201
|
Burger K, Schlackow M, Potts M, Hester S, Mohammed S, Gullerova M. Nuclear phosphorylated Dicer processes double-stranded RNA in response to DNA damage. J Cell Biol 2017. [PMID: 28642363 PMCID: PMC5551710 DOI: 10.1083/jcb.201612131] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The endoribonuclease Dicer is a key component of the human RNA interference pathway and is known for its role in cytoplasmic microRNA production. Recent findings suggest that noncanonical Dicer generates small noncoding RNA to mediate the DNA damage response (DDR). Here, we show that human Dicer is phosphorylated in the platform-Piwi/Argonaute/Zwille-connector helix cassette (S1016) upon induction of DNA damage. Phosphorylated Dicer (p-Dicer) accumulates in the nucleus and is recruited to DNA double-strand breaks. We further demonstrate that turnover of damage-induced nuclear, double-stranded (ds) RNA requires additional phosphorylation of carboxy-terminal Dicer residues (S1728 and S1852). DNA damage-induced nuclear Dicer accumulation is conserved in mammals. Dicer depletion causes endogenous DNA damage and delays the DDR by impaired recruitment of repair factors MDC1 and 53BP1. Collectively, we place Dicer within the context of the DDR by demonstrating a DNA damage-inducible phosphoswitch that causes localized processing of nuclear dsRNA by p-Dicer to promote DNA repair.
Collapse
Affiliation(s)
- Kaspar Burger
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Martin Potts
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Svenja Hester
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
202
|
König F, Schubert T, Längst G. The monoclonal S9.6 antibody exhibits highly variable binding affinities towards different R-loop sequences. PLoS One 2017; 12:e0178875. [PMID: 28594954 PMCID: PMC5464589 DOI: 10.1371/journal.pone.0178875] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/20/2017] [Indexed: 12/15/2022] Open
Abstract
The monoclonal antibody S9.6 is a widely-used tool to purify, analyse and quantify R-loop structures in cells. A previous study using the surface plasmon resonance technology and a single-chain variable fragment (scFv) of S9.6 showed high affinity (0.6 nM) for DNA—RNA and also a high affinity (2.7 nM) for RNA—RNA hybrids. We used the microscale thermophoresis method allowing surface independent interaction studies and electromobility shift assays to evaluate additional RNA-DNA hybrid sequences and to quantify the binding affinities of the S9.6 antibody with respect to distinct sequences and their GC-content. Our results confirm high affinity binding to previously analysed sequences, but reveals that binding affinities are highly sequence specific. Our study presents R-loop sequences that independent of GC-content and in different sequence variations exhibit either no binding, binding affinities in the micromolar range and as well high affinity binding in the nanomolar range. Our study questions the usefulness of the S9.6 antibody in the quantitative analysis of R-loop sequences in vivo.
Collapse
Affiliation(s)
- Fabian König
- Biochemistry III; Biochemistry Centre Regensburg (BCR), University of Regensburg, Universitätsstr, Regensburg, Germany
| | - Thomas Schubert
- Biochemistry III; Biochemistry Centre Regensburg (BCR), University of Regensburg, Universitätsstr, Regensburg, Germany
- 2Bind GmbH, Regensburg, Germany
| | - Gernot Längst
- Biochemistry III; Biochemistry Centre Regensburg (BCR), University of Regensburg, Universitätsstr, Regensburg, Germany
- * E-mail:
| |
Collapse
|
203
|
Sawyer IA, Dundr M. Chromatin loops and causality loops: the influence of RNA upon spatial nuclear architecture. Chromosoma 2017; 126:541-557. [PMID: 28593374 DOI: 10.1007/s00412-017-0632-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 01/18/2023]
Abstract
An intrinsic and essential trait exhibited by cells is the properly coordinated and integrated regulation of an astoundingly large number of simultaneous molecular decisions and reactions to maintain biochemical homeostasis. This is especially true inside the cell nucleus, where the recognition of DNA and RNA by a vast range of nucleic acid-interacting proteins organizes gene expression patterns. However, this dynamic system is not regulated by simple "on" or "off" signals. Instead, transcription factor and RNA polymerase recruitment to DNA are influenced by the local chromatin and epigenetic environment, a gene's relative position within the nucleus and the action of noncoding RNAs. In addition, major phase-separated structural features of the nucleus, such as nucleoli and paraspeckles, assemble in direct response to specific transcriptional activities and, in turn, influence global genomic function. Currently, the interpretation of these data is trapped in a causality dilemma reminiscent of the "chicken and the egg" paradox as it is unclear whether changes in nuclear architecture promote RNA function or vice versa. Here, we review recent advances that suggest a complex and interdependent interaction network between gene expression, chromatin topology, and noncoding RNA function. We also discuss the functional links between these essential nuclear processes from the nanoscale (gene looping) to the macroscale (sub-nuclear gene positioning and nuclear body function) and briefly highlight some of the challenges that researchers may encounter when studying these phenomena.
