201
|
Liu Y, Kane M, Esserman D, Blaha O, Zelterman D, Wei W. Bayesian local exchangeability design for phase II basket trials. Stat Med 2022; 41:4367-4384. [PMID: 35777367 DOI: 10.1002/sim.9514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/27/2022] [Accepted: 06/19/2022] [Indexed: 11/08/2022]
Abstract
We propose an information borrowing strategy for the design and monitoring of phase II basket trials based on the local multisource exchangeability assumption between baskets (disease types). In our proposed local-MEM framework, information borrowing is only allowed to occur locally, that is, among baskets with similar response rate and the amount of information borrowing is determined by the level of similarity in response rate, whereas baskets not considered similar are not allowed to share information. We construct a two-stage design for phase II basket trials using the proposed strategy. The proposed method is compared to competing Bayesian methods and Simon's two-stage design in a variety of simulation scenarios. We demonstrate the proposed method is able to maintain the family-wise type I error rate at a reasonable level and has desirable basket-wise power compared to Simon's two-stage design. In addition, our method is computationally efficient compared to existing Bayesian methods in that the posterior profiles of interest can be derived explicitly without the need for sampling algorithms. R scripts to implement the proposed method are available at https://github.com/yilinyl/Bayesian-localMEM.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Michael Kane
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Denise Esserman
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Ondrej Blaha
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Daniel Zelterman
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Wei Wei
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
202
|
Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J, Cervantes A. Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin 2022; 72:372-401. [PMID: 35472088 DOI: 10.3322/caac.21728] [Citation(s) in RCA: 197] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) represents approximately 10% of all cancers and is the second most common cause of cancer deaths. Initial clinical presentation as metastatic CRC (mCRC) occurs in approximately 20% of patients. Moreover, up to 50% of patients with localized disease eventually develop metastases. Appropriate clinical management of these patients is still a challenging medical issue. Major efforts have been made to unveil the molecular landscape of mCRC. This has resulted in the identification of several druggable tumor molecular targets with the aim of developing personalized treatments for each patient. This review summarizes the improvements in the clinical management of patients with mCRC in the emerging era of precision medicine. In fact, molecular stratification, on which the current treatment algorithm for mCRC is based, although it does not completely represent the complexity of this disease, has been the first significant step toward clinically informative genetic profiling for implementing more effective therapeutic approaches. This has resulted in a clinically relevant increase in mCRC disease control and patient survival. The next steps in the clinical management of mCRC will be to integrate the comprehensive knowledge of tumor gene alterations, of tumor and microenvironment gene and protein expression profiling, of host immune competence as well as the application of the resulting dynamic changes to a precision medicine-based continuum of care for each patient. This approach could result in the identification of individual prognostic and predictive parameters, which could help the clinician in choosing the most appropriate therapeutic program(s) throughout the entire disease journey for each patient with mCRC. CA Cancer J Clin. 2022;72:000-000.
Collapse
Affiliation(s)
- Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Davide Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Division of Medical Oncology, IRCCS Foundation Home for the Relief of Suffering, San Giovanni Rotondo, Italy
| | - Giulia Martini
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Stefania Napolitano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron Hospital Campus, Barcelona, Spain
- Institute of Oncology, University of Vic/Central University of Catalonia, Barcelona, Spain
- Oncology Institute of Barcelona-Quironsalud, Biomedical Research Center in Cancer, Barcelona, Spain
| | - Andres Cervantes
- Medical Oncology Department, Instituto de Investigación Sanitaria Valencia Biomedical Research Institute, University of Valencia, Valencia, Spain
- Carlos III Institute of Health, Biomedical Research Center in Cancer, Madrid, Spain
| |
Collapse
|
203
|
Ryan MB, Coker O, Sorokin A, Fella K, Barnes H, Wong E, Kanikarla P, Gao F, Zhang Y, Zhou L, Kopetz S, Corcoran RB. KRAS G12C-independent feedback activation of wild-type RAS constrains KRAS G12C inhibitor efficacy. Cell Rep 2022; 39:110993. [PMID: 35732135 PMCID: PMC9809542 DOI: 10.1016/j.celrep.2022.110993] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/12/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023] Open
Abstract
Although KRAS has long been considered undruggable, direct KRASG12C inhibitors have shown promising initial clinical efficacy. However, the majority of patients still fail to respond. Adaptive feedback reactivation of RAS-mitogen-activated protein kinase (MAPK) signaling has been proposed by our group and others as a key mediator of resistance, but the exact mechanism driving reactivation and the therapeutic implications are unclear. We find that upstream feedback activation of wild-type RAS, as opposed to a shift in KRASG12C to its active guanosine triphosphate (GTP)-bound state, is sufficient to drive RAS-MAPK reactivation in a KRASG12C-independent manner. Moreover, multiple receptor tyrosine kinases (RTKs) can drive feedback reactivation, potentially necessitating targeting of convergent signaling nodes for more universal efficacy. Even in colorectal cancer, where feedback is thought to be primarily epidermal growth factor receptor (EGFR)-mediated, alternative RTKs drive pathway reactivation and limit efficacy, but convergent upstream or downstream signal blockade can enhance activity. Overall, these data provide important mechanistic insight to guide therapeutic strategies targeting KRAS.
Collapse
Affiliation(s)
- Meagan B Ryan
- Massachusetts General Hospital Cancer Center, 149 13(th) Street, 7(th) Floor, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Oluwadara Coker
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexey Sorokin
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katerina Fella
- Massachusetts General Hospital Cancer Center, 149 13(th) Street, 7(th) Floor, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Haley Barnes
- Massachusetts General Hospital Cancer Center, 149 13(th) Street, 7(th) Floor, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Edmond Wong
- Massachusetts General Hospital Cancer Center, 149 13(th) Street, 7(th) Floor, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Preeti Kanikarla
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fengqin Gao
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Scott Kopetz
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center, 149 13(th) Street, 7(th) Floor, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
204
|
Shimizu Y, Maruyama K, Suzuki M, Kawachi H, Low SK, Oh-Hara T, Takeuchi K, Fujita N, Nagayama S, Katayama R. Acquired resistance to BRAF inhibitors is mediated by BRAF splicing variants in BRAF V600E mutation-positive colorectal neuroendocrine carcinoma. Cancer Lett 2022; 543:215799. [PMID: 35724767 DOI: 10.1016/j.canlet.2022.215799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022]
Abstract
Neuroendocrine carcinomas (NECs), a poorly differentiated subtype of neuroendocrine neoplasms, are aggressive and have a poor prognosis. Colorectal neuroendocrine carcinomas (CRC-NECs) are observed in about 0.6% of all patients with CRC. Interestingly, patients with CRC-NECs show higher frequencies of BRAF mutation than typical CRC. BRAF V600E mutation-positive CRC-NECs were shown to be sensitive to BRAF inhibitors and now are treated by BRAF inhibitors. Similar to the other BRAF V600E mutated cancers, resistances against BRAF inhibitors have been observed, but the resistance mechanisms are still unclear. In this study, we established BRAF V600E mutated CRC-NEC cell line directly from surgical specimens and experimentally obtained BRAF inhibitor dabrafenib resistant cell lines. The resistant cells are revealed to express at least three types of BRAF splicing variants harboring V600E-mutation, and contribute to RAF/MEK/ERK pathway activation. In these cells, MEK and ERK inhibitors but not dabrafenib significantly suppressed cell growth and survival. Thus, in BRAF V600E mutation-positive CRC-NECs, BRAF splicing variants activate the RAF/MEK/ERK pathway and contribute to acquire BRAF inhibitor resistance. Hence, MEK or ERK are potential therapeutic targets to overcome BRAF resistance.
Collapse
Affiliation(s)
- Yuki Shimizu
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Maruyama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Mai Suzuki
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kawachi
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Siew-Kee Low
- Cancer Precision Medicine Center, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomoko Oh-Hara
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Pathology Project for Molecular Targets, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Surgery, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
205
|
Drug Resistance in Colorectal Cancer: From Mechanism to Clinic. Cancers (Basel) 2022; 14:cancers14122928. [PMID: 35740594 PMCID: PMC9221177 DOI: 10.3390/cancers14122928] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of death worldwide. The 5-year survival rate is 90% for patients with early CRC, 70% for patients with locally advanced CRC, and 15% for patients with metastatic CRC (mCRC). In fact, most CRC patients are at an advanced stage at the time of diagnosis. Although chemotherapy, molecularly targeted therapy and immunotherapy have significantly improved patient survival, some patients are initially insensitive to these drugs or initially sensitive but quickly become insensitive, and the emergence of such primary and secondary drug resistance is a significant clinical challenge. The most direct cause of resistance is the aberrant anti-tumor drug metabolism, transportation or target. With more in-depth research, it is found that cell death pathways, carcinogenic signals, compensation feedback loop signal pathways and tumor immune microenvironment also play essential roles in the drug resistance mechanism. Here, we assess the current major mechanisms of CRC resistance and describe potential therapeutic interventions.
Collapse
|
206
|
Raman R, Villefranc JA, Ullmann TM, Thiesmeyer J, Anelli V, Yao J, Hurley JR, Pauli C, Bareja R, Wha Eng K, Dorsaint P, Wilkes DC, Beg S, Kudman S, Shaw R, Churchill M, Ahmed A, Keefer L, Misner I, Nichol D, Gumpeni N, Scognamiglio T, Rubin MA, Grandori C, Solomon JP, Song W, Mosquera JM, Dephoure N, Sboner A, Elemento O, Houvras Y. Inhibition of FGF receptor blocks adaptive resistance to RET inhibition in CCDC6-RET-rearranged thyroid cancer. J Exp Med 2022; 219:e20210390. [PMID: 35510953 PMCID: PMC9082625 DOI: 10.1084/jem.20210390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Genetic alterations in RET lead to activation of ERK and AKT signaling and are associated with hereditary and sporadic thyroid cancer and lung cancer. Highly selective RET inhibitors have recently entered clinical use after demonstrating efficacy in treating patients with diverse tumor types harboring RET gene rearrangements or activating mutations. In order to understand resistance mechanisms arising after treatment with RET inhibitors, we performed a comprehensive molecular and genomic analysis of a patient with RET-rearranged thyroid cancer. Using a combination of drug screening and proteomic and biochemical profiling, we identified an adaptive resistance to RET inhibitors that reactivates ERK signaling within hours of drug exposure. We found that activation of FGFR signaling is a mechanism of adaptive resistance to RET inhibitors that activates ERK signaling. Combined inhibition of FGFR and RET prevented the development of adaptive resistance to RET inhibitors, reduced cell viability, and decreased tumor growth in cellular and animal models of CCDC6-RET-rearranged thyroid cancer.
