201
|
Goodfellow SJ, Zomerdijk JCBM. Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes. Subcell Biochem 2013; 61:211-36. [PMID: 23150253 PMCID: PMC3855190 DOI: 10.1007/978-94-007-4525-4_10] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RNA Polymerase (Pol) I produces ribosomal (r)RNA, an essential component of the cellular protein synthetic machinery that drives cell growth, underlying many fundamental cellular processes. Extensive research into the mechanisms governing transcription by Pol I has revealed an intricate set of control mechanisms impinging upon rRNA production. Pol I-specific transcription factors guide Pol I to the rDNA promoter and contribute to multiple rounds of transcription initiation, promoter escape, elongation and termination. In addition, many accessory factors are now known to assist at each stage of this transcription cycle, some of which allow the integration of transcriptional activity with metabolic demands. The organisation and accessibility of rDNA chromatin also impinge upon Pol I output, and complex mechanisms ensure the appropriate maintenance of the epigenetic state of the nucleolar genome and its effective transcription by Pol I. The following review presents our current understanding of the components of the Pol I transcription machinery, their functions and regulation by associated factors, and the mechanisms operating to ensure the proper transcription of rDNA chromatin. The importance of such stringent control is demonstrated by the fact that deregulated Pol I transcription is a feature of cancer and other disorders characterised by abnormal translational capacity.
Collapse
Affiliation(s)
- Sarah J. Goodfellow
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee , Dundee DD1 5EH , UK
| | - Joost C. B. M. Zomerdijk
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee , Dundee DD1 5EH , UK
| |
Collapse
|
202
|
Ray S, Panova T, Miller G, Volkov A, Porter ACG, Russell J, Panov KI, Zomerdijk JCBM. Topoisomerase IIα promotes activation of RNA polymerase I transcription by facilitating pre-initiation complex formation. Nat Commun 2013; 4:1598. [PMID: 23511463 PMCID: PMC3615473 DOI: 10.1038/ncomms2599] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/09/2013] [Indexed: 11/15/2022] Open
Abstract
Type II DNA topoisomerases catalyse DNA double-strand cleavage, passage and re-ligation to effect topological changes. There is considerable interest in elucidating topoisomerase II roles, particularly as these proteins are targets for anti-cancer drugs. Here we uncover a role for topoisomerase IIα in RNA polymerase I-directed ribosomal RNA gene transcription, which drives cell growth and proliferation and is upregulated in cancer cells. Our data suggest that topoisomerase IIα is a component of the initiation-competent RNA polymerase Iβ complex and interacts directly with RNA polymerase I-associated transcription factor RRN3, which targets the polymerase to promoter-bound SL1 in pre-initiation complex formation. In cells, activation of rDNA transcription is reduced by inhibition or depletion of topoisomerase II, and this is accompanied by reduced transient double-strand DNA cleavage in the rDNA-promoter region and reduced pre-initiation complex formation. We propose that topoisomerase IIα functions in RNA polymerase I transcription to produce topological changes at the rDNA promoter that facilitate efficient de novo pre-initiation complex formation.
Collapse
Affiliation(s)
- Swagat Ray
- School of Biological Sciences and the Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Tatiana Panova
- School of Biological Sciences and the Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL, UK
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gail Miller
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Arsen Volkov
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, Du Cane Road, London W12 0NN, UK
| | - Andrew C. G. Porter
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, Du Cane Road, London W12 0NN, UK
| | - Jackie Russell
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Konstantin I. Panov
- School of Biological Sciences and the Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL, UK
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- These authors contributed equally to this work
| | - Joost C. B. M. Zomerdijk
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- These authors contributed equally to this work
| |
Collapse
|
203
|
Abstract
Recent advances have led to several systems to study transcription from defined loci in living cells. It has now become possible to address long-standing questions regarding the interplay between the processes of DNA damage repair and transcription-two disparate processes that can occur on the same stretch of chromatin and which both lead to extensive chromatin change. Here we describe the development of a system to create enzymatically induced DNA double-strand breaks (DSBs) at a site of inducible transcription and methods to study the interplay between these processes.
Collapse
Affiliation(s)
- Niraj M Shanbhag
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA1/2, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
204
|
Wang J, Leung JWC, Gong Z, Feng L, Shi X, Chen J. PHF6 regulates cell cycle progression by suppressing ribosomal RNA synthesis. J Biol Chem 2012; 288:3174-83. [PMID: 23229552 DOI: 10.1074/jbc.m112.414839] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mutation of PHF6, which results in the X-linked mental retardation disorder Börjeson-Forssman-Lehmann syndrome, is also present in about 38% of adult T-cell acute lymphoblastic leukemias and 3% of adult acute myeloid leukemias. However, it remains to be determined exactly how PHF6 acts in vivo and what functions of PHF6 may be associated with its putative tumor suppressor function. Here, we demonstrate that PHF6 is a nucleolus, ribosomal RNA promoter-associated protein. PHF6 directly interacts with upstream binding factor (UBF) through its PHD1 domain and suppresses ribosomal RNA (rRNA) transcription by affecting the protein level of UBF. Knockdown of PHF6 impairs cell proliferation and arrests cells at G(2)/M phase, which is accompanied by an increased level of phosphorylated H2AX, indicating that PHF6 deficiency leads to the accumulation of DNA damage in the cell. We found that increased DNA damage occurs at the ribosomal DNA (rDNA) locus in PHF6-deficient cells. This effect could be reversed by knocking down UBF or overexpressing RNASE1, which removes RNA-DNA hybrids, suggesting that there is a functional link between rRNA synthesis and genomic stability at the rDNA locus. Together, these results reveal that the key function of PHF6 is involved in regulating rRNA synthesis, which may contribute to its roles in cell cycle control, genomic maintenance, and tumor suppression.
Collapse
Affiliation(s)
- Jiadong Wang
- Department of Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
205
|
Hannan KM, Sanij E, Rothblum LI, Hannan RD, Pearson RB. Dysregulation of RNA polymerase I transcription during disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:342-60. [PMID: 23153826 DOI: 10.1016/j.bbagrm.2012.10.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/13/2022]
Abstract
Transcription of the ribosomal RNA genes by the dedicated RNA polymerase I enzyme and subsequent processing of the ribosomal RNA are fundamental control steps in the synthesis of functional ribosomes. Dysregulation of Pol I transcription and ribosome biogenesis is linked to the etiology of a broad range of human diseases. Diseases caused by loss of function mutations in the molecular constituents of the ribosome, or factors intimately associated with RNA polymerase I transcription and processing are collectively termed ribosomopathies. Ribosomopathies are generally rare and treatment options are extremely limited tending to be more palliative than curative. Other more common diseases are associated with profound changes in cellular growth such as cardiac hypertrophy, atrophy or cancer. In contrast to ribosomopathies, altered RNA polymerase I transcriptional activity in these diseases largely results from dysregulated upstream oncogenic pathways or by direct modulation by oncogenes or tumor suppressors at the level of the RNA polymerase I transcription apparatus itself. Ribosomopathies associated with mutations in ribosomal proteins and ribosomal RNA processing or assembly factors have been covered by recent excellent reviews. In contrast, here we review our current knowledge of human diseases specifically associated with dysregulation of RNA polymerase I transcription and its associated regulatory apparatus, including some cases where this dysregulation is directly causative in disease. We will also provide insight into and discussion of possible therapeutic approaches to treat patients with dysregulated RNA polymerase I transcription. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- K M Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett St, Melbourne, Victoria 8006, Australia
| | | | | | | | | |
Collapse
|
206
|
Friedl AA, Mazurek B, Seiler DM. Radiation-induced alterations in histone modification patterns and their potential impact on short-term radiation effects. Front Oncol 2012; 2:117. [PMID: 23050241 PMCID: PMC3445916 DOI: 10.3389/fonc.2012.00117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 12/12/2022] Open
Abstract
Detection and repair of radiation-induced DNA damage occur in the context of chromatin. An intricate network of mechanisms defines chromatin structure, including DNA methylation, incorporation of histone variants, histone modifications, and chromatin remodeling. In the last years it became clear that the cellular response to radiation-induced DNA damage involves all of these mechanisms. Here we focus on the current knowledge on radiation-induced alterations in post-translational histone modification patterns and their effect on the chromatin accessibility, transcriptional regulation and chromosomal stability.