Collapse
Affiliation(s)
- Iain A Sawyer
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Miroslav Dundr
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
204
|
Shafiq S, Chen C, Yang J, Cheng L, Ma F, Widemann E, Sun Q. DNA Topoisomerase 1 Prevents R-loop Accumulation to Modulate Auxin-Regulated Root Development in Rice. MOLECULAR PLANT 2017; 10:821-833. [PMID: 28412545 DOI: 10.1016/j.molp.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/02/2017] [Accepted: 04/03/2017] [Indexed: 05/21/2023]
Abstract
R-loop structures (RNA:DNA hybrids) have important functions in many biological processes, including transcriptional regulation and genome instability among diverse organisms. DNA topoisomerase 1 (TOP1), an essential manipulator of DNA topology during RNA transcription and DNA replication processes, can prevent R-loop accumulation by removing the positive and negative DNA supercoiling that is made by RNA polymerases during transcription. TOP1 is required for plant development, but little is known about its function in preventing co-transcriptional R-loop accumulation in various biological processes in plants. Here we show that knockdown of OsTOP1 strongly affects rice development, causing defects in root architecture and gravitropism, which are the consequences of misregulation of auxin signaling and transporter genes. We found that R-loops are naturally formed at rice auxin-related gene loci, and overaccumulate when OsTOP1 is knocked down or OsTOP1 protein activity is inhibited. OsTOP1 therefore sets the accurate expression levels of auxin-related genes by preventing the overaccumulation of inherent R-loops. Our data reveal R-loops as important factors in polar auxin transport and plant root development, and highlight that OsTOP1 functions as a key to link transcriptional R-loops with plant hormone signaling, provide new insights into transcriptional regulation of hormone signaling in plants.
Collapse
Affiliation(s)
- Sarfraz Shafiq
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Permanent affiliation: Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingling Cheng
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fei Ma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Emilie Widemann
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qianwen Sun
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
205
|
Pavri R. R Loops in the Regulation of Antibody Gene Diversification. Genes (Basel) 2017; 8:E154. [PMID: 28574479 PMCID: PMC5485518 DOI: 10.3390/genes8060154] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 01/06/2023] Open
Abstract
For nearly three decades, R loops have been closely linked with class switch recombination (CSR), the process that generates antibody isotypes and that occurs via a complex cascade initiated by transcription-coupled mutagenesis in switch recombination sequences. R loops form during transcription of switch recombination sequences in vitro and in vivo, and there is solid evidence that R loops are required for efficient class switching. The classical model of R loops posits that they boost mutation rates by generating stable and long tracts of single-stranded DNA that serve as the substrate for activation induced deaminase (AID), the enzyme that initiates the CSR reaction cascade by co-transcriptionally mutating ssDNA in switch recombination sequences. Though logical and compelling, this model has not been supported by in vivo evidence. Indeed, several reports suggest that R loops may not be involved in recruiting AID activity to switch regions, meaning that R loops probably serve other unanticipated roles in CSR. Here, I review the key findings in this field to date and propose hypotheses that could help towards elucidating the precise function of R loops in CSR.
