201
|
Karoulia Z, Wu Y, Ahmed TA, Xin Q, Bollard J, Krepler C, Wu X, Zhang C, Bollag G, Herlyn M, Fagin JA, Lujambio A, Gavathiotis E, Poulikakos PI. An Integrated Model of RAF Inhibitor Action Predicts Inhibitor Activity against Oncogenic BRAF Signaling. Cancer Cell 2016; 30:485-498. [PMID: 27523909 PMCID: PMC5021590 DOI: 10.1016/j.ccell.2016.06.024] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 05/10/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022]
Abstract
The complex biochemical effects of RAF inhibitors account for both the effectiveness and mechanisms of resistance to these drugs, but a unified mechanistic model has been lacking. Here we show that RAF inhibitors exert their effects via two distinct allosteric mechanisms. Drug resistance due to dimerization is determined by the position of the αC helix stabilized by inhibitor, whereas inhibitor-induced RAF priming and dimerization are the result of inhibitor-induced formation of the RAF/RAS-GTP complex. The biochemical effect of RAF inhibitor in cells is the combined outcome of the two mechanisms. Therapeutic strategies including αC-helix-IN inhibitors are more effective in multiple mutant BRAF-driven tumor models, including colorectal and thyroid BRAF(V600E) cancers, in which first-generation RAF inhibitors have been ineffective.
Collapse
Affiliation(s)
- Zoi Karoulia
- Department of Oncological Sciences, Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yang Wu
- Department of Biochemistry, Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tamer A Ahmed
- Department of Oncological Sciences, Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Qisheng Xin
- Department of Biochemistry, Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Julien Bollard
- Department of Oncological Sciences, Liver Cancer program, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program, Tumor Microenvironment and Metastasis Program, and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19014, USA
| | - Xuewei Wu
- Department of Oncological Sciences, Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, Tumor Microenvironment and Metastasis Program, and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19014, USA
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Liver Cancer program, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
202
|
Millet A, Martin AR, Ronco C, Rocchi S, Benhida R. Metastatic Melanoma: Insights Into the Evolution of the Treatments and Future Challenges. Med Res Rev 2016; 37:98-148. [PMID: 27569556 DOI: 10.1002/med.21404] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
Melanoma is the deadliest form of skin cancer. While associated survival prognosis is good when diagnosed early, it dramatically drops when melanoma progresses into its metastatic form. Prior to 2011, the favored therapies include interleukin-2 and chemotherapies, regardless of their low efficiency and their toxicity. Following key biological findings, two new types of therapy have been approved. First, there are the targeted therapies, which rely on small molecule B-Raf and MEK inhibitors and allow the treatment of patients with B-Raf mutated melanoma. Second, there are the immunotherapies, with anti-CTLA-4 and anti-PD-1 antibodies that are used for patients harboring a B-Raf wild-type status. Both approaches have significantly improved patient survival, compared with alkylating agents, in the treatment of unresectable melanoma. Herein, we review the evolution of the treatment of melanoma starting from early discoveries to current therapies. A focus will be provided on drug discovery, synthesis, and mode of action of relevant drugs and the future directions of the domain to overcome the emergence of the resistance events.
Collapse
Affiliation(s)
- Antoine Millet
- Institut de Chimie de Nice UMR UNS-CNRS 7272, Nice, France
| | | | - Cyril Ronco
- Institut de Chimie de Nice UMR UNS-CNRS 7272, Nice, France
| | - Stéphane Rocchi
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Biologie et Pathologie des cellules mélanocytaires: de la pigmentation cutanée au mélanome, Nice, France.,Université de Nice Sophia Antipolis, UFR de Médecine, Nice, France.,Service de Dermatologie, Hôpital Archet II, CHU Nice, France
| | - Rachid Benhida
- Institut de Chimie de Nice UMR UNS-CNRS 7272, Nice, France
| |
Collapse
|
203
|
Dhawan NS, Scopton AP, Dar AC. Small molecule stabilization of the KSR inactive state antagonizes oncogenic Ras signalling. Nature 2016; 537:112-116. [PMID: 27556948 PMCID: PMC5161575 DOI: 10.1038/nature19327] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 07/22/2016] [Indexed: 12/05/2022]
Abstract
Deregulation of the Ras–mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies1. Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes2. Kinase suppressor of Ras (KSR) is a MAPK scaffold3–5 that is subject to allosteric regulation through dimerization with RAF6,7. Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras–MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers.
Collapse
Affiliation(s)
- Neil S Dhawan
- Department of Oncological Sciences, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Structural and Chemical Biology, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Alex P Scopton
- Department of Oncological Sciences, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Structural and Chemical Biology, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Arvin C Dar
- Department of Oncological Sciences, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Structural and Chemical Biology, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
204
|
Mechanism of substrate specificity of phosphatidylinositol phosphate kinases. Proc Natl Acad Sci U S A 2016; 113:8711-6. [PMID: 27439870 PMCID: PMC4978281 DOI: 10.1073/pnas.1522112113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The phosphatidylinositol phosphate kinase (PIPK) family of enzymes is primarily responsible for converting singly phosphorylated phosphatidylinositol derivatives to phosphatidylinositol bisphosphates. As such, these kinases are central to many signaling and membrane trafficking processes in the eukaryotic cell. The three types of phosphatidylinositol phosphate kinases are homologous in sequence but differ in catalytic activities and biological functions. Type I and type II kinases generate phosphatidylinositol 4,5-bisphosphate from phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate, respectively, whereas the type III kinase produces phosphatidylinositol 3,5-bisphosphate from phosphatidylinositol 3-phosphate. Based on crystallographic analysis of the zebrafish type I kinase PIP5Kα, we identified a structural motif unique to the kinase family that serves to recognize the monophosphate on the substrate. Our data indicate that the complex pattern of substrate recognition and phosphorylation results from the interplay between the monophosphate binding site and the specificity loop: the specificity loop functions to recognize different orientations of the inositol ring, whereas residues flanking the phosphate binding Arg244 determine whether phosphatidylinositol 3-phosphate is exclusively bound and phosphorylated at the 5-position. This work provides a thorough picture of how PIPKs achieve their exquisite substrate specificity.
Collapse
|
205
|
Ostrem JML, Shokat KM. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat Rev Drug Discov 2016; 15:771-785. [PMID: 27469033 DOI: 10.1038/nrd.2016.139] [Citation(s) in RCA: 423] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
KRAS is the most frequently mutated oncogene in human cancer. In addition to holding this distinction, unsuccessful attempts to target this protein have led to the characterization of RAS as 'undruggable'. However, recent advances in technology and novel approaches to drug discovery have renewed hope that a direct KRAS inhibitor may be on the horizon. In this Review, we provide an in-depth analysis of the structure, dynamics, mutational activation and inactivation, and signalling mechanisms of RAS. From this perspective, we then consider potential mechanisms of action for effective RAS inhibitors. Finally, we examine each of the many recent reports of direct RAS inhibitors and discuss promising avenues for further development.
Collapse
Affiliation(s)
- Jonathan M L Ostrem
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
206
|
Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R. Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers. Biochem J 2016; 473:1719-32. [PMID: 27057007 PMCID: PMC7830773 DOI: 10.1042/bcj20160031] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Are the dimer structures of active Ras isoforms similar? This question is significant since Ras can activate its effectors as a monomer; however, as a dimer, it promotes Raf's activation and MAPK (mitogen-activated protein kinase) cell signalling. In the present study, we model possible catalytic domain dimer interfaces of membrane-anchored GTP-bound K-Ras4B and H-Ras, and compare their conformations. The active helical dimers formed by the allosteric lobe are isoform-specific: K-Ras4B-GTP favours the α3 and α4 interface; H-Ras-GTP favours α4 and α5. Both isoforms also populate a stable β-sheet dimer interface formed by the effector lobe; a less stable β-sandwich interface is sustained by salt bridges of the β-sheet side chains. Raf's high-affinity β-sheet interaction is promoted by the active helical interface. Collectively, Ras isoforms' dimer conformations are not uniform; instead, the isoform-specific dimers reflect the favoured interactions of the HVRs (hypervariable regions) with cell membrane microdomains, biasing the effector-binding site orientations, thus isoform binding selectivity.
Collapse
Affiliation(s)
- Hyunbum Jang
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
| | - Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Ruth Nussinov
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A. Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
207
|
Wan LCK, Pillon MC, Thevakumaran N, Sun Y, Chakrabartty A, Guarné A, Kurinov I, Durocher D, Sicheri F. Structural and functional characterization of KEOPS dimerization by Pcc1 and its role in t6A biosynthesis. Nucleic Acids Res 2016; 44:6971-80. [PMID: 27302132 PMCID: PMC5001605 DOI: 10.1093/nar/gkw542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/03/2016] [Indexed: 11/20/2022] Open
Abstract
KEOPS is an ancient protein complex required for the biosynthesis of N6-threonylcarbamoyladenosine (t6A), a universally conserved tRNA modification found on all ANN-codon recognizing tRNAs. KEOPS consist minimally of four essential subunits, namely the proteins Kae1, Bud32, Cgi121 and Pcc1, with yeast possessing the fifth essential subunit Gon7. Bud32, Cgi121, Pcc1 and Gon7 appear to have evolved to regulate the central t6A biosynthesis function of Kae1, but their precise function and mechanism of action remains unclear. Pcc1, in particular, binds directly to Kae1 and by virtue of its ability to form dimers in solution and in crystals, Pcc1 was inferred to function as a dimerization module for Kae1 and therefore KEOPS. We now present a 3.4 Å crystal structure of a dimeric Kae1–Pcc1 complex providing direct evidence that Pcc1 can bind and dimerize Kae1. Further biophysical analysis of a complete archaeal KEOPS complex reveals that Pcc1 facilitates KEOPS dimerization in vitro. Interestingly, while Pcc1-mediated dimerization of KEOPS is required to support the growth of yeast, it is dispensable for t6A biosynthesis by archaeal KEOPS in vitro, raising the question of how precisely Pcc1-mediated dimerization impacts cellular biology.