Collapse
Affiliation(s)
- Renuka Raman
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | | | | | | | - Viviana Anelli
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - Jun Yao
- Department of Surgery, Weill Cornell Medical College, New York, NY
| | - James R. Hurley
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Rohan Bareja
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
| | - Kenneth Wha Eng
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
| | - Princesca Dorsaint
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
| | - David C. Wilkes
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
| | - Shaham Beg
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Sarah Kudman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Reid Shaw
- SEngine Precision Medicine, Seattle, WA
| | | | - Adnan Ahmed
- Department of Biochemistry, Weill Cornell Medical College, New York, NY
| | | | - Ian Misner
- Personal Genome Diagnostics, Inc., Baltimore, MD
| | - Donna Nichol
- Personal Genome Diagnostics, Inc., Baltimore, MD
| | - Naveen Gumpeni
- Department of Radiology, Weill Cornell Medical College, New York, NY
| | - Theresa Scognamiglio
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Mark A. Rubin
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
| | | | - James Patrick Solomon
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Wei Song
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Noah Dephoure
- Department of Biochemistry, Weill Cornell Medical College, New York, NY
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| | - Andrea Sboner
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| | - Olivier Elemento
- The Caryl and Israel Englander Institute for Precision Medicine and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| | - Yariv Houvras
- Department of Surgery, Weill Cornell Medical College, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY
| |
Collapse
|
207
|
Savary C, Picard C, Corradini N, Castets M. Complex Elucidation of Cells-of-Origin in Pediatric Soft Tissue Sarcoma: From Concepts to Real Life, Hide-and-Seek through Epigenetic and Transcriptional Reprogramming. Int J Mol Sci 2022; 23:6310. [PMID: 35682989 PMCID: PMC9181261 DOI: 10.3390/ijms23116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
Soft tissue sarcoma (STS) comprise a large group of mesenchymal malignant tumors with heterogeneous cellular morphology, proliferative index, genetic lesions and, more importantly, clinical features. Full elucidation of this wide diversity remains a central question to improve their therapeutic management and the identity of cell(s)-of-origin from which these tumors arise is part of this enigma. Cellular reprogramming allows transitions of a mature cell between phenotypes, or identities, and represents one key driver of tumoral heterogeneity. Here, we discuss how cellular reprogramming mediated by driver genes in STS can profoundly reshape the molecular and morphological features of a transformed cell and lead to erroneous interpretation of its cell-of-origin. This review questions the fact that the epigenetic context in which a genetic alteration arises has to be taken into account as a key determinant of STS tumor initiation and progression. Retracing the cancer-initiating cell and its clonal evolution, notably via epigenetic approach, appears as a key lever for understanding the origin of these tumors and improving their clinical management.
Collapse
Affiliation(s)
- Clara Savary
- Childhood Cancer & Cell Death (C3), LabEx DEVweCAN, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Cécile Picard
- Department of Pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, 69002 Lyon, France;
| | - Nadège Corradini
- Department of Pediatric Oncology, Institut d’Hematologie et d’Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France;
- Department of Translational Research in Pediatric Oncology, Centre Léon Bérard, 69008 Lyon, France
| | - Marie Castets
- Childhood Cancer & Cell Death (C3), LabEx DEVweCAN, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
- Department of Translational Research in Pediatric Oncology, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
208
|
Yang L, Bhattacharya A, Li Y, Sexton S, Ling X, Li F, Zhang Y. Depleting receptor tyrosine kinases EGFR and HER2 overcomes resistance to EGFR inhibitors in colorectal cancer. J Exp Clin Cancer Res 2022; 41:184. [PMID: 35650607 PMCID: PMC9161494 DOI: 10.1186/s13046-022-02389-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) inhibitors, including cetuximab and panitumumab, are valuable therapeutics for colorectal cancer (CRC), but resistance to these inhibitors is common. The reason for such resistance is not well understood, which hampers development of better therapeutic strategies. Although activating mutations in KRAS, BRAF and PIK3CA are considered major drivers of CRC resistance to EGFR inhibitors, therapeutic targeting of these drug resistance drivers has not produced substantial clinical benefit. METHODS We exploited cell lines and mouse tumor models (cell line xenografts and patient derived xenografts) for experiments of genetic and pharmacologic depletion of EGFR and/or its family member HER2, including EGFR mutants, inhibition of EGFR ligand shedding, and biochemical analysis of signaling proteins, to delineate the mechanism of CRC resistance to EGFR inhibitors and to assess the therapeutic activity of PEPDG278D, which is a recombinant human protein that induces the degradation of both EGFR and HER2. RESULTS The sensitivity of CRC cells to cetuximab and panitumumab correlates with the ability of these drugs to induce EGFR downregulation. PEPDG278D strongly inhibits oncogenic signaling and growth of CRC cells by causing profound depletion of EGFR and HER2, regardless of activating mutations of KRAS, BRAF and PIK3CA. siRNA knockdown of EGFR or HER2 also inhibits CRC cells resistant to EGFR inhibitors. Tumors harboring mutated KRAS, BRAF and/or PIK3CA also overexpress EGFR ligands, further suggesting that EGFR signaling remains important to the tumors. While excessive tumor-generated high-affinity EGFR ligands block target engagement by PEPDG278D, aderbasib, an inhibitor of ADAM10 and ADAM17, enables PEPDG278D to exert strong antitumor activity by inhibiting ligand shedding. Moreover, adding fluorouracil, which is commonly used in CRC treatment, to the combination of PEPDG278D and aderbasib further enhances tumor inhibition. CONCLUSIONS Our study shows that CRC resistance to EGFR inhibitors results primarily from the inability of the inhibitors to downregulate their target and that a PEPDG278D-based combination treatment overcomes the resistance.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Pharmacology and Toxicology, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Arup Bhattacharya
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Yun Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Sandra Sexton
- Department of Animal Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Xiang Ling
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Yuesheng Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Pharmacology and Toxicology, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
209
|
Downs BM, Sukumar S. Capturing ctDNA from Unaltered Stationary and Flowing Plasma with dCas9. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24113-24121. [PMID: 35603357 DOI: 10.1021/acsami.2c03186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many studies have established that blood-based liquid biopsies can be used to detect cancer in its early stages. However, the limiting factor for early cancer detection is the volume of blood required to capture the small amount of circulating tumor DNA (ctDNA). An apheresis machine is a device that can draw whole blood, separate the blood components, and infuse the blood components back into the individual. This device provides the opportunity to screen large volumes of plasma without extracting it from the body. However, current DNA capture technologies require the plasma to be altered before the ctDNA can be captured. Our goal was to develop the first technology that can capture ctDNA from flowing unaltered plasma. To simulate cancer patient plasma, we spiked BRAF T1799A (BRAFMut) DNA into plasma from healthy individuals. We used catalytically dead Cas9 (dCas9), guide RNA, and allele-specific quantitative polymerase chain reaction (qPCR) to capture and measure the number of captured BRAFMut DNA copies. We found that dCas9 captured BRAFMut alleles with equal efficiency at room temperature (25 °C) and body temperature (37 °C). Next, we showed that, in stationary unaltered plasma, dCas9 was as efficient in capturing BRAFMut as a commercial cell-free DNA (cfDNA) capture kit. However, in contrast to the cfDNA capture kit, dCas9 enriched BRAFMut by 1.8-3.3-fold. We then characterized the dCas9 capture system in laminar and turbulent flowing plasma. We showed that the capture rate using turbulent flow was greater than that in laminar flow and stationary plasma. With turbulent flow, the number of captured BRAFMut copies doubles with time (slope = -1.035 Ct) and is highly linear (R2 = 0.874). While we showed that the dCas9 capture system can capture ctDNA from unaltered flowing plasma, further optimization and validation of this technology is required before its clinical utility can be determined.
Collapse
Affiliation(s)
- Bradley M Downs
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Saraswati Sukumar
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
210
|
Arner EN, Rathmell WK. Mutation and tissue lineage lead to organ-specific cancer. Nature 2022; 606:871-872. [PMID: 35676353 DOI: 10.1038/d41586-022-01535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
211
|
Dahmani C, Corre E, Dandou S, Mangé A, Radulescu O, Coopman PJ, Cuq P, Larive RM. La résistance aux inhibiteurs de BRAF. Med Sci (Paris) 2022; 38:570-578. [DOI: 10.1051/medsci/2022083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
La voie de signalisation MAPK/ERK est une voie centrale de la signalisation intracellulaire. Sa dérégulation participe à la transformation et la progression tumorales. Dans plusieurs cancers, la découverte de mutations activatrices de BRAF, à l’origine de l’activation de cette voie, a ouvert de nouvelles perspectives thérapeutiques avec le développement d’inhibiteurs spécifiques de la protéine. Selon les cancers, ces inhibiteurs ont cependant montré soit une efficacité insuffisante, due à la résistance primaire des cellules tumorales, soit une efficacité transitoire, due à l’apparition d’une résistance acquise. Dans cette revue, nous revenons sur les découvertes qui ont conduit au développement de ces inhibiteurs de BRAF. Nous détaillons également les mécanismes moléculaires et cellulaires de la résistance à ces inhibiteurs observée dans différents types de cancers. Comprendre ces mécanismes est en effet primordial pour développer des stratégies thérapeutiques qui soient plus efficaces.
Collapse
|
212
|
Hafliger E, Boccaccino A, Lapeyre-Prost A, Perret A, Gallois C, Antista M, Pilla L, Lecomte T, Scartozzi M, Soularue E, Salvatore L, Bourgeois V, Salati M, Tougeron D, Evesque L, Vaillant JN, El-Khoury R, Lonardi S, Cremolini C, Taieb J. Encorafenib plus cetuximab treatment in BRAF V600E-mutated metastatic colorectal cancer patients pre-treated with an anti-EGFR: An AGEO-GONO case series. Eur J Cancer 2022; 168:34-40. [DOI: 10.1016/j.ejca.2022.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 12/13/2022]
|
213
|
Ohoka N, Suzuki M, Uchida T, Tsukumo Y, Yoshida M, Inoue T, Ohki H, Naito M. Development of a potent small molecule degrader against oncogenic BRAF V600E protein that evades paradoxical MAPK activation. Cancer Sci 2022; 113:2828-2838. [PMID: 35579105 PMCID: PMC9357609 DOI: 10.1111/cas.15401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
BRAF mutations are frequently observed in melanoma and hairy‐cell leukemia. Currently approved rapidly accelerated fibrosarcoma (RAF) kinase inhibitors targeting oncogenic BRAF V600 mutations have shown remarkable efficacy in the clinic, but their therapeutic benefits are occasionally hampered by acquired resistance due to RAF dimerization–dependent reactivation of the downstream MAPK pathway, which is known as paradoxical activation. There is also a concern that paradoxical activation of the MAPK pathway may trigger secondary cancer progression. In this study, we developed chimeric compounds, proteolysis targeting chimeras (PROTACs), that target BRAFV600E protein for degradation. CRBN(BRAF)‐24, the most effective chimera, potently degraded BRAFV600E in a ubiquitin‐proteasome system (UPS)‐dependent manner and inhibited the proliferation of BRAFV600E‐driven cancer cells. In BRAF wild‐type cells, CRBN(BRAF)‐24 induced neither BRAFWT degradation nor paradoxical activation of the MAPK pathway. Biochemical analysis revealed that CRBN(BRAF)‐24 showed more potent and sustained suppression of MAPK signaling than a BRAFV600E inhibitor, PLX‐8394, in BRAFV600E‐driven cancer cells. Targeted degradation of BRAFV600E by CRBN(BRAF)‐24 could be a promising strategy to evade paradoxical activation of the RAF‐MAPK pathway.