Collapse
Affiliation(s)
- Anna A Friedl
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Germany
| | | | | |
Collapse
|
207
|
Abstract
Activation induced deaminase (AID) is globally targeted to immunoglobulin loci, preferentially focused to switch (S) regions and variable (V) regions, and prone to attack hotspot motifs. Nevertheless, AID deamination is not exclusive to Ig loci and the rules regulating AID targeting remain unclear. Transcription is critically required for class switch recombination and somatic hypermutation. Here, I consider the unique features associated with S region transcription leading to RNA polymerase II pausing, that in turn promote the introduction of activating chromatin remodeling, histone modifications and recruitment of AID to targeted S regions. These findings allow for a better understanding of the interplay between transcription, AID targeting and mistargeting to Ig and non-Ig loci.
Collapse
Affiliation(s)
- Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S. Wolcott, Chicago, IL 60612-7344, USA.
| |
Collapse
|
208
|
Suzuki A, Kogo R, Kawahara K, Sasaki M, Nishio M, Maehama T, Sasaki T, Mimori K, Mori M. A new PICTure of nucleolar stress. Cancer Sci 2012; 103:632-7. [PMID: 22320853 DOI: 10.1111/j.1349-7006.2012.02219.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 01/11/2012] [Indexed: 12/17/2022] Open
Abstract
Cell growth demands new protein synthesis, which requires nucleolar ribosomal functions. Ribosome biogenesis consumes a large proportion of the cell's resources and energy, and so is tightly regulated through an intricate signaling network to guarantee fidelity. Thus, events that impair ribosome biogenesis cause nucleolar stress. In response to this stress, several nucleolar ribosomal proteins (RPs) translocate to the nucleoplasm and bind to MDM2. MDM2-mediated ubiquitination and degradation of the tumor suppressor p53 is then blocked, resulting in p53 accumulation and the induction of p53-dependent cell cycle arrest and apoptosis. Nucleolar stress is therefore a quality control surveillance mechanism that monitors the synthesis and assembly of the rRNA and protein components of ribosomes. Although nucleolar stress signaling pathways have been extensively analyzed, critical questions remain about their regulatory mechanisms. For example, how do RPs translocate from the nucleolus to the nucleoplasm to exert their functions, and do these p53-regulating RPs influence the prognosis of human cancer patients? Our laboratory recently identified the nucleolar protein PICT1 as a novel regulator of nucleolar stress. PICT1 sequesters the ribosomal protein RPL11 in the nucleolus, preventing it from binding to MDM2. MDM2 is then free to degrade p53, favoring tumor cell growth. Accordingly, the level of PICT1 in a tumor is becoming a useful prognostic marker for human cancers. This review summarizes the evidence that links nucleolar stress to tumorigenesis, and casts PICT1 as an oncogenic player in human cancer biology.
Collapse
Affiliation(s)
- Akira Suzuki
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Pérez-Castro AJ, Freire R. Rad9B responds to nucleolar stress through ATR and JNK signalling, and delays the G1-S transition. J Cell Sci 2012; 125:1152-64. [PMID: 22399810 DOI: 10.1242/jcs.091124] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complex formed by Rad9, Rad1 and Hus1 (9-1-1) protects against genomic instability by activating DNA damage checkpoint and DNA damage repair pathways, mainly in response to replication fork collapse and UV lesions. Here we compare the role of Rad9A (also known as Rad9) with the human paralogue Rad9B. Unlike Rad9A, overexpression of Rad9B delays cells in G1 phase. Moreover, Rad9B migrates to nucleoli after nucleolar stress in an ATR- and JNK-dependent manner, in a newly described nucleolar domain structure containing p21. Analysis of chimeras of Rad9A and Rad9B demonstrate that localisation to nucleoli and the block in G1 phase upon overexpression crucially depend on the Rad9B C-terminal tail. Taken together, data presented here show a relationship between Rad9B and pathways for checkpoints, stress response and nucleolar function.
Collapse
Affiliation(s)
- Antonio Jesús Pérez-Castro
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, La Laguna, Tenerife, Spain
| | | |
Collapse
|
210
|
DNAPKcs-dependent arrest of RNA polymerase II transcription in the presence of DNA breaks. Nat Struct Mol Biol 2012; 19:276-82. [PMID: 22343725 DOI: 10.1038/nsmb.2224] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 12/02/2011] [Indexed: 01/02/2023]
Abstract
DNA double-strand break (DSB) repair interferes with ongoing cellular processes, including replication and transcription. Although the process of replication stalling upon collision of replication forks with damaged DNA has been extensively studied, the fate of elongating RNA polymerase II (RNAPII) that encounters a DSB is not well understood. We show that the occurrence of a single DSB at a human RNAPII-transcribed gene leads to inhibition of transcription elongation and reinitiation. Upon inhibition of DNA protein kinase (DNAPK), RNAPII bypasses the break and continues transcription elongation, suggesting that it is not the break per se that inhibits the processivity of RNAPII, but the activity of DNAPK. We also show that the mechanism of DNAPK-mediated transcription inhibition involves the proteasome-dependent pathway. The results point to the pivotal role of DNAPK activity in the eviction of RNAPII from DNA upon encountering a DNA lesion.
