201
|
Nakanishi K, Ascano M, Gogakos T, Ishibe-Murakami S, Serganov AA, Briskin D, Morozov P, Tuschl T, Patel DJ. Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Rep 2014; 3:1893-900. [PMID: 23809764 DOI: 10.1016/j.celrep.2013.06.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022] Open
Abstract
We have solved the crystal structure of human ARGONAUTE1 (hAGO1) bound to endogenous 5'-phosphorylated guide RNAs. To identify changes that evolutionarily rendered hAGO1 inactive, we compared our structure with guide-RNA-containing and cleavage-active hAGO2. Aside from mutation of a catalytic tetrad residue, proline residues at positions 670 and 675 in hAGO1 introduce a kink in the cS7 loop, forming a convex surface within the hAGO1 nucleic-acid-binding channel near the inactive catalytic site. We predicted that even upon restoration of the catalytic tetrad, hAGO1-cS7 sterically hinders the placement of a fully paired guide-target RNA duplex into the endonuclease active site. Consistent with this hypothesis, reconstitution of the catalytic tetrad with R805H led to low-level hAGO1 cleavage activity, whereas combining R805H with cS7 substitutions P670S and P675Q substantially augmented hAGO1 activity. Evolutionary amino acid changes to hAGO1 were readily reversible, suggesting that loading of guide RNA and pairing of seed-based miRNA and target RNA constrain its sequence drift.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Kandeel M, Al-Taher A, Nakashima R, Sakaguchi T, Kandeel A, Nagaya Y, Kitamura Y, Kitade Y. Bioenergetics and gene silencing approaches for unraveling nucleotide recognition by the human EIF2C2/Ago2 PAZ domain. PLoS One 2014; 9:e94538. [PMID: 24788663 PMCID: PMC4008379 DOI: 10.1371/journal.pone.0094538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 03/18/2014] [Indexed: 12/27/2022] Open
Abstract
Gene silencing and RNA interference are major cellular processes that control gene expression via the cleavage of target mRNA. Eukaryotic translation initiation factor 2C2 (EIF2C2, Argonaute protein 2, Ago2) is considered to be the major player of RNAi as it is the core component of RISC complexes. While a considerable amount of research has focused on RNA interference and its associated mechanisms, the nature and mechanisms of nucleotide recognition by the PAZ domain of EIF2C2/Ago2 have not yet been characterized. Here, we demonstrate that the EIF2C2/Ago2 PAZ domain has an inherent lack of binding to adenine nucleotides, a feature that highlights the poor binding of 3′-adenylated RNAs with the PAZ domain as well as the selective high trimming of the 3′-ends of miRNA containing adenine nucleotides. We further show that the PAZ domain selectively binds all ribonucleotides (except adenosine), whereas it poorly recognizes deoxyribonucleotides. In this context, the modification of dTMP to its ribonucleotide analogue gave a drastic improvement of binding enthalpy and, hence, binding affinity. Additionally, higher in vivo gene silencing efficacy was correlated with the stronger PAZ domain binders. These findings provide new insights into the nature of the interactions of the EIF2C2/Ago2 PAZ domain.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine and Animal Resources, King Faisal University, Alhofuf, Alahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Abdullah Al-Taher
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine and Animal Resources, King Faisal University, Alhofuf, Alahsa, Saudi Arabia
| | - Remi Nakashima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Tomoya Sakaguchi
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Ali Kandeel
- Department of Biology, Faculty of Sciences and Arts, Alkamil Branch, King Abdul Aziz University, Alkamil, Saudi Arabia
- Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yuki Nagaya
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Yoshiaki Kitamura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yukio Kitade
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
- * E-mail:
| |
Collapse
|
203
|
Hirose T, Mishima Y, Tomari Y. Elements and machinery of non-coding RNAs: toward their taxonomy. EMBO Rep 2014; 15:489-507. [PMID: 24731943 PMCID: PMC4210095 DOI: 10.1002/embr.201338390] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 12/26/2022] Open
Abstract
Although recent transcriptome analyses have uncovered numerous non-coding RNAs (ncRNAs), their functions remain largely unknown. ncRNAs assemble with proteins and operate as ribonucleoprotein (RNP) machineries, formation of which is thought to be determined by specific fundamental elements embedded in the primary RNA transcripts. Knowledge about the relationships between RNA elements, RNP machinery, and molecular and physiological functions is critical for understanding the diverse roles of ncRNAs and may eventually allow their systematic classification or "taxonomy." In this review, we catalog and discuss representative small and long non-coding RNA classes, focusing on their currently known (and unknown) RNA elements and RNP machineries.
Collapse
Affiliation(s)
- Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido UniversitySapporo, Hokkaido, Japan
| | - Yuichiro Mishima
- Institute of Molecular and Cellular Biosciences, The University of TokyoBunkyo-ku, Tokyo, Japan
- Department of Medical Genome Sciences, The University of TokyoBunkyo-ku, Tokyo, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of TokyoBunkyo-ku, Tokyo, Japan
- Department of Medical Genome Sciences, The University of TokyoBunkyo-ku, Tokyo, Japan
| |
Collapse
|
204
|
Zinovyeva AY, Bouasker S, Simard MJ, Hammell CM, Ambros V. Mutations in conserved residues of the C. elegans microRNA Argonaute ALG-1 identify separable functions in ALG-1 miRISC loading and target repression. PLoS Genet 2014; 10:e1004286. [PMID: 24763381 PMCID: PMC3998888 DOI: 10.1371/journal.pgen.1004286] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/18/2014] [Indexed: 11/19/2022] Open
Abstract
microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, our results suggest that ALG-1(anti) proteins may sequester microRNAs in immature and functionally deficient microRNA Induced Silencing Complexes (miRISCs), and hence compete with ALG-2 for access to functional microRNAs. Immunoprecipitation experiments show that ALG-1(anti) proteins display an increased association with Dicer and a decreased association with AIN-1/GW182. These findings suggest that alg-1(anti) mutations impair the ability of ALG-1 miRISC to execute a transition from Dicer-associated microRNA processing to AIN-1/GW182 associated effector function, and indicate an active role for ALG/Argonaute in mediating this transition. microRNAs are small non-coding RNAs that function in diverse processes by post-transcriptionally regulating gene expression. Argonautes form the core of the microRNA Induced Silencing Complex (miRISC) and are required for microRNA biogenesis and function. Here we describe the identification and characterization of a novel set of mutations in alg-1, a Caenorhabditis elegans microRNA specific Argonaute. This new class of alg-1 mutations causes phenotypes more severe than the complete loss of alg-1. Interestingly, the mutant ALG-1 proteins are able to promote microRNA biogenesis, but are defective in mediating microRNA target gene repression. We found that mutant ALG-1 associates more with Dicer, but less with miRISC effector AIN-1, compared to wild type ALG-1. We propose that these mutant ALG-1 proteins assemble nonfunctional complexes that effectively compete with the paralogous ALG-2 for critical miRISC components, including mature microRNAs. This new class of Argonaute mutants highlights the role of Argonaute in mediating a functional transition for miRISC from microRNA processing phase to target repression phase.