Collapse
Affiliation(s)
- Leo C K Wan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Monica C Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Neroshan Thevakumaran
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yulong Sun
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada
| | - Avi Chakrabartty
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Igor Kurinov
- Cornell University, Department of Chemistry and Chemical Biology, NE-CAT, Building 436E, Advanced Photon Source, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
208
|
PAK5 is auto-activated by a central domain that promotes kinase oligomerization. Biochem J 2016; 473:1777-89. [DOI: 10.1042/bcj20160132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/18/2016] [Indexed: 12/23/2022]
Abstract
The present study shows for the first time that self-association of PAK5 in vivo underlies its high basal activity, which contrasts with the inactive state of cellular PAK4. Such PAK5 self-association interferes with the engagement of the auto-inhibitory (AID) with the catalytic domain.
Collapse
|
209
|
Atefi M, Titz B, Tsoi J, Avramis E, Le A, Ng C, Lomova A, Lassen A, Friedman M, Chmielowski B, Ribas A, Graeber TG. CRAF R391W is a melanoma driver oncogene. Sci Rep 2016; 6:27454. [PMID: 27273450 PMCID: PMC4897636 DOI: 10.1038/srep27454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 05/19/2016] [Indexed: 01/05/2023] Open
Abstract
Approximately 75% of melanomas have known driver oncogenic mutations in BRAF, NRAS, GNA11 or GNAQ, while the mutations providing constitutive oncogenic signaling in the remaining melanomas are not known. We established a melanoma cell line from a tumor with none of the common driver mutations. This cell line demonstrated a signaling profile similar to BRAF-mutants, but lacked sensitivity to the BRAF inhibitor vemurafenib. RNA-seq mutation data implicated CRAF R391W as the alternative driver mutation of this melanoma. CRAF R391W was homozygous and over expressed. These melanoma cells were highly sensitive to CRAF, but not BRAF knockdown. In reconstitution experiments, CRAF R391W, but not CRAF WT, transformed NIH3T3 cells in soft-agar colony formation assays, increased kinase activity in vitro, induced MAP kinase signaling and conferred vemurafenib resistance. MAP kinase inducing activity was dependent on CRAF dimerization. Thus, CRAF is a bona fide alternative oncogene for BRAF/NRAS/GNAQ/GNA11 wild type melanomas.
Collapse
Affiliation(s)
- Mohammad Atefi
- Department of Medicine, Division of Hematology-Oncology, University of California Los Angeles, Los Angeles, California (UCLA), 90095, USA
| | - Bjoern Titz
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA.,Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA
| | - Jennifer Tsoi
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA.,Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA
| | - Earl Avramis
- Department of Medicine, Division of Hematology-Oncology, University of California Los Angeles, Los Angeles, California (UCLA), 90095, USA
| | - Allison Le
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA.,Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA
| | - Charles Ng
- New York University, New York, NY 10016, USA
| | - Anastasia Lomova
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA.,Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA
| | - Amanda Lassen
- Department of Medicine, Division of Hematology-Oncology, University of California Los Angeles, Los Angeles, California (UCLA), 90095, USA
| | - Michael Friedman
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA.,Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA
| | - Bartosz Chmielowski
- Department of Medicine, Division of Hematology-Oncology, University of California Los Angeles, Los Angeles, California (UCLA), 90095, USA.,New York University, New York, NY 10016, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California Los Angeles, Los Angeles, California (UCLA), 90095, USA.,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA 90095, USA.,Department of Surgery, Division of Surgical-Oncology, UCLA, Los Angeles, CA 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA.,Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA.,New York University, New York, NY 10016, USA.,California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
210
|
Abstract
ERK1/2 MAP Kinases become activated in response to multiple intra- and extra-cellular stimuli through a signaling module composed of sequential tiers of cytoplasmic kinases. Scaffold proteins regulate ERK signals by connecting the different components of the module into a multi-enzymatic complex by which signal amplitude and duration are fine-tuned, and also provide signal fidelity by isolating this complex from external interferences. In addition, scaffold proteins play a central role as spatial regulators of ERKs signals. In this respect, depending on the subcellular localization from which the activating signals emanate, defined scaffolds specify which substrates are amenable to be phosphorylated. Recent evidence has unveiled direct interactions among different scaffold protein species. These scaffold-scaffold macro-complexes could constitute an additional level of regulation for ERK signals and may serve as nodes for the integration of incoming signals and the subsequent diversification of the outgoing signals with respect to substrate engagement.
Collapse
Affiliation(s)
- Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria Santander, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria Santander, Spain
| |
Collapse
|
211
|
Malartre M. Regulatory mechanisms of EGFR signalling during Drosophila eye development. Cell Mol Life Sci 2016; 73:1825-43. [PMID: 26935860 PMCID: PMC11108404 DOI: 10.1007/s00018-016-2153-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 01/14/2023]
Abstract
EGFR signalling is a well-conserved signalling pathway playing major roles during development and cancers. This review explores what studying the EGFR pathway during Drosophila eye development has taught us in terms of the diversity of its regulatory mechanisms. This model system has allowed the identification of numerous positive and negative regulators acting at specific time and place, thus participating to the tight control of signalling. EGFR signalling regulation is achieved by a variety of mechanisms, including the control of ligand processing, the availability of the receptor itself and the transduction of the cascade in the cytoplasm. Ultimately, the transcriptional responses contribute to the establishment of positive and negative feedback loops. The combination of these multiple mechanisms employed to regulate the EGFR pathway leads to specific cellular outcomes involved in functions as diverse as the acquisition of cell fate, proliferation, survival, adherens junction remodelling and morphogenesis.
Collapse
Affiliation(s)
- Marianne Malartre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
212
|
Purinylpyridinylamino-based DFG-in/αC-helix-out B-Raf inhibitors: Applying mutant versus wild-type B-Raf selectivity indices for compound profiling. Bioorg Med Chem 2016; 24:2215-34. [DOI: 10.1016/j.bmc.2016.03.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/20/2016] [Accepted: 03/27/2016] [Indexed: 12/19/2022]
|
213
|
Foster SA, Whalen DM, Özen A, Wongchenko MJ, Yin J, Yen I, Schaefer G, Mayfield JD, Chmielecki J, Stephens PJ, Albacker LA, Yan Y, Song K, Hatzivassiliou G, Eigenbrot C, Yu C, Shaw AS, Manning G, Skelton NJ, Hymowitz SG, Malek S. Activation Mechanism of Oncogenic Deletion Mutations in BRAF, EGFR, and HER2. Cancer Cell 2016; 29:477-493. [PMID: 26996308 DOI: 10.1016/j.ccell.2016.02.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/11/2016] [Accepted: 02/13/2016] [Indexed: 12/11/2022]
Abstract
Activating mutations in protein kinases drive many cancers. While how recurring point mutations affect kinase activity has been described, the effect of in-frame deletions is not well understood. We show that oncogenic deletions within the β3-αC loop of HER2 and BRAF are analogous to the recurrent EGFR exon 19 deletions. We identify pancreatic carcinomas with BRAF deletions mutually exclusive with KRAS mutations. Crystal structures of BRAF deletions reveal the truncated loop restrains αC in an active "in" conformation, imparting resistance to inhibitors like vemurafenib that bind the αC "out" conformation. Characterization of loop length explains the prevalence of five amino acid deletions in BRAF, EGFR, and HER2 and highlights the importance of this region for kinase activity and inhibitor efficacy.