Collapse
Affiliation(s)
- Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Masanori Suzuki
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takuya Uchida
- Medicinal Chemistry Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yoshinori Tsukumo
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Masayuki Yoshida
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Hitoshi Ohki
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan.,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
214
|
Immune Profile of BRAF-Mutated Metastatic Colorectal Tumors with Good Prognosis after Palliative Chemotherapy. Cancers (Basel) 2022; 14:cancers14102383. [PMID: 35625987 PMCID: PMC9139363 DOI: 10.3390/cancers14102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background: BRAF-mutated colorectal cancers (BRAF-MT CRCs) are known to have poor prognoses. BRAF-MT CRC was reported to be possibly related to the immune-activated phenotype. Objectives: This study aimed to investigate the association between the immune microenvironment and prognosis of BRAF-MT CRC. Methods: We evaluated clinical outcomes and investigated the immune profile of the BRAF-MT CRC tumors using the multiplex immunohistochemistry of immune-related markers: cytokeratin, programmed death ligand-1 (PD-L1), programmed cell death protein-1 (PD-1), and a cluster of differentiation 8 (CD8). Results: Out of 2313 tumors, 123 were BRAF-MT tumors. Among them, 86 tumors with available tissue were included. Out of 86 patients, 75 patients were non-good responders (GR), whereas 11 patients were GR. Median progression-free survival after first-line chemotherapy (4.6 vs. 12.4 months, p = 0.008) and overall survival (11.8 vs. 45.0 months) were longer in the GR group (p < 0.001). Median CD8+ T cell (254.29 vs. 656.0, p = 0.092), PD-L1+ tumor cell (0.95 vs.15.56, p = 0.050), PD-L1+ stromal cell (3.17 vs. 72.38, p = 0.025), PD-L1+ tumor and stromal cell (5.08 vs. 74.92, p = 0.032), and PD-1+ stromal cell (45.08 vs. 325.40, p = 0.046) counts were greater in the GR group. Conclusion: The clinical outcomes of unselected patients with BRAF-MT CRC were generally similar to those in previous studies. Based on the immune profile analysis, higher PD-L1 expression and CD8-positive cell infiltration were observed in BRAF-MT tumors with a good prognosis.
Collapse
|
215
|
Olbryt M. Potential Biomarkers of Skin Melanoma Resistance to Targeted Therapy—Present State and Perspectives. Cancers (Basel) 2022; 14:cancers14092315. [PMID: 35565444 PMCID: PMC9102921 DOI: 10.3390/cancers14092315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Around 5–10% of advanced melanoma patients progress early on anti-BRAF targeted therapy and 20–30% respond only with the stabilization of the disease. Presumably, these patients could benefit more from first-line immunotherapy. Resistance to BRAF/MEK inhibitors is generated by genetic and non-genetic factors inherent to a tumor or acquired during therapy. Some of them are well documented as a cause of treatment failure. They are potential predictive markers that could improve patients’ selection for both standard and also alternative therapy as some of them have therapeutic potential. Here, a summary of the most promising predictive and therapeutic targets is presented. This up-to-date knowledge may be useful for further study on implementing more accurate genetic/molecular tests in melanoma treatment. Abstract Melanoma is the most aggressive skin cancer, the number of which is increasing worldwide every year. It is completely curable in its early stage and fatal when spread to distant organs. In addition to new therapeutic strategies, biomarkers are an important element in the successful fight against this cancer. At present, biomarkers are mainly used in diagnostics. Some biological indicators also allow the estimation of the patient’s prognosis. Still, predictive markers are underrepresented in clinics. Currently, the only such indicator is the presence of the V600E mutation in the BRAF gene in cancer cells, which qualifies the patient for therapy with inhibitors of the MAPK pathway. The identification of response markers is particularly important given primary and acquired resistance to targeted therapies. Reliable predictive tests would enable the selection of patients who would have the best chance of benefiting from treatment. Here, up-to-date knowledge about the most promising genetic and non-genetic resistance-related factors is described. These are alterations in MAPK, PI3K/AKT, and RB signaling pathways, e.g., due to mutations in NRAS, RAC1, MAP2K1, MAP2K2, and NF1, but also other changes activating these pathways, such as the overexpression of HGF or EGFR. Most of them are also potential therapeutic targets and this issue is also addressed here.
Collapse
Affiliation(s)
- Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| |
Collapse
|
216
|
Tabernero J, Ros J, Élez E. The Evolving Treatment Landscape in BRAF-V600E-Mutated Metastatic Colorectal Cancer. Am Soc Clin Oncol Educ Book 2022; 42:1-10. [PMID: 35503983 DOI: 10.1200/edbk_349561] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Between 8% and 12% of patients with metastatic colorectal cancer (mCRC) harbor a BRAF-V600E mutation in their tumors, which is associated with a poor response to standard chemotherapy and short overall survival. Moreover, nearly 30% of BRAF-V600E mCRC tumors also have microsatellite instability. Transcriptomic signatures suggest a strong immunogenic biologic background for most of these tumors. In contrast to the melanoma context, single-agent BRAF inhibition does not achieve clinical benefit in BRAF-V600E mCRC. Different preclinical/translational studies have elucidated that, in this context, upon BRAF inhibition, there is immediate signal upregulation via the EGFR, and therefore an anti-EGFR treatment should be added to the BRAF inhibitor. Several phase II studies have confirmed the activity of BRAF inhibitors combined with EGFR-directed monoclonal antibodies in patients with BRAF-V600E mCRC. The role of other mitogen-activated protein kinase inhibitors, such as mitogen-activated protein kinase kinase or PI3K inhibitors, remains unclear. The phase III BEACON clinical trial confirmed the BRAF/EGFR inhibitor combination of encorafenib/cetuximab as the new standard of care for BRAF-V600E mCRC after at least one previous line of systemic therapy. Novel approaches for managing BRAF-V600E mCRC include, among others, triple combinations of BRAF inhibitors and anti-EGFR antibodies combined with immune checkpoint inhibitors in the microsatellite instability population and evaluation of the encorafenib/cetuximab treatment in combination with standard chemotherapy with bevacizumab in the first-line setting.
Collapse
Affiliation(s)
- Josep Tabernero
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Javier Ros
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Elena Élez
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
217
|
Weickhardt AJ, Lau DK, Hodgson-Garms M, Lavis A, Jenkins LJ, Vukelic N, Ioannidis P, Luk IY, Mariadason JM. Dual targeting of FGFR3 and ERBB3 enhances the efficacy of FGFR inhibitors in FGFR3 fusion-driven bladder cancer. BMC Cancer 2022; 22:478. [PMID: 35501832 PMCID: PMC9063072 DOI: 10.1186/s12885-022-09478-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Mutations and fusions in Fibroblast Growth Factor Receptor 3 (FGFR3) occur in 10-20% of metastatic urothelial carcinomas and confer sensitivity to FGFR inhibitors. However, responses to these agents are often short-lived due to the development of acquired resistance. The objective of this study was to identify mechanisms of resistance to FGFR inhibitors in two previously uncharacterised bladder cancer cell lines harbouring FGFR3 fusions and assess rational combination therapies to enhance sensitivity to these agents. METHODS Acquired resistance to FGFR inhibitors was generated in two FGFR3 fusion harbouring cell lines, SW780 (FGFR3-BAIAP2L1 fusion) and RT4 (FGFR3-TACC3 fusion), by long-term exposure to the FGFR inhibitor BGJ398. Changes in levels of receptor tyrosine kinases were assessed by phospho-RTK arrays and immunoblotting. Changes in cell viability and proliferation were assessed by the Cell-Titre Glo assay and by propidium iodide staining and FACS analysis. RESULTS Long term treatment of FGFR3-fusion harbouring SW780 and RT4 bladder cancer cell lines with the FGFR inhibitor BGJ398 resulted in the establishment of resistant clones. These clones were cross-resistant to the clinically approved FGFR inhibitor erdafitinib and the covalently binding irreversible FGFR inhibitor TAS-120, but remained sensitive to the MEK inhibitor trametinib, indicating resistance is mediated by alternate activation of MAPK signalling. The FGFR inhibitor-resistant SW780 and RT4 lines displayed increased expression of pERBB3, and strikingly, combination treatment with an FGFR inhibitor and the ATP-competitive pan-ERBB inhibitor AZD8931 overcame this resistance. Notably, rapid induction of pERBB3 and reactivation of pERK also occurred in parental FGFR3 fusion-driven lines within 24 h of FGFR inhibitor treatment, and combination treatment with an FGFR inhibitor and AZD8931 delayed the reactivation of pERBB3 and pERK and synergistically inhibited cell proliferation. CONCLUSIONS We demonstrate that increased expression of pERBB3 is a key mechanism of adaptive resistance to FGFR inhibitors in FGFR3-fusion driven bladder cancers, and that this also occurs rapidly following FGFR inhibitor treatment. Our findings demonstrate that resistance can be overcome by combination treatment with a pan-ERBB inhibitor and suggest that upfront combination treatment with FGFR and pan-ERBB inhibitors warrants further investigation for FGFR3-fusion harbouring bladder cancers.
Collapse
Affiliation(s)
- Andrew J Weickhardt
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia.
- Department of Medical Oncology, Austin Health, Olivia Newton-John Cancer Wellness and Research Centre, Melbourne, VIC, Australia.
| | - David K Lau
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Margeaux Hodgson-Garms
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Austen Lavis
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Laura J Jenkins
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Natalia Vukelic
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Paul Ioannidis
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
| | - Ian Y Luk
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia.
- Department of Medical Oncology, Austin Health, Olivia Newton-John Cancer Wellness and Research Centre, Melbourne, VIC, Australia.
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
218
|
Casolino R, Amato F, Rae C, Puttagunta S, Braconi C. Receptor tyrosine kinase co-amplification and benefit from HER2 inhibitors in biliary tract cancers. J Hepatol 2022; 76:1227-1229. [PMID: 35093472 DOI: 10.1016/j.jhep.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Colin Rae
- Institute of Cancer Science, University of Glasgow, UK
| | | | - Chiara Braconi
- Institute of Cancer Science, University of Glasgow, UK; NHS Greater Glasgow and Clyde, Glasgow, UK; Beatson West of Scotland Cancer Centre, Glasgow, UK.
| |
Collapse
|
219
|
Malla M, Parikh AR. Evolving Role of Circulating Tumor DNA and Emerging Targeted Therapy in Colorectal Cancer. Hematol Oncol Clin North Am 2022; 36:583-601. [DOI: 10.1016/j.hoc.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
220
|
Stintzing S, Seufferlein T, Rosé C, Reichenbach F, Lüftner D. Encorafenib in combination with cetuximab after systemic therapy in patients with BRAFV600E mutant metastatic colorectal cancer: German health technology assessment-driven analyses from the BEACON CRC study. Clin Colorectal Cancer 2022; 21:244-251. [DOI: 10.1016/j.clcc.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
|
221
|
Yang S, Huang Y, Zhao Q. Epigenetic Alterations and Inflammation as Emerging Use for the Advancement of Treatment in Non-Small Cell Lung Cancer. Front Immunol 2022; 13:878740. [PMID: 35514980 PMCID: PMC9066637 DOI: 10.3389/fimmu.2022.878740] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Lung cancer remains one of the most common malignancies in the world. Nowadays, the most common lung cancer is non-small cell lung cancer (NSCLC), namely, adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Epigenetic alterations that refer to DNA methylation, histone modifications, and noncoding RNA expression, are now suggested to drive the genesis and development of NSCLC. Additionally, inflammation-related tumorigenesis also plays a vital role in cancer research and efforts have been attempted to reverse such condition. During the occurrence and development of inflammatory diseases, the immune component of inflammation may cause epigenetic changes, but it is not always certain whether the immune component itself or the stimulated host cells cause epigenetic changes. Moreover, the links between epigenetic alterations and cancer-related inflammation and their influences on the human cancer are not clear so far. Therefore, the connection between epigenetic drivers, inflammation, and NSCLC will be summarized. Investigation on such topic is most likely to shed light on the molecular and immunological mechanisms of epigenetic and inflammatory factors and promote the application of epigenetics in the innovative diagnostic and therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Shuo Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Yang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| |
Collapse
|
222
|
Kucherlapati MH. Co-expression patterns explain how a basic transcriptional role for MYC modulates Wnt and MAPK pathways in colon and lung adenocarcinomas. Cell Cycle 2022; 21:1619-1638. [PMID: 35438040 PMCID: PMC9291661 DOI: 10.1080/15384101.2022.2060454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A subset of proliferation genes that are associated with origin licensing, firing, and DNA synthesis has been compared to known drivers of colon (COAD) and lung (LUAD) adenocarcinomas using Spearman's rank correlation coefficients. The frequency with which APC, CTNNB1, KRAS, MYC, Braf, TP53, Rb1, EGFR, and cell cycle components have direct or indirect co-expression with the proliferation factors permits identification of their expression relative to the G1-S phase of the cell cycle. Here, adenomatous polyposis coli (APC), a negative regulator of Wnt signaling known to function through MYC, indirectly co-expresses at the same frequency as proliferation genes in both COAD and LUAD, consistent with M phase expression. However, APC is indirectly co-expressed with MYC and is found mutated only in COAD. MYC is thought to function at the interface of transcription and replication, acting through the SWI/SNF chromatin remodeling complex, and increased or decreased expression of MYC can induce or repress tumorigenesis, respectively. These data suggest that transcription of APC during the M phase with low MYC co-expression contributes by an unknown mechanism to APC mutations and Wnt pathway deregulation in COAD and that upper and lower limits of MYC expression, enforced by the cell cycle, may influence cancer differentially. Other Wnt signaling components co-expressed in the low MYC context in COAD also have significantly higher mutation frequencies, supporting the hypothesis. Additionally, Braf is found here to have direct co-expression with multiple proliferation factors in non-EGFR activated LUAD, and EGFR-activated LUAD are completely deregulated with respect to E2F(s) 4/5/6 expression, potentially explaining the low proliferation rates seen in LUAD.