Collapse
Affiliation(s)
- Anna Y. Zinovyeva
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Samir Bouasker
- St-Patrick Research Group in Basic Oncology, Hôtel-Dieu de Québec (Centre Hospitalier Universitaire de Québec), Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - Martin J. Simard
- St-Patrick Research Group in Basic Oncology, Hôtel-Dieu de Québec (Centre Hospitalier Universitaire de Québec), Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | | | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
205
|
Hennig J, Sattler M. The dynamic duo: combining NMR and small angle scattering in structural biology. Protein Sci 2014; 23:669-82. [PMID: 24687405 DOI: 10.1002/pro.2467] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/12/2022]
Abstract
Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods, and computational approaches now enable structural analysis of protein complexes with increasing complexity that more closely represent biologically entities in the cellular environment. Integrated multidisciplinary approaches are required to overcome limitations of individual methods and take advantage of complementary aspects provided by different structural biology techniques. Although X-ray crystallography remains the method of choice for structural analysis of large complexes, crystallization of flexible systems is often difficult and does typically not provide insights into conformational dynamics present in solution. Nuclear magnetic resonance spectroscopy (NMR) is well-suited to study dynamics at picosecond to second time scales, and to map binding interfaces even of large systems at residue resolution but suffers from poor sensitivity with increasing molecular weight. Small angle scattering (SAS) methods provide low resolution information in solution and can characterize dynamics and conformational equilibria complementary to crystallography and NMR. The combination of NMR, crystallography, and SAS is, thus, very useful for analysis of the structure and conformational dynamics of (large) protein complexes in solution. In high molecular weight systems, where NMR data are often sparse, SAS provides additional structural information and can differentiate between NMR-derived models. Scattering data can also validate the solution conformation of a crystal structure and indicate the presence of conformational equilibria. Here, we review current state-of-the-art approaches for combining NMR, crystallography, and SAS data to characterize protein complexes in solution.
Collapse
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr.1, D-85764, Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747, Garching, Germany
| | | |
Collapse
|
206
|
Carlomagno T. Present and future of NMR for RNA-protein complexes: a perspective of integrated structural biology. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 241:126-136. [PMID: 24656085 DOI: 10.1016/j.jmr.2013.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 06/03/2023]
Abstract
Nucleic acids are gaining enormous importance as key molecules in almost all biological processes. Most nucleic acids do not act in isolation but are generally associated with proteins to form high-molecular-weight nucleoprotein complexes. In this perspective article I focus on the structural studies of supra-molecular ribonucleoprotein (RNP) assemblies in solution by a combination of state-of-the-art TROSY-based NMR experiments and other structural biology techniques. I discuss ways how to combine sparse NMR data with low-resolution structural information from small-angle scattering, fluorescence and electron paramagnetic resonance spectroscopy to obtain the structure of large RNP particles by an integrated structural biology approach. In the last section I give a perspective for the study of RNP complexes by solid-state NMR.
Collapse
Affiliation(s)
- Teresa Carlomagno
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
207
|
Kim YJ, Maizel A, Chen X. Traffic into silence: endomembranes and post-transcriptional RNA silencing. EMBO J 2014; 33:968-80. [PMID: 24668229 PMCID: PMC4193931 DOI: 10.1002/embj.201387262] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
microRNAs (miRNAs) and small interfering RNAs (siRNAs) are small RNAs that repress gene expression at the post-transcriptional level in plants and animals. Small RNAs guide Argonaute-containing RNA-induced silencing complexes to target RNAs in a sequence-specific manner, resulting in mRNA deadenylation followed by exonucleolytic decay, mRNA endonucleolytic cleavage, or translational inhibition. Although our knowledge of small RNA biogenesis, turnover, and mechanisms of action has dramatically expanded in the past decade, the subcellular location of small RNA-mediated RNA silencing still needs to be defined. In contrast to the prevalent presumption that RNA silencing occurs in the cytosol, emerging evidence reveals connections between the endomembrane system and small RNA activities in plants and animals. Here, we summarize the work that uncovered this link between small RNAs and endomembrane compartments and present an overview of the involvement of the endomembrane system in various aspects of RNA silencing. We propose that the endomembrane system is an integral component of RNA silencing that has been long overlooked and predict that a marriage between cell biology and RNA biology holds the key to a full understanding of post-transcriptional gene regulation by small RNAs.
Collapse
Affiliation(s)
- Yun Ju Kim
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology University of California, Riverside, CA, USA
| | | | | |
Collapse
|
208
|
Brousse C, Liu Q, Beauclair L, Deremetz A, Axtell MJ, Bouché N. A non-canonical plant microRNA target site. Nucleic Acids Res 2014; 42:5270-9. [PMID: 24561804 PMCID: PMC4005643 DOI: 10.1093/nar/gku157] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Plant microRNAs (miRNAs) typically form near-perfect duplexes with their targets and mediate mRNA cleavage. Here, we describe an unconventional miRNA target of miR398 in Arabidopsis, an mRNA encoding the blue copper-binding protein (BCBP). BCBP mRNA carries an miR398 complementary site in its 5′-untranslated region (UTR) with a bulge of six nucleotides opposite to the 5′ region of the miRNA. Despite the disruption of a target site region thought to be especially critical for function, BCBP mRNAs are cleaved by ARGONAUTE1 between nucleotides 10th and 11th, opposite to the miRNA, like conventional plant target sites. Levels of BCBP mRNAs are inversely correlated to levels of miR398 in mutants lacking the miRNA, or transgenic plants overexpressing it. Introducing two mutations that disrupt the miRNA complementarity around the cleavage site renders the target cleavage-resistant. The BCBP site functions outside of the context of the BCBP mRNA and does not depend on 5′-UTR location. Reducing the bulge does not interfere with miR398-mediated regulation and completely removing it increases the efficiency of the slicing. Analysis of degradome data and target predictions revealed that the miR398-BCBP interaction seems to be rather unique. Nevertheless, our results imply that functional target sites with non-perfect pairings in the 5′ region of an ancient conserved miRNA exist in plants.
Collapse
Affiliation(s)
- Cécile Brousse
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France, AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France and Department of Biology and Plant Biology Ph.D. Program, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
209
|
Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJJ, van der Oost J. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 2014; 507:258-261. [PMID: 24531762 DOI: 10.1038/nature12971] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/19/2013] [Indexed: 12/19/2022]
Abstract
RNA interference is widely distributed in eukaryotes and has a variety of functions, including antiviral defence and gene regulation. All RNA interference pathways use small single-stranded RNA (ssRNA) molecules that guide proteins of the Argonaute (Ago) family to complementary ssRNA targets: RNA-guided RNA interference. The role of prokaryotic Ago variants has remained elusive, although bioinformatics analysis has suggested their involvement in host defence. Here we demonstrate that Ago of the bacterium Thermus thermophilus (TtAgo) acts as a barrier for the uptake and propagation of foreign DNA. In vivo, TtAgo is loaded with 5'-phosphorylated DNA guides, 13-25 nucleotides in length, that are mostly plasmid derived and have a strong bias for a 5'-end deoxycytidine. These small interfering DNAs guide TtAgo to cleave complementary DNA strands. Hence, despite structural homology to its eukaryotic counterparts, TtAgo functions in host defence by DNA-guided DNA interference.
