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Wendy Schackwitz
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Alla Lapidus
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Dongying Wu
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - John P. McCutcheon
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Bradon R. McDonald
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Nancy A. Moran
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | - James Bristow
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jan-Fang Cheng
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- * E-mail:
| |
Collapse
|
202
|
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol 2010; 11:R31. [PMID: 20230605 PMCID: PMC2864571 DOI: 10.1186/gb-2010-11-3-r31] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/18/2010] [Accepted: 03/15/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Structured noncoding RNAs perform many functions that are essential for protein synthesis, RNA processing, and gene regulation. Structured RNAs can be detected by comparative genomics, in which homologous sequences are identified and inspected for mutations that conserve RNA secondary structure. RESULTS By applying a comparative genomics-based approach to genome and metagenome sequences from bacteria and archaea, we identified 104 candidate structured RNAs and inferred putative functions for many of these. Twelve candidate metabolite-binding RNAs were identified, three of which were validated, including one reported herein that binds the coenzyme S-adenosylmethionine. Newly identified cis-regulatory RNAs are implicated in photosynthesis or nitrogen regulation in cyanobacteria, purine and one-carbon metabolism, stomach infection by Helicobacter, and many other physiological processes. A candidate riboswitch termed crcB is represented in both bacteria and archaea. Another RNA motif may control gene expression from 3'-untranslated regions of mRNAs, which is unusual for bacteria. Many noncoding RNAs that likely act in trans are also revealed, and several of the noncoding RNA candidates are found mostly or exclusively in metagenome DNA sequences. CONCLUSIONS This work greatly expands the variety of highly structured noncoding RNAs known to exist in bacteria and archaea and provides a starting point for biochemical and genetic studies needed to validate their biologic functions. Given the sustained rate of RNA discovery over several similar projects, we expect that far more structured RNAs remain to be discovered from bacterial and archaeal organisms.
Collapse
|
203
|
Chaves S, Neto M, Tenreiro R. Insect-symbiont systems: from complex relationships to biotechnological applications. Biotechnol J 2010; 4:1753-65. [PMID: 19844913 DOI: 10.1002/biot.200800237] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Microbial symbiosis is a ubiquitous aspect of life and was a major element in the ability of insects to explore several adverse environments. To date, the study of symbiosis in insects has been impaired by the unculturability of most symbionts. However, some molecular methods represent powerful tools to help understand insect-microorganism associations and to disclose new symbiont-host systems. Beyond playing an essential role in nutrition and development of the insects, symbionts can produce bioactive compounds that protect the host against adverse environmental conditions, predators and/or direct competitors. Since the search for natural bioactive products and new enzymes is a developing area, understanding the diversity and nature of symbiont-host relationships paves the way for the exploitation of new resources in biotechnology. Furthermore, genetic transformation of the symbionts with genes that code for compounds that are toxic for pathogenic and phytopathogenic agents is also a promising area of application of the insect-symbiont relationships. The search for new bioactive compounds, the use of symbionts for pest and disease control and the molecular strategies applied for these purposes are issues of particular interest for innovative biotechnological applications and are addressed in the present review.
Collapse
Affiliation(s)
- Sandra Chaves
- Universidade de Lisboa, Faculdade de Ciências, Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Edifício ICAT, Lisboa, Portugal
| | | | | |
Collapse
|
204
|
Chen Y, Murrell JC. When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol 2010; 18:157-63. [PMID: 20202846 DOI: 10.1016/j.tim.2010.02.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 11/26/2022]
Abstract
The application of metagenomics, the culture-independent capture and subsequent analysis of genomic DNA from the environment, has greatly expanded our knowledge of the diversity of microbes and microbial protein families; however, the metabolic functions of many microorganisms remain largely unknown. DNA stable-isotope probing (DNA-SIP) is a recently developed method in which the incorporation of stable isotope from a labelled substrate is used to identify the function of microorganisms in the environment. The technique has now been used in conjunction with metagenomics to establish links between microbial identity and particular metabolic functions. The combination of DNA-SIP and metagenomics not only permits the detection of rare low-abundance species from metagenomic libraries but also facilitates the detection of novel enzymes and bioactive compounds.
Collapse
Affiliation(s)
- Yin Chen
- Department of Biological Sciences, the University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
205
|
Abstract
The perpetuation of symbioses through host generations relies on symbiont transmission. Horizontally transmitted symbionts are taken up from the environment anew by each host generation, and vertically transmitted symbionts are most often transferred through the female germ line. Mixed modes also exist. In this Review we describe the journey of symbionts from the initial contact to their final residence. We provide an overview of the molecular mechanisms that mediate symbiont attraction and accumulation, interpartner recognition and selection, as well as symbiont confrontation with the host immune system. We also discuss how the two main transmission modes shape the evolution of the symbiotic partners.
Collapse
Affiliation(s)
- Monika Bright
- University of Vienna, Department of Marine Biology, Althanstrasse 14, A-1090 Vienna, Austria.
| | | |
Collapse
|
206
|
Abstract
Metagenomics is a discipline that enables the genomic study of uncultured microorganisms. Faster, cheaper sequencing technologies and the ability to sequence uncultured microbes sampled directly from their habitats are expanding and transforming our view of the microbial world. Distilling meaningful information from the millions of new genomic sequences presents a serious challenge to bioinformaticians. In cultured microbes, the genomic data come from a single clone, making sequence assembly and annotation tractable. In metagenomics, the data come from heterogeneous microbial communities, sometimes containing more than 10,000 species, with the sequence data being noisy and partial. From sampling, to assembly, to gene calling and function prediction, bioinformatics faces new demands in interpreting voluminous, noisy, and often partial sequence data. Although metagenomics is a relative newcomer to science, the past few years have seen an explosion in computational methods applied to metagenomic-based research. It is therefore not within the scope of this article to provide an exhaustive review. Rather, we provide here a concise yet comprehensive introduction to the current computational requirements presented by metagenomics, and review the recent progress made. We also note whether there is software that implements any of the methods presented here, and briefly review its utility. Nevertheless, it would be useful if readers of this article would avail themselves of the comment section provided by this journal, and relate their own experiences. Finally, the last section of this article provides a few representative studies illustrating different facets of recent scientific discoveries made using metagenomics.
Collapse
Affiliation(s)
- John C. Wooley
- Community Cyberinfrastructure for Marine Microbial Ecology Research and Analysis, California Institute for Telecommunications and Information Technology, University of California San Diego, La Jolla, California, United States of America
| | - Adam Godzik
- Community Cyberinfrastructure for Marine Microbial Ecology Research and Analysis, California Institute for Telecommunications and Information Technology, University of California San Diego, La Jolla, California, United States of America
- Program in Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Iddo Friedberg
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
- Department of Computer Science and Software Engineering, Miami University, Oxford, Ohio, United States of America
| |
Collapse
|
207
|
AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME JOURNAL 2010; 4:599-610. [PMID: 20164865 DOI: 10.1038/ismej.2009.158] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Similar to virtually all components of natural environments, microbial systems are inherently complex and dynamic. Advances in cultivation-independent molecular methods have provided a route to study microbial consortia in their natural surroundings and to begin resolving the community structure, dominant metabolic processes and inter-organism interactions. However, the utility of these methods generally scales inversely with community complexity. By applying genomics-enabled methods to the study of natural microbial communities with reduced levels of species richness, a relatively comprehensive understanding of the metabolic networks and evolutionary processes within these communities can be attained. In such well-defined model systems, it is also possible to link emergent ecological patterns to their molecular and evolutionary underpinnings, facilitating construction of predictive ecosystem models. In this study, we review over a decade of research on one such system-acid mine drainage biofilm communities. We discuss the value and limitations of tractable model microbial communities in developing molecular methods for microbial ecology and in uncovering principles that may explain behavior in more complex systems.