Collapse
Affiliation(s)
- Scott A Foster
- Department of Discovery Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Daniel M Whalen
- Department of Protein Chemistry & Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ayşegül Özen
- Department of Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Matthew J Wongchenko
- Department of Oncology Biomarker Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - JianPing Yin
- Department of Protein Chemistry & Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ivana Yen
- Department of Discovery Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Gabriele Schaefer
- Department of Translational Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John D Mayfield
- Foundation Medicine, 150 Second Street, Cambridge, MA 02141, USA
| | | | | | - Lee A Albacker
- Foundation Medicine, 150 Second Street, Cambridge, MA 02141, USA
| | - Yibing Yan
- Department of Oncology Biomarker Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kyung Song
- Department of Translational Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Georgia Hatzivassiliou
- Department of Cancer Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Charles Eigenbrot
- Department of Protein Chemistry & Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christine Yu
- Department of Protein Chemistry & Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Andrey S Shaw
- Department of Discovery Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Gerard Manning
- Department of Bioinformatics & Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nicholas J Skelton
- Department of Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Sarah G Hymowitz
- Department of Protein Chemistry & Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Shiva Malek
- Department of Discovery Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
214
|
Abstract
Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| | - Yongna Xing
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
215
|
Aman W, Lee J, Kim M, Yang S, Jung H, Hah JM. Discovery of highly selective CRAF inhibitors, 3-carboxamido-2H-indazole-6-arylamide: In silico FBLD design, synthesis and evaluation. Bioorg Med Chem Lett 2016; 26:1188-92. [DOI: 10.1016/j.bmcl.2016.01.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/07/2023]
|
216
|
Jambrina PG, Rauch N, Pilkington R, Rybakova K, Nguyen LK, Kholodenko BN, Buchete NV, Kolch W, Rosta E. Phosphorylation of RAF Kinase Dimers Drives Conformational Changes that Facilitate Transactivation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Nora Rauch
- Systems Biology Ireland and Conway Institute; University College Dublin, Belfield; Dublin 4 Ireland
| | - Ruth Pilkington
- Systems Biology Ireland and Conway Institute; University College Dublin, Belfield; Dublin 4 Ireland
| | - Katja Rybakova
- Systems Biology Ireland and Conway Institute; University College Dublin, Belfield; Dublin 4 Ireland
| | - Lan K. Nguyen
- Systems Biology Ireland; University College Dublin, Belfield; Dublin 4 Ireland
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute; Monash University; Melbourne Victoria 3800 Australia
| | - Boris N. Kholodenko
- Systems Biology Ireland and Conway Institute; University College Dublin, Belfield; Dublin 4 Ireland
| | - Nicolae-Viorel Buchete
- School of Physics and Complex and Adaptative Systems Laboratory; University College Dublin, Belfield; Dublin 4 Ireland
| | - Walter Kolch
- Systems Biology Ireland and Conway Institute; University College Dublin, Belfield; Dublin 4 Ireland
- School of Medicine & Medical Sciences; University College Dublin, Belfield; Dublin 4 Ireland
| | - Edina Rosta
- Department of Chemistry; King's College London; London SE1 1DB UK
| |
Collapse
|
217
|
Affiliation(s)
- Warren Fiskus
- Department of Medicine; Department of Molecular and Cellular Biology; Dan L. Duncan Cancer Center; and Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030;
| | - Nicholas Mitsiades
- Department of Medicine; Department of Molecular and Cellular Biology; Dan L. Duncan Cancer Center; and Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030;
| |
Collapse
|
218
|
Chen SH, Zhang Y, Van Horn RD, Yin T, Buchanan S, Yadav V, Mochalkin I, Wong SS, Yue YG, Huber L, Conti I, Henry JR, Starling JJ, Plowman GD, Peng SB. Oncogenic BRAF Deletions That Function as Homodimers and Are Sensitive to Inhibition by RAF Dimer Inhibitor LY3009120. Cancer Discov 2016; 6:300-15. [PMID: 26732095 DOI: 10.1158/2159-8290.cd-15-0896] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/30/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED We have identified previously undiscovered BRAF in-frame deletions near the αC-helix region of the kinase domain in pancreatic, lung, ovarian, and thyroid cancers. These deletions are mutually exclusive with KRAS mutations and occur in 4.21% of KRAS wild-type pancreatic cancer. siRNA knockdown in cells harboring BRAF deletions showed that the MAPK activity and cell growth are BRAF dependent. Structurally, the BRAF deletions are predicted to shorten the β3/αC-helix loop and hinder its flexibility by locking the helix in the active αC-helix-in conformation that favors dimer formation. Expression of L485-P490-deleted BRAF is able to transform NIH/3T3 cells in a BRAF dimer-dependent manner. BRAF homodimer is confirmed to be the dominant RAF dimer by proximity ligation assays in BRAF deletion cells, which are resistant to the BRAF inhibitor vemurafenib and sensitive to LY3009120, a RAF dimer inhibitor. In tumor models with BRAF deletions, LY3009120 has shown tumor growth regression, whereas vemurafenib is inactive. SIGNIFICANCE This study discovered oncogenic BRAF deletions with a distinct activation mechanism dependent on the BRAF dimer formation in tumor cells. LY3009120 is active against these cells and represents a potential treatment option for patients with cancer with these BRAF deletions, or other atypical BRAF mutations where BRAF functions as a dimer.
Collapse
Affiliation(s)
- Shih-Hsun Chen
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana
| | - Youyan Zhang
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana
| | | | - Tinggui Yin
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana
| | - Sean Buchanan
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana
| | - Vipin Yadav
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana
| | - Igor Mochalkin
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana
| | - Swee Seong Wong
- Tailored Therapeutics, Eli Lilly and Company, Indianapolis, Indiana
| | - Yong Gang Yue
- Tailored Therapeutics, Eli Lilly and Company, Indianapolis, Indiana
| | - Lysiane Huber
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana
| | - Ilaria Conti
- Oncology Business Unit, Eli Lilly and Company, Indianapolis, Indiana
| | - James R Henry
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana
| | | | | | - Sheng-Bin Peng
- Oncology Research, Eli Lilly and Company, Indianapolis, Indiana.
| |
Collapse
|
219
|
Maik-Rachline G, Seger R. The ERK cascade inhibitors: Towards overcoming resistance. Drug Resist Updat 2016; 25:1-12. [PMID: 27155372 DOI: 10.1016/j.drup.2015.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/22/2015] [Accepted: 12/25/2015] [Indexed: 12/24/2022]
Abstract
The RAS-ERK pathway plays a major regulatory role in various cellular processes. This pathway is hyperactivated and takes an active part in the malignant transformation of more than 85% of cancers. The hyperactivation is mainly due to oncogenic activating mutations in the pathway's components RAS, RAF and MEK, but also due to indirect mechanisms in cells transformed by other oncogenes. Various inhibitors targeting the different tiers of the cascade have been successfully developed and clinically approved, while some are still undergoing preclinical and clinical evaluation. Treatments with the clinically approved RAF and MEK inhibitors have substantially improved the clinical outcome of metastatic mutated-BRAF melanoma. However, the rapid emergence of drug resistance of initially responsive cancers and limited efficacy towards other cancers has led to only marginal patient benefit. Deciphering the molecular mechanisms underlying intrinsic or acquired resistance is a necessity in order to enhance the treatment efficacy of ERK-addicted cancers. Therefore, many studies in the past 5 years embarked on this campaign, revealing several resistance mechanisms. These include, expression of drug-resistant RAF isoforms, molecular or genetic alterations of active downstream components, overexpression of upstream components of the cascade that can reactivate ERK and other survival-related pathways. The understanding of these molecular resistance mechanisms led to further development of drugs that can overcome drug resistance, including our own effort aiming to prevent the nuclear translocation of ERK without affecting its activation. In this review we will focus on the mechanisms underlying drug resistance and efforts to develop activity-independent, more efficacious, antitumor drugs.
Collapse
Affiliation(s)
- Galia Maik-Rachline
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
220
|
Verkhivker GM. Molecular dynamics simulations and modelling of the residue interaction networks in the BRAF kinase complexes with small molecule inhibitors: probing the allosteric effects of ligand-induced kinase dimerization and paradoxical activation. MOLECULAR BIOSYSTEMS 2016; 12:3146-65. [DOI: 10.1039/c6mb00298f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The computational analysis of residue interaction networks dissects the allosteric effects of inhibitor-induced BRAF kinase dimerization and paradoxical activation.
Collapse
Affiliation(s)
- G. M. Verkhivker
- Graduate Program in Computational and Data Sciences
- Department of Computational Sciences
- Schmid College of Science and Technology
- Chapman University
- Orange
| |
Collapse
|
221
|
Maxson JE, Abel ML, Wang J, Deng X, Reckel S, Luty SB, Sun H, Gorenstein J, Hughes SB, Bottomly D, Wilmot B, McWeeney SK, Radich J, Hantschel O, Middleton RE, Gray NS, Druker BJ, Tyner JW. Identification and Characterization of Tyrosine Kinase Nonreceptor 2 Mutations in Leukemia through Integration of Kinase Inhibitor Screening and Genomic Analysis. Cancer Res 2015; 76:127-38. [PMID: 26677978 DOI: 10.1158/0008-5472.can-15-0817] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/07/2015] [Indexed: 01/22/2023]
Abstract
The amount of genomic information about leukemia cells currently far exceeds our overall understanding of the precise genetic events that ultimately drive disease development and progression. Effective implementation of personalized medicine will require tools to distinguish actionable genetic alterations within the complex genetic landscape of leukemia. In this study, we performed kinase inhibitor screens to predict functional gene targets in primary specimens from patients with acute myeloid leukemia and chronic myelomonocytic leukemia. Deep sequencing of the same patient specimens identified genetic alterations that were then integrated with the functionally important targets using the HitWalker algorithm to prioritize the mutant genes that most likely explain the observed drug sensitivity patterns. Through this process, we identified tyrosine kinase nonreceptor 2 (TNK2) point mutations that exhibited oncogenic capacity. Importantly, the integration of functional and genomic data using HitWalker allowed for prioritization of rare oncogenic mutations that may have been missed through genomic analysis alone. These mutations were sensitive to the multikinase inhibitor dasatinib, which antagonizes TNK2 kinase activity, as well as novel TNK2 inhibitors, XMD8-87 and XMD16-5, with greater target specificity. We also identified activating truncation mutations in other tumor types that were sensitive to XMD8-87 and XMD16-5, exemplifying the potential utility of these compounds across tumor types dependent on TNK2. Collectively, our findings highlight a more sensitive approach for identifying actionable genomic lesions that may be infrequently mutated or overlooked and provide a new method for the prioritization of candidate genetic mutations.