Collapse
Affiliation(s)
- Daan C Swarts
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - Matthijs M Jore
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - Edze R Westra
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - Yifan Zhu
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - Jorijn H Janssen
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - Ambrosius P Snijders
- Clare Hall Laboratories, Cancer Research UK, London Research Institute, South Mimms EN6 3LD, UK
| | - Yanli Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - José Berenguer
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| |
Collapse
|
210
|
Abdur R, Gerlits OO, Gan J, Jiang J, Salon J, Kovalevsky AY, Chumanevich AA, Weber IT, Huang Z. Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:354-61. [PMID: 24531469 PMCID: PMC3940196 DOI: 10.1107/s1399004713027922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Abstract
The crystal structures of protein-nucleic acid complexes are commonly determined using selenium-derivatized proteins via MAD or SAD phasing. Here, the first protein-nucleic acid complex structure determined using selenium-derivatized nucleic acids is reported. The RNase H-RNA/DNA complex is used as an example to demonstrate the proof of principle. The high-resolution crystal structure indicates that this selenium replacement results in a local subtle unwinding of the RNA/DNA substrate duplex, thereby shifting the RNA scissile phosphate closer to the transition state of the enzyme-catalyzed reaction. It was also observed that the scissile phosphate forms a hydrogen bond to the water nucleophile and helps to position the water molecule in the structure. Consistently, it was discovered that the substitution of a single O atom by a Se atom in a guide DNA sequence can largely accelerate RNase H catalysis. These structural and catalytic studies shed new light on the guide-dependent RNA cleavage.
Collapse
Affiliation(s)
- Rob Abdur
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Oksana O. Gerlits
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jianhua Gan
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jiansheng Jiang
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jozef Salon
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Andrey Y. Kovalevsky
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Alexander A. Chumanevich
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Irene T. Weber
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Zhen Huang
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
211
|
Künne T, Swarts DC, Brouns SJJ. Planting the seed: target recognition of short guide RNAs. Trends Microbiol 2014; 22:74-83. [PMID: 24440013 DOI: 10.1016/j.tim.2013.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/06/2013] [Accepted: 12/11/2013] [Indexed: 12/23/2022]
Abstract
Small guide RNAs play important roles in cellular processes such as regulation of gene expression and host defense against invading nucleic acids. The mode of action of small RNAs relies on protein-assisted base pairing of the guide RNA with target mRNA or DNA to interfere with their transcription, translation, or replication. Several unrelated classes of small noncoding RNAs have been identified including eukaryotic RNA silencing-associated small RNAs, prokaryotic small regulatory RNAs (sRNAs), and prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats) RNAs (crRNAs). All three groups identify their target sequence by base pairing after finding it in a pool of millions of other nucleotide sequences in the cell. In this complicated target search process, a region of 6-12 nucleotides (nt) of the small RNA termed the 'seed' plays a critical role. We review the concept of seed sequences and discuss its importance for initial target recognition and interference.
Collapse
Affiliation(s)
- Tim Künne
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Daan C Swarts
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
| |
Collapse
|
212
|
Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 2014; 505:353-359. [PMID: 24429634 PMCID: PMC4265809 DOI: 10.1038/nature12987] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022]
Abstract
The discovery of millions of PIWI-interacting RNAs revealed a fascinating and unanticipated dimension of biology. The PIWI-piRNA pathway has been commonly perceived as germline-specific, even though the somatic function of PIWI proteins was documented when they were first discovered. Recent studies have begun to re-explore this pathway in somatic cells in diverse organisms, particularly lower eukaryotes. These studies have illustrated the multifaceted somatic functions of the pathway not only in transposon silencing but also in genome rearrangement and epigenetic programming, with biological roles in stem-cell function, whole-body regeneration, memory and possibly cancer.
Collapse
Affiliation(s)
- Robert J Ross
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Molly M Weiner
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| |
Collapse
|
213
|
Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA. Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell 2014; 51:594-605. [PMID: 24034694 DOI: 10.1016/j.molcel.2013.08.014] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 01/20/2023]
Abstract
Eukaryotic Argonautes bind small RNAs and use them as guides to find complementary RNA targets and induce gene silencing. Though homologs of eukaryotic Argonautes are present in many bacteria and archaea, their small RNA partners and functions are unknown. We found that the Argonaute of Rhodobacter sphaeroides (RsAgo) associates with 15-19 nt RNAs that correspond to the majority of transcripts. RsAgo also binds single-stranded 22-24 nt DNA molecules that are complementary to the small RNAs and enriched in sequences derived from exogenous plasmids as well as genome-encoded foreign nucleic acids such as transposons and phage genes. Expression of RsAgo in the heterologous E. coli system leads to formation of plasmid-derived small RNA and DNA and plasmid degradation. In a R. sphaeroides mutant lacking RsAgo, expression of plasmid-encoded genes is elevated. Our results indicate that RNAi-related processes found in eukaryotes are also conserved in bacteria and target foreign nucleic acids.
Collapse
Affiliation(s)
- Ivan Olovnikov
- Division of Biology, California Institute of Technology, 147-75, 1200E California Boulevard, Pasadena, CA 91125, USA; Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| | | | | | | | | |
Collapse
|
214
|
Wynant N, Santos D, Vanden Broeck J. Biological mechanisms determining the success of RNA interference in insects. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:139-67. [PMID: 25262241 DOI: 10.1016/b978-0-12-800178-3.00005-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insects constitute the largest group of animals on this planet, having a huge impact on our environment, as well as on our quality of life. RNA interference (RNAi) is a posttranscriptional gene silencing mechanism triggered by double-stranded (ds)RNA fragments. This process not only forms the basis of a widely used reverse genetics research method in many different eukaryotes but also holds great promise to contribute to the species-specific control of agricultural pests and to combat viral infections in beneficial and disease vectoring insects. However, in many economically important insect species, such as flies, mosquitoes, and caterpillars, systemic delivery of naked dsRNA does not trigger effective gene silencing. Although many components of the RNAi pathway have initially been deciphered in the fruit fly, Drosophila melanogaster, it will be of major importance to investigate this process in a wider variety of species, including dsRNA-sensitive insects such as locusts and beetles, to elucidate the factors responsible for the remarkable variability in RNAi efficiency, as observed in different insects. In this chapter, we review the current knowledge on the RNAi pathway, as well as the most recent insights into the mechanisms that might determine successful RNAi in insects.
Collapse
Affiliation(s)
- Niels Wynant
- Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat, Leuven, Belgium.
| | - Dulce Santos
- Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat, Leuven, Belgium
| | - Jozef Vanden Broeck
- Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat, Leuven, Belgium
| |
Collapse
|
215
|
Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc Natl Acad Sci U S A 2013; 111:652-7. [PMID: 24374628 DOI: 10.1073/pnas.1321032111] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We report on crystal structures of ternary Thermus thermophilus Argonaute (TtAgo) complexes with 5'-phosphorylated guide DNA and a series of DNA targets. These ternary complex structures of cleavage-incompatible, cleavage-compatible, and postcleavage states solved at improved resolution up to 2.2 Å have provided molecular insights into the orchestrated positioning of catalytic residues, a pair of Mg(2+) cations, and the putative water nucleophile positioned for in-line attack on the cleavable phosphate for TtAgo-mediated target cleavage by a RNase H-type mechanism. In addition, these ternary complex structures have provided insights into protein and DNA conformational changes that facilitate transition between cleavage-incompatible and cleavage-compatible states, including the role of a Glu finger in generating a cleavage-competent catalytic Asp-Glu-Asp-Asp tetrad. Following cleavage, the seed segment forms a stable duplex with the complementary segment of the target strand.