Collapse
Affiliation(s)
- Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Campus Vienna Biocenter-1, Vienna Biocenter, Vienna 1030, Austria.
| |
Collapse
|
206
|
Krzyczmonik K, Wroblewska-Swiniarska A, Swiezewski S. Developmental transitions in Arabidopsis are regulated by antisense RNAs resulting from bidirectionally transcribed genes. RNA Biol 2017; 14:838-842. [PMID: 28513325 DOI: 10.1080/15476286.2017.1327112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcription terminators are DNA elements located at the 3' end of genes that ensure efficient cleavage of nascent RNA generating the 3' end of mRNA, as well as facilitating disengagement of elongating DNA-dependent RNA polymerase II. Surprisingly, terminators are also a potent source of antisense transcription. We have recently described an Arabidopsis antisense transcript originating from the 3' end of a master regulator of Arabidopsis thaliana seed dormancy DOG1. In this review, we discuss the broader implications of our discovery in light of recent developments in yeast and Arabidopsis. We show that, surprisingly, the key features of terminators that give rise to antisense transcription are preserved between Arabidopsis and yeast, suggesting a conserved mechanism. We also compare our discovery to known antisense-based regulatory mechanisms, highlighting the link between antisense-based gene expression regulation and major developmental transitions in plants.
Collapse
Affiliation(s)
| | | | - Szymon Swiezewski
- a Department of Protein Biosynthesis , Institute of Biochemistry and Biophysics , Warsaw , Poland
| |
Collapse
|
207
|
Conflict Resolution in the Genome: How Transcription and Replication Make It Work. Cell 2017; 167:1455-1467. [PMID: 27912056 DOI: 10.1016/j.cell.2016.09.053] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 01/12/2023]
Abstract
The complex machineries involved in replication and transcription translocate along the same DNA template, often in opposing directions and at different rates. These processes routinely interfere with each other in prokaryotes, and mounting evidence now suggests that RNA polymerase complexes also encounter replication forks in higher eukaryotes. Indeed, cells rely on numerous mechanisms to avoid, tolerate, and resolve such transcription-replication conflicts, and the absence of these mechanisms can lead to catastrophic effects on genome stability and cell viability. In this article, we review the cellular responses to transcription-replication conflicts and highlight how these inevitable encounters shape the genome and impact diverse cellular processes.
Collapse
|
208
|
Wahba L, Costantino L, Tan FJ, Zimmer A, Koshland D. S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev 2017; 30:1327-38. [PMID: 27298336 PMCID: PMC4911931 DOI: 10.1101/gad.280834.116] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/11/2016] [Indexed: 12/16/2022]
Abstract
In this study, Wahba et al. investigate how and where DNA–RNA hybrids, which form when an RNA molecule hybridizes to the complementary genomic locus, appear throughout the genome. They present a novel whole-genome method, S1-DRIP-seq, for mapping hybrid-prone regions in S. cerevisiae and identify the first global genomic features that play a causal role in R-loop formation in yeast. R loops form when transcripts hybridize to homologous DNA on chromosomes, yielding a DNA:RNA hybrid and a displaced DNA single strand. R loops impact the genome of many organisms, regulating chromosome stability, gene expression, and DNA repair. Understanding the parameters dictating R-loop formation in vivo has been hampered by the limited quantitative and spatial resolution of current genomic strategies for mapping R loops. We report a novel whole-genome method, S1-DRIP-seq (S1 nuclease DNA:RNA immunoprecipitation with deep sequencing), for mapping hybrid-prone regions in budding yeast Saccharomyces cerevisiae. Using this methodology, we identified ∼800 hybrid-prone regions covering 8% of the genome. Given the pervasive transcription of the yeast genome, this result suggests that R-loop formation is dictated by characteristics of the DNA, RNA, and/or chromatin. We successfully identified two features highly predictive of hybrid formation: high transcription and long homopolymeric dA:dT tracts. These accounted for >60% of the hybrid regions found in the genome. We demonstrated that these two factors play a causal role in hybrid formation by genetic manipulation. Thus, the hybrid map generated by S1-DRIP-seq led to the identification of the first global genomic features causal for R-loop formation in yeast.