Collapse
Affiliation(s)
- Melanie Haas Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
223
|
Wu Q, Zhen Y, Shi L, Vu P, Greninger P, Adil R, Merritt J, Egan R, Wu MJ, Yin X, Ferrone CR, Deshpande V, Baiev I, Pinto CJ, McLoughlin DE, Walmsley CS, Stone JR, Gordan JD, Zhu AX, Juric D, Goyal L, Benes CH, Bardeesy N. EGFR Inhibition Potentiates FGFR Inhibitor Therapy and Overcomes Resistance in FGFR2 Fusion-Positive Cholangiocarcinoma. Cancer Discov 2022; 12:1378-1395. [PMID: 35420673 PMCID: PMC9064956 DOI: 10.1158/2159-8290.cd-21-1168] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/10/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
FGFR inhibitors are approved for the treatment of advanced cholangiocarcinoma harboring FGFR2 fusions. However, the response rate is moderate, and resistance emerges rapidly due to acquired secondary FGFR2 mutations or due to other less-defined mechanisms. Here, we conducted high-throughput combination drug screens, biochemical analysis, and therapeutic studies using patient-derived models of FGFR2 fusion-positive cholangiocarcinoma to gain insight into these clinical profiles and uncover improved treatment strategies. We found that feedback activation of EGFR signaling limits FGFR inhibitor efficacy, restricting cell death induction in sensitive models and causing resistance in insensitive models lacking secondary FGFR2 mutations. Inhibition of wild-type EGFR potentiated responses to FGFR inhibitors in both contexts, durably suppressing MEK/ERK and mTOR signaling, increasing apoptosis, and causing marked tumor regressions in vivo. Our findings reveal EGFR-dependent adaptive signaling as an important mechanism limiting FGFR inhibitor efficacy and driving resistance and support clinical testing of FGFR/EGFR inhibitor therapy for FGFR2 fusion-positive cholangiocarcinoma. SIGNIFICANCE We demonstrate that feedback activation of EGFR signaling limits the effectiveness of FGFR inhibitor therapy and drives adaptive resistance in patient-derived models of FGFR2 fusion-positive cholangiocarcinoma. These studies support the potential of combination treatment with FGFR and EGFR inhibitors as an improved treatment for patients with FGFR2-driven cholangiocarcinoma.
Collapse
Affiliation(s)
- Qibiao Wu
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yuanli Zhen
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lei Shi
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Phuong Vu
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Patricia Greninger
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ramzi Adil
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joshua Merritt
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Regina Egan
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Meng-Ju Wu
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xunqin Yin
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina R Ferrone
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Vikram Deshpande
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Islam Baiev
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher J Pinto
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel E McLoughlin
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charlotte S Walmsley
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - James R Stone
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - John D Gordan
- Helen Diller Family Comprehensive Cancer Center and Quantitative Biosciences Institute, University of California, San Francisco
| | - Andrew X Zhu
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | - Dejan Juric
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lipika Goyal
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cyril H Benes
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
224
|
He R, Zhang M, He L, Huang J, Man C, Wang X, Lang Y, Fan Y. Integrated Analysis of Necroptosis-Related Genes for Prognosis, Immune Microenvironment Infiltration, and Drug Sensitivity in Colon Cancer. Front Med (Lausanne) 2022; 9:845271. [PMID: 35479956 PMCID: PMC9036446 DOI: 10.3389/fmed.2022.845271] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Necroptosis, is intimately linked to tumor development and prognosis and has been considered as a target for anticancer therapy. However, the role of necroptosis-related genes (NRGs) in colon cancer is unclear. Methods In the present study, we screened 76 NRGs from previous studies and described the landscape of transcriptomic and genetic variation of NRGs in colon cancer (CC) patient samples. Molecular subtypes of necroptosis in colon cancer were identified by clustering analysis, and these molecular subtypes were linked to patient prognosis and TME cell infiltration characteristics. Then, the NRS-score for predicting overall survival (OS) was built based on the TCGA database and validated in the GSE39582 cohort for its predictive power in CC patients. Besides, the ESTIMATE and CIBERSORT algorithms were applied to explore the relationship between NRS-score and tumor immune microenvironment. Results We identified two molecular subtypes associated with necroptosis in CC, which have diverse prognosis and immune microenvironment characteristics. Based on the differentially expressed genes between the two molecular subtypes, we further developed a necroptosis risk score signature, referred to as NRS-score. High NRS-score was associated with poor prognosis in CC through immunosuppressive microenvironment and immune escape mechanisms. The nomogram based on NRS-score showed excellent ability to predict prognosis. In addition, NRS-score presented a positive correlation with tumor mutational burden (TMB) and immune checkpoint blockade (ICB) expression and was closely correlated with multiple anticancer agent susceptibility. Conclusion This work revealed a close relationship between necroptosis and the prognosis and immune microenvironment of colon cancer. The NRS-score based on the 8-gene signature may be used to predict the sensitivity of immunotherapy and chemotherapy in colon cancer patients, and provides a foundation for future studies targeting necroptosis and its immune microenvironment.
Collapse
Affiliation(s)
- Rong He
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Meiling Zhang
- Department of Gastroenterology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Lian He
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jiabin Huang
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Changfeng Man
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Yakun Lang
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
- Yakun Lang
| | - Yu Fan
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Yu Fan
| |
Collapse
|
225
|
Weele LJ, Djomehri SI, Cai S, Antony J, Sikandar SS, Qian D, Ho WH, West R, Scheeren FA, Clarke MF. Mesenchymal tumor cells drive adaptive resistance of
Trp53
‐/‐
breast tumor cells to inactivated mutant
Kras. Mol Oncol 2022; 16:3128-3145. [PMID: 35398967 PMCID: PMC9441006 DOI: 10.1002/1878-0261.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/13/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Linda J. Weele
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
| | - Sabra I. Djomehri
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
| | - Shang Cai
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
- Westlake University Shilongshan St #18 Hangzhou, Xihu District Zhejiang Province China
| | - Jane Antony
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
| | - Shaheen S. Sikandar
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
- Department of Molecular, Cell and Developmental Biology University of California Santa Cruz CA 95064 USA
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
| | - William H.D. Ho
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
- Department of Stem Cell Biotechnology California State University Channel Islands Camarillo CA 93012 USA
| | - Robert West
- Department Pathology Stanford University Medical Center Palo Alto CA 94304 USA
| | - Ferenc A. Scheeren
- Department of Medical Oncology Leiden University Medical Center Leiden RC 2300 The Netherlands
| | - Michael F. Clarke
- Institute for Stem Cell Biology and Regenerative Medicine School of Medicine Stanford University Stanford CA 94305 USA
| |
Collapse
|
226
|
Heynen GJJE, Lisek K, Vogel R, Wulf-Goldenberg A, Alcaniz J, Montaudon E, Marangoni E, Birchmeier W. Targeting SHP2 phosphatase in breast cancer overcomes RTK-mediated resistance to PI3K inhibitors. Breast Cancer Res 2022; 24:23. [PMID: 35365185 PMCID: PMC8974145 DOI: 10.1186/s13058-022-01521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background PI3K signaling is frequently activated in breast cancer and is targeted by PI3K inhibitors. However, resistance of tumor cells to PI3K inhibition, often mediated by activated receptor tyrosine kinases, is commonly observed and reduces the potency of PI3K inhibitors. Therefore, new treatment strategies to overcome resistance to PI3K inhibitors are urgently needed to boost their efficacy. The phosphatase SHP2, which plays a crucial role in mediating signal transduction between receptor tyrosine kinases and both the PI3K and MAPK pathways, is a potential target for combination treatment. Methods We tested combinations of PI3K and SHP2 inhibitors in several experimental breast cancer models that are resistant to PI3K inhibition. Using cell culturing, biochemical and genetic approaches, we evaluated tumor cell proliferation and signaling output in cells treated with PI3K and SHP2 inhibitors. Results Combination treatment with PI3K and SHP2 inhibitors counteracted both acquired and intrinsic breast cancer cell resistance to PI3K inhibition that is mediated by activated receptor tyrosine kinases. Dual PI3K and SHP2 inhibition blocked proliferation and led to sustained inactivation of PI3K and MAPK signaling, where resistant cells rapidly re-activated these pathways upon PI3K inhibitor monotreatment. In addition, we demonstrate that overexpression of SHP2 induced resistance to PI3K inhibition, and that SHP2 was frequently activated during the development of PI3K inhibitor resistance after prolonged treatment of sensitive cells. Conclusions Our results highlight the importance of SHP2 as a player in resistance to PI3K inhibitors. Combination treatment with PI3K and SHP2 inhibitors could pave the way for significant improvements in therapies for breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01521-3.