Collapse
|
216
|
Zander A, Holzmeister P, Klose D, Tinnefeld P, Grohmann D. Single-molecule FRET supports the two-state model of Argonaute action. RNA Biol 2013; 11:45-56. [PMID: 24442234 DOI: 10.4161/rna.27446] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Argonaute can be found in all three domains of life and is the functional core of the eukaryotic RNA-silencing machinery. In order to shed light on the conformational changes that drive Argonaute action, we performed single-molecule FRET measurements employing a so far uncharacterized member of the Argonaute family, namely Argonaute from the archaeal organism Methanocaldococcus jannaschii (MjAgo). We show that MjAgo is a catalytically active Argonaute variant hydrolyzing exclusively DNA target strands out of a DNA/DNA hybrid. We studied the interplay between Argonaute and nucleic acids using fluorescent dyes covalently attached at different positions of the DNA guide as steric reporters. This allowed us to determine structurally confined parts of the protein scaffold and flexible regions of the DNA guide. Single-molecule FRET measurements demonstrate that the 3'end of the DNA guide is released from the PAZ domain upon target strand loading. This conformational change does not necessitate target strand cleavage but a fully complementary target strand. Thus, our data support the two state model for Argonaute action.
Collapse
Affiliation(s)
- Adrian Zander
- Physikalische und Theoretische Chemie - NanoBioSciences; Technische Universität Braunschweig; Hans-Sommer-Strasse 10; Braunschweig, Germany
| | - Phil Holzmeister
- Physikalische und Theoretische Chemie - NanoBioSciences; Technische Universität Braunschweig; Hans-Sommer-Strasse 10; Braunschweig, Germany
| | - Daniel Klose
- Department of Physics; University of Osnabrück; Barbarastrasse 7; Osnabrück, Germany
| | - Philip Tinnefeld
- Physikalische und Theoretische Chemie - NanoBioSciences; Technische Universität Braunschweig; Hans-Sommer-Strasse 10; Braunschweig, Germany
| | - Dina Grohmann
- Physikalische und Theoretische Chemie - NanoBioSciences; Technische Universität Braunschweig; Hans-Sommer-Strasse 10; Braunschweig, Germany
| |
Collapse
|
217
|
Abstract
Argonaute proteins interact with small RNAs and facilitate small RNA-guided gene-silencing processes. Small RNAs guide Argonaute proteins to distinct target sites on mRNAs where Argonaute proteins interact with members of the GW182 protein family (also known as GW proteins). In subsequent steps, GW182 proteins mediate the downstream steps of gene silencing. The present mini-review summarizes and discusses our current knowledge of the molecular basis of Argonaute-GW182 protein interactions.
Collapse
|
218
|
Iwakawa HO, Tomari Y. Molecular insights into microRNA-mediated translational repression in plants. Mol Cell 2013; 52:591-601. [PMID: 24267452 DOI: 10.1016/j.molcel.2013.10.033] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/08/2013] [Accepted: 10/07/2013] [Indexed: 01/01/2023]
Abstract
microRNAs (miRNAs) bind Argonaute proteins in order to form RNA-induced silencing complexes (RISCs) that can silence the expression of complementary mRNAs. Plant miRNAs can mediate the cleavage of their target mRNAs as well as the repression of their translation. Here, by using an in vitro system prepared from plant culture cells, we biochemically dissect the mechanisms by which Arabidopsis thaliana ARGONAUTE1 RISC (AtAGO1-RISC) silences its mRNA targets. We find that AtAGO1-RISC has the ability to repress translation initiation without promoting deadenylation or mRNA decay. Strikingly, AtAGO1-RISC bound in the 5' untranslated region or the open reading frame can sterically block the recruitment or movement of ribosomes. These silencing effects require more extensive base pairing to the target site in comparison to typical animal miRNAs. Our data provide mechanistic insights into miRNA-mediated translational repression in plants.
Collapse
Affiliation(s)
- Hiro-oki Iwakawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | |
Collapse
|
219
|
Jung SR, Kim E, Hwang W, Shin S, Song JJ, Hohng S. Dynamic anchoring of the 3'-end of the guide strand controls the target dissociation of Argonaute-guide complex. J Am Chem Soc 2013; 135:16865-71. [PMID: 24175926 DOI: 10.1021/ja403138d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Argonaute (Ago) is the catalytic core of small RNA-based gene regulation. Despite plenty of mechanistic studies on Ago, the dynamical aspects and the mechanistic determinants of target mRNA binding and dissociation of Ago-guide strand remain unclear. Here, by using single-molecule fluorescence resonance energy transfer (FRET) assays and Thermus thermophilus Ago (TtAgo), we reveal that the 3'-end of the guide strand dynamically anchors at and releases from the PAZ domain of Ago, and that the 3'-end anchoring of the guide strand greatly accelerates the target dissociation by destabilizing the guide-target duplex. Our results indicate that the target binding/dissociation of Ago-guide is executed through the dynamic interplays among Ago, guide, and target.
Collapse
Affiliation(s)
- Seung-Ryoung Jung
- Department of Physics and Astronomy, ‡National Center for Creative Research Initiatives, and §Department of Biophysics and Chemical Biology, Seoul National University , Seoul 151-747, Korea
| | | | | | | | | | | |
Collapse
|
220
|
Abstract
As microRNA silencing processes are mediated by the protein Argonaute 2 and for target RNA binding only a short sequence at the microRNA's 5' end (seed region) is crucial, we report a novel inhibitor class: the microRNA-specific Argonaute 2 protein inhibitors that not only block this short recognition sequence but also bind to the protein's active site. We developed a model for rational drug design, enabling the identification of Argonaute 2 active site binders and their linkage with a peptide nucleic acid sequence (PNA), which addresses the microRNA of interest. The designed inhibitors targeting microRNA-122, a hepatitis C virus drug target, had an IC50 of 100 nM, 10-fold more active than the simple PNA sequence (IC50 of 1 μM), giving evidence that the strategy has potential. Due to their lower molecular weight, these inhibitors may show better pharmacokinetic properties than reported oligonucleotide inhibitors, enabling them for potential therapeutic use.
Collapse
Affiliation(s)
- Marco F. Schmidt
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge,
United Kingdom
| | - Oliver Korb
- Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, CB2 1EZ Cambridge,
United Kingdom
| | - Chris Abell
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge,
United Kingdom
| |
Collapse
|
221
|
Minimal mechanistic model of siRNA-dependent target RNA slicing by recombinant human Argonaute 2 protein. Proc Natl Acad Sci U S A 2013; 110:17850-5. [PMID: 24101500 DOI: 10.1073/pnas.1217838110] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Argonaute (Ago) proteins are the key component of the RNA-induced silencing complex and mediate RNA interference (RNAi) in association with small RNAs. Although overall the mechanism of RNAi is well understood, many molecular details of this complex process are not. Here we report about in-depth steady-state and, in particular, pre-steady-state characterization of siRNA binding, target RNA recognition, sequence-specific cleavage and product release by recombinant human Ago 2 (hAgo2). In combining our biochemical studies with crystal structures of bacterial Ago proteins and of recently released hAgo2, we relate kinetic data to conformational changes along the pathway and propose a comprehensive minimal mechanistic model describing fundamental steps during RNAi. Furthermore, in contrast to the current conception, our hAgo2 preparations are programmable with double-stranded siRNA. Accordingly, the system investigated represents a functional minimal RNA-induced silencing complex.