Collapse
Affiliation(s)
- Julia E Maxson
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Melissa L Abel
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Jinhua Wang
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Xianming Deng
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Sina Reckel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Samuel B Luty
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Huahang Sun
- Belfer Institute for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Julie Gorenstein
- Belfer Institute for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Seamus B Hughes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon
| | - Beth Wilmot
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon. Division of Bioinformatics and Computational Biology, Oregon Health and Science University, Portland, Oregon
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon. Division of Bioinformatics and Computational Biology, Oregon Health and Science University, Portland, Oregon
| | - Jerald Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Richard E Middleton
- Belfer Institute for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Nathanael S Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon. Howard Hughes Medical Institute, Portland, Oregon
| | - Jeffrey W Tyner
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon. Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
222
|
Köhler M, Röring M, Schorch B, Heilmann K, Stickel N, Fiala GJ, Schmitt LC, Braun S, Ehrenfeld S, Uhl FM, Kaltenbacher T, Weinberg F, Herzog S, Zeiser R, Schamel WW, Jumaa H, Brummer T. Activation loop phosphorylation regulates B-Raf in vivo and transformation by B-Raf mutants. EMBO J 2015; 35:143-61. [PMID: 26657898 DOI: 10.15252/embj.201592097] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Despite being mutated in cancer and RASopathies, the role of the activation segment (AS) has not been addressed for B-Raf signaling in vivo. Here, we generated a conditional knock-in mouse allowing the expression of the B-Raf(AVKA) mutant in which the AS phosphoacceptor sites T599 and S602 are replaced by alanine residues. Surprisingly, despite producing a kinase-impaired protein, the Braf(AVKA) allele does not phenocopy the lethality of Braf-knockout or paradoxically acting knock-in alleles. However, Braf(AVKA) mice display abnormalities in the hematopoietic system, a distinct facial morphology, reduced ERK pathway activity in the brain, and an abnormal gait. This phenotype suggests that maximum B-Raf activity is required for the proper development, function, and maintenance of certain cell populations. By establishing conditional murine embryonic fibroblast cultures, we further show that MEK/ERK phosphorylation and the immediate early gene response toward growth factors are impaired in the presence of B-Raf(AVKA). Importantly, alanine substitution of T599/S602 impairs the transformation potential of oncogenic non-V600E B-Raf mutants and a fusion protein, suggesting that blocking their phosphorylation could represent an alternative strategy to ATP-competitive inhibitors.
Collapse
Affiliation(s)
- Martin Köhler
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Spemann Graduate School for Biology and Medicine, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Michael Röring
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Spemann Graduate School for Biology and Medicine, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Björn Schorch
- Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Spemann Graduate School for Biology and Medicine, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Katharina Heilmann
- Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Natalie Stickel
- Spemann Graduate School for Biology and Medicine, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany Department of Hematology and Oncology, University Medical Center ALU, Freiburg, Germany
| | - Gina J Fiala
- Spemann Graduate School for Biology and Medicine, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany Department of Molecular Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lisa C Schmitt
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Sandra Braun
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany
| | - Sophia Ehrenfeld
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Franziska M Uhl
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Thorsten Kaltenbacher
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Florian Weinberg
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany
| | - Sebastian Herzog
- Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany Department of Molecular Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology and Oncology, University Medical Center ALU, Freiburg, Germany Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany Comprehensive Cancer Centre, Freiburg, Germany German Consortium for Translational Cancer Research DKTK, Standort Freiburg, Germany
| | - Wolfgang W Schamel
- Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany Department of Molecular Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany Center for Chronic Immunodeficiency CCI, University Medical Center, Freiburg, Germany
| | - Hassan Jumaa
- Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany Department of Molecular Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany Institute of Immunology, University Hospital Ulm, Ulm, Germany
| | - Tilman Brummer
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University (ALU), Freiburg, Germany Centre for Biological Systems Analysis ZBSA, ALU, Freiburg, Germany Faculty of Biology, ALU, Freiburg, Germany Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany Comprehensive Cancer Centre, Freiburg, Germany German Consortium for Translational Cancer Research DKTK, Standort Freiburg, Germany
| |
Collapse
|
223
|
Jambrina PG, Rauch N, Pilkington R, Rybakova K, Nguyen LK, Kholodenko BN, Buchete NV, Kolch W, Rosta E. Phosphorylation of RAF Kinase Dimers Drives Conformational Changes that Facilitate Transactivation. Angew Chem Int Ed Engl 2015; 55:983-6. [PMID: 26644280 PMCID: PMC4736688 DOI: 10.1002/anie.201509272] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Indexed: 12/19/2022]
Abstract
RAF kinases are key players in the MAPK signaling pathway and are important targets for personalized cancer therapy. RAF dimerization is part of the physiological activation mechanism, together with phosphorylation, and is known to convey resistance to RAF inhibitors. Herein, molecular dynamics simulations are used to show that phosphorylation of a key N-terminal acidic (NtA) motif facilitates RAF dimerization by introducing several interprotomer salt bridges between the αC-helix and charged residues upstream of the NtA motif. Additionally, we show that the R-spine of RAF interacts with a conserved Trp residue in the vicinity of the NtA motif, connecting the active sites of two protomers and thereby modulating the cooperative interactions in the RAF dimer. Our findings provide a first structure-based mechanism for the auto-transactivation of RAF and could be generally applicable to other kinases, opening new pathways for overcoming dimerization-related drug resistance.
Collapse
Affiliation(s)
- Pablo G Jambrina
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Nora Rauch
- Systems Biology Ireland and Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Ruth Pilkington
- Systems Biology Ireland and Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Katja Rybakova
- Systems Biology Ireland and Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Lan K Nguyen
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, 4, Ireland.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Boris N Kholodenko
- Systems Biology Ireland and Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Nicolae-Viorel Buchete
- School of Physics and Complex and Adaptative Systems Laboratory, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland and Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland. .,School of Medicine & Medical Sciences, University College Dublin, Belfield, Dublin, 4, Ireland.
| | - Edina Rosta
- Department of Chemistry, King's College London, London, SE1 1DB, UK.
| |
Collapse
|
224
|
Distinct predictive performance of Rac1 and Cdc42 in cell migration. Sci Rep 2015; 5:17527. [PMID: 26634649 PMCID: PMC4669460 DOI: 10.1038/srep17527] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/30/2015] [Indexed: 11/12/2022] Open
Abstract
We propose a new computation-based approach for elucidating how signaling molecules are decoded in cell migration. In this approach, we performed FRET time-lapse imaging of Rac1 and Cdc42, members of Rho GTPases which are responsible for cell motility, and quantitatively identified the response functions that describe the conversion from the molecular activities to the morphological changes. Based on the identified response functions, we clarified the profiles of how the morphology spatiotemporally changes in response to local and transient activation of Rac1 and Cdc42, and found that Rac1 and Cdc42 activation triggers laterally propagating membrane protrusion. The response functions were also endowed with property of differentiator, which is beneficial for maintaining sensitivity under adaptation to the mean level of input. Using the response function, we could predict the morphological change from molecular activity, and its predictive performance provides a new quantitative measure of how much the Rho GTPases participate in the cell migration. Interestingly, we discovered distinct predictive performance of Rac1 and Cdc42 depending on the migration modes, indicating that Rac1 and Cdc42 contribute to persistent and random migration, respectively. Thus, our proposed predictive approach enabled us to uncover the hidden information processing rules of Rho GTPases in the cell migration.
Collapse
|
225
|
Kornev AP, Taylor SS. Dynamics-Driven Allostery in Protein Kinases. Trends Biochem Sci 2015; 40:628-647. [PMID: 26481499 DOI: 10.1016/j.tibs.2015.09.002] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 01/05/2023]
Abstract
Protein kinases have very dynamic structures and their functionality strongly depends on their dynamic state. Active kinases reveal a dynamic pattern with residues clustering into semirigid communities that move in μs-ms timescale. Previously detected hydrophobic spines serve as connectors between communities. Communities do not follow the traditional subdomain structure of the kinase core or its secondary structure elements. Instead they are organized around main functional units. Integration of the communities depends on the assembly of the hydrophobic spine and phosphorylation of the activation loop. Single mutations can significantly disrupt the dynamic infrastructure and thereby interfere with long-distance allosteric signaling that propagates throughout the whole molecule. Dynamics is proposed to be the underlying mechanism for allosteric regulation in protein kinases.
Collapse
Affiliation(s)
- Alexandr P Kornev
- Department of Pharmacology, University of California at San Diego, La Jolla, CA, 92093, USA.
| | - Susan S Taylor
- Department of Pharmacology, University of California at San Diego, La Jolla, CA, 92093, USA; Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
226
|
Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer 2015; 15:577-92. [PMID: 26399658 DOI: 10.1038/nrc4000] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of the ERK signalling pathway in cancer is thought to be most prominent in tumours in which mutations in the receptor tyrosine kinases RAS, BRAF, CRAF, MEK1 or MEK2 drive growth factor-independent ERK1 and ERK2 activation and thence inappropriate cell proliferation and survival. New drugs that inhibit RAF or MEK1 and MEK2 have recently been approved or are currently undergoing late-stage clinical evaluation. In this Review, we consider the ERK pathway, focusing particularly on the role of MEK1 and MEK2, the 'gatekeepers' of ERK1/2 activity. We discuss their validation as drug targets, the merits of targeting MEK1 and MEK2 versus BRAF and the mechanisms of action of different inhibitors of MEK1 and MEK2. We also consider how some of the systems-level properties (intrapathway regulatory loops and wider signalling network connections) of the ERK pathway present a challenge for the success of MEK1 and MEK2 inhibitors, discuss mechanisms of resistance to these inhibitors, and review their clinical progress.