Collapse
|
211
|
Shi L, Oberdoerffer P. Chromatin dynamics in DNA double-strand break repair. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:811-9. [PMID: 22285574 DOI: 10.1016/j.bbagrm.2012.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/28/2011] [Accepted: 01/05/2012] [Indexed: 12/29/2022]
Abstract
DNA double-strand breaks (DSBs) occur in the context of a highly organized chromatin environment and are, thus, a significant threat to the epigenomic integrity of eukaryotic cells. Changes in break-proximal chromatin structure are thought to be a prerequisite for efficient DNA repair and may help protect the structural integrity of the nucleus. Unlike most bona fide DNA repair factors, chromatin influences the repair process at several levels: the existing chromatin context at the site of damage directly affects the access and kinetics of the repair machinery; DSB induced chromatin modifications influence the choice of repair factors, thereby modulating repair outcome; lastly, DNA damage can have a significant impact on chromatin beyond the site of damage. We will discuss recent findings that highlight both the complexity and importance of dynamic and tightly orchestrated chromatin reorganization to ensure efficient DSB repair and nuclear integrity. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Lei Shi
- Mouse Cancer Genetics Program, NCI- Frederick, NIH, Frederick, MD 21702, USA
| | | |
Collapse
|
212
|
Percipalle P, Louvet E. In vivo run-on assays to monitor nascent precursor RNA transcripts. Methods Mol Biol 2012; 809:519-33. [PMID: 22113298 DOI: 10.1007/978-1-61779-376-9_34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biochemical methods have provided mechanistic insights into the different transcription phases during which the RNA polymerase is assembled at gene promoter and becomes engaged in the elongation of nascent transcripts. Evidence that transcription takes place in specific regions of the nucleus has fuelled the need to develop assays that can be performed in living cells and provide information on the location of the specific foci, where transcription takes place. In this chapter, we describe a method that is based on the incorporation of a fluorine-conjugated uridine analogue, incorporation that can be monitored by immunofluorescence and light microscopy using specific fluorochrome-conjugated monoclonal antibodies. This assay allows direct monitoring of active transcription foci in living cells. When coupled to suitable software, the method outlined here also provides a semiquantitative approach to measure the number of active transcription foci that correlate with the proliferation state of the cell. Therefore, the assay we present here is a sensitive analytical tool to monitor the topology of transcription foci in the eukaryotic cell nucleus and to gain insight into transcription rates.
Collapse
|
213
|
Caron P, Aymard F, Iacovoni JS, Briois S, Canitrot Y, Bugler B, Massip L, Losada A, Legube G. Cohesin protects genes against γH2AX Induced by DNA double-strand breaks. PLoS Genet 2012; 8:e1002460. [PMID: 22275873 PMCID: PMC3261922 DOI: 10.1371/journal.pgen.1002460] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/21/2011] [Indexed: 11/18/2022] Open
Abstract
Chromatin undergoes major remodeling around DNA double-strand breaks (DSB) to promote repair and DNA damage response (DDR) activation. We recently reported a high-resolution map of γH2AX around multiple breaks on the human genome, using a new cell-based DSB inducible system. In an attempt to further characterize the chromatin landscape induced around DSBs, we now report the profile of SMC3, a subunit of the cohesin complex, previously characterized as required for repair by homologous recombination. We found that recruitment of cohesin is moderate and restricted to the immediate vicinity of DSBs in human cells. In addition, we show that cohesin controls γH2AX distribution within domains. Indeed, as we reported previously for transcription, cohesin binding antagonizes γH2AX spreading. Remarkably, depletion of cohesin leads to an increase of γH2AX at cohesin-bound genes, associated with a decrease in their expression level after DSB induction. We propose that, in agreement with their function in chromosome architecture, cohesin could also help to isolate active genes from some chromatin remodelling and modifications such as the ones that occur when a DSB is detected on the genome.
Collapse
Affiliation(s)
- Pierre Caron
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Francois Aymard
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Jason S. Iacovoni
- Bioinformatic Plateau I2MC, INSERM and University of Toulouse, Toulouse, France
| | - Sébastien Briois
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Yvan Canitrot
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Beatrix Bugler
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Laurent Massip
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Ana Losada
- Chromosome Dynamics Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gaëlle Legube
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| |
Collapse
|
214
|
Abstract
In this report, we employed a lentiviral RNA interference screen to discover nucleolar DEAD/DEAH-box helicases involved in RNA polymerase I (Pol I)-mediated transcriptional activity. Our screen identified DHX33 as an important modulator of 47S rRNA transcription. We show that DHX33 is a cell cycle-regulated nucleolar protein that associates with ribosomal DNA (rDNA) loci, where it interacts with the RNA Pol I transcription factor upstream binding factor (UBF). DHX33 knockdown decreased the association of Pol I with rDNA and caused a dramatic decrease in levels of rRNA synthesis. Wild-type DHX33 overexpression, but not a DNA binding-defective mutant, enhanced 47S rRNA synthesis by promoting the association of RNA polymerase I with rDNA loci. In addition, an NTPase-defective DHX33 mutant (K94R) acted as a dominant negative mutant, inhibiting endogenous rRNA synthesis. Moreover, DHX33 deficiency in primary human fibroblasts triggered a nucleolar p53 stress response, resulting in an attenuation of proliferation. Thus, we show the mechanistic importance of DHX33 in rRNA transcription and proliferation.
Collapse
|
215
|
Greenberg RA. Histone tails: Directing the chromatin response to DNA damage. FEBS Lett 2011; 585:2883-90. [PMID: 21621538 PMCID: PMC3172378 DOI: 10.1016/j.febslet.2011.05.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/13/2011] [Accepted: 05/13/2011] [Indexed: 01/09/2023]
Abstract
Considerable energetic investment is devoted to altering large stretches of chromatin adjacent to DNA double strand breaks (DSBs). Immediately ensuing DSB formation, a myriad of histone modifications are elicited to create a platform for inducible and modular assembly of DNA repair protein complexes in the vicinity of the DNA lesion. This complex signaling network is critical to repair DNA damage and communicate with cellular processes that occur in cis and in trans to the genomic lesion. Failure to properly execute DNA damage inducible chromatin changes is associated with developmental abnormalities, immunodeficiency, and malignancy in humans and in genetically engineered mouse models. This review will discuss current knowledge of DNA damage responsive histone changes that occur in mammalian cells, highlighting their involvement in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Roger A Greenberg
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
216
|
Bhatti S, Kozlov S, Farooqi AA, Naqi A, Lavin M, Khanna KK. ATM protein kinase: the linchpin of cellular defenses to stress. Cell Mol Life Sci 2011; 68:2977-3006. [PMID: 21533982 PMCID: PMC11115042 DOI: 10.1007/s00018-011-0683-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 01/23/2023]
Abstract
ATM is the most significant molecule involved in monitoring the genomic integrity of the cell. Any damage done to DNA relentlessly challenges the cellular machinery involved in recognition, processing and repair of these insults. ATM kinase is activated early to detect and signal lesions in DNA, arrest the cell cycle, establish DNA repair signaling and faithfully restore the damaged chromatin. ATM activation plays an important role as a barrier to tumorigenesis, metabolic syndrome and neurodegeneration. Therefore, studies of ATM-dependent DNA damage signaling pathways hold promise for treatment of a variety of debilitating diseases through the development of new therapeutics capable of modulating cellular responses to stress. In this review, we have tried to untangle the complex web of ATM signaling pathways with the purpose of pinpointing multiple roles of ATM underlying the complex phenotypes observed in AT patients.