Collapse
|
222
|
Affiliation(s)
- K Mark Ansel
- Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
223
|
Moran Y, Praher D, Fredman D, Technau U. The evolution of microRNA pathway protein components in Cnidaria. Mol Biol Evol 2013; 30:2541-52. [PMID: 24030553 PMCID: PMC3840309 DOI: 10.1093/molbev/mst159] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the last decade, it became evident that posttranscriptional regulation of gene expression by microRNAs is a central biological process in both plants and animals. Yet, our knowledge about microRNA biogenesis and utilization in animals stems mostly from the study of Bilateria. In this study, we identified genes encoding the protein components of different parts of the microRNA pathway in Cnidaria, the likely sister phylum of Bilateria. These genes originated from three cnidarian lineages (sea anemones, stony corals, and hydras) that are separated by at least 500 My from one another. We studied the expression and phylogeny of the cnidarian homologs of Drosha and Pasha (DGCR8) that compose the microprocessor, the RNAse III enzyme Dicer and its partners, the HEN1 methyltransferase, the Argonaute protein effectors, as well as members of the GW182 protein family. We further reveal that whereas the bilaterian dicer partners Loquacious/TRBP and PACT are absent from Cnidaria, this phylum contains homologs of the double-stranded RNA-binding protein HYL1, the Dicer partner found in plants. We also identified HYL1 homologs in a sponge and a ctenophore. This finding raises questions regarding the independent evolution of the microRNA pathway in plants and animals, and together with the other results shed new light on the evolution of an important regulatory pathway.
Collapse
Affiliation(s)
- Yehu Moran
- Department for Molecular Evolution and Development, Center for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
224
|
Guo W, Liew JY, Yuan YA. Structural insights into the arms race between host and virus along RNA silencing pathways inArabidopsis thaliana. Biol Rev Camb Philos Soc 2013; 89:337-55. [DOI: 10.1111/brv.12057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 06/29/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Guo
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Jia Yee Liew
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Y. Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
- National University of Singapore (Suzhou) Research Institute; Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
225
|
Abstract
Multiple Argonaute proteins are implicated in gene silencing by RNA interference (RNAi), but only one is known to be an endonuclease that can cleave target mRNAs. Chimeric Argonaute proteins now reveal an unexpected mechanism by which mutations distal to the catalytic center can unmask intrinsic catalytic activity, results hinting at structurally mediated regulation.
Collapse
|
226
|
Salon J, Gan J, Abdur R, Liu H, Huang Z. Synthesis of 6-Se-guanosine RNAs for structural study. Org Lett 2013; 15:3934-7. [PMID: 23859218 DOI: 10.1021/ol401698n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
6-Se-guanosine phosphoramidite and RNAs have been synthesized by selenium substitution of the 6-oxygen atom, and it is revealed that the Se-derivatization is relatively stable and that bulge and wobble structures can better accommodate a large Se atom than a duplex. This Se-modification is useful in the structural study of RNAs and their protein complexes.
Collapse
Affiliation(s)
- Jozef Salon
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | |
Collapse
|
227
|
Wang Y, Mercier R, Hobman TC, LaPointe P. Regulation of RNA interference by Hsp90 is an evolutionarily conserved process. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2673-2681. [PMID: 23827255 DOI: 10.1016/j.bbamcr.2013.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
RNAi is a highly conserved mechanism in almost every eukaryote with a few exceptions including the model organism Saccharomyces cerevisiae. A recent study showed that the introduction of the two core components of canonical RNAi systems, Argonaute and Dicer, from another budding yeast, Saccharomyces castellii, restores RNAi in S. cerevisiae. We report here that a functional RNAi system can be reconstituted in yeast with the introduction of only S. castellii Dicer and human Argonaute2. Interestingly, whether or not TRBP2 was present, human Dicer was unable to restore RNAi with either S. castellii or human Argonaute. Contrary to previous reports, we find that human Dicer, TRBP2 and Argonaute2 are not sufficient to reconstitute RNAi in yeast when bona fide RNAi precursors are co-expressed. We and others have previously reported that Hsp90 regulates conformational changes in human and Drosophila Argonautes required to accommodate the loading of dsRNA duplexes. Here we show that the activities of both human and S. castellii Argonaute are subject to Hsp90 regulation in S. cerevisiae. In summary, our results suggest that regulation of the RNAi machinery by Hsp90 may have evolved at the same time as ancestral RNAi.
Collapse
Affiliation(s)
- Yang Wang
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Tom C Hobman
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Canada; Department of Medical Microbiology & Immunology, Faculty of Medicine and Dentistry, University of Alberta, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Canada.
| |
Collapse
|
228
|
Maláč K, Barvík I. Complex between Human RNase HI and the phosphonate-DNA/RNA duplex: Molecular dynamics study. J Mol Graph Model 2013; 44:81-90. [DOI: 10.1016/j.jmgm.2013.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/30/2013] [Accepted: 05/05/2013] [Indexed: 10/26/2022]
|
229
|
Abstract
MicroRNAs (miRNAs) regulate the expression of most genes in animals, but we are only now beginning to understand how they are generated, assembled into functional complexes and destroyed. Various mechanisms have now been identified that regulate miRNA stability and that diversify miRNA sequences to create distinct isoforms. The production of different isoforms of individual miRNAs in specific cells and tissues may have broader implications for miRNA-mediated gene expression control. Rigorously testing the many discrepant models for how miRNAs function using quantitative biochemical measurements made in vivo and in vitro remains a major challenge for the future.
Collapse
|
230
|
Molecular dissection of human Argonaute proteins by DNA shuffling. Nat Struct Mol Biol 2013; 20:818-26. [PMID: 23748378 DOI: 10.1038/nsmb.2607] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/13/2013] [Indexed: 01/01/2023]
Abstract
A paramount task in RNA interference research is to decipher the complex biology of cellular effectors, exemplified in humans by four pleiotropic Argonaute proteins (Ago1-Ago4). Here, we exploited DNA family shuffling, a molecular evolution technology, to generate chimeric Ago protein libraries for dissection of intricate phenotypes independently of prior structural knowledge. Through shuffling of human Ago2 and Ago3, we discovered two N-terminal motifs that govern RNA cleavage in concert with the PIWI domain. Structural modeling predicts an impact on protein rigidity and/or RNA-PIWI alignment, suggesting new mechanistic explanations for Ago3's slicing deficiency. Characterization of hybrids including Ago1 and Ago4 solidifies that slicing requires the juxtaposition and combined action of multiple disseminated modules. We also present a Gateway library of codon-optimized chimeras of human Ago1-Ago4 and molecular evolution analysis software as resources for future investigations into RNA interference sequence-structure-function relationships.
Collapse
|
231
|
Faehnle CR, Elkayam E, Haase AD, Hannon GJ, Joshua-Tor L. The making of a slicer: activation of human Argonaute-1. Cell Rep 2013; 3:1901-9. [PMID: 23746446 PMCID: PMC3769929 DOI: 10.1016/j.celrep.2013.05.033] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/06/2013] [Accepted: 05/22/2013] [Indexed: 02/07/2023] Open
Abstract
Argonautes are the central protein component in small RNA silencing pathways. Of the four human Argonautes (hAgo1-hAgo4) only hAgo2 is an active slicer. We determined the structure of hAgo1 bound to endogenous copurified RNAs to 1.75 Å resolution and hAgo1 loaded with let-7 microRNA to 2.1 Å. Both structures are strikingly similar to the structures of hAgo2. A conserved catalytic tetrad within the PIWI domain of hAgo2 is required for its slicing activity. Completion of the tetrad, combined with a mutation on a loop adjacent to the active site of hAgo1, results in slicer activity that is substantially enhanced by swapping in the N domain of hAgo2. hAgo3, with an intact tetrad, becomes an active slicer by swapping the N domain of hAgo2 without additional mutations. Intriguingly, the elements that make Argonaute an active slicer involve a sophisticated interplay between the active site and more distant regions of the enzyme.