Collapse
|
208
|
Schmitz-Esser S, Tischler P, Arnold R, Montanaro J, Wagner M, Rattei T, Horn M. The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J Bacteriol 2010; 192:1045-57. [PMID: 20023027 PMCID: PMC2812958 DOI: 10.1128/jb.01379-09] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/07/2009] [Indexed: 11/20/2022] Open
Abstract
Protozoa play host for many intracellular bacteria and are important for the adaptation of pathogenic bacteria to eukaryotic cells. We analyzed the genome sequence of "Candidatus Amoebophilus asiaticus," an obligate intracellular amoeba symbiont belonging to the Bacteroidetes. The genome has a size of 1.89 Mbp, encodes 1,557 proteins, and shows massive proliferation of IS elements (24% of all genes), although the genome seems to be evolutionarily relatively stable. The genome does not encode pathways for de novo biosynthesis of cofactors, nucleotides, and almost all amino acids. "Ca. Amoebophilus asiaticus" encodes a variety of proteins with predicted importance for host cell interaction; in particular, an arsenal of proteins with eukaryotic domains, including ankyrin-, TPR/SEL1-, and leucine-rich repeats, which is hitherto unmatched among prokaryotes, is remarkable. Unexpectedly, 26 proteins that can interfere with the host ubiquitin system were identified in the genome. These proteins include F- and U-box domain proteins and two ubiquitin-specific proteases of the CA clan C19 family, representing the first prokaryotic members of this protein family. Consequently, interference with the host ubiquitin system is an important host cell interaction mechanism of "Ca. Amoebophilus asiaticus". More generally, we show that the eukaryotic domains identified in "Ca. Amoebophilus asiaticus" are also significantly enriched in the genomes of other amoeba-associated bacteria (including chlamydiae, Legionella pneumophila, Rickettsia bellii, Francisella tularensis, and Mycobacterium avium). This indicates that phylogenetically and ecologically diverse bacteria which thrive inside amoebae exploit common mechanisms for interaction with their hosts, and it provides further evidence for the role of amoebae as training grounds for bacterial pathogens of humans.
Collapse
|
209
|
Yung PY, Burke C, Lewis M, Egan S, Kjelleberg S, Thomas T. Phylogenetic screening of a bacterial, metagenomic library using homing endonuclease restriction and marker insertion. Nucleic Acids Res 2010; 37:e144. [PMID: 19767618 PMCID: PMC2790883 DOI: 10.1093/nar/gkp746] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Metagenomics provides access to the uncultured majority of the microbial world. The approaches employed in this field have, however, had limited success in linking functional genes to the taxonomic or phylogenetic origin of the organism they belong to. Here we present an efficient strategy to recover environmental DNA fragments that contain phylogenetic marker genes from metagenomic libraries. Our method involves the cleavage of 23S ribsosmal RNA (rRNA) genes within pooled library clones by the homing endonuclease I-CeuI followed by the insertion and selection of an antibiotic resistance cassette. This approach was applied to screen a library of 6500 fosmid clones derived from the microbial community associated with the sponge Cymbastela concentrica. Several fosmid clones were recovered after the screen and detailed phylogenetic and taxonomic assignment based on the rRNA gene showed that they belong to previously unknown organisms. In addition, compositional features of these fosmid clones were used to classify and taxonomically assign a dataset of environmental shotgun sequences. Our approach represents a valuable tool for the analysis of rapidly increasing, environmental DNA sequencing information.
Collapse
Affiliation(s)
- Pui Yi Yung
- Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2035 NSW, Australia
| | | | | | | | | | | |
Collapse
|
210
|
Weiland N, Löscher C, Metzger R, Schmitz R. Construction and screening of marine metagenomic libraries. Methods Mol Biol 2010; 668:51-65. [PMID: 20830555 DOI: 10.1007/978-1-60761-823-2_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of marine multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on marine tissues of multicellular organisms are rich sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from marine habitats and exemplarily one function based screen of metagenomic clones.
Collapse
Affiliation(s)
- Nancy Weiland
- Institute for General Microbiology, Christian Albrechts University Kiel, Kiel, Germany
| | | | | | | |
Collapse
|
211
|
Gil R, Latorre A, Moya A. Evolution of Prokaryote-Animal Symbiosis from a Genomics Perspective. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2010. [DOI: 10.1007/978-3-642-13615-3_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
212
|
Chaston J, Goodrich-Blair H. Common trends in mutualism revealed by model associations between invertebrates and bacteria. FEMS Microbiol Rev 2010; 34:41-58. [PMID: 19909347 PMCID: PMC2794943 DOI: 10.1111/j.1574-6976.2009.00193.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutually beneficial interactions between microorganisms and animals are a conserved and ubiquitous feature of biotic systems. In many instances animals, including humans, are dependent on their microbial associates for nutrition, defense, or development. To maintain these vital relationships, animals have evolved processes that ensure faithful transmission of specific microbial symbionts between generations. Elucidating mechanisms of transmission and symbiont specificity has been aided by the study of experimentally tractable invertebrate animals with diverse and highly evolved associations with microorganisms. Here, we review several invertebrate model systems that contribute to our current understanding of symbiont transmission, recognition, and specificity. Although the details of transmission and symbiont selection vary among associations, comparisons of diverse mutualistic associations are revealing a number of common themes, including restriction of symbiont diversity during transmission and glycan-lectin interactions during partner selection and recruitment.
Collapse
Affiliation(s)
- John Chaston
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
213
|
|
214
|
Yuan J, O'Donoghue P, Ambrogelly A, Gundllapalli S, Sherrer RL, Palioura S, Simonović M, Söll D. Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems. FEBS Lett 2009; 584:342-9. [PMID: 19903474 DOI: 10.1016/j.febslet.2009.11.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/26/2022]
Abstract
Selenocysteine and pyrrolysine, known as the 21st and 22nd amino acids, are directly inserted into growing polypeptides during translation. Selenocysteine is synthesized via a tRNA-dependent pathway and decodes UGA (opal) codons. The incorporation of selenocysteine requires the concerted action of specific RNA and protein elements. In contrast, pyrrolysine is ligated directly to tRNA(Pyl) and inserted into proteins in response to UAG (amber) codons without the need for complex re-coding machinery. Here we review the latest updates on the structure and mechanisms of molecules involved in Sec-tRNA(Sec) and Pyl-tRNA(Pyl) formation as well as the distribution of the Pyl-decoding trait.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Weinberg Z, Perreault J, Meyer MM, Breaker RR. Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis. Nature 2009; 462:656-9. [PMID: 19956260 PMCID: PMC4140389 DOI: 10.1038/nature08586] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/15/2009] [Indexed: 01/13/2023]
Abstract
Estimates of the total number of bacterial species1-3 suggest that existing DNA sequence databases carry only a tiny fraction of the total amount of DNA sequence space represented by this division of life. Indeed, environmental DNA samples have been shown to encode many previously unknown classes of proteins4 and RNAs5. Bioinformatics searches6-10 of genomic DNA from bacteria commonly identify novel noncoding RNAs (ncRNAs)10-12 such as riboswitches13,14. In rare instances, RNAs that exhibit more extensive sequence and structural conservation across a wide range of bacteria are encountered15,16. Given that large structured RNAs are known to carry out complex biochemical functions such as protein synthesis and RNA processing reactions, identifying more RNAs of great size and intricate structure is likely to reveal additional biochemical functions that can be achieved by RNA. We applied an updated computational pipeline17 to discover ncRNAs that rival the known large ribozymes in size and structural complexity or that are among the most abundant RNAs in bacteria that encode them. These RNAs would have been difficult or impossible to detect without examining environmental DNA sequences, suggesting that numerous RNAs with extraordinary size, structural complexity, or other exceptional characteristics remain to be discovered in unexplored sequence space.