Collapse
Affiliation(s)
- Shahzad Bhatti
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1 Km Raiwind Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Sergei Kozlov
- Queensland Institute of Medical Research, QIMR, 300 Herston Rd, Herston, Brisbane, 4029 Australia
| | - Ammad Ahmad Farooqi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1 Km Raiwind Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Ali Naqi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1 Km Raiwind Road, Thokar Niaz Baig, Lahore, Pakistan
| | - Martin Lavin
- Queensland Institute of Medical Research, QIMR, 300 Herston Rd, Herston, Brisbane, 4029 Australia
| | - Kum Kum Khanna
- Queensland Institute of Medical Research, QIMR, 300 Herston Rd, Herston, Brisbane, 4029 Australia
| |
Collapse
|
217
|
Moore HM, Bai B, Boisvert FM, Latonen L, Rantanen V, Simpson JC, Pepperkok R, Lamond AI, Laiho M. Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics 2011; 10:M111.009241. [PMID: 21778410 DOI: 10.1074/mcp.m111.009241] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleolus is a nuclear organelle that coordinates rRNA transcription and ribosome subunit biogenesis. Recent proteomic analyses have shown that the nucleolus contains proteins involved in cell cycle control, DNA processing and DNA damage response and repair, in addition to the many proteins connected with ribosome subunit production. Here we study the dynamics of nucleolar protein responses in cells exposed to stress and DNA damage caused by ionizing and ultraviolet (UV) radiation in diploid human fibroblasts. We show using a combination of imaging and quantitative proteomics methods that nucleolar substructure and the nucleolar proteome undergo selective reorganization in response to UV damage. The proteomic responses to UV include alterations of functional protein complexes such as the SSU processome and exosome, and paraspeckle proteins, involving both decreases and increases in steady state protein ratios, respectively. Several nonhomologous end-joining proteins (NHEJ), such as Ku70/80, display similar fast responses to UV. In contrast, nucleolar proteomic responses to IR are both temporally and spatially distinct from those caused by UV, and more limited in terms of magnitude. With the exception of the NHEJ and paraspeckle proteins, where IR induces rapid and transient changes within 15 min of the damage, IR does not alter the ratios of most other functional nucleolar protein complexes. The rapid transient decrease of NHEJ proteins in the nucleolus indicates that it may reflect a response to DNA damage. Our results underline that the nucleolus is a specific stress response organelle that responds to different damage and stress agents in a unique, damage-specific manner.
Collapse
Affiliation(s)
- Henna M Moore
- Molecular Cancer Biology Program and Haartman Institute, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Pietrzak M, Smith SC, Geralds JT, Hagg T, Gomes C, Hetman M. Nucleolar disruption and apoptosis are distinct neuronal responses to etoposide-induced DNA damage. J Neurochem 2011; 117:1033-46. [PMID: 21517844 PMCID: PMC3107349 DOI: 10.1111/j.1471-4159.2011.07279.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although DNA damaging topoisomerase inhibitors induce apoptosis in developing neurons, their effects on adult neurons have not yet been characterized. We report a blockage of RNA-Polymerase-1-driven transcription and nucleolar stress in neocortical neurons of adult rats after intracarotid injection of the DNA-topoisomerase-2 inhibitor, etoposide. Intracerebroventricular injection of etoposide induced a similar response in neonatal rats. In contrast, etoposide triggered neuronal apoptosis in the neonates, but not the adults. Nucleolar disruption and apoptosis were also observed in etoposide-challenged cultured cortical neurons from newborn rats. In that system, activation of the DNA double strand break signaling kinase ataxia telangiectasia-mutated protein kinase, p53 and p53-dependent apoptosis required lower etoposide concentrations than did the p53-independent induction of nucleolar stress. These distinct responses may be coupled to different forms of etoposide-induced DNA damage. Indeed, double strand breaks by the over-expressed endonuclease I-Ppo1 were sufficient to induce p53-dependent apoptosis. Moreover, nucleolar transcription was insensitive to such damage implying single strand breaks and/or topoisomerase-2-DNA adducts as triggers of nucleolar stress. Because nucleolar stress is not age-restricted, it may underlie non-apoptotic neurotoxicity of chemotherapy- or neurodegeneration-associated DNA damage by reducing ribosomal biogenesis in adult brain. Conversely, nucleolar insensitivity to double strand breaks likely contributes to mature neuron tolerance of such lesions.
Collapse
Affiliation(s)
- Maciej Pietrzak
- Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292
| | - Scott C. Smith
- Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292
| | - Justin T. Geralds
- Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292
| | - Theo Hagg
- Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292
- Department of Pharmacology&Toxicology, University of Louisville, Louisville, Kentucky 40292
| | - Cynthia Gomes
- Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292
- Department of Pharmacology&Toxicology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
219
|
Abstract
Genome integrity is constantly monitored by sophisticated cellular networks, collectively termed the DNA damage response (DDR). A common feature of DDR proteins is their mobilization in response to genotoxic stress. Here, we outline how the development of various complementary methodologies has provided valuable insights into the spatiotemporal dynamics of DDR protein assembly/disassembly at sites of DNA strand breaks in eukaryotic cells. Considerable advances have also been made in understanding the underlying molecular mechanisms for these events, with post-translational modifications of DDR factors being shown to play prominent roles in controlling the formation of foci in response to DNA-damaging agents. We review these regulatory mechanisms and discuss their biological significance to the DDR.
Collapse
Affiliation(s)
- Sophie E. Polo
- The Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Stephen P. Jackson
- The Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
220
|
Cramers P, Verhoeven EE, Filon AR, Rockx DAP, Santos SJ, van der Leer AA, Kleinjans JCS, van Zeeland AA, Mullenders LHF. Impaired repair of ionizing radiation-induced DNA damage in Cockayne syndrome cells. Radiat Res 2011; 175:432-43. [PMID: 21299404 DOI: 10.1667/rr1972.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cockayne syndrome (CS) cells are defective in transcription-coupled repair (TCR) and sensitive to oxidizing agents, including ionizing radiation. We examined the hypothesis that TCR plays a role in ionizing radiation-induced oxidative DNA damage repair or alternatively that CS plays a role in transcription elongation after irradiation. Irradiation with doses up to 100 Gy did not inhibit RNA polymerase II-dependent transcription in normal and CS-B fibroblasts. In contrast, RNA polymerase I-dependent transcription was severely inhibited at 5 Gy in normal cells, indicating different mechanisms of transcription response to X rays. The frequency of radiation-induced base damage was 2 × 10(-7) lesions/base/Gy, implying that 150 Gy is required to induce one lesion/30-kb transcription unit; no TCR of X-ray-induced base damage in the p53 gene was observed. Therefore, it is highly unlikely that defective TCR underlies the sensitivity of CS to ionizing radiation. Overall genome repair levels of radiation-induced DNA damage measured by repair replication were significantly reduced in CS-A and CS-B cells. Taken together, the results do not provide evidence for a key role of TCR in repair of radiation-induced oxidative damages in human cells; rather, impaired repair of oxidative lesions throughout the genome may contribute to the CS phenotype.
Collapse
Affiliation(s)
- Patricia Cramers
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Gilder AS, Do PM, Carrero ZI, Cosman AM, Broome HJ, Velma V, Martinez LA, Hebert MD. Coilin participates in the suppression of RNA polymerase I in response to cisplatin-induced DNA damage. Mol Biol Cell 2011; 22:1070-9. [PMID: 21289084 PMCID: PMC3069010 DOI: 10.1091/mbc.e10-08-0731] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study's findings identify a novel and unexpected function for coilin, independentof its role in snRNP biogenesis, establishing a new link between the DNA damage response and the inhibition of rRNA synthesis. Coilin is a nuclear phosphoprotein that concentrates within Cajal bodies (CBs) and impacts small nuclear ribonucleoprotein (snRNP) biogenesis. Cisplatin and γ-irradiation, which cause distinct types of DNA damage, both trigger the nucleolar accumulation of coilin, and this temporally coincides with the repression of RNA polymerase I (Pol I) activity. Knockdown of endogenous coilin partially overrides the Pol I transcriptional arrest caused by cisplatin, while both ectopically expressed and exogenous coilin accumulate in the nucleolus and suppress rRNA synthesis. In support of this mechanism, we demonstrate that both cisplatin and γ-irradiation induce the colocalization of coilin with RPA-194 (the largest subunit of Pol I), and we further show that coilin can specifically interact with RPA-194 and the key regulator of Pol I activity, upstream binding factor (UBF). Using chromatin immunoprecipitation analysis, we provide evidence that coilin modulates the association of Pol I with ribosomal DNA. Collectively, our data suggest that coilin acts to repress Pol I activity in response to cisplatin-induced DNA damage. Our findings identify a novel and unexpected function for coilin, independent of its role in snRNP biogenesis, establishing a new link between the DNA damage response and the inhibition of rRNA synthesis.