Collapse
Affiliation(s)
- Guus J J E Heynen
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| | - Kamil Lisek
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Regina Vogel
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Annika Wulf-Goldenberg
- Experimental and Pharmacological Oncology (EPO), Campus Berlin-Buch, Building 82, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Joshua Alcaniz
- Experimental and Pharmacological Oncology (EPO), Campus Berlin-Buch, Building 82, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Elodie Montaudon
- Preclinical Investigation Laboratory, Institut Curie, 20 Rue d'Ulm, 75248, Paris, France
| | - Elisabetta Marangoni
- Preclinical Investigation Laboratory, Institut Curie, 20 Rue d'Ulm, 75248, Paris, France
| | - Walter Birchmeier
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
227
|
Chiu YJ, Yang JS, Tsai FJ, Chiu HY, Juan YN, Lo YH, Chiang JH. Curcumin suppresses cell proliferation and triggers apoptosis in vemurafenib-resistant melanoma cells by downregulating the EGFR signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:868-879. [PMID: 34994998 DOI: 10.1002/tox.23450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Melanoma is a malignant tumor with aggressive behavior. Vemurafenib, a BRAF inhibitor, is clinically used in melanoma, but resistance to melanoma cytotoxic therapies is associated with BRAF mutations. Curcumin can effectively inhibit numerous types of cancers. However, there are no reports regarding the correlation between curcumin and vemurafenib-resistant melanoma cells. In this study, vemurafenib-resistant A375.S2 (A375.S2/VR) cells were established, and the functional mechanism of the epidermal growth factor receptor (EGFR), serine-threonine kinase (AKT), and the extracellular signal-regulated kinase (ERK) signaling induced by curcumin was investigated in A375.S2/VR cells in vitro. Our results indicated that A375.S2/VR cells had a higher IC50 concentration of vemurafenib than the parental A375.S2 cells. Moreover, curcumin reduced the viability and confluence of A375.S2/VR cells. Curcumin triggered apoptosis via reactive oxygen species (ROS) production, disruption of mitochondrial membrane potential (ΔΨm), and intrinsic signaling (caspase-9/-3-dependent) pathways in A375.S2/VR cells. Curcumin-induced apoptosis was also mediated by the EGFR signaling pathway. Combination treatment with curcumin and gefitinib (an EGFR inhibitor) synergistically potentiated the inhibitory effect of cell viability in A375.S2/VR cells. The present study provides new insights into the therapy of vemurafenib-resistant melanoma and suggests that curcumin might be an encouraging therapeutic candidate for its drug-resistant treatment.
Collapse
Affiliation(s)
- Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hong-Yi Chiu
- Department of Pharmacy, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Clinical Pharmacy, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Hsiang Lo
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jo-Hua Chiang
- Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi, Taiwan
| |
Collapse
|
228
|
Abstract
Colorectal cancer is the second leading cause of cancer-associated mortality, with a lifetime risk of approximately 4% to 5%. Colorectal cancer develops from the sequential acquisition of defined genetic mutations in the colonic epithelium. Tumorigenesis from normal tissue to cancer occurs largely through 3 pathways: the chromosomal instability pathway, the microsatellite instability pathway, and the sessile serrated pathway. Colorectal cancer incidence and mortality have decreased by approximately 35% since the beginning of screening programs in the 1990s, although other factors such as use of aspirin for coronary disease prevention and decreased smoking rates may also be important. In this review, we discuss the etiology, epidemiology, and histology of colorectal polyps and cancer.
Collapse
|
229
|
Systematic review of randomised clinical trials and observational studies for patients with RAS wild-type or BRAF V600E-mutant metastatic and/or unresectable colorectal cancer. Crit Rev Oncol Hematol 2022; 173:103646. [PMID: 35344913 DOI: 10.1016/j.critrevonc.2022.103646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Approximately 8-10% of metastatic colorectal cancer (mCRC) tumours harbour BRAFV600E mutations. Eleven randomised controlled trials (RCTs) and 24 non-RCTs were identified. Seven studies evaluated BRAF inhibitors. Single-agent BRAF inhibitors had minimal efficacy, whereas BRAF inhibitor plus anti-EGFR therapy improved outcomes. In BEACON CRC, overall survival (OS) was significantly longer for patients receiving encorafenib plus cetuximab ± binimetinib when compared with irinotecan/FOLFIRI plus cetuximab as second- and third-line therapy. Seven prospective non-RCTs reported worse OS and progression-free survival (PFS) for patients with BRAFV600E-mutant vs BRAF wild-type mCRC. Eight RCTs reported that PFS and OS were generally shorter for patients with BRAFV600E-mutant mCRC vs those with KRAS or RAS wild-type mCRC. Patients with BRAFV600E-mutant mCRC have worse outcomes with conventional therapy vs patients with BRAF wild-type tumours. BRAF inhibitors in conjunction with anti-EGFR therapy improves outcomes for patients with BRAFV600E-mutant mCRC vs conventional therapy or a BRAF inhibitor alone.
Collapse
|
230
|
Rodriquenz MG, Ciardiello D, Latiano TP, Maiorano BA, Martinelli E, Silvestris N, Ciardiello F, Maiello E. Exploring biological heterogeneity and implications on novel treatment paradigm in BRAF-mutant metastatic colorectal cancer. Crit Rev Oncol Hematol 2022; 173:103657. [PMID: 35337969 DOI: 10.1016/j.critrevonc.2022.103657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022] Open
Abstract
Approximatively 8-15% of patients with metastatic colorectal cancer (mCRC) harbor mutation in BRAF gene. Recent advances in molecular biology enabled a better knowledge of the molecular heterogeneity within BRAF mutant (BRAFMT) CRCs, including high rate of overlapping with MSI-H status and detection of non-V600E mutations related to more favorable behavior. Treatment armamentarium has been rapidly growing in this subgroup and includes targeted combinations and immunotherapy for concomitant MSI-H patients, thereby making BRAFMT mCRC an innovative model for precision oncology. Nevertheless, duration of responses to targeted strategies remains unsatisfactory due to the development of secondary resistance, which is currently the field of major clinical research on BRAFMT mCRC. This review explores the molecular, clinical and therapeutic landscape of BRAFMT mCRC as well as an update on current treatment strategies and future perspectives in light of the heterogeneity of BRAF-mutated disease. Furthermore, a novel treatment algorithm for BRAFMT mCRC will be proposed.
Collapse
Affiliation(s)
- Maria Grazia Rodriquenz
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy.
| | - Davide Ciardiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy; Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Tiziana Pia Latiano
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Brigida Anna Maiorano
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy; Medical Oncology Unit, Comprehensive Cancer Center, Foundation A. Gemelli Policlinic IRCCS, 00168 Rome, Italy
| | - Erika Martinelli
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Fortunato Ciardiello
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Evaristo Maiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
231
|
Intermittent treatment of BRAF V600E melanoma cells delays resistance by adaptive resensitization to drug rechallenge. Proc Natl Acad Sci U S A 2022; 119:e2113535119. [PMID: 35290123 PMCID: PMC8944661 DOI: 10.1073/pnas.2113535119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Preclinical studies of metastatic melanoma treated with targeted therapeutics have suggested that alternating periods of treatment and withdrawal might delay the onset of resistance. This has been attributed to drug addiction, where cells lose fitness upon drug removal due to the resulting hyperactivation of mitogen-activated protein (MAP) kinase signaling. This study presents evidence that the intermittent treatment response can also be explained by the resensitization of cells following drug removal and enhanced cell loss upon drug rechallenge. Resensitization is accompanied by adaptive transcriptomic switching and occurs despite the sustained expression of resistance genes throughout the intermittent treatment. Patients with melanoma receiving drugs targeting BRAFV600E and mitogen-activated protein (MAP) kinase kinases 1 and 2 (MEK1/2) invariably develop resistance and face continued progression. Based on preclinical studies, intermittent treatment involving alternating periods of drug withdrawal and rechallenge has been proposed as a method to delay the onset of resistance. The beneficial effect of intermittent treatment has been attributed to drug addiction, where drug withdrawal reduces the viability of resistant cells due to MAP kinase pathway hyperactivation. However, the mechanistic basis of the intermittent effect is incompletely understood. We show that intermittent treatment with the BRAFV600E inhibitor, LGX818/encorafenib, suppresses growth compared with continuous treatment in human melanoma cells engineered to express BRAFV600E, p61-BRAFV600E, or MEK2C125 oncogenes. Analysis of the BRAFV600E-overexpressing cells shows that, while drug addiction clearly occurs, it fails to account for the advantageous effect of intermittent treatment. Instead, growth suppression is best explained by resensitization during periods of drug removal, followed by cell death after drug readdition. Continuous treatment leads to transcriptional responses prominently associated with chemoresistance in melanoma. By contrast, cells treated intermittently reveal a subset of transcripts that reverse expression between successive cycles of drug removal and rechallenge and include mediators of cell invasiveness and the epithelial-to-mesenchymal transition. These transcripts change during periods of drug removal by adaptive switching, rather than selection pressure. Resensitization occurs against a background of sustained expression of melanoma resistance genes, producing a transcriptome distinct from that of the initial drug-naive cell state. We conclude that phenotypic plasticity leading to drug resensitization can underlie the beneficial effect of intermittent treatment.
Collapse
|
232
|
Tan L, Zhang J, Wang Y, Wang X, Wang Y, Zhang Z, Shuai W, Wang G, Chen J, Wang C, Ouyang L, Li W. Development of Dual Inhibitors Targeting Epidermal Growth Factor Receptor in Cancer Therapy. J Med Chem 2022; 65:5149-5183. [PMID: 35311289 DOI: 10.1021/acs.jmedchem.1c01714] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epidermal growth factor receptor (EGFR) is of great significance in mediating cell signaling transduction and tumor behaviors. Currently, third-generation inhibitors of EGFR, especially osimertinib, are at the clinical frontier for the treatment of EGFR-mutant non-small-cell lung cancer (NSCLC). Regrettably, the rapidly developing drug resistance caused by EGFR mutations and the compensatory mechanism have largely limited their clinical efficacy. Given the synergistic effect between EGFR and other compensatory targets during tumorigenesis and tumor development, EGFR dual-target inhibitors are promising for their reduced risk of drug resistance, higher efficacy, lower dosage, and fewer adverse events than those of single-target inhibitors. Hence, we present the synergistic mechanism underlying the role of EGFR dual-target inhibitors against drug resistance, their structure-activity relationships, and their therapeutic potential. Most importantly, we emphasize the optimal target combinations and design strategies for EGFR dual-target inhibitors and provide some perspectives on new challenges and future directions in this field.
Collapse
Affiliation(s)
- Lun Tan
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xiye Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yanyan Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Zhixiong Zhang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Wen Shuai
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Guan Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Juncheng Chen
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Liang Ouyang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
233
|
Youssef ASED, Abdel-Fattah MA, Lotfy MM, Nassar A, Abouelhoda M, Touny AO, Hassan ZK, Mohey Eldin M, Bahnassy AA, Khaled H, Zekri ARN. Multigene Panel Sequencing Reveals Cancer-Specific and Common Somatic Mutations in Colorectal Cancer Patients: An Egyptian Experience. Curr Issues Mol Biol 2022; 44:1332-1352. [PMID: 35723313 PMCID: PMC8947625 DOI: 10.3390/cimb44030090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
This study aims at identifying common pathogenic somatic mutations at different stages of colorectal carcinogenesis in Egyptian patients. Our cohort included colonoscopic biopsies collected from 120 patients: 20 biopsies from patients with inflammatory bowel disease, 38 from colonic polyp patients, and 62 from patients with colorectal cancer. On top of this, the cohort included 20 biopsies from patients with non-specific mild to moderated colitis. Targeted DNA sequencing using a customized gene panel of 96 colorectal related genes running on the Ion Torrent NGS technology was used to process the samples. Our results revealed that 69% of all cases harbored at least one somatic mutation. Fifty-seven genes were found to carry 232 somatic non-synonymous variants. The most frequently pathogenic somatic mutations were localized in TP53, APC, KRAS, and PIK3CA. In total, 16 somatic mutations were detected in the CRC group and in either the IBD or CP group. In addition, our data showed that 51% of total somatic variants were CRC-specific variants. The average number of CRC-specific variants per sample is 2.4. The top genes carrying CRC-specific mutations are APC, TP53, PIK3CA, FBXW7, ATM, and SMAD4. It seems obvious that TP53 and APC genes were the most affected genes with somatic mutations in all groups. Of interest, 85% and 28% of the APC and TP53 deleterious somatic mutations were located in Exon 14 and Exon 3, respectively. Besides, 37% and 28% of the total somatic mutations identified in APC and TP53 were CRC-specific variants, respectively. Moreover, we identified that, in 29 somatic mutations in 21 genes, their association with CRC patients was unprecedented. Ten detected variants were likely to be novel: six in PIK3CA and four variants in FBXW7. The detected P53, Wnt/βcatenin, Angiogenesis, EGFR, TGF-β and Interleukin signaling pathways were the most altered pathways in 22%, 16%, 12%, 10%, 9% and 9% of the CRC patients, respectively. These results would contribute to a better understanding of the colorectal cancer and in introducing personalized therapies for Egyptian CRC patients.