Collapse
Affiliation(s)
- Zasha Weinberg
- Howard Hughes Medical Institute, New Haven, Connecticut 06520-8103, USA
| | | | | | | |
Collapse
|
216
|
Soza-Ried J, Hotz-Wagenblatt A, Glatting KH, del Val C, Fellenberg K, Bode HR, Frank U, Hoheisel JD, Frohme M. The transcriptome of the colonial marine hydroid Hydractinia echinata. FEBS J 2009; 277:197-209. [PMID: 19961538 DOI: 10.1111/j.1742-4658.2009.07474.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An increasing amount of expressed sequence tag (EST) and genomic data, predominantly for the cnidarians Acropora, Hydra and Nematostella, reveals that cnidarians have a high genomic complexity, despite being one of the morphologically simplest multicellular animals. Considering the diversity of cnidarians, we performed an EST project on the hydroid Hydractinia echinata, to contribute towards a broader coverage of this phylum. After random sequencing of almost 9000 clones, EST characterization revealed a broad diversity in gene content. Corroborating observations in other cnidarians, Hydractinia sequences exhibited a higher sequence similarity to vertebrates than to ecdysozoan invertebrates. A significant number of sequences were hitherto undescribed in metazoans, suggesting that these may be either cnidarian innovations or ancient genes lost in the bilaterian genomes analysed so far. However, we cannot rule out some degree of contamination from commensal bacteria. The identification of unique Hydractinia sequences emphasizes that the acquired genomic information generated so far is not large enough to be representative of the highly diverse cnidarian phylum. Finally, a database was created to store all the acquired information (http://www.mchips.org/hydractinia_echinata.html).
Collapse
Affiliation(s)
- Jorge Soza-Ried
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Martínez-García M, Díaz-Valdés M, Antón J. Diversity of pufM genes, involved in aerobic anoxygenic photosynthesis, in the bacterial communities associated with colonial ascidians. FEMS Microbiol Ecol 2009; 71:387-98. [PMID: 20015229 DOI: 10.1111/j.1574-6941.2009.00816.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ascidians are invertebrate filter feeders widely distributed in benthic marine environments. A total of 14 different ascidian species were collected from the Western Mediterranean and their bacterial communities were analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene. Results showed that ascidian tissues harbored Bacteria belonging to Gamma- and Alphaproteobacteria classes, some of them phylogenetically related to known aerobic anoxygenic phototrophs (AAPs), such as Roseobacter sp. In addition, hierarchical cluster analysis of DGGE patterns showed a large variability in the bacterial diversity among the different ascidians analyzed, which indicates that they would harbor different bacterial communities. Furthermore, pufM genes, involved in aerobic anoxygenic photosynthesis in marine and freshwater systems, were widely detected within the ascidians analyzed, because nine out of 14 species had pufM genes inside their tissues. The pufM gene was only detected in those specimens that inhabited shallow waters (<77 m of depth). Most pufM gene sequences were very closely related to that of uncultured marine bacteria. Thus, our results suggest that the association of ascidians with bacteria related to AAPs could be a general phenomenon and that ascidian-associated microbiota could use the light that penetrates through the tunic tissue as an energy source.
Collapse
Affiliation(s)
- Manuel Martínez-García
- División de Microbiología and Instituto Multidisciplinar para el Estudio del Medio Ramón Margalef, Universidad de Alicante, Alicante, Spain.
| | | | | |
Collapse
|
218
|
Hoff KJ. The effect of sequencing errors on metagenomic gene prediction. BMC Genomics 2009; 10:520. [PMID: 19909532 PMCID: PMC2781827 DOI: 10.1186/1471-2164-10-520] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 11/12/2009] [Indexed: 11/25/2022] Open
Abstract
Background Gene prediction is an essential step in the annotation of metagenomic sequencing reads. Since most metagenomic reads cannot be assembled into long contigs, specialized statistical gene prediction tools have been developed for short and anonymous DNA fragments, e.g. MetaGeneAnnotator and Orphelia. While conventional gene prediction methods have been subject to a benchmark study on real sequencing reads with typical errors, such a comparison has not been conducted for specialized tools, yet. Their gene prediction accuracy was mostly measured on error free DNA fragments. Results In this study, Sanger and pyrosequencing reads were simulated on the basis of models that take all types of sequencing errors into account. All metagenomic gene prediction tools showed decreasing accuracy with increasing sequencing error rates. Performance results on an established metagenomic benchmark dataset are also reported. In addition, we demonstrate that ESTScan, a tool for sequencing error compensation in eukaryotic expressed sequence tags, outperforms some metagenomic gene prediction tools on reads with high error rates although it was not designed for the task at hand. Conclusion This study fills an important gap in metagenomic gene prediction research. Specialized methods are evaluated and compared with respect to sequencing error robustness. Results indicate that the integration of error-compensating methods into metagenomic gene prediction tools would be beneficial to improve metagenome annotation quality.
Collapse
Affiliation(s)
- Katharina J Hoff
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
219
|
Ottesen AR, White JR, Skaltsas DN, Newell MJ, Walsh CS. Impact of organic and conventional management on the phyllosphere microbial ecology of an apple crop. J Food Prot 2009; 72:2321-5. [PMID: 19903395 DOI: 10.4315/0362-028x-72.11.2321] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacterial communities associated with the phyllosphere of apple trees (Malus domestica cv. Enterprise) grown under organic and conventional management were assessed to determine if increased biological food safety risks might be linked with the bacterial communities associated with either treatment. Libraries of 16S rRNA genes were generated from phyllosphere DNA extracted from a wash made from the surfaces of leaves and apples from replicated organic and conventional treatments. 16S rRNA gene libraries were analyzed with software designed to identify statistically significant differences between bacterial communities as well as shared and unique phylotypes. The identified diversity spanned eight bacterial phyla and 14 classes in the pooled organic and conventional libraries. Significant differences between organic and conventional communities were observed at four of six time points (P < 0.05). Despite the identification of significantly diverse microfloras associated with organic and conventional treatments, no detectable differences in the presence of potential enteric pathogens could be associated with either organic or conventional management. Neither of the bacterial genera most commonly associated with produce-related illness outbreaks (Salmonella and Escherichia) was observed in any of the libraries. The impressive bacterial diversity that was documented in this study provides a valuable contribution to our developing understanding of the total microbial ecology associated with the preharvest phyllospheres of food crops. The fact that organic and conventional phyllosphere bacterial communities were significantly different at numerous time points suggests that crop management methods may influence the bacterial consortia associated with the surfaces of fruits and vegetables.