Collapse
Affiliation(s)
- Lamia Wahba
- Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Lorenzo Costantino
- Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Frederick J Tan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Anjali Zimmer
- Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Douglas Koshland
- Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
209
|
Brönner C, Salvi L, Zocco M, Ugolini I, Halic M. Accumulation of RNA on chromatin disrupts heterochromatic silencing. Genome Res 2017; 27:1174-1183. [PMID: 28404620 PMCID: PMC5495069 DOI: 10.1101/gr.216986.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/11/2017] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs) play a conserved role in regulating gene expression, chromatin dynamics, and cell differentiation. They serve as a platform for RNA interference (RNAi)–mediated heterochromatin formation or DNA methylation in many eukaryotic organisms. We found in Schizosaccharomyces pombe that heterochromatin is lost at transcribed regions in the absence of RNA degradation. We show that heterochromatic RNAs are retained on chromatin, form DNA:RNA hybrids, and need to be degraded by the Ccr4-Not complex or RNAi to maintain heterochromatic silencing. The Ccr4-Not complex is localized to chromatin independently of H3K9me and degrades chromatin-associated transcripts, which is required for transcriptional silencing. Overexpression of heterochromatic RNA, but not euchromatic RNA, leads to chromatin localization and loss of silencing of a distant ade6 reporter in wild-type cells. Our results demonstrate that chromatin-bound RNAs disrupt heterochromatin organization and need to be degraded in a process of heterochromatin formation.
Collapse
Affiliation(s)
- Cornelia Brönner
- Department of Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| | - Luca Salvi
- Department of Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| | - Manuel Zocco
- Department of Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| | - Ilaria Ugolini
- Department of Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| | - Mario Halic
- Department of Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| |
Collapse
|
210
|
Marnef A, Cohen S, Legube G. Transcription-Coupled DNA Double-Strand Break Repair: Active Genes Need Special Care. J Mol Biol 2017; 429:1277-1288. [PMID: 28363678 DOI: 10.1016/j.jmb.2017.03.024] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022]
Abstract
For decades, it has been speculated that specific loci on eukaryotic chromosomes are inherently susceptible to breakage. The advent of high-throughput genomic technologies has now paved the way to their identification. A wealth of data suggests that transcriptionally active loci are particularly fragile and that a specific DNA damage response is activated and dedicated to their repair. Here, we review current understanding of the crosstalk between transcription and double-strand break repair, from the reasons underlying the intrinsic fragility of genes to the mechanisms that restore the integrity of damaged transcription units.
Collapse
Affiliation(s)
- Aline Marnef
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, 118 Route de Narbonne, 31062 Toulouse, France
| | - Sarah Cohen
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, 118 Route de Narbonne, 31062 Toulouse, France
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, 118 Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
211
|
Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci 2017; 74:2875-2897. [PMID: 28314893 PMCID: PMC5501912 DOI: 10.1007/s00018-017-2503-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA–protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
212
|
Skalska L, Beltran-Nebot M, Ule J, Jenner RG. Regulatory feedback from nascent RNA to chromatin and transcription. Nat Rev Mol Cell Biol 2017; 18:331-337. [PMID: 28270684 DOI: 10.1038/nrm.2017.12] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transcription and chromatin function are regulated by proteins that bind to DNA, nucleosomes or RNA polymerase II, with specific non-coding RNAs (ncRNAs) functioning to modulate their recruitment or activity. Unlike ncRNAs, nascent pre-mRNA was considered to be primarily a passive player in these processes. In this Opinion article, we describe recently identified interactions between nascent pre-mRNAs and regulatory proteins, highlight commonalities between the functions of nascent pre-mRNA and nascent ncRNA, and propose that both types of RNA have an active role in transcription and chromatin regulation.
Collapse
Affiliation(s)
- Lenka Skalska
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Manuel Beltran-Nebot
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Jernej Ule
- Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; and The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard G Jenner
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| |
Collapse
|
213
|
Ssb1 and Ssb2 cooperate to regulate mouse hematopoietic stem and progenitor cells by resolving replicative stress. Blood 2017; 129:2479-2492. [PMID: 28270450 DOI: 10.1182/blood-2016-06-725093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/26/2017] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2 Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R-loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability.
Collapse
|
214
|
Palovcak A, Liu W, Yuan F, Zhang Y. Maintenance of genome stability by Fanconi anemia proteins. Cell Biosci 2017; 7:8. [PMID: 28239445 PMCID: PMC5320776 DOI: 10.1186/s13578-016-0134-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022] Open
Abstract
Persistent dysregulation of the DNA damage response and repair in cells causes genomic instability. The resulting genetic changes permit alterations in growth and proliferation observed in virtually all cancers. However, an unstable genome can serve as a double-edged sword by providing survival advantages in the ability to evade checkpoint signaling, but also creating vulnerabilities through dependency on alternative genomic maintenance factors. The Fanconi anemia pathway comprises an intricate network of DNA damage signaling and repair that are critical for protection against genomic instability. The importance of this pathway is underlined by the severity of the cancer predisposing syndrome Fanconi anemia which can be caused by biallelic mutations in any one of the 21 genes known thus far. This review delineates the roles of the Fanconi anemia pathway and the molecular actions of Fanconi anemia proteins in confronting replicative, oxidative, and mitotic stress.