Collapse
Affiliation(s)
- Andrew S Gilder
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Baltanás FC, Casafont I, Weruaga E, Alonso JR, Berciano MT, Lafarga M. Nucleolar disruption and cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in purkinje cells. Brain Pathol 2010; 21:374-88. [PMID: 21054627 DOI: 10.1111/j.1750-3639.2010.00461.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Purkinje cell (PC) degeneration (pcd) phenotype results from mutation in nna1 gene and is associated with the degeneration and death of PCs during the postnatal life. Although the pcd mutation is a model of the ataxic mouse, it shares clinical and pathological characteristics of inherited human spinocerebellar ataxias. PC degeneration in pcd mice provides a useful neuronal system to study nuclear mechanisms involved in DNA damage-dependent neurodegeneration, particularly the contribution of nucleoli and Cajal bodies (CBs). Both nuclear structures are engaged in housekeeping functions for neuronal survival, the biogenesis of ribosomes and the maturation of snRNPs and snoRNPs required for pre-mRNA and pre-rRNA processing, respectively. In this study, we use ultrastructural analysis, in situ transcription assay and molecular markers for DNA damage, nucleoli and CB components to demonstrate that PC degeneration involves the progressive accumulation of nuclear DNA damage associated with disruption of nucleoli and CBs, disassembly of polyribosomes into monoribosomes, ribophagy and shut down of nucleolar and extranucleolar transcription. Microarray analysis reveals that four genes encoding repressors of nucleolar rRNA synthesis (p53, Rb, PTEN and SNF2) are upregulated in the cerebellum of pcd mice. Collectively, these data support that nucleolar and CB alterations are hallmarks of DNA damage-induced neurodegeneration.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
223
|
Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell 2010; 40:179-204. [PMID: 20965415 PMCID: PMC2988877 DOI: 10.1016/j.molcel.2010.09.019] [Citation(s) in RCA: 3286] [Impact Index Per Article: 219.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/03/2010] [Accepted: 09/17/2010] [Indexed: 12/11/2022]
Abstract
Damage to our genetic material is an ongoing threat to both our ability to faithfully transmit genetic information to our offspring as well as our own survival. To respond to these threats, eukaryotes have evolved the DNA damage response (DDR). The DDR is a complex signal transduction pathway that has the ability to sense DNA damage and transduce this information to the cell to influence cellular responses to DNA damage. Cells possess an arsenal of enzymatic tools capable of remodeling and repairing DNA; however, their activities must be tightly regulated in a temporal, spatial, and DNA lesion-appropriate fashion to optimize repair and prevent unnecessary and potentially deleterious alterations in the structure of DNA during normal cellular processes. This review will focus on how the DDR controls DNA repair and the phenotypic consequences of defects in these critical regulatory functions in mammals.
Collapse
Affiliation(s)
- Alberto Ciccia
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
224
|
Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI. The nucleolus under stress. Mol Cell 2010; 40:216-27. [PMID: 20965417 PMCID: PMC2987465 DOI: 10.1016/j.molcel.2010.09.024] [Citation(s) in RCA: 807] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/16/2010] [Accepted: 09/22/2010] [Indexed: 12/16/2022]
Abstract
Cells typically respond quickly to stress, altering their metabolism to compensate. In mammalian cells, stress signaling usually leads to either cell-cycle arrest or apoptosis, depending on the severity of the insult and the ability of the cell to recover. Stress also often leads to reorganization of nuclear architecture, reflecting the simultaneous inhibition of major nuclear pathways (e.g., replication and transcription) and activation of specific stress responses (e.g., DNA repair). In this review, we focus on how two nuclear organelles, the nucleolus and the Cajal body, respond to stress. The nucleolus senses stress and is a central hub for coordinating the stress response. We review nucleolar function in the stress-induced regulation of p53 and the specific changes in nucleolar morphology and composition that occur upon stress. Crosstalk between nucleoli and CBs is also discussed in the context of stress responses.
Collapse
Affiliation(s)
- Séverine Boulon
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
225
|
A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc Natl Acad Sci U S A 2010; 107:18475-80. [PMID: 20937877 DOI: 10.1073/pnas.1012946107] [Citation(s) in RCA: 452] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many proteins that respond to DNA damage are recruited to DNA lesions. We used a proteomics approach that coupled isotopic labeling with chromatin fractionation and mass spectrometry to uncover proteins that associate with damaged DNA, many of which are involved in DNA repair or nucleolar function. We show that polycomb group members are recruited by poly(ADP ribose) polymerase (PARP) to DNA lesions following UV laser microirradiation. Loss of polycomb components results in IR sensitivity of mammalian cells and Caenorhabditis elegans. PARP also recruits two components of the repressive nucleosome remodeling and deacetylase (NuRD) complex, chromodomain helicase DNA-binding protein 4 (CHD4) and metastasis associated 1 (MTA1), to DNA lesions. PARP plays a role in removing nascent RNA and elongating RNA polymerase II from sites of DNA damage. We propose that PARP sets up a transient repressive chromatin structure at sites of DNA damage to block transcription and facilitate DNA repair.
Collapse
|
226
|
Nakata H, Kruhlak M, Kamata W, Ogata-Aoki H, Li J, Maeda K, Ghosh AK, Mitsuya H. Effects of CC chemokine receptor 5 (CCR5) inhibitors on the dynamics of CCR5 and CC-chemokine-CCR5 interactions. Antivir Ther 2010; 15:321-31. [PMID: 20516552 DOI: 10.3851/imp1529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND This study aimed to examine how CC chemokine receptor 5 (CCR5) inhibitors (aplaviroc [APL], TAK779 and maraviroc [MVC]) interact with CCR5 and affect its dynamics and physiological CC-chemokine-CCR5 interactions. METHODS A yellow fluorescent protein (YFP)-tagged CCR5-expressing U373-MAGI cell line was generated and a stable CCR5-expressing clonal population, (YFP)CCR5-UM16, was prepared. (YFP)CCR5-UM16 cells were exposed to RANTES, macrophage inflammatory protein (MIP)-1alpha or MIP-1beta (all 100 ng/ml) with or without CCR5 inhibitors and (YFP)CCR5 internalization was visualized with real-time by laser scanning confocal microscopy. The mobility of (YFP)CCR5 was also examined in the presence of CCR5 inhibitors with fluorescence recovery after photobleaching (FRAP) imaging. RESULTS Following the addition of each CC chemokine, intracellular fluorescence intensity increased whereas membranous fluorescence decreased, signifying (YFP)CCR5 internalization. All three CCR5 inhibitors failed to induce (YFP)CCR5 internalization. All three CCR5 inhibitors blocked the CC-chemokine-induced internalization at a high concentration of 1 microM; however, the ratio of APL concentration that blocked RANTES-induced internalization by 50% over APL concentration that blocked HIV type-1 (HIV-1) replication by 50% was 16.4, indicating that APL permits CC-chemokine-induced internalization to a much greater extent compared with TAK779 and MVC, having ratios of 1.1 and 0.9, respectively. The examination of (YFP)CCR5 mobility with FRAP imaging revealed that (YFP)CCR5 continuously underwent rapid redistribution, which none of the three inhibitors blocked. CONCLUSIONS The finding that APL moderately blocked the RANTES-triggered (YFP)CCR5 internalization despite the highly potent anti-HIV-1 activity of APL strongly suggests that development of CCR5 inhibitors, which do not overly inhibit physiological CC-chemokine-CCR5 interactions, is practically feasible.