Collapse
Affiliation(s)
- Andrea R Ottesen
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | |
Collapse
|
220
|
Kislyuk A, Bhatnagar S, Dushoff J, Weitz JS. Unsupervised statistical clustering of environmental shotgun sequences. BMC Bioinformatics 2009; 10:316. [PMID: 19799776 PMCID: PMC2765972 DOI: 10.1186/1471-2105-10-316] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 10/02/2009] [Indexed: 11/25/2022] Open
Abstract
Background The development of effective environmental shotgun sequence binning methods remains an ongoing challenge in algorithmic analysis of metagenomic data. While previous methods have focused primarily on supervised learning involving extrinsic data, a first-principles statistical model combined with a self-training fitting method has not yet been developed. Results We derive an unsupervised, maximum-likelihood formalism for clustering short sequences by their taxonomic origin on the basis of their k-mer distributions. The formalism is implemented using a Markov Chain Monte Carlo approach in a k-mer feature space. We introduce a space transformation that reduces the dimensionality of the feature space and a genomic fragment divergence measure that strongly correlates with the method's performance. Pairwise analysis of over 1000 completely sequenced genomes reveals that the vast majority of genomes have sufficient genomic fragment divergence to be amenable for binning using the present formalism. Using a high-performance implementation, the binner is able to classify fragments as short as 400 nt with accuracy over 90% in simulations of low-complexity communities of 2 to 10 species, given sufficient genomic fragment divergence. The method is available as an open source package called LikelyBin. Conclusion An unsupervised binning method based on statistical signatures of short environmental sequences is a viable stand-alone binning method for low complexity samples. For medium and high complexity samples, we discuss the possibility of combining the current method with other methods as part of an iterative process to enhance the resolving power of sorting reads into taxonomic and/or functional bins.
Collapse
Affiliation(s)
- Andrey Kislyuk
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
221
|
Kikuchi Y, Bomar L, Graf J. Stratified bacterial community in the bladder of the medicinal leech, Hirudo verbana. Environ Microbiol 2009; 11:2758-70. [PMID: 19678832 DOI: 10.1111/j.1462-2920.2009.02004.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Most animals harbour symbiotic microorganisms inside their body, where intimate interactions occur between the partners. The medicinal leech, Hirudo verbana, possesses 17 pairs of excretory bladders that harbour a large number of intracellular and extracellular symbiotic bacteria. In this study, we characterized the bladder symbionts using molecular phylogenetic analyses, transmission electron microscopy (TEM) and fluorescence in situ hybridization (FISH). Restriction fragment length polymorphism (RFLP) and sequence analyses of 16S rRNA gene clone libraries suggested that six bacterial species co-colonize the leech bladders. Phylogenetic analyses revealed that these species belong to the alpha-Proteobacteria (Ochrobactrum symbiont), beta-Proteobacteria (Beta-1 and Beta-2 symbionts), delta-Proteobacteria (Bdellovibrio symbiont) and Bacteroidetes (Niabella and Sphingobacterium symbionts). Species-specific PCR detection and FISH confirmed the localization of the symbiotic bacteria in the bladders. The Ochrobactrum, Beta-1, Bdellovibrio and Sphingobacterium symbionts were consistently detected in 13 leeches from two populations, while infection rate of the other symbionts ranged between 20% and 100% in the two leech populations. Transmission electron microscopy observations of the bladders revealed epithelial cells harbouring a number of intracellular bacilli and an additional type of extracellular, rod-shaped bacteria in the luminal region. Fluorescence in situ hybridization with group-specific oligonucleotide probes revealed the spatial organization of the bacterial species in the bladder: the Ochrobactrum symbiont was located intracellularly inside epithelial cells; the Bacteroidetes were localized close to the epithelium in the lumen of the bladder; and the Bacteroidetes layer was covered with dense beta-proteobacterial cells. These results clearly demonstrate that a simple but organized microbial community exists in the bladder of the medicinal leech.
Collapse
MESH Headings
- Animals
- Bacteroidetes/genetics
- Bacteroidetes/isolation & purification
- Bacteroidetes/ultrastructure
- Biodiversity
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- In Situ Hybridization, Fluorescence
- Leeches/microbiology
- Leeches/ultrastructure
- Microscopy, Electron, Transmission
- Phylogeny
- Polymorphism, Restriction Fragment Length
- Proteobacteria/genetics
- Proteobacteria/isolation & purification
- Proteobacteria/ultrastructure
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Species Specificity
- Symbiosis
Collapse
Affiliation(s)
- Yoshitomo Kikuchi
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
222
|
Brazelton WJ, Baross JA. Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME JOURNAL 2009; 3:1420-4. [PMID: 19571895 DOI: 10.1038/ismej.2009.79] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The carbonate chimneys of the Lost City Hydrothermal Field on the Mid-Atlantic Ridge are coated in thick microbial biofilms consisting of just a few dominant species. We report a preliminary analysis of a biofilm metagenome that revealed a remarkable abundance and diversity of genes potentially involved in lateral gene transfer (LGT). More than 8% of all metagenomic reads showed significant sequence similarity to transposases; all available metagenomic data sets from other environments contained at least an order of magnitude fewer transposases. Furthermore, the sequence diversity of transposase genes in the biofilm was much greater than that of 16S rRNA genes. The small size and high sequencing coverage of contigs containing transposases indicate that they are located on small but abundant extragenomic molecules. These results suggest that rampant LGT among members of the Lost City biofilm may serve as a generator of phenotypic diversity in a community with very low organismal diversity.
Collapse
Affiliation(s)
- William J Brazelton
- School of Oceanography and Center for Astrobiology and Early Evolution, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
223
|
Meyer MM, Ames TD, Smith DP, Weinberg Z, Schwalbach MS, Giovannoni SJ, Breaker RR. Identification of candidate structured RNAs in the marine organism 'Candidatus Pelagibacter ubique'. BMC Genomics 2009; 10:268. [PMID: 19531245 PMCID: PMC2704228 DOI: 10.1186/1471-2164-10-268] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 06/16/2009] [Indexed: 02/04/2023] Open
Abstract
Background Metagenomic sequence data are proving to be a vast resource for the discovery of biological components. Yet analysis of this data to identify functional RNAs lags behind efforts to characterize protein diversity. The genome of 'Candidatus Pelagibacter ubique' HTCC 1062 is the closest match for approximately 20% of marine metagenomic sequence reads. It is also small, contains little non-coding DNA, and has strikingly low GC content. Results To aid the discovery of RNA motifs within the marine metagenome we exploited the genomic properties of 'Cand. P. ubique' by targeting our search to long intergenic regions (IGRs) with relatively high GC content. Analysis of known RNAs (rRNA, tRNA, riboswitches etc.) shows that structured RNAs are significantly enriched in such IGRs. To identify additional candidate structured RNAs, we examined other IGRs with similar characteristics from 'Cand. P. ubique' using comparative genomics approaches in conjunction with marine metagenomic data. Employing this strategy, we discovered four candidate structured RNAs including a new riboswitch class as well as three additional likely cis-regulatory elements that precede genes encoding ribosomal proteins S2 and S12, and the cytoplasmic protein component of the signal recognition particle. We also describe four additional potential RNA motifs with few or no examples occurring outside the metagenomic data. Conclusion This work begins the process of identifying functional RNA motifs present in the metagenomic data and illustrates how existing completed genomes may be used to aid in this task.