Collapse
Affiliation(s)
- Christopher J Caunt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew J Sale
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Paul D Smith
- AstraZeneca, Oncology iMed, Cancer Biosciences, Cancer Research UK, Li Ka Shing Centre, Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
227
|
Chen J, Jin R, Zhao J, Liu J, Ying H, Yan H, Zhou S, Liang Y, Huang D, Liang X, Yu H, Lin H, Cai X. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Lett 2015; 367:1-11. [PMID: 26170167 DOI: 10.1016/j.canlet.2015.06.019] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Renan Jin
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Zhao
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinghua Liu
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Han Yan
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Senjun Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Diyu Huang
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
228
|
Yao Z, Torres NM, Tao A, Gao Y, Luo L, Li Q, de Stanchina E, Abdel-Wahab O, Solit DB, Poulikakos PI, Rosen N. BRAF Mutants Evade ERK-Dependent Feedback by Different Mechanisms that Determine Their Sensitivity to Pharmacologic Inhibition. Cancer Cell 2015; 28:370-83. [PMID: 26343582 PMCID: PMC4894664 DOI: 10.1016/j.ccell.2015.08.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 07/21/2015] [Accepted: 08/03/2015] [Indexed: 12/29/2022]
Abstract
ERK signaling requires RAS-induced RAF dimerization and is limited by feedback. Activated BRAF mutants evade feedback inhibition of RAS by either of two mechanisms. BRAF V600 mutants are activated monomers when RAS activity is low; all other activating BRAF mutants function as constitutive RAS-independent dimers. RAF inhibitors effectively inhibit mutant monomers, but not dimers; their binding to one site in the dimer significantly reduces their affinity for the second. Tumors with non-V600E BRAF mutants are insensitive to these drugs, and increased expression of BRAF V600E dimers causes acquired resistance. A compound that equally inhibits both sites of mutant RAF dimers inhibits tumors driven by either class of mutants or those BRAF V600E tumors with dimer-dependent acquired resistance to monomer-specific inhibitors.
Collapse
Affiliation(s)
- Zhan Yao
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neilawattie M Torres
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anthony Tao
- College of Arts and Sciences, New York University, New York, NY 10003, USA
| | - Yijun Gao
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lusong Luo
- BeiGene (Beijing) Co., Ltd., No. 30 Science Park Road, Zhong-Guan-Cun Life Science Park, Changping District, Beijing 102206, China
| | - Qi Li
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Omar Abdel-Wahab
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Neal Rosen
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Mechanism Based Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
229
|
Peng SB, Henry JR, Kaufman MD, Lu WP, Smith BD, Vogeti S, Rutkoski TJ, Wise S, Chun L, Zhang Y, Van Horn RD, Yin T, Zhang X, Yadav V, Chen SH, Gong X, Ma X, Webster Y, Buchanan S, Mochalkin I, Huber L, Kays L, Donoho GP, Walgren J, McCann D, Patel P, Conti I, Plowman GD, Starling JJ, Flynn DL. Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor Activities in RAS or BRAF Mutant Cancers. Cancer Cell 2015; 28:384-98. [PMID: 26343583 DOI: 10.1016/j.ccell.2015.08.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/29/2015] [Accepted: 08/03/2015] [Indexed: 12/19/2022]
Abstract
LY3009120 is a pan-RAF and RAF dimer inhibitor that inhibits all RAF isoforms and occupies both protomers in RAF dimers. Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities. LY3009120 induces BRAF-CRAF dimerization but inhibits the phosphorylation of downstream MEK and ERK, suggesting that it effectively inhibits the kinase activity of BRAF-CRAF heterodimers. Further analyses demonstrated that LY3009120 also inhibits various forms of RAF dimers including BRAF or CRAF homodimers. Due to these unique properties, LY3009120 demonstrates minimal paradoxical activation, inhibits MEK1/2 phosphorylation, and exhibits anti-tumor activities across multiple models carrying KRAS, NRAS, or BRAF mutation.
Collapse
Affiliation(s)
| | | | | | - Wei-Ping Lu
- Deciphera Pharmaceuticals, LLC, Lawrence, KS 66044, USA
| | - Bryan D Smith
- Deciphera Pharmaceuticals, LLC, Lawrence, KS 66044, USA
| | - Subha Vogeti
- Deciphera Pharmaceuticals, LLC, Lawrence, KS 66044, USA
| | | | - Scott Wise
- Deciphera Pharmaceuticals, LLC, Lawrence, KS 66044, USA
| | - Lawrence Chun
- Emerald Biostructures, Bainbridge Island, WA 98110, USA
| | - Youyan Zhang
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | - Tinggui Yin
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Xiaoyi Zhang
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Vipin Yadav
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | - Xueqian Gong
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Xiwen Ma
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Yue Webster
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | - Lisa Kays
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | - Denis McCann
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Phenil Patel
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ilaria Conti
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | |
Collapse
|
230
|
Kholodenko BN. Drug Resistance Resulting from Kinase Dimerization Is Rationalized by Thermodynamic Factors Describing Allosteric Inhibitor Effects. Cell Rep 2015; 12:1939-49. [PMID: 26344764 DOI: 10.1016/j.celrep.2015.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/20/2015] [Accepted: 08/02/2015] [Indexed: 12/13/2022] Open
Abstract
Treatment of cancer patients with ATP-competitive inhibitors of BRAF/CRAF kinases surprisingly increases total kinase activity, especially in wild-type BRAF cells, subverting the desired clinical outcome. Similar inhibition resistance is observed for numerous kinases involving homo/heterodimerization in their activation cycles. Here, I demonstrate that drug resistance resulting from kinase dimerization can be explained using thermodynamic principles. I show that allosteric regulation by inhibitors is described by thermodynamic factors that quantify inhibitor-induced changes in kinase dimerization and the difference in the drug affinity for a free monomer versus a dimer harboring one drug molecule. The analysis extends to kinase homo- and heterodimers, allows for their symmetric and asymmetric conformations, and predicts how thermodynamic factors influence dose-response dependencies. I show how two inhibitors, ineffective on their own, when combined can abolish drug resistance at lower doses than either inhibitor applied alone. Thus, the mechanistic models suggest ways to overcome resistance to kinase inhibitors.
Collapse
Affiliation(s)
- Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
231
|
Nussinov R, Muratcioglu S, Tsai CJ, Jang H, Gursoy A, Keskin O. The Key Role of Calmodulin in KRAS-Driven Adenocarcinomas. Mol Cancer Res 2015; 13:1265-73. [PMID: 26085527 PMCID: PMC4572916 DOI: 10.1158/1541-7786.mcr-15-0165] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/09/2015] [Indexed: 12/14/2022]
Abstract
KRAS4B is a highly oncogenic splice variant of the KRAS isoform. It is the only isoform associated with initiation of adenocarcinomas. Insight into why and how KRAS4B can mediate ductal adenocarcinomas, particularly of the pancreas, is vastly important for its therapeutics. Here we point out the overlooked critical role of calmodulin (CaM). Calmodulin selectively binds to GTP-bound K-Ras4B; but not to other Ras isoforms. Cell proliferation and growth require the MAPK (Raf/MEK/ERK) and PI3K/Akt pathways. We propose that Ca(2+)/calmodulin promote PI3Kα/Akt signaling, and suggest how. The elevated calcium levels clinically observed in adenocarcinomas may explain calmodulin's involvement in recruiting and stimulating PI3Kα through interaction with its n/cSH2 domains as well as K-Ras4B; importantly, it also explains why K-Ras4B specifically is a key player in ductal carcinomas, such as pancreatic (PDAC), colorectal (CRC), and lung cancers. We hypothesize that calmodulin recruits and helps activate PI3Kα at the membrane, and that this is the likely reason for Ca(2+)/calmodulin dependence in adenocarcinomas. Calmodulin can contribute to initiation/progression of ductal cancers via both PI3Kα/Akt and Raf/MEK/ERK pathways. Blocking the K-Ras4B/MAPK pathway and calmodulin/PI3Kα binding in a K-Ras4B/calmodulin/PI3Kα trimer could be a promising adenocarcinoma-specific therapeutic strategy.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, Maryland. Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, Maryland
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, Maryland
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
232
|
Di Michele M, Stes E, Vandermarliere E, Arora R, Astorga-Wells J, Vandenbussche J, van Heerde E, Zubarev R, Bonnet P, Linders JTM, Jacoby E, Brehmer D, Martens L, Gevaert K. Limited Proteolysis Combined with Stable Isotope Labeling Reveals Conformational Changes in Protein (Pseudo)kinases upon Binding Small Molecules. J Proteome Res 2015; 14:4179-93. [PMID: 26293246 DOI: 10.1021/acs.jproteome.5b00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Likely due to conformational rearrangements, small molecule inhibitors may stabilize the active conformation of protein kinases and paradoxically promote tumorigenesis. We combined limited proteolysis with stable isotope labeling MS to monitor protein conformational changes upon binding of small molecules. Applying this method to the human serine/threonine kinase B-Raf, frequently mutated in cancer, we found that binding of ATP or its nonhydrolyzable analogue AMP-PNP, but not ADP, stabilized the structure of both B-Raf(WT) and B-Raf(V600E). The ATP-competitive type I B-Raf inhibitor vemurafenib and the type II inhibitor sorafenib stabilized the kinase domain (KD) but had distinct effects on the Ras-binding domain. Stabilization of the B-Raf(WT) KD was confirmed by hydrogen/deuterium exchange MS and molecular dynamics simulations. Our results are further supported by cellular assays in which we assessed cell viability and phosphorylation profiles in cells expressing B-Raf(WT) or B-Raf(V600E) in response to vemurafenib or sorafenib. Our data indicate that an overall stabilization of the B-Raf structure by specific inhibitors activates MAPK signaling and increases cell survival, helping to explain clinical treatment failure. We also applied our method to monitor conformational changes upon nucleotide binding of the pseudokinase KSR1, which holds high potential for inhibition in human diseases.