Collapse
Affiliation(s)
- Anna Palovcak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Wenjun Liu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Fenghua Yuan
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| |
Collapse
|
215
|
Ravoitytė B, Wellinger RE. Non-Canonical Replication Initiation: You're Fired! Genes (Basel) 2017; 8:genes8020054. [PMID: 28134821 PMCID: PMC5333043 DOI: 10.3390/genes8020054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis-acting DNA sequences, the so-called origins of replication (ori), with trans-acting factors involved in the onset of DNA synthesis. The interplay of cis-acting elements and trans-acting factors ensures that cells initiate replication at sequence-specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause break-induced (BIR) or transcription-initiated replication (TIR), respectively. These non-canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non-canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.
Collapse
Affiliation(s)
- Bazilė Ravoitytė
- Nature Research Centre, Akademijos g. 2, LT-08412 Vilnius, Lithuania.
| | - Ralf Erik Wellinger
- CABIMER-Universidad de Sevilla, Avd Americo Vespucio sn, 41092 Sevilla, Spain.
| |
Collapse
|
216
|
R-Loop Depletion by Over-expressed RNase H1 in Mouse B Cells Increases Activation-Induced Deaminase Access to the Transcribed Strand without Altering Frequency of Isotype Switching. J Mol Biol 2017; 429:3255-3263. [PMID: 28065739 DOI: 10.1016/j.jmb.2016.12.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/09/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022]
Abstract
R-loops, three-strand structures consisting of mRNA hybridized to the complementary DNA and a single-stranded DNA loop, are formed in switch regions on the heavy-chain immunoglobulin locus. To determine if R-loops have a direct effect on any of the steps involved in isotype switching, we generated a transgenic mouse that over-expressed RNase H1, an enzyme that cleaves the RNA of RNA/DNA hybrids in B cells. R-loops in the switch μ region were depleted by 70% in ex vivo activated splenic B cells. Frequencies of isotype switching to IgG1, IgG2b, IgG2c, and IgG3 were the same as C57BL/6 control cells. However, somatic hypermutation was increased specifically on the transcribed strand from μ-γ joins, indicating that R-loops limit activation-induced (cytosine) deaminase access to the transcribed DNA strand. Our data suggest that, in the normal G+C-rich context of mammalian class switch recombination regions, R-loops are obligatory intermediates. Processing of the R-loops is needed to remove RNA allowing activation-induced (cytosine) deaminase to promote somatic hypermutation on both DNA strands to generate double-strand DNA breaks for efficient class switch recombination. One of the two cellular RNases H may assist in this process.
Collapse
|
217
|
Jenjaroenpun P, Wongsurawat T, Sutheeworapong S, Kuznetsov VA. R-loopDB: a database for R-loop forming sequences (RLFS) and R-loops. Nucleic Acids Res 2017; 45:D119-D127. [PMID: 27899586 PMCID: PMC5210542 DOI: 10.1093/nar/gkw1054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/04/2016] [Accepted: 10/20/2016] [Indexed: 11/18/2022] Open
Abstract
R-loopDB (http://rloop.bii.a-star.edu.sg) was originally constructed as a collection of computationally predicted R-loop forming sequences (RLFSs) in the human genic regions. The renewed R-loopDB provides updates, improvements and new options, including access to recent experimental data. It includes genome-scale prediction of RLFSs for humans, six other animals and yeast. Using the extended quantitative model of RLFSs (QmRLFS), we significantly increased the number of RLFSs predicted in the human genes and identified RLFSs in other organism genomes. R-loopDB allows searching of RLFSs in the genes and in the 2 kb upstream and downstream flanking sequences of any gene. R-loopDB exploits the Ensembl gene annotation system, providing users with chromosome coordinates, sequences, gene and genomic data of the 1 565 795 RLFSs distributed in 121 056 genic or proximal gene regions of the covered organisms. It provides a comprehensive annotation of Ensembl RLFS-positive genes including 93 454 protein coding genes, 12 480 long non-coding RNA and 7 568 small non-coding RNA genes and 7 554 pseudogenes. Using new interface and genome viewers of R-loopDB, users can search the gene(s) in multiple species with keywords in a single query. R-loopDB provides tools to carry out comparative evolution and genome-scale analyses in R-loop biology.