Collapse
Affiliation(s)
- Michelle M Meyer
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
224
|
Li LL, McCorkle SR, Monchy S, Taghavi S, van der Lelie D. Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. BIOTECHNOLOGY FOR BIOFUELS 2009; 2:10. [PMID: 19450243 PMCID: PMC2694162 DOI: 10.1186/1754-6834-2-10] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 05/18/2009] [Indexed: 05/05/2023]
Abstract
Throughout immeasurable time, microorganisms evolved and accumulated remarkable physiological and functional heterogeneity, and now constitute the major reserve for genetic diversity on earth. Using metagenomics, namely genetic material recovered directly from environmental samples, this biogenetic diversification can be accessed without the need to cultivate cells. Accordingly, microbial communities and their metagenomes, isolated from biotopes with high turnover rates of recalcitrant biomass, such as lignocellulosic plant cell walls, have become a major resource for bioprospecting; furthermore, this material is a major asset in the search for new biocatalytics (enzymes) for various industrial processes, including the production of biofuels from plant feedstocks. However, despite the contributions from metagenomics technologies consequent upon the discovery of novel enzymes, this relatively new enterprise requires major improvements. In this review, we compare function-based metagenome screening and sequence-based metagenome data mining, discussing the advantages and limitations of both methods. We also describe the unusual enzymes discovered via metagenomics approaches, and discuss the future prospects for metagenome technologies.
Collapse
Affiliation(s)
- Luen-Luen Li
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Sean R McCorkle
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sebastien Monchy
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Safiyh Taghavi
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel van der Lelie
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
225
|
Orphan VJ. Methods for unveiling cryptic microbial partnerships in nature. Curr Opin Microbiol 2009; 12:231-7. [PMID: 19447672 DOI: 10.1016/j.mib.2009.04.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/31/2009] [Accepted: 04/27/2009] [Indexed: 11/30/2022]
Abstract
Syntrophy and mutualism play a central role in carbon and nutrient cycling by microorganisms. Yet our ability to recognize these partnerships in nature or to effectively study their behavior in culture has been hindered by the inherent interdependence of syntrophic associations, their dynamic behavior, and their frequent existence at thermodynamic limits. Now solutions to these challenges are emerging in new methodologies. These include: comparative metagenomics and transcriptomics; discovery-based methods such as Magneto-FISH; and metabolic substrate tracking using stable isotopes coupled either with density gradient separation (SIP) or with FISH-SIMS. These novel approaches are redefining the way we study microbial mutualism and are making intimate microbial associations accessible to both identification and characterization in their native habitats.
Collapse
Affiliation(s)
- Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, USA.
| |
Collapse
|
226
|
Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing "Leptospirillum rubarum" (Group II) and "Leptospirillum ferrodiazotrophum" (Group III) bacteria in acid mine drainage biofilms. Appl Environ Microbiol 2009; 75:4599-615. [PMID: 19429552 DOI: 10.1128/aem.02943-08] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum group II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, Iron Mountain, CA, acid mine drainage biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum groups II and III, respectively, and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and >60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid carries conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacterial groups have genes for community-essential functions, including carbon fixation and biosynthesis of vitamins, fatty acids, and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum group II uses a methyl-dependent and Leptospirillum group III a methyl-independent response pathway. Although only Leptospirillum group III can fix nitrogen, these proteins were not identified by proteomics. The abundances of core proteins are similar in all communities, but the abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum groups II and III.
Collapse
|
227
|
Woyke T, Xie G, Copeland A, González JM, Han C, Kiss H, Saw JH, Senin P, Yang C, Chatterji S, Cheng JF, Eisen JA, Sieracki ME, Stepanauskas R. Assembling the marine metagenome, one cell at a time. PLoS One 2009; 4:e5299. [PMID: 19390573 PMCID: PMC2668756 DOI: 10.1371/journal.pone.0005299] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/25/2009] [Indexed: 11/18/2022] Open
Abstract
The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91% and 78%, respectively. Only 0.24% of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured taxa from a complex microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa.
Collapse
Affiliation(s)
- Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - Gary Xie
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alex Copeland
- DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - José M. González
- Department of Microbiology, University of La Laguna, La Laguna, Tenerife, Spain
| | - Cliff Han
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Hajnalka Kiss
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jimmy H. Saw
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Pavel Senin
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Chi Yang
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Institute of Bioinformatics, National Yang-Ming University, Taipei, Taiwan
| | - Sourav Chatterji
- Department of Evolution and Ecology, University of California Davis, Davis, United States of America
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jonathan A. Eisen
- DOE Joint Genome Institute, Walnut Creek, California, United States of America
- Department of Evolution and Ecology, University of California Davis, Davis, United States of America
| | - Michael E. Sieracki
- Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine, United States of America
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
228
|
Qi W, Nong G, Preston JF, Ben-Ami F, Ebert D. Comparative metagenomics of Daphnia symbionts. BMC Genomics 2009; 10:172. [PMID: 19383155 PMCID: PMC2678164 DOI: 10.1186/1471-2164-10-172] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 04/21/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Shotgun sequences of DNA extracts from whole organisms allow a comprehensive assessment of possible symbionts. The current project makes use of four shotgun datasets from three species of the planktonic freshwater crustaceans Daphnia: one dataset from clones of D. pulex and D. pulicaria and two datasets from one clone of D. magna. We analyzed these datasets with three aims: First, we search for bacterial symbionts, which are present in all three species. Second, we search for evidence for Cyanobacteria and plastids, which had been suggested to occur as symbionts in a related Daphnia species. Third, we compare the metacommunities revealed by two different 454 pyrosequencing methods (GS 20 and GS FLX). RESULTS In all datasets we found evidence for a large number of bacteria belonging to diverse taxa. The vast majority of these were Proteobacteria. Of those, most sequences were assigned to different genera of the Betaproteobacteria family Comamonadaceae. Other taxa represented in all datasets included the genera Flavobacterium, Rhodobacter, Chromobacterium, Methylibium, Bordetella, Burkholderia and Cupriavidus. A few taxa matched sequences only from the D. pulex and the D. pulicaria datasets: Aeromonas, Pseudomonas and Delftia. Taxa with many hits specific to a single dataset were rare. For most of the identified taxa earlier studies reported the finding of related taxa in aquatic environmental samples. We found no clear evidence for the presence of symbiotic Cyanobacteria or plastids. The apparent similarity of the symbiont communities of the three Daphnia species breaks down on a species and strain level. Communities have a similar composition at a higher taxonomic level, but the actual sequences found are divergent. The two Daphnia magna datasets obtained from two different pyrosequencing platforms revealed rather similar results. CONCLUSION Three clones from three species of the genus Daphnia were found to harbor a rich community of symbionts. These communities are similar at the genus and higher taxonomic level, but are composed of different species. The similarity of these three symbiont communities hints that some of these associations may be stable in the long-term.