Collapse
Affiliation(s)
- Michela Di Michele
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Elisabeth Stes
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Elien Vandermarliere
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Rohit Arora
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans , Pôle de chimie, Rue de Chartres, 45100 Orléans, France
| | | | - Jonathan Vandenbussche
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Erika van Heerde
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Roman Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Scheelelaberatoriet Scheeles väg 2, SE-171 77 Stockholm, Sweden
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans , Pôle de chimie, Rue de Chartres, 45100 Orléans, France
| | - Joannes T M Linders
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Edgar Jacoby
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Dirk Brehmer
- Oncology Discovery, Janssen Research and Development, A Division of Janssen Pharmaceutica NV , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Lennart Martens
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB , A. Baertsoenkaai 3, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , A. Baertsoenkaai 3, 9000 Ghent, Belgium
| |
Collapse
|
233
|
Abstract
In this issue of Cancer Cell, Herrero and colleagues identify an anti-tumorigenic small molecule that blocks ERK dimerization, but neither its catalytic activity nor its phosphorylation by MEK. These findings demonstrate that targeting protein dimerization could be a therapeutic avenue for inhibiting kinase signaling pathways associated with lower drug resistance.
Collapse
Affiliation(s)
- Aroon S Karra
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Clinton A Taylor
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Curtis A Thorne
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
234
|
Seeing is believing: Ras dimers observed in live cells. Proc Natl Acad Sci U S A 2015; 112:9793-4. [PMID: 26229079 DOI: 10.1073/pnas.1511805112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
235
|
Muratcioglu S, Chavan TS, Freed BC, Jang H, Khavrutskii L, Freed RN, Dyba MA, Stefanisko K, Tarasov SG, Gursoy A, Keskin O, Tarasova NI, Gaponenko V, Nussinov R. GTP-Dependent K-Ras Dimerization. Structure 2015; 23:1325-35. [PMID: 26051715 PMCID: PMC4497850 DOI: 10.1016/j.str.2015.04.019] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022]
Abstract
Ras proteins recruit and activate effectors, including Raf, that transmit receptor-initiated signals. Monomeric Ras can bind Raf; however, activation of Raf requires its dimerization. It has been suspected that dimeric Ras may promote dimerization and activation of Raf. Here, we show that the GTP-bound catalytic domain of K-Ras4B, a highly oncogenic splice variant of the K-Ras isoform, forms stable homodimers. We observe two major dimer interfaces. The first, highly populated β-sheet dimer interface is at the Switch I and effector binding regions, overlapping the binding surfaces of Raf, PI3K, RalGDS, and additional effectors. This interface has to be inhibitory to such effectors. The second, helical interface also overlaps the binding sites of some effectors. This interface may promote activation of Raf. Our data reveal how Ras self-association can regulate effector binding and activity, and suggest that disruption of the helical dimer interface by drugs may abate Raf signaling in cancer.
Collapse
Affiliation(s)
- Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Tanmay S Chavan
- Department of Medicinal Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benjamin C Freed
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Lyuba Khavrutskii
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - R Natasha Freed
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Marzena A Dyba
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Structural Biophysics Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Karen Stefanisko
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Sergey G Tarasov
- Structural Biophysics Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Nadya I Tarasova
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Ruth Nussinov
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
236
|
Ryu J, Park SH. Simple synthetic protein scaffolds can create adjustable artificial MAPK circuits in yeast and mammalian cells. Sci Signal 2015; 8:ra66. [PMID: 26126717 DOI: 10.1126/scisignal.aab3397] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As hubs for eukaryotic cell signaling, scaffold proteins are attractive targets for engineering and manipulating signaling circuits. We designed synthetic scaffolds with a repeated PDZ domain that interacted with engineered kinases of the mitogen-activated protein kinase (MAPK) cascade involved in yeast mating to investigate how modular interactions mediate kinase cascades. The synthetic scaffolds functioned as logic gates of signaling circuits. We replaced the endogenous yeast scaffold Ste5 with designer scaffolds with a variable numbers of a PDZ domain that bound kinases or phosphatases engineered with a PDZ-binding motif. Although association with the membrane was necessary for pathway activity, surprisingly, mating responses occurred when the circuit contained a scaffold with only two PDZ domains, which could only bind two of the three kinases simultaneously. Additionally, the three tiers of the MAPK pathway exhibited decreasing positional plasticity from the top [MAPK kinase kinase (MAPKKK)] to the bottom (MAPK) tier such that binding of a MAPKKK, but not a MAPK, from the osmoregulatory pathway or protein kinase C pathway to the synthetic scaffold activated a reporter of the mating response. We also showed that the output duration and intensity could be altered by recruiting phosphatases or varying the affinity of the recruited proteins for the scaffold and that a designer MAPK scaffold functioned in mammalian cells. Thus, this synthetic approach with designer scaffolds should enable the rational manipulation or engineering of signaling pathways and provide insight into the functional roles of scaffold proteins.
Collapse
Affiliation(s)
- Jihoon Ryu
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sang-Hyun Park
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
237
|
Röck R, Bachmann V, Bhang HEC, Malleshaiah M, Raffeiner P, Mayrhofer JE, Tschaikner PM, Bister K, Aanstad P, Pomper MG, Michnick SW, Stefan E. In-vivo detection of binary PKA network interactions upon activation of endogenous GPCRs. Sci Rep 2015; 5:11133. [PMID: 26099953 PMCID: PMC4477410 DOI: 10.1038/srep11133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/14/2015] [Indexed: 12/21/2022] Open
Abstract
Membrane receptor-sensed input signals affect and modulate intracellular protein-protein interactions (PPIs). Consequent changes occur to the compositions of protein complexes, protein localization and intermolecular binding affinities. Alterations of compartmentalized PPIs emanating from certain deregulated kinases are implicated in the manifestation of diseases such as cancer. Here we describe the application of a genetically encoded Protein-fragment Complementation Assay (PCA) based on the Renilla Luciferase (Rluc) enzyme to compare binary PPIs of the spatially and temporally controlled protein kinase A (PKA) network in diverse eukaryotic model systems. The simplicity and sensitivity of this cell-based reporter allows for real-time recordings of mutually exclusive PPIs of PKA upon activation of selected endogenous G protein-coupled receptors (GPCRs) in cancer cells, xenografts of mice, budding yeast, and zebrafish embryos. This extends the application spectrum of Rluc PCA for the quantification of PPI-based receptor-effector relationships in physiological and pathological model systems.
Collapse
Affiliation(s)
- Ruth Röck
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Verena Bachmann
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Hyo-Eun C Bhang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21287, USA
| | - Mohan Malleshaiah
- Département de Biochimie, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| | - Philipp Raffeiner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johanna E Mayrhofer
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Philipp M Tschaikner
- Institute of Molecular Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Pia Aanstad
- Institute of Molecular Biology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21287, USA
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
238
|
Abstract
RAF family kinases were among the first oncoproteins to be described more than 30 years ago. They primarily act as signalling relays downstream of RAS, and their close ties to cancer have fuelled a large number of studies. However, we still lack a systems-level understanding of their regulation and mode of action. The recent discovery that the catalytic activity of RAF depends on an allosteric mechanism driven by kinase domain dimerization is providing a vital new piece of information towards a comprehensive model of RAF function. The fact that current RAF inhibitors unexpectedly induce ERK signalling by stimulating RAF dimerization also calls for a deeper structural characterization of this family of kinases.
Collapse
|
239
|
Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc Natl Acad Sci U S A 2015; 112:7996-8001. [PMID: 26080442 DOI: 10.1073/pnas.1509123112] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRas(G12D), a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRas(G12D) is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.