Collapse
Affiliation(s)
- Hirotomo Nakata
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Abstract
Although DNA damage-induced neurotoxicity is implicated in various pathologies of the nervous system, its underlying mechanisms are not completely understood. Transcription is a DNA transaction that is highly active in the nervous system. In addition to its direct role in expression of the genetic information, transcription contributes to DNA damage detection and repair as well as chromatin organization including biogenesis of the nucleolus. Transcription is inhibited by DNA single-strand breaks and DNA adducts. Hence, transcription inhibition may be an important contributor to the neurotoxic consequences of such types of DNA damage. This review discusses the existing evidence in support of the latter hypothesis. The presented literature suggests that neuronal DNA damage interferes with the RNA-Polymerase-2-dependent transcription of genes encoding proteins with critical functions in neurotransmission and intracellular signaling. The latter category includes extracellular signal-regulated kinase-1/2 mitogen-activated protein kinase phosphatases whose lowered expression results in chronic activation of extracellular signal-regulated kinase-1/2 and its reduced responsiveness to physiological stimuli. Conversely, DNA damage-induced inhibition of RNA-Polymerase-1 and the subsequent disruption of the nucleolus induce p53-mediated apoptosis of developing neurons. Finally, decreasing nucleolar transcription may link DNA damage to chronic neurodegeneration in adults.
Collapse
Affiliation(s)
- Michal Hetman
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, KY 40292, USA.
| | | | | |
Collapse
|
228
|
Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 2010; 141:970-81. [PMID: 20550933 PMCID: PMC2920610 DOI: 10.1016/j.cell.2010.04.038] [Citation(s) in RCA: 589] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 01/27/2010] [Accepted: 04/06/2010] [Indexed: 12/01/2022]
Abstract
DNA double-strand breaks (DSBs) initiate extensive local and global alterations in chromatin structure, many of which depend on the ATM kinase. Histone H2A ubiquitylation (uH2A) on chromatin surrounding DSBs is one example, thought to be important for recruitment of repair proteins. uH2A is also implicated in transcriptional repression; an intriguing yet untested hypothesis is that this function is conserved in the context of DSBs. Using a novel reporter that allows for visualization of repair protein recruitment and local transcription in single cells, we describe an ATM-dependent transcriptional silencing program in cis to DSBs. ATM prevents RNA polymerase II elongation-dependent chromatin decondensation at regions distal to DSBs. Silencing is partially dependent on E3 ubiquitin ligases RNF8 and RNF168, whereas reversal of silencing relies on the uH2A deubiquitylating enzyme USP16. These findings give insight into the role of posttranslational modifications in mediating crosstalk between diverse processes occurring on chromatin.
Collapse
Affiliation(s)
- Niraj M. Shanbhag
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104-6160
| | | | - Carlo Balane-Bolivar
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104-6160
| | | | - Roger A. Greenberg
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104-6160
- Department of Pathology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104-6160
| |
Collapse
|
229
|
Tanaka Y, Okamoto K, Teye K, Umata T, Yamagiwa N, Suto Y, Zhang Y, Tsuneoka M. JmjC enzyme KDM2A is a regulator of rRNA transcription in response to starvation. EMBO J 2010; 29:1510-22. [PMID: 20379134 DOI: 10.1038/emboj.2010.56] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 03/08/2010] [Indexed: 11/09/2022] Open
Abstract
The rate-limiting step in ribosome biogenesis is the transcription of ribosomal RNA, which is controlled by environmental conditions. The JmjC enzyme KDM2A/JHDM1A/FbxL11 demethylates mono- and dimethylated Lys 36 of histone H3, but its function is unclear. Here, we show that KDM2A represses the transcription of ribosomal RNA. KDM2A was localized in nucleoli and bound to the ribosomal RNA gene promoter. Overexpression of KDM2A repressed the transcription of ribosomal RNA in a demethylase activity-dependent manner. When ribosomal RNA transcription was reduced under starvation, a cell-permeable succinate that inhibited the demethylase activity of KDM2A prevented the reduction of ribosomal RNA transcription. Starvation reduced the levels of mono- and dimethylated Lys 36 of histone H3 marks on the rDNA promoter, and treatment with the cell-permeable succinate suppressed the reduction of the marks during starvation. The knockdown of KDM2A increased mono- and dimethylated Lys 36 of histone H3 marks, and suppressed the reduction of ribosomal RNA transcription under starvation. These results show a novel mechanism by which KDM2A activity is stimulated by starvation to reduce ribosomal RNA transcription.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Molecular Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Iacovoni JS, Caron P, Lassadi I, Nicolas E, Massip L, Trouche D, Legube G. High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO J 2010; 29:1446-57. [PMID: 20360682 DOI: 10.1038/emboj.2010.38] [Citation(s) in RCA: 406] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 02/19/2010] [Indexed: 01/16/2023] Open
Abstract
Chromatin acts as a key regulator of DNA-related processes such as DNA damage repair. Although ChIP-chip is a powerful technique to provide high-resolution maps of protein-genome interactions, its use to study DNA double strand break (DSB) repair has been hindered by the limitations of the available damage induction methods. We have developed a human cell line that permits induction of multiple DSBs randomly distributed and unambiguously positioned within the genome. Using this system, we have generated the first genome-wide mapping of gammaH2AX around DSBs. We found that all DSBs trigger large gammaH2AX domains, which spread out from the DSB in a bidirectional, discontinuous and not necessarily symmetrical manner. The distribution of gammaH2AX within domains is influenced by gene transcription, as parallel mappings of RNA Polymerase II and strand-specific expression showed that gammaH2AX does not propagate on active genes. In addition, we showed that transcription is accurately maintained within gammaH2AX domains, indicating that mechanisms may exist to protect gene transcription from gammaH2AX spreading and from the chromatin rearrangements induced by DSBs.
Collapse
|
231
|
Sordet O, Nakamura AJ, Redon CE, Pommier Y. DNA double-strand breaks and ATM activation by transcription-blocking DNA lesions. Cell Cycle 2010; 9:274-8. [PMID: 20023421 DOI: 10.4161/cc.9.2.10506] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A taxia telangiectasia mutated (ATM), the deficiency of which causes a severe neurodegenerative disease, is a crucial mediator for the DNA double-strand break (DSB) response. We recently showed that transcription-blocking topoisomerase I cleavage complexes (TOP1cc) produce DSBs related to R-loop formation and activate ATM in post-mitotic neurons and lymphocytes. Here we discuss how TOP1cc can produce transcription arrest with R-loop formation and generate DSBs that activate ATM, as well as data suggesting that those transcription-dependent DSBs tend to form at the IgH locus and at specific genomic sites. We also address the potential roles of ATM in response to transcription-blocking TOP1cc.