Collapse
Affiliation(s)
- Christopher R Faehnle
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
232
|
Abstract
Small-RNA-guided gene regulation has emerged as one of the fundamental principles in cell function, and the major protein players in this process are members of the Argonaute protein family. Argonaute proteins are highly specialized binding modules that accommodate the small RNA component - such as microRNAs (miRNAs), short interfering RNAs (siRNAs) or PIWI-associated RNAs (piRNAs) - and coordinate downstream gene-silencing events by interacting with other protein factors. Recent work has made progress in our understanding of classical Argonaute-mediated gene-silencing principles, such as the effects on mRNA translation and decay, but has also implicated Argonaute proteins in several other cellular processes, such as transcriptional regulation and splicing.
Collapse
|
233
|
Hauptmann J, Dueck A, Harlander S, Pfaff J, Merkl R, Meister G. Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat Struct Mol Biol 2013; 20:814-7. [PMID: 23665583 DOI: 10.1038/nsmb.2577] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/04/2013] [Indexed: 01/15/2023]
Abstract
Argonaute proteins interact with small RNAs that guide them to complementary target RNAs, thus leading to inhibition of gene expression. Some but not all Argonaute proteins are endonucleases and can cleave the complementary target RNA. Here, we have mutated inactive human Ago1 and Ago3 and generated catalytic Argonaute proteins. We find that two short sequence elements at the N terminus are important for activity. In addition, PIWI-domain mutations in Ago1 may misarrange the catalytic center. Our work helps in understanding of the structural requirements that make an Argonaute protein an active endonucleolytic enzyme.
Collapse
Affiliation(s)
- Judith Hauptmann
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
234
|
De N, Young L, Lau PW, Meisner NC, Morrissey DV, MacRae IJ. Highly complementary target RNAs promote release of guide RNAs from human Argonaute2. Mol Cell 2013; 50:344-55. [PMID: 23664376 PMCID: PMC3746828 DOI: 10.1016/j.molcel.2013.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/27/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022]
Abstract
Argonaute proteins use small RNAs to guide the silencing of complementary target RNAs in many eukaryotes. Although small RNA biogenesis pathways are well studied, mechanisms for removal of guide RNAs from Argonaute are poorly understood. Here we show that the Argonaute2 (Ago2) guide RNA complex is extremely stable, with a half-life on the order of days. However, highly complementary target RNAs destabilize the complex and significantly accelerate release of the guide RNA from Ago2. This "unloading" activity can be enhanced by mismatches between the target and the guide 5' end and attenuated by mismatches to the guide 3' end. The introduction of 3' mismatches leads to more potent silencing of abundant mRNAs in mammalian cells. These findings help to explain why the 3' ends of mammalian microRNAs (miRNAs) rarely match their targets, suggest a mechanism for sequence-specific small RNA turnover, and offer insights for controlling small RNAs in mammalian cells.
Collapse
Affiliation(s)
- Nabanita De
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92121, USA
| | - Lisa Young
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avevnue, Cambridge, MA 02139, USA
| | - Pick-Wei Lau
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92121, USA
| | | | - David V. Morrissey
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avevnue, Cambridge, MA 02139, USA
| | - Ian J. MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92121, USA
| |
Collapse
|
235
|
Winter J, Link S, Witzigmann D, Hildenbrand C, Previti C, Diederichs S. Loop-miRs: active microRNAs generated from single-stranded loop regions. Nucleic Acids Res 2013; 41:5503-12. [PMID: 23580554 PMCID: PMC3664828 DOI: 10.1093/nar/gkt251] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are key mediators of post-transcriptional gene regulation. The miRNA precursors are processed by the endonucleases Drosha and Dicer into a duplex, bound to an Argonaute protein and unwound into two single-stranded miRNAs. Although alternative ways to generate miRNAs have been discovered, e.g. pre-miRNA cleavage by Ago2 or cleavage products of snoRNAs or tRNAs, all known pathways converge on a double-stranded RNA duplex. Exogenous single-stranded siRNAs (ss-siRNAs) can elicit an effective RNA interference reaction; recent studies have identified chemical modifications increasing their stability and activity. Here, we provide first evidence that endogenous, unmodified, single-stranded RNA sequences are generated from single-stranded loop regions of human pre-miRNA hairpins, the so called loop-miRs. Luciferase assays and immunoprecipitation validate loop-miR activity and incorporation into RNA-induced silencing complexes. This study identifies endogenous miRNAs that are generated from single-stranded regions; hence, it provides evidence that precursor-miRNAs can give rise to three distinct endogenous miRNAs: the guide strand, the passenger strand and the loop-miR.
Collapse
Affiliation(s)
- Julia Winter
- Helmholtz-University-Group Molecular RNA Biology & Cancer, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg
| | | | | | | | | | | |
Collapse
|
236
|
Gan HH, Gunsalus KC. Tertiary structure-based analysis of microRNA-target interactions. RNA (NEW YORK, N.Y.) 2013; 19:539-51. [PMID: 23417009 PMCID: PMC3677264 DOI: 10.1261/rna.035691.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Current computational analysis of microRNA interactions is based largely on primary and secondary structure analysis. Computationally efficient tertiary structure-based methods are needed to enable more realistic modeling of the molecular interactions underlying miRNA-mediated translational repression. We incorporate algorithms for predicting duplex RNA structures, ionic strength effects, duplex entropy and free energy, and docking of duplex-Argonaute protein complexes into a pipeline to model and predict miRNA-target duplex binding energies. To ensure modeling accuracy and computational efficiency, we use an all-atom description of RNA and a continuum description of ionic interactions using the Poisson-Boltzmann equation. Our method predicts the conformations of two constructs of Caenorhabditis elegans let-7 miRNA-target duplexes to an accuracy of ∼3.8 Å root mean square distance of their NMR structures. We also show that the computed duplex formation enthalpies, entropies, and free energies for eight miRNA-target duplexes agree with titration calorimetry data. Analysis of duplex-Argonaute docking shows that structural distortions arising from single-base-pair mismatches in the seed region influence the activity of the complex by destabilizing both duplex hybridization and its association with Argonaute. Collectively, these results demonstrate that tertiary structure-based modeling of miRNA interactions can reveal structural mechanisms not accessible with current secondary structure-based methods.
Collapse
Affiliation(s)
- Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA
- Corresponding authorsE-mail E-mail
| | - Kristin C. Gunsalus
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA
- New York University, Abu Dhabi, United Arab Emirates
- Corresponding authorsE-mail E-mail
| |
Collapse
|
237
|
Okamura K, Ladewig E, Zhou L, Lai EC. Functional small RNAs are generated from select miRNA hairpin loops in flies and mammals. Genes Dev 2013; 27:778-92. [PMID: 23535236 PMCID: PMC3639418 DOI: 10.1101/gad.211698.112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/28/2013] [Indexed: 11/24/2022]
Abstract
In the canonical animal microRNA (miRNA) pathway, Drosha generates ∼60- to 70-nucleotide pre-miRNA hairpins that are cleaved by Dicer into small RNA duplexes that load into Argonaute proteins, which retain a single mature strand in the active complex. The terminal loops of some miRNA hairpins regulate processing efficiency, but once liberated by Dicer, they are generally considered nonfunctional by-products. Here, we show that specific miRNA loops accumulate in effector Argonaute complexes in Drosophila and mediate miRNA-type repression. This was unexpected, since endogenous loading of Argonaute proteins was believed to occur exclusively via small RNA duplexes. Using in vitro assays, which recapitulate Argonaute-specific loop loading from synthetic pre-miRNAs and even single-stranded oligoribonucleotides corresponding to miRNA loops, we reveal that the loop-loading mechanism is distinct from duplex loading. We also show that miRNA loops loaded into the miRNA effector AGO1 are subject to 3' resection, and structure-function analyses indicate selectivity of loop loading. Finally, we demonstrate that select miRNA loops in mammals are similarly loaded into Argonaute complexes and direct target repression. Altogether, we reveal a conserved mechanism that yields functional RNAs from miRNA loop regions, broadening the repertoire of Argonaute-dependent regulatory RNAs and providing evidence for functionality of endogenous ssRNA species.