Collapse
Affiliation(s)
- Amira Salah El-Din Youssef
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | | | - Mai M. Lotfy
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | - Auhood Nassar
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | | | - Ahmed O. Touny
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Zeinab K. Hassan
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | - Mohammed Mohey Eldin
- Tropical Medicine Department, El Kasr Al-Aini, Cairo University, Cairo 11562, Egypt;
| | - Abeer A. Bahnassy
- Molecular Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Hussein Khaled
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Abdel Rahman N. Zekri
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| |
Collapse
|
234
|
Organoid screening reveals epigenetic vulnerabilities in human colorectal cancer. Nat Chem Biol 2022; 18:605-614. [PMID: 35273398 DOI: 10.1038/s41589-022-00984-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 01/28/2022] [Indexed: 12/31/2022]
Abstract
Precision oncology presumes an accurate prediction of drug response on the basis of the molecular profile of tumors. However, the extent to which patient-derived tumor organoids recapitulate the response of in vivo tumors to a given drug remains obscure. To gain insights into the pharmacobiology of human colorectal cancer (CRC), we here created a robust drug screening platform for patient-derived colorectal organoids. Application of suspension culture increased organoid scalability, and a refinement of the culture condition enabled incorporation of normal and precursor organoids to high-throughput drug screening. Drug screening identified bromodomain and extra-terminal (BET) bromodomain protein inhibitor as a cancer-selective growth suppressor that targets genes aberrantly activated in CRC. A multi-omics analysis identified an association between checkpoint with forkhead and ring finger domaines (CHFR) silencing and paclitaxel sensitivity, which was further validated by gene engineering of organoids and in xenografts. Our findings highlight the utility of multiparametric validation in enhancing the biological and clinical fidelity of a drug screening system.
Collapse
|
235
|
Yang M, Davis TB, Pflieger L, Nebozhyn MV, Loboda A, Wang H, Schell MJ, Thota R, Pledger WJ, Yeatman TJ. An integrative gene expression signature analysis identifies CMS4 KRAS-mutated colorectal cancers sensitive to combined MEK and SRC targeted therapy. BMC Cancer 2022; 22:256. [PMID: 35272617 PMCID: PMC8908604 DOI: 10.1186/s12885-022-09344-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Over half of colorectal cancers (CRCs) are hard-wired to RAS/RAF/MEK/ERK pathway oncogenic signaling. However, the promise of targeted therapeutic inhibitors, has been tempered by disappointing clinical activity, likely due to complex resistance mechanisms that are not well understood. This study aims to investigate MEK inhibitor-associated resistance signaling and identify subpopulation(s) of CRC patients who may be sensitive to biomarker-driven drug combination(s). METHODS We classified 2250 primary and metastatic human CRC tumors by consensus molecular subtypes (CMS). For each tumor, we generated multiple gene expression signature scores measuring MEK pathway activation, MEKi "bypass" resistance, SRC activation, dasatinib sensitivity, EMT, PC1, Hu-Lgr5-ISC, Hu-EphB2-ISC, Hu-Late TA, Hu-Proliferation, and WNT activity. We carried out correlation, survival and other bioinformatic analyses. Validation analyses were performed in two independent publicly available CRC tumor datasets (n = 585 and n = 677) and a CRC cell line dataset (n = 154). RESULTS Here we report a central role of SRC in mediating "bypass"-resistance to MEK inhibition (MEKi), primarily in cancer stem cells (CSCs). Our integrated and comprehensive gene expression signature analyses in 2250 CRC tumors reveal that MEKi-resistance is strikingly-correlated with SRC activation (Spearman P < 10-320), which is similarly associated with EMT (epithelial to mesenchymal transition), regional metastasis and disease recurrence with poor prognosis. Deeper analysis shows that both MEKi-resistance and SRC activation are preferentially associated with a mesenchymal CSC phenotype. This association is validated in additional independent CRC tumor and cell lines datasets. The CMS classification analysis demonstrates the strikingly-distinct associations of CMS1-4 subtypes with the MEKi-resistance and SRC activation. Importantly, MEKi + SRCi sensitivities are predicted to occur predominantly in the KRAS mutant, mesenchymal CSC-like CMS4 CRCs. CONCLUSIONS Large human tumor gene expression datasets representing CRC heterogeneity can provide deep biological insights heretofore not possible with cell line models, suggesting novel repurposed drug combinations. We identified SRC as a common targetable node--an Achilles' heel--in MEKi-targeted therapy-associated resistance in mesenchymal stem-like CRCs, which may help development of a biomarker-driven drug combination (MEKi + SRCi) to treat problematic subpopulations of CRC.
Collapse
Affiliation(s)
- Mingli Yang
- Department of Surgery & Molecular Medicine, University of South Florida, Tampa General Hospital Cancer Institute, 560 Channelside Drive, Tampa, FL, 33602, USA
| | - Thomas B Davis
- Department of Surgery & Molecular Medicine, University of South Florida, Tampa General Hospital Cancer Institute, 560 Channelside Drive, Tampa, FL, 33602, USA
| | - Lance Pflieger
- Precision Genomics Translational Science Center, Intermountain Healthcare, 5026 South State Street, Murray, UT, 84107, USA
| | - Michael V Nebozhyn
- Sharp and Dohme, 770 Sumneytown Pike, Building 53, West Point, P.O. Box 4, Merck, PA, 19486, USA
| | - Andrey Loboda
- Sharp and Dohme, 770 Sumneytown Pike, Building 53, West Point, P.O. Box 4, Merck, PA, 19486, USA
| | - Heiman Wang
- Department of Surgery & Molecular Medicine, University of South Florida, Tampa General Hospital Cancer Institute, 560 Channelside Drive, Tampa, FL, 33602, USA
| | - Michael J Schell
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Ramya Thota
- Oncology Clinical Program, Intermountain Healthcare, 5026 South State Street, Murray, UT, 84107, USA
| | - W Jack Pledger
- Department of Surgery & Molecular Medicine, University of South Florida, Tampa General Hospital Cancer Institute, 560 Channelside Drive, Tampa, FL, 33602, USA
- Huntsman Cancer Institute, University of Utah, 2000 Cir of Hope Dr, Salt Lake City, UT, 84112, USA
| | - Timothy J Yeatman
- Department of Surgery & Molecular Medicine, University of South Florida, Tampa General Hospital Cancer Institute, 560 Channelside Drive, Tampa, FL, 33602, USA.
- Huntsman Cancer Institute, University of Utah, 2000 Cir of Hope Dr, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
236
|
Angerilli V, Sabella G, Centonze G, Lonardi S, Bergamo F, Mangogna A, Pietrantonio F, Fassan M, Milione M. BRAF-mutated colorectal adenocarcinomas: pathological heterogeneity and clinical implications. Crit Rev Oncol Hematol 2022; 172:103647. [PMID: 35248712 DOI: 10.1016/j.critrevonc.2022.103647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Advances in molecular biology have markedly increased our understanding of the heterogeneous molecular landscape of colorectal cancer (CRC). Up to 15% of CRCs harbor the BRAF p.V600E somatic mutation (BRAFmt), a well-established negative prognostic marker in patients with metastatic CRC (mCRC). The BEACON CRC trial set a new standard of care in patients with progressive BRAFmt cancers, consisting of the combination of encorafenib and cetuximab. On these bases, BRAF mutational testing is now recommended in patients with mCRC. However, efforts are needed to further stratify patients carrying this mutation. Here, we discuss the heterogeneous pathologic and molecular landscape of BRAFmt CRCs, focusing on the promises and pitfalls of molecular diagnostics, on novel biomarkers to improve patients' stratification and on the current diagnostic scenario for CRC. We believe that a better stratification based on histopathological features and novel molecular biomarkers should be performed to optimize patient management and therapeutic decision-making.
Collapse
Affiliation(s)
| | - Giovanna Sabella
- Pathology Unit 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giovanni Centonze
- Pathology Unit 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Sara Lonardi
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, Padua
| | - Francesca Bergamo
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, Padua
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, 34137 Trieste, Italy
| | | | - Matteo Fassan
- Department of Medicine, Surgical Pathology Unit, University of Padua; Veneto Institute of Oncology, IOV-IRCCS, Padua
| | - Massimo Milione
- Pathology Unit 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.
| |
Collapse
|
237
|
Jaaks P, Coker EA, Vis DJ, Edwards O, Carpenter EF, Leto SM, Dwane L, Sassi F, Lightfoot H, Barthorpe S, van der Meer D, Yang W, Beck A, Mironenko T, Hall C, Hall J, Mali I, Richardson L, Tolley C, Morris J, Thomas F, Lleshi E, Aben N, Benes CH, Bertotti A, Trusolino L, Wessels L, Garnett MJ. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 2022; 603:166-173. [PMID: 35197630 PMCID: PMC8891012 DOI: 10.1038/s41586-022-04437-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/18/2022] [Indexed: 02/08/2023]
Abstract
Combinations of anti-cancer drugs can overcome resistance and provide new treatments1,2. The number of possible drug combinations vastly exceeds what could be tested clinically. Efforts to systematically identify active combinations and the tissues and molecular contexts in which they are most effective could accelerate the development of combination treatments. Here we evaluate the potency and efficacy of 2,025 clinically relevant two-drug combinations, generating a dataset encompassing 125 molecularly characterized breast, colorectal and pancreatic cancer cell lines. We show that synergy between drugs is rare and highly context-dependent, and that combinations of targeted agents are most likely to be synergistic. We incorporate multi-omic molecular features to identify combination biomarkers and specify synergistic drug combinations and their active contexts, including in basal-like breast cancer, and microsatellite-stable or KRAS-mutant colon cancer. Our results show that irinotecan and CHEK1 inhibition have synergistic effects in microsatellite-stable or KRAS–TP53 double-mutant colon cancer cells, leading to apoptosis and suppression of tumour xenograft growth. This study identifies clinically relevant effective drug combinations in distinct molecular subpopulations and is a resource to guide rational efforts to develop combinatorial drug treatments. A survey of potency and efficacy of 2,025 clinically relevant two-drug combinations against 125 molecularly characterized breast, colorectal and pancreatic cancer cell lines identifies rare synergistic effects of anticancer drugs, informing rational combination treatments for specific cancer subtypes.