Collapse
Affiliation(s)
- Olivier Sordet
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
232
|
Cisterna B, Biggiogera M. Ribosome biogenesis: from structure to dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:67-111. [PMID: 20875629 DOI: 10.1016/s1937-6448(10)84002-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we describe the status of the research concerning the nucleolus, the major nuclear body. The nucleolus has been recognized as a dynamic organelle with many more functions than one could imagine. In fact, in addition to its fundamental role in the biogenesis of preribosomes, the nucleolus takes part in many other cellular processes and functions, such as the cell-cycle control and the p53 pathway: the direct or indirect involvement of the nucleolus in these various processes makes it sensitive to their alteration. Moreover, it is worth noting that the different nucleolar factors participating to independent mechanisms show different dynamics of association/disassociation with the nucleolar body.
Collapse
Affiliation(s)
- Barbara Cisterna
- Laboratory of Cell Biology and Neurobiology, Department of Animal Biology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
233
|
Wang L, Wuerffel R, Feldman S, Khamlichi AA, Kenter AL. S region sequence, RNA polymerase II, and histone modifications create chromatin accessibility during class switch recombination. J Exp Med 2009; 206:1817-30. [PMID: 19596805 PMCID: PMC2722165 DOI: 10.1084/jem.20081678] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 06/19/2009] [Indexed: 01/09/2023] Open
Abstract
Immunoglobulin class switch recombination is governed by long-range interactions between enhancers and germline transcript promoters to activate transcription and modulate chromatin accessibility to activation-induced cytidine deaminase (AID). However, mechanisms leading to the differential targeting of AID to switch (S) regions but not to constant (C(H)) regions remain unclear. We show that S and C(H) regions are dynamically modified with histone marks that are associated with active and repressed chromatin states, respectively. Chromatin accessibility is superimposable with the activating histone modifications, which extend throughout S regions irrespective of length. High density elongating RNA polymerase II (RNAP II) is detected in S regions, suggesting that the transcription machinery has paused and stalling is abolished by deletion of the S region. We propose that RNAP II enrichment facilitates recruitment of histone modifiers to generate accessibility. Thus, the histone methylation pattern produced by transcription localizes accessible chromatin to S regions, thereby focusing AID attack.
Collapse
Affiliation(s)
- Lili Wang
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Robert Wuerffel
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Scott Feldman
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Ahmed Amine Khamlichi
- Université Paul Sabatier, III, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 5089–Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse Cedex, France
| | - Amy L. Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| |
Collapse
|
234
|
Tjeertes JV, Miller KM, Jackson SP. Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J 2009; 28:1878-89. [PMID: 19407812 PMCID: PMC2684025 DOI: 10.1038/emboj.2009.119] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/26/2009] [Indexed: 01/05/2023] Open
Abstract
Recognition and repair of damaged DNA occurs within the context of chromatin. The key protein components of chromatin are histones, whose post-translational modifications control diverse chromatin functions. Here, we report our findings from a large-scale screen for DNA-damage-responsive histone modifications in human cells. We have identified specific phosphorylations and acetylations on histone H3 that decrease in response to DNA damage. Significantly, we find that DNA-damage-induced changes in H3S10p, H3S28p and H3.3S31p are a consequence of cell-cycle re-positioning rather than DNA damage per se. In contrast, H3K9Ac and H3K56Ac, a mark previously uncharacterized in human cells, are rapidly and reversibly reduced in response to DNA damage. Finally, we show that the histone acetyl-transferase GCN5/KAT2A acetylates H3K56 in vitro and in vivo. Collectively, our data indicate that though most histone modifications do not change appreciably after genotoxic stress, H3K9Ac and H3K56Ac are reduced in response to DNA damage in human cells.
Collapse
Affiliation(s)
- Jorrit V Tjeertes
- The Gurdon Institute, University of Cambridge, Cambridge, UK
- These authors contributed equally to this work
| | - Kyle M Miller
- The Gurdon Institute, University of Cambridge, Cambridge, UK
- These authors contributed equally to this work
| | | |
Collapse
|
235
|
Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep 2009; 10:887-93. [PMID: 19557000 DOI: 10.1038/embor.2009.97] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/30/2009] [Accepted: 04/09/2009] [Indexed: 12/22/2022] Open
Abstract
Ataxia telangiectasia mutated (ATM), the deficiency of which causes a severe neurodegenerative disease, is a crucial mediator for the DNA damage response (DDR). As neurons have high rates of transcription that require topoisomerase I (TOP1), we investigated whether TOP1 cleavage complexes (TOP1cc)-which are potent transcription-blocking lesions-also produce transcription-dependent DNA double-strand breaks (DSBs) with ATM activation. We show the induction of DSBs and DDR activation in post-mitotic primary neurons and lymphocytes treated with camptothecin, with the induction of nuclear DDR foci containing activated ATM, gamma-H2AX (phosphorylated histone H2AX), activated CHK2 (checkpoint kinase 2), MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1). The DSB-ATM-DDR pathway was suppressed by inhibiting transcription and gamma-H2AX signals were reduced by RNase H1 transfection, which removes transcription-mediated R-loops. Thus, we propose that Top1cc produce transcription arrests with R-loop formation and generate DSBs that activate ATM in post-mitotic cells.
Collapse
|
236
|
Erratum: The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature 2009. [DOI: 10.1038/nature08110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
237
|
Schmitz KM, Schmitt N, Hoffmann-Rohrer U, Schäfer A, Grummt I, Mayer C. TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol Cell 2009; 33:344-53. [PMID: 19217408 DOI: 10.1016/j.molcel.2009.01.015] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/11/2008] [Accepted: 01/27/2009] [Indexed: 11/28/2022]
Abstract
Many studies have detailed the repressive effects of DNA methylation on gene expression. However, the mechanisms that promote active demethylation are just beginning to emerge. Here, we show that methylation of the rDNA promoter is a dynamic and reversible process. Demethylation of rDNA is initiated by recruitment of Gadd45a (growth arrest and DNA damage inducible protein 45 alpha) to the rDNA promoter by TAF12, a TBP-associated factor that is contained in Pol I- and Pol II-specific TBP-TAF complexes. Once targeted to rDNA, Gadd45a triggers demethylation of promoter-proximal DNA by recruiting the nucleotide excision repair (NER) machinery to remove methylated cytosines. Knockdown of Gadd45a, XPA, XPG, XPF, or TAF12 or treatment with drugs that inhibit NER causes hypermethylation of rDNA, establishes heterochromatic histone marks, and impairs transcription. The results reveal a mechanism that recruits the DNA repair machinery to the promoter of active genes, keeping them in a hypomethylated state.