Collapse
Affiliation(s)
- Piroon Jenjaroenpun
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, 138671, Singapore
| | - Thidathip Wongsurawat
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, 138671, Singapore
| | - Sawannee Sutheeworapong
- Systems Biology and Bioinformatics Research, Pilot Plant Development and Training Institute, King Mongkut's University of Technology, Thonburi, Bangkok, Thailand
| | - Vladimir A Kuznetsov
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, 138671, Singapore
- School of Computer Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
218
|
Sridhara SC, Carvalho S, Grosso AR, Gallego-Paez LM, Carmo-Fonseca M, de Almeida SF. Transcription Dynamics Prevent RNA-Mediated Genomic Instability through SRPK2-Dependent DDX23 Phosphorylation. Cell Rep 2017; 18:334-343. [DOI: 10.1016/j.celrep.2016.12.050] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/13/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022] Open
|
219
|
Abstract
The eukaryotic genomes are pervasively transcribed. In addition to protein-coding RNAs, thousands of long noncoding RNAs (lncRNAs) modulate key molecular and biological processes. Most lncRNAs are found in the nucleus and associate with chromatin, but lncRNAs can function in both nuclear and cytoplasmic compartments. Emerging work has found that many lncRNAs regulate gene expression and can affect genome stability and nuclear domain organization both in plant and in the animal kingdom. Here, we describe the major plant lncRNAs and how they act, with a focus on research in Arabidopsis thaliana and our emerging understanding of lncRNA functions in serving as molecular sponges and decoys, functioning in regulation of transcription and silencing, particularly in RNA-directed DNA methylation, and in epigenetic regulation of flowering time.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Julia A Chekanova
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, 64110, USA.
| |
Collapse
|
220
|
Richard P, Vethantham V, Manley JL. Roles of Sumoylation in mRNA Processing and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:15-33. [PMID: 28197904 DOI: 10.1007/978-3-319-50044-7_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SUMO has gained prominence as a regulator in a number of cellular processes. The roles of sumoylation in RNA metabolism, however, while considerable, remain less well understood. In this chapter we have assembled data from proteomic analyses, localization studies and key functional studies to extend SUMO's role to the area of mRNA processing and metabolism. Proteomic analyses have identified multiple putative sumoylation targets in complexes functioning in almost all aspects of mRNA metabolism, including capping, splicing and polyadenylation of mRNA precursors. Possible regulatory roles for SUMO have emerged in pre-mRNA 3' processing, where SUMO influences the functions of polyadenylation factors and activity of the entire complex. SUMO is also involved in regulating RNA editing and RNA binding by hnRNP proteins, and recent reports have suggested the involvement of the SUMO pathway in mRNA export. Together, these reports suggest that SUMO is involved in regulation of many aspects of mRNA metabolism and hold the promise for exciting future studies.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | | | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
221
|
Abstract
R loops are special three stranded nucleic acid structures that comprise a nascent RNA hybridized with the DNA template strand, leaving a non-template DNA single-stranded. More specifically, R loops form in vivo as G-rich RNA transcripts invade the DNA duplex and anneal to the template strand to generate an RNA:DNA hybrid, leaving the non-template, G-rich DNA strand in a largely single-stranded conformation (Aguilera and Garcia-Muse, Mol Cell 46:115-124, 2012).DNA-RNA hybrids are a natural occurrence within eukaryotic cells, with levels of these hybrids increasing at sites with high transcriptional activity, such as during transcription initiation, repression, and elongation. RNA-DNA hybrids influence genomic instability, and growing evidence points to an important role for R loops in active gene expression regulation (Ginno et al., Mol Cell 45, 814-825, 2012; Sun et al., Science 340: 619-621, 2013; Bhatia et al., Nature 511, 362-365, 2014). Analysis of the occurrence of such structures is therefore of increasing relevance and herein we describe methods for the in vivo and in vitro identification and characterization of R loops in mammalian systems.R loops (DNA:RNA hybrids and the associated single-stranded DNA) have been traditionally associated with threats to genome integrity, making some regions of the genome more prone to DNA-damaging and mutagenic agents. Initially considered to be rare byproducts of transcription, over the last decade accumulating evidence has pointed to a new view in which R loops form more frequently than previously thought. The R loop field has become an increasingly expanded area of research, placing these structures as a major threat to genome stability but also as potential regulators of gene expression. Special interest has arisen as they have also been linked to a variety of diseases, including neurological disorders and cancer, positioning them as potential therapeutic targets [5].