Collapse
Affiliation(s)
| | | | - Daniel J Vis
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | | | | | | | - Lisa Dwane
- Wellcome Sanger Institute, Cambridge, UK
| | | | | | | | | | | | | | | | | | - James Hall
- Wellcome Sanger Institute, Cambridge, UK
| | - Iman Mali
- Wellcome Sanger Institute, Cambridge, UK
| | | | | | | | | | | | - Nanne Aben
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cyril H Benes
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Bertotti
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.,Department of Oncology, University of Torino School of Medicine, Turin, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.,Department of Oncology, University of Torino School of Medicine, Turin, Italy
| | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of EEMCS, Delft University of Technology, Delft, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
238
|
Wang Z, Qin BD, Ye CY, Wang MM, Yuan LY, Dai WP, Sun L, Liu K, Qin WX, Jiao XD, Li XN, Zang YS. Cetuximab and vemurafenib plus FOLFIRI (5-fluorouracil/leucovorin/irinotecan) for BRAF V600E-mutated advanced colorectal cancer (IMPROVEMENT): An open-label, single-arm, phase II trial. Eur J Cancer 2022; 163:152-162. [DOI: 10.1016/j.ejca.2021.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022]
|
239
|
Nakano M, Shimada Y, Matsumoto Y, Saiki T, Zhou Q, Sasaki K, Moriyama M, Yoshihara K, Natsumeda M, Kuriyama Y, Takii Y, Watanabe G, Umezu H, Okuda S, Ikeuchi T, Wakai T, Saijo Y. Efficacy of BRAF inhibitor and anti-EGFR antibody in colorectal neuroendocrine carcinoma. Clin J Gastroenterol 2022; 15:413-418. [PMID: 35133626 DOI: 10.1007/s12328-022-01599-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/25/2022] [Indexed: 01/16/2023]
Abstract
Neuroendocrine neoplasms of the colon and rectum are colorectal epithelial neoplasms with neuroendocrine differentiation. A platinum regimen used for small cell lung cancer is the currently recommended chemotherapy for gastroenteropancreatic neuroendocrine carcinomas (GEP-NECs), regardless of the organ. The BRAF V600E mutation has been recently reported as a druggable driver mutation in colorectal NECs. In BRAF V600E mutant colorectal cancer, a combination of BRAF inhibitor and anti-epidermal growth factor receptor (EGFR) antibody, with or without a MEK inhibitor, is recommended. Here, we report the case of 77-year-old man who had lymph node recurrence after surgery for primary ascending colonic NEC. Two cytotoxic regimens, cisplatin plus irinotecan and modified FOLFOX6, were administered as first- and second-line chemotherapies with no remarkable response observed. At this point, genetic analysis confirmed the tumor harbored a BRAF V600E mutation. Thus, a regimen of BRAF inhibitor plus anti-EGFR antibody was administered. After commencing this regimen, carcinoembryonic antigen levels decreased within normal range, and there was dramatic shrinkage of the lymph node metastases observed by chest and abdominal computed tomography scans. To our knowledge, this is the first reported case of a colorectal NEC responding to a BRAF inhibitor and anti-EGFR antibody.
Collapse
Affiliation(s)
- Mae Nakano
- Medical Genome Center, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan.,Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 9518510, Japan
| | - Yoshifumi Shimada
- Medical Genome Center, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan. .,Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 9518510, Japan.
| | - Yoshifumi Matsumoto
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Takuro Saiki
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Qiliang Zhou
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Kenta Sasaki
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Masato Moriyama
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Yoko Kuriyama
- Medical Genome Center, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan.,Center for Medical Genetics, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Yasumasa Takii
- Department of Surgery, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata, Japan
| | - Gen Watanabe
- Department of Pathology, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata, Japan
| | - Hajime Umezu
- Department of Pathology, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Shujiro Okuda
- Center for Genomic Data Management, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan.,Medical AI Center/Bioinformatics Laboratory, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, Japan
| | - Takeshi Ikeuchi
- Center for Medical Genetics, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Toshifumi Wakai
- Medical Genome Center, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan.,Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 9518510, Japan
| | - Yasuo Saijo
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| |
Collapse
|
240
|
Ros J, Saoudi N, Salvà F, Baraibar I, Alonso G, Tabernero J, Elez E. Ongoing and evolving clinical trials enhancing future colorectal cancer treatment strategies. Expert Opin Investig Drugs 2022; 31:235-247. [PMID: 35133234 DOI: 10.1080/13543784.2022.2040016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Molecular profiling has led to significantly longer survival in metastatic colorectal cancer (CRC) patients. Clinical guidelines recommend testing for KRAS/NRAS, BRAF and MSI status and over the last few years several promising new biomarkers have also been identified. Circulating tumor DNA has reshaped the prognosis of localized CRC. These genomic findings can guide treatment management to improve clinical outcomes. AREAS COVERED Preclinical and clinical data over the last decade were reviewed for known and novel biomarkers with clinical implications in refractory and metastatic CRC. In the localized stage, al clinical trials involving new approaches such as liquid biopsy or neoadjuvant immunotherapy are also discussed. Molecular alterations and targeted agents are described, and data from completed and ongoing studies with targeted therapy and immunotherapies are presented. EXPERT OPINION The implementation of liquid biopsies in the localized CRC setting has reshaped management of this disease. The expanded use of biomarkers to guide the treatment of patients with CRC has revealed a level of complexity arising from interactions between different biomarkers. Prevalence of most established targetable biomarkers is low, however the number of identified biomarkers in CRC is increasing. Thus, metastatic CRC may ultimately be considered an umbrella diagnosis encompassing numerous rare disease subtypes.
Collapse
Affiliation(s)
- Javier Ros
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Precision Medicine, Medical Oncology, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Campania, Italy
| | - Nadia Saoudi
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Francesc Salvà
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Iosune Baraibar
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Guzman Alonso
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Elena Elez
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
241
|
Mo J, Moye SL, McKay RM, Le LQ. Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene 2022; 41:1235-1251. [PMID: 35066574 PMCID: PMC9063229 DOI: 10.1038/s41388-021-02156-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease and one of the most common inherited tumor predisposition syndromes, affecting 1 in 3000 individuals worldwide. The NF1 gene encodes neurofibromin, a large protein with RAS GTP-ase activating (RAS-GAP) activity, and loss of NF1 results in increased RAS signaling. Neurofibromin contains many other domains, and there is considerable evidence that these domains play a role in some manifestations of NF1. Investigating the role of these domains as well as the various signaling pathways that neurofibromin regulates and interacts with will provide a better understanding of how neurofibromin acts to suppress tumor development and potentially open new therapeutic avenues. In this review, we discuss what is known about the structure of neurofibromin, its interactions with other proteins and signaling pathways, its role in development and differentiation, and its function as a tumor suppressor. Finally, we discuss the latest research on potential therapeutics for neurofibromin-deficient neoplasms.
Collapse
Affiliation(s)
- Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Stefanie L Moye
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Renee M McKay
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
242
|
Tabbò F, Pisano C, Mazieres J, Mezquita L, Nadal E, Planchard D, Pradines A, Santamaria D, Swalduz A, Ambrogio C, Novello S, Ortiz-Cuaran S. How far we have come targeting BRAF-mutant non-small cell lung cancer (NSCLC). Cancer Treat Rev 2022; 103:102335. [DOI: 10.1016/j.ctrv.2021.102335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022]
|
243
|
España MS. Treatment of advanced BRAF-mutated colorectal cancer: where we are and where we are going. Clin Colorectal Cancer 2022; 21:71-79. [DOI: 10.1016/j.clcc.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
|
244
|
Yorozuya T, Otsuka M, Ichihara S, Fujimori K, Kitamura C, Takahashi T, Mori M, Cho Y, Chiba H. Thymic Adenocarcinoma with Positivity for Thyroid Transcription Factor-1 and a BRAF V600E Mutation. Intern Med 2022; 61:385-388. [PMID: 34275983 PMCID: PMC8866798 DOI: 10.2169/internalmedicine.7623-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thymic adenocarcinomas are rare. We herein report for the first time a case of thymic adenocarcinoma with positivity for thyroid transcription factor-1 (TTF-1) and a BRAF V600E mutation. A 50-year-old woman had persistent suffocation and chest pain. Computed tomography revealed a 42×28-mm tumor in the anterior mediastinum. The patient underwent tumor resection using video-assisted thoracoscopic surgery. Histopathological findings showed thymic papillary adenocarcinoma, Masaoka stage II. Immunohistochemically, the tumor was positive for TTF-1. A sequencing analysis revealed a BRAF V600E mutation. The patient underwent postoperative radiotherapy and was in good health without recurrence at five months after resection.
Collapse
Affiliation(s)
- Takafumi Yorozuya
- Department of Respiratory Medicine, Sapporo Kosei General Hospital, Japan
| | - Mitsuo Otsuka
- Department of Respiratory Medicine, Sapporo Kosei General Hospital, Japan
| | - Shin Ichihara
- Department of Surgical Pathology, Sapporo Kosei General Hospital, Japan
| | - Kento Fujimori
- Department of Respiratory Medicine, Sapporo Kosei General Hospital, Japan
| | - Chikako Kitamura
- Department of Respiratory Medicine, Sapporo Kosei General Hospital, Japan
| | - Tomoyuki Takahashi
- Department of Respiratory Medicine, Sapporo Kosei General Hospital, Japan
| | - Masaki Mori
- Department of Respiratory Medicine, Sapporo Kosei General Hospital, Japan
| | - Yasushi Cho
- Department of Surgery, Sapporo Kosei General Hospital, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Japan
| |
Collapse
|
245
|
Gaggianesi M, Mangiapane LR, Modica C, Pantina VD, Porcelli G, Di Franco S, Lo Iacono M, D’Accardo C, Verona F, Pillitteri I, Turdo A, Veschi V, Brancato OR, Muratore G, Pistone G, Bongiorno MR, Todaro M, De Maria R, Stassi G. Dual Inhibition of Myc Transcription and PI3K Activity Effectively Targets Colorectal Cancer Stem Cells. Cancers (Basel) 2022; 14:cancers14030673. [PMID: 35158939 PMCID: PMC8833549 DOI: 10.3390/cancers14030673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Compelling evidence has shown that cancer stem cells (CSCs) are responsible for high resistance to conventional anti-cancer therapies. Here, we demonstrate that the tumor microenvironment protects CR-CSCs from EGFR/HER2, BRAF and PI3K targeting, promoting CD44v6 and Myc expression. Alternatively, as a substitution for HER2 and BRAF, the Myc transcription inhibitor can overcome the protective effects of microenvironmental cytokines, impairing the survival of CR-CSCs. These data highlight the targeting of Myc and PI3K activity as a novel therapeutic strategy against advanced colorectal cancer. Abstract Despite advances in the curative approach, the survival rate of advanced colorectal cancer (CRC) patients is still poor, which is likely due to the emergence of cancer cell clones resistant to the available therapeutic options. We have already shown that CD44v6-positive CRC stem cells (CR-CSCs) are refractory toward standard anti-tumor therapeutic agents due to the activation of the PI3K pathway together with high HER2 expression levels. Tumor microenvironmental cytokines confer resistance to CR-CSCs against HER2/PI3K targeting by enhancing activation of the MAPK pathway. Here, we show that the CSC compartment, spared by BRAF inhibitor-based targeted therapy, is associated with increased expression levels of CD44v6 and Myc and retains boosted clonogenic activity along with residual tumorigenic potential. Inhibition of Myc transcription, downstream of the MAPK cascade components, and PI3K pathway activity was able to overcome the protective effects of microenvironmental cytokines, affecting the survival and the clonogenic activity of CR-CSCs, regardless of their mutational background. Likewise, the double targeting induced stabilization of mouse tumor avatars. Altogether, these data outline the rationale for dual kinase targeting of CR-CSCs to prevent their adaptive response, which would lead to disease progression.