Collapse
Affiliation(s)
- Katsutomo Okamura
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore 117604
| | - Erik Ladewig
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Li Zhou
- Temasek Lifesciences Laboratory, National University of Singapore, Singapore 117604
| | - Eric C. Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
238
|
Kuhn CD, Joshua-Tor L. Eukaryotic Argonautes come into focus. Trends Biochem Sci 2013; 38:263-71. [PMID: 23541793 DOI: 10.1016/j.tibs.2013.02.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 01/20/2023]
Abstract
Despite the fact that different classes of small RNAs are generated by largely different biogenesis pathways, all mature small RNAs associate with an Argonaute family member to form the RNA-induced silencing complex (RISC). Gene silencing by RISC could not be studied in molecular detail because structural information on eukaryotic Argonautes was lacking. Recently, however, the structure of human Argonaute-2 (hAgo2), a model for RISC function, was determined in complexes with heterogeneous guide RNA and in complexes with a specific miRNA. We review the exciting advances that these two structures, together with the structure of a budding yeast Argonaute, brought to the field of eukaryotic RNA interference (RNAi), and how they will enable a more detailed mechanistic understanding of eukaryotic RISC.
Collapse
Affiliation(s)
- Claus-D Kuhn
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
239
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
240
|
Bossé GD, Rüegger S, Ow MC, Vasquez-Rifo A, Rondeau EL, Ambros VR, Grosshans H, Simard MJ. The decapping scavenger enzyme DCS-1 controls microRNA levels in Caenorhabditis elegans. Mol Cell 2013; 50:281-7. [PMID: 23541767 DOI: 10.1016/j.molcel.2013.02.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 01/18/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
In metazoans, microRNAs play a critical role in the posttranscriptional regulation of genes required for cell proliferation and differentiation. MicroRNAs themselves are regulated by a multitude of mechanisms influencing their transcription and posttranscriptional maturation. However, there is only sparse knowledge on pathways regulating the mature, functional form of microRNA. Here, we uncover the implication of the decapping scavenger protein DCS-1 in the control of microRNA turnover. In Caenorhabditis elegans, mutations in dcs-1 increase the levels of functional microRNAs. We demonstrate that DCS-1 interacts with the exonuclease XRN-1 to promote microRNA degradation in an independent manner from its known decapping scavenger activity, establishing two molecular functions for DCS-1. Our findings thus indicate that DCS-1 is part of a degradation complex that performs microRNA turnover in animals.
Collapse
Affiliation(s)
- Gabriel D Bossé
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (Centre Hospitalier Universitaire de Québec), Quebec City, QC G1R 2J6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Gurtan AM, Sharp PA. The role of miRNAs in regulating gene expression networks. J Mol Biol 2013; 425:3582-600. [PMID: 23500488 DOI: 10.1016/j.jmb.2013.03.007] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression. They are conserved across species, expressed across cell types, and active against a large proportion of the transcriptome. The sequence-complementary mechanism of miRNA activity exploits combinatorial diversity, a property conducive to network-wide regulation of gene expression, and functional evidence supporting this hypothesized systems-level role has steadily begun to accumulate. The emerging models are exciting and will yield deep insight into the regulatory architecture of biology. However, because of the technical challenges facing the network-based study of miRNAs, many gaps remain. Here, we review mammalian miRNAs by describing recent advances in understanding their molecular activity and network-wide function.
Collapse
Affiliation(s)
- Allan M Gurtan
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA.
| | | |
Collapse
|
242
|
Efficient and specific gene knockdown by small interfering RNAs produced in bacteria. Nat Biotechnol 2013; 31:350-6. [PMID: 23475073 PMCID: PMC3622153 DOI: 10.1038/nbt.2537] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 02/15/2013] [Indexed: 01/01/2023]
Abstract
Synthetic small interfering RNAs (siRNAs) are an indispensable tool to investigate gene function in eukaryotic cells1,2 and may be used for therapeutic purposes to knockdown genes implicated in disease3. Thus far, most synthetic siRNAs have been produced by chemical synthesis. Here we present a method to produce highly potent siRNAs in E. coli. This method relies on ectopic expression of p19, a siRNA-binding protein found in a plant RNA virus4, 5. When expressed in E. coli, p19 stabilizes ~21 nt siRNA-like species produced by bacterial RNase III. Transfection of mammalian cells with siRNAs, generated in bacteria expressing p19 and a hairpin RNA encoding 200 or more nucleotides of a target gene, at low nanomolar concentrations reproducibly knocks down gene expression by ~90% without immunogenicity or off-target effects. Because bacterially produced siRNAs contain multiple sequences against a target gene, they may be especially useful for suppressing polymorphic cellular or viral genes.
Collapse
|
243
|
Fu Q, Yuan YA. Structural insights into RISC assembly facilitated by dsRNA-binding domains of human RNA helicase A (DHX9). Nucleic Acids Res 2013; 41:3457-70. [PMID: 23361462 PMCID: PMC3597700 DOI: 10.1093/nar/gkt042] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/18/2012] [Accepted: 01/06/2013] [Indexed: 12/31/2022] Open
Abstract
Intensive research interest has focused on small RNA-processing machinery and the RNA-induced silencing complex (RISC), key cellular machines in RNAi pathways. However, the structural mechanism regarding RISC assembly, the primary step linking small RNA processing and RNA-mediated gene silencing, is largely unknown. Human RNA helicase A (DHX9) was reported to function as an RISC-loading factor, and such function is mediated mainly by its dsRNA-binding domains (dsRBDs). Here, we report the crystal structures of human RNA helicase A (RHA) dsRBD1 and dsRBD2 domains in complex with dsRNAs, respectively. Structural analysis not only reveals higher siRNA duplex-binding affinity displayed by dsRBD1, but also identifies a crystallographic dsRBD1 pair of physiological significance in cooperatively recognizing dsRNAs. Structural observations are further validated by isothermal titration calorimetric (ITC) assay. Moreover, co-immunoprecipitation (co-IP) assay coupled with mutagenesis demonstrated that both dsRBDs are required for RISC association, and such association is mediated by dsRNA. Hence, our structural and functional efforts have revealed a potential working model for siRNA recognition by RHA tandem dsRBDs, and together they provide direct structural insights into RISC assembly facilitated by RHA.