Collapse
|
222
|
Amon JD, Koshland D. RNase H enables efficient repair of R-loop induced DNA damage. eLife 2016; 5. [PMID: 27938663 PMCID: PMC5215079 DOI: 10.7554/elife.20533] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/09/2016] [Indexed: 11/13/2022] Open
Abstract
R-loops, three-stranded structures that form when transcripts hybridize to chromosomal DNA, are potent agents of genome instability. This instability has been explained by the ability of R-loops to induce DNA damage. Here, we show that persistent R-loops also compromise DNA repair. Depleting endogenous RNase H activity impairs R-loop removal in Saccharomyces cerevisiae, causing DNA damage that occurs preferentially in the repetitive ribosomal DNA locus (rDNA). We analyzed the repair kinetics of this damage and identified mutants that modulate repair. We present a model that the persistence of R-loops at sites of DNA damage induces repair by break-induced replication (BIR). This R-loop induced BIR is particularly susceptible to the formation of lethal repair intermediates at the rDNA because of a barrier imposed by RNA polymerase I. DOI:http://dx.doi.org/10.7554/eLife.20533.001
Collapse
Affiliation(s)
- Jeremy D Amon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
223
|
Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair. Cell 2016; 167:1001-1013.e7. [DOI: 10.1016/j.cell.2016.10.001] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/16/2016] [Accepted: 09/29/2016] [Indexed: 11/19/2022]
|
224
|
Nascent Connections: R-Loops and Chromatin Patterning. Trends Genet 2016; 32:828-838. [PMID: 27793359 DOI: 10.1016/j.tig.2016.10.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 11/22/2022]
Abstract
RNA molecules, such as long noncoding RNAs (lncRNAs), have critical roles in regulating gene expression, chromosome architecture, and the modification states of chromatin. Recent developments suggest that RNA also influences gene expression and chromatin patterns through the interaction of nascent transcripts with their DNA template via the formation of co-transcriptional R-loop structures. R-loop formation over specific, conserved, hotspots occurs at thousands of genes in mammalian genomes and represents an important and dynamic feature of mammalian chromatin. Here, focusing primarily on mammalian systems, I describe the accumulating connections and possible mechanisms linking R-loop formation and chromatin patterning. The possible contribution of aberrant R-loops to pathological conditions is also discussed.
Collapse
|
225
|
Groh M, Albulescu LO, Cristini A, Gromak N. Senataxin: Genome Guardian at the Interface of Transcription and Neurodegeneration. J Mol Biol 2016; 429:3181-3195. [PMID: 27771483 DOI: 10.1016/j.jmb.2016.10.021] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 12/12/2022]
Abstract
R-loops comprise an RNA/DNA hybrid and a displaced single-stranded DNA. They play crucial biological functions and are implicated in neurological diseases, including ataxias, amyotrophic lateral sclerosis, nucleotide expansion disorders (Friedreich ataxia and fragile X syndrome), and cancer. Currently, it is unclear which mechanisms cause R-loop structures to become pathogenic. The RNA/DNA helicase senataxin (SETX) is one of the best characterised R-loop-binding factors in vivo. Mutations in SETX are linked to two neurodegenerative disorders: ataxia with oculomotor apraxia type 2 (AOA2) and amyotrophic lateral sclerosis type 4 (ALS4). SETX is known to play a role in transcription, neurogenesis, and antiviral response. Here, we review the causes of R-loop dysregulation in neurodegenerative diseases and how these structures contribute to pathomechanisms. We will discuss the importance of SETX as a genome guardian in suppressing aberrant R-loop formation and analyse how SETX mutations can lead to neurodegeneration in AOA2/ALS4. Finally, we will discuss the implications for other R-loop-associated neurodegenerative diseases and point to future therapeutic approaches to treat these disorders.