Collapse
Affiliation(s)
- Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Laura Rosa Mangiapane
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Vincenzo Davide Pantina
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Gaetana Porcelli
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Melania Lo Iacono
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Caterina D’Accardo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Francesco Verona
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Irene Pillitteri
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Ornella Roberta Brancato
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Giampaolo Muratore
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
| | - Giuseppe Pistone
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Maria Rita Bongiorno
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (L.R.M.); (G.P.); (C.D.); (F.V.); (A.T.); (G.P.); (M.R.B.); (M.T.)
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico A Gemelli IRCCS, 00168 Roma, Italy
- Correspondence: (R.D.M.); (G.S.); Tel.: +39-06-3015-4914 (R.D.M.); +39-091-2389-0813 (G.S.)
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy; (M.G.); (C.M.); (V.D.P.); (S.D.F.); (M.L.I.); (I.P.); (V.V.); (O.R.B.); (G.M.)
- Correspondence: (R.D.M.); (G.S.); Tel.: +39-06-3015-4914 (R.D.M.); +39-091-2389-0813 (G.S.)
| |
Collapse
|
246
|
Kwan AK, Piazza GA, Keeton AB, Leite CA. The path to the clinic: a comprehensive review on direct KRASG12C inhibitors. J Exp Clin Cancer Res 2022; 41:27. [PMID: 35045886 PMCID: PMC8767686 DOI: 10.1186/s13046-021-02225-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/16/2021] [Indexed: 02/08/2023] Open
Abstract
AbstractThe RAS oncogene is both the most frequently mutated oncogene in human cancer and the first confirmed human oncogene to be discovered in 1982. After decades of research, in 2013, the Shokat lab achieved a seminal breakthrough by showing that the activated KRAS isozyme caused by the G12C mutation in the KRAS gene can be directly inhibited via a newly unearthed switch II pocket. Building upon this groundbreaking discovery, sotorasib (AMG510) obtained approval by the United States Food and Drug Administration in 2021 to become the first therapy to directly target the KRAS oncoprotein in any KRAS-mutant cancers, particularly those harboring the KRASG12C mutation. Adagrasib (MRTX849) and other direct KRASG12C inhibitors are currently being investigated in multiple clinical trials. In this review, we delve into the path leading to the development of this novel KRAS inhibitor, starting with the discovery, structure, and function of the RAS family of oncoproteins. We then examine the clinical relevance of KRAS, especially the KRASG12C mutation in human cancer, by providing an in-depth analysis of its cancer epidemiology. Finally, we review the preclinical evidence that supported the initial development of the direct KRASG12C inhibitors and summarize the ongoing clinical trials of all direct KRASG12C inhibitors.
Collapse
|
247
|
Riedesser JE, Ebert MP, Betge J. Precision medicine for metastatic colorectal cancer in clinical practice. Ther Adv Med Oncol 2022; 14:17588359211072703. [PMID: 35237350 PMCID: PMC8882813 DOI: 10.1177/17588359211072703] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022] Open
Abstract
Globally, metastatic colorectal cancer is one of the leading causes for cancer-related death. Treatment limited to conventional chemotherapeutics extended life for only a few months. However, advances in surgical approaches and medical treatment regimens have greatly increased survival, even leading to long-term remission in selected patients. Advances in multiomics analysis of tumors have built a foundation for molecular-targeted therapies. Furthermore, immunotherapies are on the edge of revolutionizing oncological practice. This review summarizes recent advances in the growing toolbox of personalized treatment for patients with metastatic colorectal cancer. We provide an overview of current multimodal therapy and explain novel immunotherapy and targeted therapy approaches in detail. We emphasize clinically relevant therapies, such as inhibitors of MAPK signaling, and give recommendations for clinical practice. Finally, we describe the potential predictive impact of molecular subtypes and provide an outlook on novel concepts, such as functional precision medicine.
Collapse
Affiliation(s)
- Julian E. Riedesser
- Junior Clinical Cooperation Unit Translational
Gastrointestinal Oncology and Preclinical Models, German Cancer Research
Center (DKFZ), Heidelberg, Germany
| | - Matthias P. Ebert
- Department of Medicine II, University Medical
Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim,
GermanyMannheim Cancer Center, University Medical Center Mannheim, Medical
Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Betge
- Junior Clinical Cooperation Unit Translational
Gastrointestinal Oncology and Preclinical Models, German Cancer Research
Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg 69120, GermanyDKFZ-Hector
Cancer Institute at University Medical Center Mannheim, Mannheim,
Germany.Department of Medicine II, University Medical Center Mannheim,
Medical Faculty Mannheim, Heidelberg University, Mannheim, GermanyMannheim
Cancer Center, University Medical Center Mannheim, Medical Faculty Mannheim,
Heidelberg University, Mannheim, Germany
| |
Collapse
|
248
|
Letai A, Bhola P, Welm AL. Functional precision oncology: Testing tumors with drugs to identify vulnerabilities and novel combinations. Cancer Cell 2022; 40:26-35. [PMID: 34951956 PMCID: PMC8752507 DOI: 10.1016/j.ccell.2021.12.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 01/12/2023]
Abstract
Functional precision medicine is a strategy whereby live tumor cells from affected individuals are directly perturbed with drugs to provide immediately translatable, personalized information to guide therapy. The heterogeneity of human cancer has led to the realization that personalized approaches are needed to improve treatment outcomes. Precision oncology has traditionally used static features of the tumor to dictate which therapies should be used. Static features can include expression of key targets or genomic analysis of mutations to identify therapeutically targetable "drivers." Although a surprisingly small proportion of individuals derive clinical benefit from the static approach, functional precision medicine can provide additional information regarding tumor vulnerabilities. We discuss emerging technologies for functional precision medicine as well as limitations and challenges in using these assays in the clinical trials that will be necessary to determine whether functional precision medicine can improve outcomes and eventually become a standard tool in clinical oncology.
Collapse
Affiliation(s)
- Anthony Letai
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Patrick Bhola
- Harvard Medical School, Boston, MA 02215, USA; Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alana L Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
249
|
Akhoundova D, Pietge H, Hussung S, Kiessling M, Britschgi C, Zoche M, Rechsteiner M, Weber A, Fritsch RM. Targeting Secondary and Tertiary Resistance to BRAF Inhibition in BRAF V600E-Mutated Metastatic Colorectal Cancer. JCO Precis Oncol 2022; 5:1082-1087. [PMID: 34994629 DOI: 10.1200/po.21.00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Dilara Akhoundova
- Department of Medical Oncology and Hematology, University Hospital of Zurich, Zurich, Switzerland
| | - Heike Pietge
- Department of Medical Oncology and Hematology, University Hospital of Zurich, Zurich, Switzerland
| | - Saskia Hussung
- Department of Medical Oncology and Hematology, University Hospital of Zurich, Zurich, Switzerland
| | - Michael Kiessling
- Department of Medical Oncology and Hematology, University Hospital of Zurich, Zurich, Switzerland
| | - Christian Britschgi
- Department of Medical Oncology and Hematology, University Hospital of Zurich, Zurich, Switzerland
| | - Martin Zoche
- Department of Pathology and Molecular Pathology, University Hospital of Zurich, Zurich, Switzerland
| | - Markus Rechsteiner
- Department of Pathology and Molecular Pathology, University Hospital of Zurich, Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital of Zurich, Zurich, Switzerland
| | - Ralph M Fritsch
- Department of Medical Oncology and Hematology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
250
|
Murphy P, Glynn D, Dias S, Hodgson R, Claxton L, Beresford L, Cooper K, Tappenden P, Ennis K, Grosso A, Wright K, Cantrell A, Stevenson M, Palmer S. Modelling approaches for histology-independent cancer drugs to inform NICE appraisals: a systematic review and decision-framework. Health Technol Assess 2022; 25:1-228. [PMID: 34990339 DOI: 10.3310/hta25760] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The first histology-independent marketing authorisation in Europe was granted in 2019. This was the first time that a cancer treatment was approved based on a common biomarker rather than the location in the body at which the tumour originated. This research aims to explore the implications for National Institute for Health and Care Excellence appraisals. METHODS Targeted reviews were undertaken to determine the type of evidence that is likely to be available at the point of marketing authorisation and the analyses required to support National Institute for Health and Care Excellence appraisals. Several challenges were identified concerning the design and conduct of trials for histology-independent products, the greater levels of heterogeneity within the licensed population and the use of surrogate end points. We identified approaches to address these challenges by reviewing key statistical literature that focuses on the design and analysis of histology-independent trials and by undertaking a systematic review to evaluate the use of response end points as surrogate outcomes for survival end points. We developed a decision framework to help to inform approval and research policies for histology-independent products. The framework explored the uncertainties and risks associated with different approval policies, including the role of further data collection, pricing schemes and stratified decision-making. RESULTS We found that the potential for heterogeneity in treatment effects, across tumour types or other characteristics, is likely to be a central issue for National Institute for Health and Care Excellence appraisals. Bayesian hierarchical methods may serve as a useful vehicle to assess the level of heterogeneity across tumours and to estimate the pooled treatment effects for each tumour, which can inform whether or not the assumption of homogeneity is reasonable. Our review suggests that response end points may not be reliable surrogates for survival end points. However, a surrogate-based modelling approach, which captures all relevant uncertainty, may be preferable to the use of immature survival data. Several additional sources of heterogeneity were identified as presenting potential challenges to National Institute for Health and Care Excellence appraisal, including the cost of testing, baseline risk, quality of life and routine management costs. We concluded that a range of alternative approaches will be required to address different sources of heterogeneity to support National Institute for Health and Care Excellence appraisals. An exemplar case study was developed to illustrate the nature of the assessments that may be required. CONCLUSIONS Adequately designed and analysed basket studies that assess the homogeneity of outcomes and allow borrowing of information across baskets, where appropriate, are recommended. Where there is evidence of heterogeneity in treatment effects and estimates of cost-effectiveness, consideration should be given to optimised recommendations. Routine presentation of the scale of the consequences of heterogeneity and decision uncertainty may provide an important additional approach to the assessments specified in the current National Institute for Health and Care Excellence methods guide. FURTHER RESEARCH Further exploration of Bayesian hierarchical methods could help to inform decision-makers on whether or not there is sufficient evidence of homogeneity to support pooled analyses. Further research is also required to determine the appropriate basis for apportioning genomic testing costs where there are multiple targets and to address the challenges of uncontrolled Phase II studies, including the role and use of surrogate end points. FUNDING This project was funded by the National Institute for Health Research (NIHR) Evidence Synthesis programme and will be published in full in Health Technology Assessment; Vol. 25, No. 76. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Peter Murphy
- Centre for Reviews and Dissemination, University of York, York, UK
| | - David Glynn
- Centre for Health Economics, University of York, York, UK
| | - Sofia Dias
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Robert Hodgson
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Lindsay Claxton
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Lucy Beresford
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Katy Cooper
- School of Health and Related Research (ScHARR) Technology Assessment Group, University of Sheffield, Sheffield, UK
| | - Paul Tappenden
- School of Health and Related Research (ScHARR) Technology Assessment Group, University of Sheffield, Sheffield, UK
| | - Kate Ennis
- School of Health and Related Research (ScHARR) Technology Assessment Group, University of Sheffield, Sheffield, UK
| | | | - Kath Wright
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Anna Cantrell
- School of Health and Related Research (ScHARR) Technology Assessment Group, University of Sheffield, Sheffield, UK
| | - Matt Stevenson
- School of Health and Related Research (ScHARR) Technology Assessment Group, University of Sheffield, Sheffield, UK
| | - Stephen Palmer
- Centre for Health Economics, University of York, York, UK
| |
Collapse
|