Collapse
Affiliation(s)
- Weihong Qi
- Swiss Tropical Institute, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
229
|
Willner D, Thurber RV, Rohwer F. Metagenomic signatures of 86 microbial and viral metagenomes. Environ Microbiol 2009; 11:1752-66. [PMID: 19302541 DOI: 10.1111/j.1462-2920.2009.01901.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Previous studies have shown that dinucleotide abundances capture the majority of variation in genome signatures and are useful for quantifying lateral gene transfer and building molecular phylogenies. Metagenomes contain a mixture of individual genomes, and might be expected to lack compositional signatures. In many metagenomic data sets the majority of sequences have no significant similarities to known sequences and are effectively excluded from subsequent analyses. To circumvent this limitation, di-, tri- and tetranucleotide abundances of 86 microbial and viral metagenomes consisting of short pyrosequencing reads were analysed to provide a method which includes all sequences that can be used in combination with other analysis to increase our knowledge about microbial and viral communities. Both principal component analysis and hierarchical clustering showed definitive groupings of metagenomes drawn from similar environments. Together these analyses showed that dinucleotide composition, as opposed to tri- and tetranucleotides, defines a metagenomic signature which can explain up to 80% of the variance between biomes, which is comparable to that obtained by functional genomics. Metagenomes with anomalous content were also identified using dinucleotide abundances. Subsequent analyses determined that these metagenomes were contaminated with exogenous DNA, suggesting that this approach is a useful metric for quality control. The predictive strength of the dinucleotide composition also opens the possibility of assigning ecological classifications to unknown fragments. Environmental selection may be responsible for this dinucleotide signature through direct selection of specific compositional signals; however, simulations suggest that the environment may select indirectly by promoting the increased abundance of a few dominant taxa.
Collapse
Affiliation(s)
- Dana Willner
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| | | | | |
Collapse
|
230
|
Classification and regression tree (CART) analyses of genomic signatures reveal sets of tetramers that discriminate temperature optima of archaea and bacteria. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2009; 2:159-67. [PMID: 19054742 DOI: 10.1155/2008/829730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Classification and regression tree (CART) analysis was applied to genome-wide tetranucleotide frequencies (genomic signatures) of 195 archaea and bacteria. Although genomic signatures have typically been used to classify evolutionary divergence, in this study, convergent evolution was the focus. Temperature optima for most of the organisms examined could be distinguished by CART analyses of tetranucleotide frequencies. This suggests that pervasive (nonlinear) qualities of genomes may reflect certain environmental conditions (such as temperature) in which those genomes evolved. The predominant use of GAGA and AGGA as the discriminating tetramers in CART models suggests that purine-loading and codon biases of thermophiles may explain some of the results.
Collapse
|
231
|
Stewart FJ, Young CR, Cavanaugh CM. Evidence for homologous recombination in intracellular chemosynthetic clam symbionts. Mol Biol Evol 2009; 26:1391-404. [PMID: 19289597 DOI: 10.1093/molbev/msp049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Homologous recombination is a fundamental mechanism for the genetic diversification of free-living bacteria. However, recombination may be limited in endosymbiotic bacteria, as these taxa are locked into an intracellular niche and may rarely encounter sources of foreign DNA. This study tested the hypothesis that vertically transmitted endosymbionts of deep-sea clams (Bivalvia: Vesicomyidae) show little or no evidence of recombination. Phylogenetic analysis of 13 loci distributed across the genomes of 14 vesicomyid symbionts revealed multiple, well-supported inconsistencies among gene tree topologies, and maximum likelihood-based tests rejected a hypothesis of shared evolutionary history (linkage) among loci. Further, multiple statistical methods confirmed the presence of recombination by detecting intragenic breakpoints in two symbiont loci. Recombination may be confined to a subset of vesicomyid symbionts, as some clades showed high levels of genomic stability, whereas others showed clear patterns of homologous exchange. Notably, a mosaic genome is present in symB, a symbiont lineage shown to have been acquired laterally (i.e., nonvertically) by Vesicomya sp. JdF clams. The majority of loci analyzed here supported a tight sister clustering of symB with the symbiont of a host species from the Mid-Atlantic Ridge, whereas others placed symB in a clade with symA, the dominant phylotype of V. sp. JdF clams. This result raises the hypothesis that lateral symbiont transfer between hosts may facilitate recombination by bringing divergent symbiont lineages into contact. Together, the data show that homologous recombination contributes to the diversification of vesicomyid clam symbionts, despite the intracellular lifestyle of these bacteria.
Collapse
Affiliation(s)
- Frank J Stewart
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
232
|
Interactions between vertically transmitted symbionts: cooperation or conflict? Trends Microbiol 2009; 17:95-9. [DOI: 10.1016/j.tim.2008.12.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/25/2008] [Accepted: 12/08/2008] [Indexed: 11/18/2022]
|
233
|
Abstract
As random shotgun metagenomic projects proliferate and become the dominant source of publicly available sequence data, procedures for the best practices in their execution and analysis become increasingly important. Based on our experience at the Joint Genome Institute, we describe the chain of decisions accompanying a metagenomic project from the viewpoint of the bioinformatic analysis step by step. We guide the reader through a standard workflow for a metagenomic project beginning with presequencing considerations such as community composition and sequence data type that will greatly influence downstream analyses. We proceed with recommendations for sampling and data generation including sample and metadata collection, community profiling, construction of shotgun libraries, and sequencing strategies. We then discuss the application of generic sequence processing steps (read preprocessing, assembly, and gene prediction and annotation) to metagenomic data sets in contrast to genome projects. Different types of data analyses particular to metagenomes are then presented, including binning, dominant population analysis, and gene-centric analysis. Finally, data management issues are presented and discussed. We hope that this review will assist bioinformaticians and biologists in making better-informed decisions on their journey during a metagenomic project.
Collapse
|
234
|
Feil S. Symbiose ersetzt den Darm. CHEM UNSERER ZEIT 2009. [DOI: 10.1002/ciuz.200990009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
235
|
Guazzaroni ME, Beloqui A, Golyshin PN, Ferrer M. Metagenomics as a new technological tool to gain scientific knowledge. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-9971-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
236
|
Wooley JC, Ye Y. Metagenomics: Facts and Artifacts, and Computational Challenges*. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 2009; 25:71-81. [PMID: 20648230 PMCID: PMC2905821 DOI: 10.1007/s11390-010-9306-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Metagenomics is the study of microbial communities sampled directly from their natural environment, without prior culturing. By enabling an analysis of populations including many (so-far) unculturable and often unknown microbes, metagenomics is revolutionizing the field of microbiology, and has excited researchers in many disciplines that could benefit from the study of environmental microbes, including those in ecology, environmental sciences, and biomedicine. Specific computational and statistical tools have been developed for metagenomic data analysis and comparison. New studies, however, have revealed various kinds of artifacts present in metagenomics data caused by limitations in the experimental protocols and/or inadequate data analysis procedures, which often lead to incorrect conclusions about a microbial community. Here, we review some of the artifacts, such as overestimation of species diversity and incorrect estimation of gene family frequencies, and discuss emerging computational approaches to address them. We also review potential challenges that metagenomics may encounter with the extensive application of next-generation sequencing (NGS) techniques.