Collapse
|
240
|
Mendez AS, Alfaro J, Morales-Soto MA, Dar AC, McCullagh E, Gotthardt K, Li H, Acosta-Alvear D, Sidrauski C, Korennykh AV, Bernales S, Shokat KM, Walter P. Endoplasmic reticulum stress-independent activation of unfolded protein response kinases by a small molecule ATP-mimic. eLife 2015; 4. [PMID: 25986605 PMCID: PMC4436593 DOI: 10.7554/elife.05434] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/25/2015] [Indexed: 12/21/2022] Open
Abstract
Two ER membrane-resident transmembrane kinases, IRE1 and PERK, function as stress sensors in the unfolded protein response. IRE1 also has an endoribonuclease activity, which initiates a non-conventional mRNA splicing reaction, while PERK phosphorylates eIF2α. We engineered a potent small molecule, IPA, that binds to IRE1's ATP-binding pocket and predisposes the kinase domain to oligomerization, activating its RNase. IPA also inhibits PERK but, paradoxically, activates it at low concentrations, resulting in a bell-shaped activation profile. We reconstituted IPA-activation of PERK-mediated eIF2α phosphorylation from purified components. We estimate that under conditions of maximal activation less than 15% of PERK molecules in the reaction are occupied by IPA. We propose that IPA binding biases the PERK kinase towards its active conformation, which trans-activates apo-PERK molecules. The mechanism by which partial occupancy with an inhibitor can activate kinases may be wide-spread and carries major implications for design and therapeutic application of kinase inhibitors. DOI:http://dx.doi.org/10.7554/eLife.05434.001 Cells contain thousands of proteins that carry out the essential tasks needed for survival. Before they can work, proteins must first fold into specific three-dimensional shapes. The endoplasmic reticulum, a cellular compartment that specializes in properly folding newly made proteins into their native states, is critical for this protein maturation process. If folding-enzymes in the endoplasmic reticulum are not properly balanced with the load of proteins they must fold, the endoplasmic reticulum can be overwhelmed with unfolded proteins that accumulate, leading to ‘endoplasmic reticulum stress’. The cell copes with endoplasmic reticulum stress by triggering the ‘unfolded protein response’ (UPR). This response helps to clear the unfolded proteins by increasing the size of the endoplasmic reticulum and the concentration of folding enzymes within it, and by decreasing the influx of newly made protein into the endoplasmic reticulum. The UPR engages signaling molecules in the endoplasmic reticulum membrane, among them two signaling enzymes called IRE1 and PERK. Drugs that activate these signaling enzymes could help the cell to deal with unfolded proteins, prevent toxicity resulting from endoplasmic reticulum stress, and ward off the diseases that result from it. Mendez, Alfaro, Morales-Soto et al. developed a small molecule, called IPA (short for IRE1/PERK Activator), that was designed to bind to and activate IRE1. Serendipitously, IPA not only activated IRE1 but also activated PERK. Surprisingly, PERK activation was only observed at low IPA concentrations in which IPA occupied the active sites in only a few PERK molecules, whereas at higher concentrations and full occupancy IPA completely inhibited PERK. Mendez, Alfaro, Morales-Soto et al. proposed that, under conditions of partial IPA occupancy, a minority of IPA-bound PERK molecules assume an activated state that propagates to adjacent PERK molecules that have no IPA bound to them, and activates them. Similar dose-dependent activation was previously observed for a clinically used drug designed to inhibit a similar signaling enzyme that is important in cancer progression. Together with the observations of Mendez, Alfaro, Morales-Soto et al., these results suggest that research into similar treatments must consider that a ‘minimal dose’ can exist, below which drugs may have the opposite effect to what is desired. Further work is still needed to fully understand the mechanisms that produce such behavior. DOI:http://dx.doi.org/10.7554/eLife.05434.002
Collapse
Affiliation(s)
- Aaron S Mendez
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | | | | | - Arvin C Dar
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | | | - Katja Gotthardt
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Han Li
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Diego Acosta-Alvear
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Carmela Sidrauski
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Alexei V Korennykh
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | | | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Peter Walter
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
241
|
Stebbing J, Zhang H, Xu Y, Lit LC, Green AR, Grothey A, Lombardo Y, Periyasamy M, Blighe K, Zhang W, Shaw JA, Ellis IO, Lenz HJ, Giamas G. KSR1 regulates BRCA1 degradation and inhibits breast cancer growth. Oncogene 2015; 34:2103-14. [PMID: 24909178 DOI: 10.1038/onc.2014.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/02/2014] [Accepted: 04/12/2014] [Indexed: 12/16/2022]
Abstract
Kinase suppressor of Ras-1 (KSR1) facilitates signal transduction in Ras-dependent cancers, including pancreatic and lung carcinomas but its role in breast cancer has not been well studied. Here, we demonstrate for the first time it functions as a tumor suppressor in breast cancer in contrast to data in other tumors. Breast cancer patients (n>1000) with high KSR1 showed better disease-free and overall survival, results also supported by Oncomine analyses, microarray data (n=2878) and genomic data from paired tumor and cell-free DNA samples revealing loss of heterozygosity. KSR1 expression is associated with high breast cancer 1, early onset (BRCA1), high BRCA1-associated ring domain 1 (BARD1) and checkpoint kinase 1 (Chk1) levels. Phospho-profiling of major components of the canonical Ras-RAF-mitogen-activated protein kinases pathway showed no significant changes after KSR1 overexpression or silencing. Moreover, KSR1 stably transfected cells formed fewer and smaller size colonies compared to the parental ones, while in vivo mouse model also demonstrated that the growth of xenograft tumors overexpressing KSR1 was inhibited. The tumor suppressive action of KSR1 is BRCA1 dependent shown by 3D-matrigel and soft agar assays. KSR1 stabilizes BRCA1 protein levels by reducing BRCA1 ubiquitination through increasing BARD1 abundance. These data link these proteins in a continuum with clinical relevance and position KSR1 in the major oncoprotein pathways in breast tumorigenesis.
Collapse
Affiliation(s)
- J Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK
| | - H Zhang
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK
| | - Y Xu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK
| | - L C Lit
- 1] Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK [2] Faculty of Medicine, Department of Physiology, University of Malaya, Kuala, Lumpur, Malaysia
| | - A R Green
- Department of Cellular Pathology, Queen's Medical Centre, Nottingham University Hospital NHS Trust, Nottingham, UK
| | - A Grothey
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK
| | - Y Lombardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK
| | - M Periyasamy
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK
| | - K Blighe
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| | - W Zhang
- Division of Medical Oncology, University of Southern California, Norris Comprehensive Cancer Centre, Keck School of Medicine, Los Angeles, CA, USA
| | - J A Shaw
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| | - I O Ellis
- Faculty of Medicine, Department of Physiology, University of Malaya, Kuala, Lumpur, Malaysia
| | - H J Lenz
- Division of Medical Oncology, University of Southern California, Norris Comprehensive Cancer Centre, Keck School of Medicine, Los Angeles, CA, USA
| | - G Giamas
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Imperial College Centre for Translational and Experimental Medicine, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
242
|
Lacalle RA, de Karam JC, Martínez-Muñoz L, Artetxe I, Peregil RM, Sot J, Rojas AM, Goñi FM, Mellado M, Mañes S. Type I phosphatidylinositol 4-phosphate 5-kinase homo- and heterodimerization determines its membrane localization and activity. FASEB J 2015; 29:2371-85. [PMID: 25713054 DOI: 10.1096/fj.14-264606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/03/2015] [Indexed: 11/11/2022]
Abstract
Type I phosphatidylinositol 4-phosphate 5-kinases (PIP5KIs; α, β, and γ) are a family of isoenzymes that produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] using phosphatidylinositol 4-phosphate as substrate. Their structural homology with the class II lipid kinases [type II phosphatidylinositol 5-phosphate 4-kinase (PIP4KII)] suggests that PIP5KI dimerizes, although this has not been formally demonstrated. Neither the hypothetical structural dimerization determinants nor the functional consequences of dimerization have been studied. Here, we used Förster resonance energy transfer, coprecipitation, and ELISA to show that PIP5KIβ forms homo- and heterodimers with PIP5KIγ_i2 in vitro and in live human cells. Dimerization appears to be a general phenomenon for PIP5KI isoenzymes because PIP5KIβ/PIP5KIα heterodimers were also detected by mass spectrometry. Dimerization was independent of actin cytoskeleton remodeling and was also observed using purified proteins. Mutagenesis studies of PIP5KIβ located the dimerization motif at the N terminus, in a region homologous to that implicated in PIP4KII dimerization. PIP5KIβ mutants whose dimerization was impaired showed a severe decrease in PI(4,5)P2 production and plasma membrane delocalization, although their association to lipid monolayers was unaltered. Our results identify dimerization as an integral feature of PIP5K proteins and a central determinant of their enzyme activity.
Collapse
Affiliation(s)
- Rosa Ana Lacalle
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Juan C de Karam
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Laura Martínez-Muñoz
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Ibai Artetxe
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Rosa M Peregil
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Jesús Sot
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Ana M Rojas
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Félix M Goñi
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Mario Mellado
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| | - Santos Mañes
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid, Spain; Unidad de Biofísica Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Campus de Leioa, Barrio Sarriena s/n, Leioa, Bizkaia, Spain; and Computational Biology and Bioinformatics Group, Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío-Consejo Superior de Investigaciones Científicas, Manuel Siurot s/n, Seville, Spain
| |
Collapse
|
243
|
Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov 2015; 13:928-42. [PMID: 25435214 DOI: 10.1038/nrd4281] [Citation(s) in RCA: 813] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RAS-RAF-MEK-ERK signalling pathway is hyperactivated in a high percentage of tumours, most frequently owing to activating mutations of the KRAS, NRAS and BRAF genes. Recently, the use of compounds targeting components of ERK signalling, such as RAF or MEK inhibitors, has led to substantial improvement in clinical outcome in metastatic melanoma and has shown promising clinical activity in additional tumour types. However, response rates are highly variable and the efficacy of these drugs is primarily limited by the development of resistance. Both intrinsic and acquired resistance to RAF and MEK inhibitors are frequently associated with the persistence of ERK signalling in the presence of the drug, implying the need for more innovative approaches to target the pathway.