Collapse
Affiliation(s)
| | - Y. Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
244
|
Shin S, Kim YS, Kim J, Kwon HM, Kim DE, Hah SS. Sniffing for gene-silencing efficiency of siRNAs in HeLa cells in comparison with that in HEK293T cells: correlation between knockdown efficiency and sustainability of sirnas revealed by FRET-based probing. Nucleic Acid Ther 2013; 23:152-9. [PMID: 23405948 DOI: 10.1089/nat.2012.0396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Investigation of the intracellular fate of small interfering RNAs (siRNAs) following their delivery into cells is of great importance to elucidate their dynamics in cytoplasm. Here we describe the use of an advanced fluorescence-based method to probe the dissociation and/or degradation of double-labeled siRNAs in HeLa cells in comparison with that in human embryonic kidney 293T (HEK293T) cells. This work was performed with three siRNAs labeled with fluorescence resonance energy transfer (FRET) dyes, allowing a non-destructive and non-invasive assessment of the dissociation and degradation state of siRNAs in cultured cells. Our FRET analysis not only shows the asymmetric degradation as well as the time-dependent dissociation of each siRNA strand during the measured time period, underlining the high intrinsic nuclease resistance of duplex siRNAs, but also reveals the longer sustainability of siRNAs in HeLa cells compared with that in HEK293T cells, explaining the gene silencing in HeLa cells is more efficient than that in HEK293T cells. In addition, our single-molecule FRET assays demonstrate the potential of the delineated fluorescence-based technique for future research on biological behavior of siRNAs even at the single-molecule level. The fluorescence-based method is a straightforward technique to gain direct information on siRNA integrity inside living cells, which can provide a detection tool for dynamics of biological molecules.
Collapse
Affiliation(s)
- Seonmi Shin
- Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
245
|
Recent Advances in Ribonucleic Acid Interference (RNAi). NATIONAL ACADEMY SCIENCE LETTERS 2013. [DOI: 10.1007/s40009-012-0102-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
246
|
Flores-Jasso CF, Salomon WE, Zamore PD. Rapid and specific purification of Argonaute-small RNA complexes from crude cell lysates. RNA (NEW YORK, N.Y.) 2013; 19:271-9. [PMID: 23249751 PMCID: PMC3543083 DOI: 10.1261/rna.036921.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/16/2012] [Indexed: 06/01/2023]
Abstract
Small interfering RNAs (siRNAs) direct Argonaute proteins, the core components of the RNA-induced silencing complex (RISC), to cleave complementary target RNAs. Here, we describe a method to purify active RISC containing a single, unique small RNA guide sequence. We begin by capturing RISC using a complementary 2'-O-methyl oligonucleotide tethered to beads. Unlike other methods that capture RISC but do not allow its recovery, our strategy purifies active, soluble RISC in good yield. The method takes advantage of the finding that RISC partially paired to a target through its siRNA guide dissociates more than 300 times faster than a fully paired siRNA in RISC. We use this strategy to purify fly Ago1- and Ago2-RISC, as well as mouse AGO2-RISC. The method can discriminate among RISCs programmed with different guide strands, making it possible to deplete and recover specific RISC populations. Endogenous microRNA:Argonaute complexes can also be purified from cell lysates. Our method scales readily and takes less than a day to complete.
Collapse
Affiliation(s)
| | | | - Phillip D. Zamore
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
247
|
Parizotto EA, Lowe ED, Parker JS. Structural basis for duplex RNA recognition and cleavage by Archaeoglobus fulgidus C3PO. Nat Struct Mol Biol 2013; 20:380-6. [PMID: 23353787 PMCID: PMC3597040 DOI: 10.1038/nsmb.2487] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/10/2012] [Indexed: 01/01/2023]
Abstract
Oligomeric complexes of Trax and Translin proteins, known as C3POs, participate in a variety of eukaryotic nucleic acid metabolism pathways including RNAi and tRNA processing. In RNAi in humans and Drosophila, C3PO activates pre-RISC by removing the passenger strand of the siRNA precursor duplex using nuclease activity present in Trax. It is not known how C3POs engage with nucleic acid substrates. Here we identify a single protein from Archaeoglobus fulgidus that assembles into an octamer with striking similarity to human C3PO. The structure in complex with duplex RNA reveals that the octamer entirely encapsulates a single thirteen base-pair RNA duplex inside a large inner cavity. Trax-like subunit catalytic sites target opposite strands of the duplex for cleavage, separated by seven base pairs. The structure provides insight into the mechanism of RNA recognition and cleavage by an archaeal C3PO-like complex.
Collapse
|
248
|
Nielsen KH, Staley JP. Spliceosome activation: U4 is the path, stem I is the goal, and Prp8 is the keeper. Let's cheer for the ATPase Brr2! Genes Dev 2013; 26:2461-7. [PMID: 23154979 DOI: 10.1101/gad.207514.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During pre-mRNA splicing, the spliceosome is activated for catalysis by unwinding base-paired U4/U6 small nuclear RNAs, a step that must be precisely timed. We know that unwinding requires the ATPase Brr2, but the mechanism and regulation of unwinding have been understood poorly. In the November 1, 2012, issue of Genes & Development, Hahn and colleagues (pp. 2408-2421) and Mozaffari-Jovin and colleagues (pp. 2422-2434) defined a pathway for U4/U6 unwinding. Moreover, Mozaffari-Jovin and colleagues suggested a mechanism for regulating Brr2.
Collapse
Affiliation(s)
- Klaus H Nielsen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
249
|
Abstract
Small RNA molecules regulate eukaryotic gene expression during development and in response to stresses including viral infection. Specialized ribonucleases and RNA-binding proteins govern the production and action of small regulatory RNAs. After initial processing in the nucleus by Drosha, precursor microRNAs (pre-miRNAs) are transported to the cytoplasm, where Dicer cleavage generates mature microRNAs (miRNAs) and short interfering RNAs (siRNAs). These double-stranded products assemble with Argonaute proteins such that one strand is preferentially selected and used to guide sequence-specific silencing of complementary target mRNAs by endonucleolytic cleavage or translational repression. Molecular structures of Dicer and Argonaute proteins, and of RNA-bound complexes, have offered exciting insights into the mechanisms operating at the heart of RNA-silencing pathways.
Collapse
|
250
|
Poulsen C, Vaucheret H, Brodersen P. Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures. THE PLANT CELL 2013; 25:22-37. [PMID: 23303917 PMCID: PMC3584537 DOI: 10.1105/tpc.112.105643] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/31/2012] [Accepted: 11/26/2012] [Indexed: 05/18/2023]
Abstract
RNA silencing refers to a collection of gene regulatory mechanisms that use small RNAs for sequence specific repression. These mechanisms rely on ARGONAUTE (AGO) proteins that directly bind small RNAs and thereby constitute the central component of the RNA-induced silencing complex (RISC). AGO protein function has been probed extensively by mutational analyses, particularly in plants where large allelic series of several AGO proteins have been isolated. Structures of entire human and yeast AGO proteins have only very recently been obtained, and they allow more precise analyses of functional consequences of mutations obtained by forward genetics. To a large extent, these analyses support current models of regions of particular functional importance of AGO proteins. Interestingly, they also identify previously unrecognized parts of AGO proteins with profound structural and functional importance and provide the first hints at structural elements that have important functions specific to individual AGO family members. A particularly important outcome of the analysis concerns the evidence for existence of Gly-Trp (GW) repeat interactors of AGO proteins acting in the plant microRNA pathway. The parallel analysis of AGO structures and plant AGO mutations also suggests that such interactions with GW proteins may be a determinant of whether an endonucleolytically competent RISC is formed.
Collapse
Affiliation(s)
- Christian Poulsen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, F-78000 Versailles, France
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Address correspondence to
| |
Collapse
|