Collapse
Affiliation(s)
- John C. Wooley
- Center for Research on BioSystems, Calit2, UC San Diego, La Jolla CA 92093
| | - Yuzhen Ye
- School of Informatics and Computing, Indiana University, Bloomington, Indiana, 47408
| |
Collapse
|
237
|
Nucleic Acid–Based Methods of Analysis. Environ Microbiol 2009. [DOI: 10.1016/b978-0-12-370519-8.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
238
|
Chistoserdova L. Functional Metagenomics: Recent Advances and Future Challenges. Biotechnol Genet Eng Rev 2009. [DOI: 10.5661/bger-26-335] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
239
|
Vieites JM, Guazzaroni ME, Beloqui A, Golyshin PN, Ferrer M. Metagenomics approaches in systems microbiology. FEMS Microbiol Rev 2009; 33:236-55. [DOI: 10.1111/j.1574-6976.2008.00152.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
240
|
Abstract
It could be argued that the greatest transformative aspect of the Human Genome Project has been not the sequencing of the genome itself, but the resultant development of new technologies. A host of new approaches has fundamentally changed the way we approach problems in basic and translational research. Now, a new generation of high-throughput sequencing technologies promises to again transform the scientific enterprise, potentially supplanting array-based technologies and opening up many new possibilities. By allowing DNA/RNA to be assayed more rapidly than previously possible, these next-generation platforms promise a deeper understanding of genome regulation and biology. Significantly enhancing sequencing throughput will allow us to follow the evolution of viral and bacterial resistance in real time, to uncover the huge diversity of novel genes that are currently inaccessible, to understand nucleic acid therapeutics, to better integrate biological information for a complete picture of health and disease at a personalized level and to move to advances that we cannot yet imagine.
Collapse
|
241
|
Hoy MA, Jeyaprakash A. Symbionts, including pathogens, of the predatory mite Metaseiulus occidentalis: current and future analysis methods. EXPERIMENTAL & APPLIED ACAROLOGY 2008; 46:329-347. [PMID: 18696231 DOI: 10.1007/s10493-008-9185-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 07/29/2008] [Indexed: 05/26/2023]
Abstract
Metaseiulus (= Typhlodromus or Galendromus) occidentalis (Nesbitt) (Acari: Phytoseiidae) is an effective natural enemy of pest mites in a variety of crops around the world, although it is considered to be endemic in the western USA. A broad understanding of much of its biology, ecology, behavior, and genetics has been obtained over the past 60 years, but the role(s) symbionts play, which includes pathogens and other microorganisms, remains to be resolved fully. Until molecular tools became available, analysis methods were limited primarily to microscopic observations; some viruses and rickettsia-like organisms were observed infecting 'diseased' M. occidentalis, but it is not clear which one(s) was the causal agent(s) of the disease(s). Subsequent to the development of the polymerase chain reaction (PCR) and genome sequencing, we identified putative gut symbionts and reproductive tract symbionts in M. occidentalis, as well as a microsporidian pathogen. A new phylogenetic analysis of the Bacteroidetes-Flavobacterium group suggests the unnamed Bacteroidetes in M. occidentalis is associated with the digestive tract. However, much of our current information about the role these microorganisms play in the biology of M. occidentalis is based on correlation, lacking the strength of fulfilling Koch's postulates. We also currently lack any knowledge of the importance of these microorganisms under field conditions. In the future, it should be possible to learn what role(s) these organisms play in the biology of this important predator using metagenomics approaches to analyze the transcriptome and to determine their relative abundance within their hosts with the quantitative PCR. We have just begun to resolve these relationships.
Collapse
Affiliation(s)
- Marjorie A Hoy
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA.
| | | |
Collapse
|
242
|
Wilmes P, Simmons SL, Denef VJ, Banfield JF. The dynamic genetic repertoire of microbial communities. FEMS Microbiol Rev 2008; 33:109-32. [PMID: 19054116 PMCID: PMC2704941 DOI: 10.1111/j.1574-6976.2008.00144.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Community genomic data have revealed multiple levels of variation between and within microbial consortia. This variation includes large-scale differences in gene content between ecosystems as well as within-population sequence heterogeneity. In the present review, we focus specifically on how fine-scale variation within microbial and viral populations is apparent from community genomic data. A major unresolved question is how much of the observed variation is due to neutral vs. adaptive processes. Limited experimental data hint that some of this fine-scale variation may be in part functionally relevant, whereas sequence-based and modeling analyses suggest that much of it may be neutral. While methods for interpreting population genomic data are still in their infancy, we discuss current interpretations of existing datasets in the light of evolutionary processes and models. Finally, we highlight the importance of virus–host dynamics in generating and shaping within-population diversity.
Collapse
Affiliation(s)
- Paul Wilmes
- Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
243
|
Abstract
The development of DNA sequencing more than 30 years ago has profoundly impacted biological research. In the last couple of years, remarkable technological innovations have emerged that allow the direct and cost-effective sequencing of complex samples at unprecedented scale and speed. These next-generation technologies make it feasible to sequence not only static genomes, but also entire transcriptomes expressed under different conditions. These and other powerful applications of next-generation sequencing are rapidly revolutionizing the way genomic studies are carried out. Below, we provide a snapshot of these exciting new approaches to understanding the properties and functions of genomes. Given that sequencing-based assays may increasingly supersede microarray-based assays, we also compare and contrast data obtained from these distinct approaches.
Collapse
|
244
|
Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility. Proc Natl Acad Sci U S A 2008; 105:17516-21. [PMID: 18987310 DOI: 10.1073/pnas.0802782105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hydrothermal vent ecosystems support diverse life forms, many of which rely on symbiotic associations to perform functions integral to survival in these extreme physicochemical environments. Epsilonproteobacteria, found free-living and in intimate associations with vent invertebrates, are the predominant vent-associated microorganisms. The vent-associated polychaete worm, Alvinella pompejana, is host to a visibly dense fleece of episymbionts on its dorsal surface. The episymbionts are a multispecies consortium of Epsilonproteobacteria present as a biofilm. We unraveled details of these enigmatic, uncultivated episymbionts using environmental genome sequencing. They harbor wide-ranging adaptive traits that include high levels of strain variability analogous to Epsilonproteobacteria pathogens such as Helicobacter pylori, metabolic diversity of free-living bacteria, and numerous orthologs of proteins that we hypothesize are each optimally adapted to specific temperature ranges within the 10-65 degrees C fluctuations characteristic of the A. pompejana habitat. This strategic combination enables the consortium to thrive under diverse thermal and chemical regimes. The episymbionts are metabolically tuned for growth in hydrothermal vent ecosystems with genes encoding the complete rTCA cycle, sulfur oxidation, and denitrification; in addition, the episymbiont metagenome also encodes capacity for heterotrophic and aerobic metabolisms. Analysis of the environmental genome suggests that A. pompejana may benefit from the episymbionts serving as a stable source of food and vitamins. The success of Epsilonproteobacteria as episymbionts in hydrothermal vent ecosystems is a product of adaptive capabilities, broad metabolic capacity, strain variance, and virulent traits in common with pathogens.