Collapse
Affiliation(s)
- Ahmed A Samatar
- TheraMet Biosciences, 6 Jacob Drive, Princeton Junction, New Jersey 08550, USA
| | - Poulikos I Poulikakos
- Department of Oncological Sciences and Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, New York 10029, USA
| |
Collapse
|
244
|
Chessum N, Jones K, Pasqua E, Tucker M. Recent advances in cancer therapeutics. PROGRESS IN MEDICINAL CHEMISTRY 2015; 54:1-63. [PMID: 25727702 DOI: 10.1016/bs.pmch.2014.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past 20 years, cancer therapeutics has undergone a paradigm shift away from the traditional cytotoxic drugs towards the targeting of proteins intimately involved in driving the cancer phenotype. The poster child for this alternative approach to the treatment of cancer is imatinib, a small-molecule kinase inhibitor designed to target chronic myeloid leukaemia driven by the BCR-ABL translocation in a defined patient population. The improvement in survival achieved by treatment of this patient cohort with imatinib is impressive. Thus, the aim is to provide efficacy but with low toxicity. The role of the medicinal chemist in oncology drug discovery is now closely aligned with the role in most other therapeutic areas with high-throughput and/or fragment-based screening, structure-based design, selectivity, pharmacokinetic optimisation and pharmacodynamic biomarker modulation, all playing a familiar part in the process. In this chapter, we selected four areas in which compounds are either approved drugs or in clinical trials. These are chaperone inhibitors, kinase inhibitors, histone deacetylase inhibitors and inhibitors of protein-protein interactions. Even within these areas, we have been selective, particularly for kinase inhibitors, and our aim has been to exemplify newer approaches and novel aspects of medicinal chemistry.
Collapse
Affiliation(s)
- Nicola Chessum
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Keith Jones
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Elisa Pasqua
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Michael Tucker
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
245
|
Hantschel O. Unexpected off-targets and paradoxical pathway activation by kinase inhibitors. ACS Chem Biol 2015; 10:234-45. [PMID: 25531586 DOI: 10.1021/cb500886n] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein kinase inhibitors are an increasingly important class of targeted anticancer therapeutics. More than two dozen new drugs of this class have entered routine clinical use over the past decade. This review article focuses on how the development of methods to study the kinome- and proteome-wide selectivity of kinase inhibitors, in conjunction with advances in the structural understanding of kinase inhibitor binding modes, has resulted in a better appreciation of the mechanism of action of clinical kinase inhibitors. I provide examples of how this has led to the discovery of unexpected off-target effects, intriguing cases in which kinase inhibitors may cause pathway activation, and new mechanisms responsible for resistance to kinase inhibitors. Finally, I illustrate that although certain kinase targets may be pharmacologically easily tractable, a better understanding of the regulation and biology of the targets is required to generate drugs that are efficacious in cancer patients.
Collapse
Affiliation(s)
- Oliver Hantschel
- Swiss Institute
for Experimental
Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
246
|
Thevakumaran N, Lavoie H, Critton DA, Tebben A, Marinier A, Sicheri F, Therrien M. Crystal structure of a BRAF kinase domain monomer explains basis for allosteric regulation. Nat Struct Mol Biol 2014; 22:37-43. [PMID: 25437913 DOI: 10.1038/nsmb.2924] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
Reported RAF kinase domain structures adopt a side-to-side dimer configuration reflective of an 'on' state that underpins an allosteric mechanism of regulation. Atomic details of the monomer 'off' state have been elusive. Reinspection of the BRAF kinase domain structures revealed that sulfonamide inhibitors induce features of an off state, primarily a laterally displaced helix αC stabilized by the activation segment helix 1 (AS-H1). These features correlated with the ability of sulfonamides to disrupt human BRAF homodimers in cells, in vitro and in crystals yielding a structure of BRAF in a monomer state. The crystal structure revealed exaggerated, nonproductive positions of helix αC and AS-H1, the latter of which is the target of potent BRAF oncogenic mutations. Together, this work provides formal proof of an allosteric link between the RAF dimer interface, the activation segment and the catalytic infrastructure.
Collapse
Affiliation(s)
- Neroshan Thevakumaran
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. [2] Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hugo Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - David A Critton
- Molecular Structure &Design Group, Molecular Discovery Technologies Department, Bristol-Myers Squibb Research, Princeton, New Jersey, USA
| | - Andrew Tebben
- Molecular Structure &Design Group, Molecular Discovery Technologies Department, Bristol-Myers Squibb Research, Princeton, New Jersey, USA
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Frank Sicheri
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. [2] Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada. [3] Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marc Therrien
- 1] Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada. [2] Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
247
|
Pulici M, Traquandi G, Marchionni C, Modugno M, Lupi R, Amboldi N, Casale E, Colombo N, Corti L, Fasolini M, Gasparri F, Pastori W, Scolaro A, Donati D, Felder E, Galvani A, Isacchi A, Pesenti E, Ciomei M. Optimization of Diarylthiazole B-Raf Inhibitors: Identification of a Compound Endowed with High Oral Antitumor Activity, Mitigated hERG Inhibition, and Low Paradoxical Effect. ChemMedChem 2014; 10:276-95. [DOI: 10.1002/cmdc.201402424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Indexed: 01/07/2023]
|
248
|
Abstract
New drugs targeting the mitogen-activated protein kinase (MAPK) pathway have generated striking clinical response in melanoma therapy. From the discovery of BRAF mutation in melanoma in 2002, to the approval of first BRAF inhibitor vemurafenib for melanoma treatment by the US Food and Drug Administration in 2011, therapies targeting the MAPK pathway have been proven effective in less than a decade. The success of vemurafenib stimulated more intensive investigation of the molecular mechanisms of melanoma pathogenesis and development of new treatment strategies targeting specific molecules in MAPK pathway. Although selective BRAF inhibitors and MEK inhibitors demonstrated improved overall survival of metastatic melanoma patients, limited duration or development of resistance to BRAF inhibitors have been reported. Patients with metastatic melanoma still face very poor prognosis and lack of clarified therapies. Studies and multiple clinical trials on more potent and selective small molecule inhibitory compounds to further improve the clinical effects and overcome drug resistance are underway. In this review, we analyzed the therapeutic potentials of each member of the MAPK signaling pathway, summarized important MAPK-inhibiting drugs, and discussed the promising combination treatment targeting multiple targets in melanoma therapy, which may overcome the drawbacks of current drugs treatment.
Collapse
Affiliation(s)
- Yabin Cheng
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
249
|
Abstract
A new model of kinase regulation based on the assembly of hydrophobic spines has been proposed. Changes in their positions can explain the mechanism of kinase activation. Here, we examined mutations in human cancer for clues about the regulation of the hydrophobic spines by focusing initially on mutations to Phe. We identified a selected number of Phe mutations in a small group of kinases that included BRAF, ABL1, and the epidermal growth factor receptor. Testing some of these mutations in BRAF, we found that one of the mutations impaired ATP binding and catalytic activity but promoted noncatalytic allosteric functions. Other Phe mutations functioned to promote constitutive catalytic activity. One of these mutations revealed a previously underappreciated hydrophobic surface that functions to position the dynamic regulatory αC-helix. This supports the key role of the C-helix as a signal integration motif for coordinating multiple elements of the kinase to create an active conformation. The importance of the hydrophobic space around the αC-helix was further tested by studying a V600F mutant, which was constitutively active in the absence of the negative charge that is associated with the common V600E mutation. Many hydrophobic mutations strategically localized along the C-helix can thus drive kinase activation.
Collapse
|
250
|
Rajakulendran T, Adam DN. Bench to bedside: mechanistic principles of targeting the RAF kinase in melanoma. Int J Dermatol 2014; 53:1428-33. [PMID: 25311997 DOI: 10.1111/ijd.12724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Melanoma, in its advanced form, is an aggressive cancer with a poor prognosis. To date, no therapeutic modality has afforded a high likelihood of curative outcome, with the exception of early surgical resection in patients diagnosed with local disease. However, recent advances in our understanding of the molecular mechanisms and pathophysiology of melanoma have paved the way towards the development of targeted therapeutics. A central player in melanomagenesis is the RAF family of kinases. Key mechanistic details regarding the regulation of RAF kinases have now begun to emerge. Already, vemurafenib, a tailored kinase inhibitor of aberrant RAF function in melanoma, has led to clinical benefit. Despite vemurafenib's success, acquired resistance to the drug warrants the need for further drug development. In this review, we discuss the critical role of RAF dimerization in both melanomagenesis and resistance to RAF inhibitors such as vemurafenib. We also highlight the potential for inhibitors of RAF dimerization to lead to improved outcomes in patients with advanced melanoma.
Collapse
|