Collapse
Affiliation(s)
- Kerstin-Maike Schmitz
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, INF 581, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
238
|
Dinant C, Houtsmuller AB, Vermeulen W. Chromatin structure and DNA damage repair. Epigenetics Chromatin 2008; 1:9. [PMID: 19014481 PMCID: PMC2596136 DOI: 10.1186/1756-8935-1-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 11/12/2008] [Indexed: 11/10/2022] Open
Abstract
The integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. These damaging agents can induce a wide variety of lesions in the DNA, such as double strand breaks, single strand breaks, oxidative lesions and pyrimidine dimers. The cell has evolved intricate DNA damage response mechanisms to counteract the genotoxic effects of these lesions. The two main features of the DNA damage response mechanisms are cell-cycle checkpoint activation and, at the heart of the response, DNA repair. For both damage signalling and repair, chromatin remodelling is most likely a prerequisite. Here, we discuss current knowledge on chromatin remodelling with respect to the cellular response to DNA damage, with emphasis on the response to lesions resolved by nucleotide excision repair. We will discuss the role of histone modifications as well as their displacement or exchange in nucleotide excision repair and make a comparison with their requirement in transcription and double strand break repair.
Collapse
Affiliation(s)
- Christoffel Dinant
- Department of Cell Biology and Genetics, Erasmus MC, Dr, Molewaterplein 50, 3015 GE Rotterdam, the Netherlands.
| | | | | |
Collapse
|
239
|
C. elegans nucleostemin is required for larval growth and germline stem cell division. PLoS Genet 2008; 4:e1000181. [PMID: 18725931 PMCID: PMC2515194 DOI: 10.1371/journal.pgen.1000181] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 07/22/2008] [Indexed: 11/25/2022] Open
Abstract
The nucleolus has shown to be integral for many processes related to cell growth and proliferation. Stem cells in particular are likely to depend upon nucleolus-based processes to remain in a proliferative state. A highly conserved nucleolar factor named nucleostemin is proposed to be a critical link between nucleolar function and stem-cell–specific processes. Currently, it is unclear whether nucleostemin modulates proliferation by affecting ribosome biogenesis or by another nucleolus-based activity that is specific to stem cells and/or highly proliferating cells. Here, we investigate nucleostemin (nst-1) in the nematode C. elegans, which enables us to examine nst-1 function during both proliferation and differentiation in vivo. Like mammalian nucleostemin, the NST-1 protein is localized to the nucleolus and the nucleoplasm; however, its expression is found in both differentiated and proliferating cells. Global loss of C. elegans nucleostemin (nst-1) leads to a larval arrest phenotype due to a growth defect in the soma, while loss of nst-1 specifically in the germ line causes germline stem cells to undergo a cell cycle arrest. nst-1 mutants exhibit reduced levels of rRNAs, suggesting defects in ribosome biogenesis. However, NST-1 is generally not present in regions of the nucleolus where rRNA transcription and processing occurs, so this reduction is likely secondary to a different defect in ribosome biogenesis. Transgenic studies indicate that NST-1 requires its N-terminal domain for stable expression and both its G1 GTPase and intermediate domains for proper germ line function. Our data support a role for C. elegans nucleostemin in cell growth and proliferation by promoting ribosome biogenesis. Stem cells are carefully poised between the alternate fates of proliferation and differentiation. The regulation of this choice is a complex one that occurs on many different levels. One major influence controlling this choice derives signals emanating from the nucleolus, which serves dual roles as the site of ribosome biogenesis and as a repository for sequestered key regulatory factors. The nucleolar GTPase nucleostemin has recently been identified as a potential link between stem cell proliferation and nucleolar function, but its exact role in the nucleolus has not been directly addressed in a metazoan. Here, we use the model organism C. elegans to investigate the function of nucleostemin in both differentiated cells and proliferating stem cells. We show that nucleostemin probably acts to regulate ribosome biogenesis, and through this process controls cell proliferation. We also suggest that, at least in C. elegans, the function of nucleostemin is not restricted to proliferating stem cells, but that it also functions in differentiated cells to control cell growth. Our study highlights the complexity of the role of the nucleolus in regulation of cell growth and division.
Collapse
|
240
|
Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, Jeggo PA. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 2008; 31:167-77. [PMID: 18657500 DOI: 10.1016/j.molcel.2008.05.017] [Citation(s) in RCA: 668] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 04/01/2008] [Accepted: 05/29/2008] [Indexed: 12/13/2022]
Abstract
Ataxia Telangiectasia Mutated (ATM) signaling is essential for the repair of a subset of DNA double-strand breaks (DSBs); however, its precise role is unclear. Here, we show that < or =25% of DSBs require ATM signaling for repair, and this percentage correlates with increased chromatin but not damage complexity. Importantly, we demonstrate that heterochromatic DSBs are generally repaired more slowly than euchromatic DSBs, and ATM signaling is specifically required for DSB repair within heterochromatin. Significantly, knockdown of the transcriptional repressor KAP-1, an ATM substrate, or the heterochromatin-building factors HP1 or HDAC1/2 alleviates the requirement for ATM in DSB repair. We propose that ATM signaling temporarily perturbs heterochromatin via KAP-1, which is critical for DSB repair/processing within otherwise compacted/inflexible chromatin. In support of this, ATM signaling alters KAP-1 affinity for chromatin enriched for heterochromatic factors. These data suggest that the importance of ATM signaling for DSB repair increases as the heterochromatic component of a genome expands.
Collapse
Affiliation(s)
- Aaron A Goodarzi
- Genome Damage and Stability Centre, University of Sussex, East Sussex BN1 9RQ, UK
| | | | | | | | | | | | | |
Collapse
|
241
|
Kalita K, Makonchuk D, Gomes C, Zheng JJ, Hetman M. Inhibition of nucleolar transcription as a trigger for neuronal apoptosis. J Neurochem 2008; 105:2286-99. [PMID: 18315559 PMCID: PMC2909334 DOI: 10.1111/j.1471-4159.2008.05316.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In post-mitotic neurons, the mechanisms of the apoptotic checkpoint that is activated by DNA damage remain unclear. Here we show that in cultured cortical neurons, the DNA damaging agent camptothecin (CPT) reduced transcription of rRNA and disrupted nucleolar staining for B23/nucleophosmin suggesting DNA damage-induced nucleolar stress. Although CPT activated the pro-apoptotic protein p53, the CPT-induced nucleolar stress was unaffected by p53 inhibition. In addition, brain-derived neurotrophic factor-mediated protection from CPT-induced apoptosis prevented neither nucleolar stress nor p53 activation. Therefore, inhibition of rRNA transcription might be upstream of the pro-apoptotic p53 activity. Indeed, short hairpin RNA-mediated inhibition of a RNA-Polymerase-I co-factor, transcription initiation factor IA, attenuated rRNA transcription causing nucleolar stress and p53-dependent neuronal apoptosis. The protein synthesis inhibitor cycloheximide blocked apoptosis that was induced by over-expressed shTIF-IA or active form of p53. Also, the general transcription inhibitor actinomycin D triggered nucleolar stress and activated p53. However, it did not induce apoptosis except at the low concentration of 0.05 microg/mL with stronger inhibitory activity against nucleolar than extranucleolar transcription. Hence, nucleolar stress-activated apoptosis requires extranucleolar transcription. This study identifies the nucleoli of post-mitotic neurons as sensors of DNA damage coupling reduced rRNA transcription to p53-mediated apoptosis that requires de novo expression of protein-coding genes. Thus, rDNA selectivity of DNA damage may determine its ability to induce neuronal apoptosis.
Collapse
Affiliation(s)
- Katarzyna Kalita
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292
- Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Denys Makonchuk
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292
| | - Cynthia Gomes
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292
| | - Jing-Juan Zheng
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|