Collapse
|
245
|
Riesenfeld CS, Murray AE, Baker BJ. Characterization of the microbial community and polyketide biosynthetic potential in the palmerolide-producing tunicate Synoicum adareanum. JOURNAL OF NATURAL PRODUCTS 2008; 71:1812-1818. [PMID: 18950228 DOI: 10.1021/np800287n] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Palmerolide A (1) is a macrolide isolated from the Antarctic tunicate Synoicum adareanum that is of interest due to its potential as an antimelanoma drug. Biosynthesis is predicted to occur via a hybrid PKS-NRPS pathway within S. adareanum, but the identity of the palmerolide-producing organism (host or putative host-associated microorganism) has not been established. Microscopic observation revealed a dense microbial community inside the tunicate, and evidence from 16S rRNA gene DGGE profiles and clone library sequences suggests that the bacterial community has moderate phylogenetic complexity. The alpha and gamma classes of Proteobacteria account for ∼75% of the cloned 16S rRNA genes, and the majority of these sequences are affiliated with the genera Pseudovibrio and Microbulbifer. DNA sequences encoding type I PKS ketosynthase (KS) domains were detected by PCR. The S. adareanum KS sequences, which affiliate with the trans-AT clade, are similar to portions of PKS proteins that lack integrated acyltransferase domains in pathways for generating bioactive polyketide compounds, including bryostatin, leinamycin, and pederin.
Collapse
|
246
|
Simmons SL, DiBartolo G, Denef VJ, Goltsman DSA, Thelen MP, Banfield JF. Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation. PLoS Biol 2008; 6:e177. [PMID: 18651792 PMCID: PMC2475542 DOI: 10.1371/journal.pbio.0060177] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 06/12/2008] [Indexed: 12/20/2022] Open
Abstract
Deeply sampled community genomic (metagenomic) datasets enable comprehensive analysis of heterogeneity in natural microbial populations. In this study, we used sequence data obtained from the dominant member of a low-diversity natural chemoautotrophic microbial community to determine how coexisting closely related individuals differ from each other in terms of gene sequence and gene content, and to uncover evidence of evolutionary processes that occur over short timescales. DNA sequence obtained from an acid mine drainage biofilm was reconstructed, taking into account the effects of strain variation, to generate a nearly complete genome tiling path for a Leptospirillum group II species closely related to L. ferriphilum (sampling depth ∼20×). The population is dominated by one sequence type, yet we detected evidence for relatively abundant variants (>99.5% sequence identity to the dominant type) at multiple loci, and a few rare variants. Blocks of other Leptospirillum group II types (∼94% sequence identity) have recombined into one or more variants. Variant blocks of both types are more numerous near the origin of replication. Heterogeneity in genetic potential within the population arises from localized variation in gene content, typically focused in integrated plasmid/phage-like regions. Some laterally transferred gene blocks encode physiologically important genes, including quorum-sensing genes of the LuxIR system. Overall, results suggest inter- and intrapopulation genetic exchange involving distinct parental genome types and implicate gain and loss of phage and plasmid genes in recent evolution of this Leptospirillum group II population. Population genetic analyses of single nucleotide polymorphisms indicate variation between closely related strains is not maintained by positive selection, suggesting that these regions do not represent adaptive differences between strains. Thus, the most likely explanation for the observed patterns of polymorphism is divergence of ancestral strains due to geographic isolation, followed by mixing and subsequent recombination. Communities of microbes in nature consist of a large number of distinct individuals. The variation in DNA sequence between these individuals contains a record of the evolutionary processes that have shaped each community. In most environments, however, the high number of distinct species makes obtaining information about the nature of this variation difficult or impossible. We obtained large amounts of sequence data for a natural community in an acid mine drainage system consisting of only a few species. This enabled us to reconstruct the genome of the dominant bacterium (Leptospirillum group II) and obtain detailed information about sequence variation between individuals, including differences in both gene content and gene sequence. Our analysis shows extensive recombination between closely related populations, as well as fewer instances of recombination between more distantly related individuals. Additionally, viruses and plasmids account for high variability in gene content between individuals. We conclude that sequence-level variation in this population is maintained through neutral processes (migration, recombination, and genetic drift) rather than natural selection. This suggests that closely related strains of the Leptospirillum group II population may not be ecologically distinct. Deep sequencing of a low-complexity microbial community revealed extensive recombination as well as polymorphic and gene content variation between individuals of the dominant organism. We show that strains defined by linked polymorphisms are not maintained by positive selection; instead, they are predominantly maintained by the forces of migration and drift.
Collapse
Affiliation(s)
- Sheri L Simmons
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, United States of America
| | - Genevieve DiBartolo
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, United States of America
| | - Vincent J Denef
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, United States of America
| | - Daniela S. Aliaga Goltsman
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, United States of America
| | - Michael P Thelen
- Chemistry Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
247
|
Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 2008; 6:725-40. [DOI: 10.1038/nrmicro1992] [Citation(s) in RCA: 687] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
248
|
Loy A, Duller S, Baranyi C, Mussmann M, Ott J, Sharon I, Béjà O, Le Paslier D, Dahl C, Wagner M. Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes. Environ Microbiol 2008; 11:289-99. [PMID: 18826437 PMCID: PMC2702494 DOI: 10.1111/j.1462-2920.2008.01760.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sulfur-oxidizing prokaryotes (SOP) catalyse a central step in the global S-cycle and are of major functional importance for a variety of natural and engineered systems, but our knowledge on their actual diversity and environmental distribution patterns is still rather limited. In this study we developed a specific PCR assay for the detection of dsrAB that encode the reversely operating sirohaem dissimilatory sulfite reductase (rDSR) and are present in many but not all published genomes of SOP. The PCR assay was used to screen 42 strains of SOP (most without published genome sequence) representing the recognized diversity of this guild. For 13 of these strains dsrAB was detected and the respective PCR product was sequenced. Interestingly, most dsrAB-encoding SOP are capable of forming sulfur storage compounds. Phylogenetic analysis demonstrated largely congruent rDSR and 16S rRNA consensus tree topologies, indicating that lateral transfer events did not play an important role in the evolutionary history of known rDSR. Thus, this enzyme represents a suitable phylogenetic marker for diversity analyses of sulfur storage compound-exploiting SOP in the environment. The potential of this new functional gene approach was demonstrated by comparative sequence analyses of all dsrAB present in published metagenomes and by applying it for a SOP census in selected marine worms and an alkaline lake sediment.
Collapse
Affiliation(s)
- Alexander Loy
- Department of Microbial Ecology, Universität Wein, Wein, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
van Elsas JD, Costa R, Jansson J, Sjöling S, Bailey M, Nalin R, Vogel TM, van Overbeek L. The metagenomics of disease-suppressive soils - experiences from the METACONTROL project. Trends Biotechnol 2008; 26:591-601. [PMID: 18774191 DOI: 10.1016/j.tibtech.2008.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 07/14/2008] [Accepted: 07/22/2008] [Indexed: 11/29/2022]
Abstract
Soil teems with microbial genetic information that can be exploited for biotechnological innovation. Because only a fraction of the soil microbiota is cultivable, our ability to unlock this genetic complement has been hampered. Recently developed molecular tools, which make it possible to utilize genomic DNA from soil, can bypass cultivation and provide information on the collective soil metagenome with the aim to explore genes that encode functions of key interest to biotechnology. The metagenome of disease-suppressive soils is of particular interest given the expected prevalence of antibiotic biosynthetic clusters. However, owing to the complexity of soil microbial communities, deciphering this key genetic information is challenging. Here, we examine crucial issues and challenges that so far have hindered the metagenomic exploration of soil by drawing on experience from a trans-European project on disease-suppressive soils denoted METACONTROL.
Collapse
Affiliation(s)
- Jan Dirk van Elsas
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Kerklaan 30, 9750AA Haren, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
250
|
|