Collapse
Affiliation(s)
- Matthias Groh
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK
| | - Laura Oana Albulescu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK
| | - Agnese Cristini
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, UK.
| |
Collapse
|
226
|
Richard P, Manley JL. R Loops and Links to Human Disease. J Mol Biol 2016; 429:3168-3180. [PMID: 27600412 DOI: 10.1016/j.jmb.2016.08.031] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Abstract
Aberrant R-loop structures are increasingly being realized as an important contributor to human disease. R loops, which are mainly co-transcriptional, abundant RNA/DNA hybrids, form naturally and can indeed be beneficial for transcription regulation at certain loci. However, their unwanted persistence elsewhere or in particular situations can lead to DNA double-strand breaks, chromosome rearrangements, and hypermutation, which are all sources of genomic instability. Mutations in genes involved in R-loop resolution or mutations leading to R-loop formation at specific genes affect the normal physiology of the cell. We discuss here the examples of diseases for which a link with R loops has been described, as well as how disease-causing mutations might participate in the development and/or progression of diseases that include repeat-associated conditions, other neurological disorders, and cancers.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
227
|
Stork CT, Bocek M, Crossley MP, Sollier J, Sanz LA, Chédin F, Swigut T, Cimprich KA. Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage. eLife 2016; 5. [PMID: 27552054 PMCID: PMC5030092 DOI: 10.7554/elife.17548] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
The hormone estrogen (E2) binds the estrogen receptor to promote transcription of E2-responsive genes in the breast and other tissues. E2 also has links to genomic instability, and elevated E2 levels are tied to breast cancer. Here, we show that E2 stimulation causes a rapid, global increase in the formation of R-loops, co-transcriptional RNA-DNA products, which in some instances have been linked to DNA damage. We show that E2-dependent R-loop formation and breast cancer rearrangements are highly enriched at E2-responsive genomic loci and that E2 induces DNA replication-dependent double-strand breaks (DSBs). Strikingly, many DSBs that accumulate in response to E2 are R-loop dependent. Thus, R-loops resulting from the E2 transcriptional response are a significant source of DNA damage. This work reveals a novel mechanism by which E2 stimulation leads to genomic instability and highlights how transcriptional programs play an important role in shaping the genomic landscape of DNA damage susceptibility. DOI:http://dx.doi.org/10.7554/eLife.17548.001 The hormone estrogen controls the development of breast tissue. However too much estrogen can damage the DNA in human cells and may be linked to an increased risk of breast cancer. In breast cells, estrogen activates many genes via a process called transcription. The transcription process results in the production of an RNA molecule that contains a copy of the instructions encoded within the gene. Previous studies have found that, in certain cases, a new RNA molecule can stick to the matching DNA from which it was made. This creates a structure known as an R-loop, which can lead the DNA to break. DNA breaks are particularly harmful because they can dramatically alter the cell’s genome in ways that allow it to become cancerous. However, it was not clear if the large increase in transcription triggered by estrogen causes an increase in R-loops, which could help to explain the DNA damage that has been reported to occur when cells are treated with estrogen. Now, Stork et al. show that treating human breast cancer cells with estrogen causes an increase in R-loops and DNA breaks. The R-loops occurred particularly in regions of the genome that contain estrogen-activated genes. Stork et al. also found that regions of estrogen-activated transcription were more frequently mutated in breast cancers, and further experiments confirmed that the R-loops were responsible for many of the DNA breaks that occurred following estrogen treatment. Taken together, these findings demonstrate that the changes in transcription due to estrogen lead to increased R-loops and DNA breaks, which may make the cells vulnerable to becoming cancerous. The next challenge is to determine precisely where these DNA breaks that result from estrogen occur on the DNA. Knowing the location of the DNA breaks will be useful in determining what additional factors or genomic features make an R-loop more prone to being broken. This in turn might help explain how the R-loops lead to DNA damage. In addition, further studies are also needed to determine if tumor samples from breast cancer patients also contain increased levels of R-loops. DOI:http://dx.doi.org/10.7554/eLife.17548.002
Collapse
Affiliation(s)
- Caroline Townsend Stork
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Michael Bocek
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Madzia P Crossley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Julie Sollier
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
228
|
Morales JC, Richard P, Patidar PL, Motea EA, Dang TT, Manley JL, Boothman DA. XRN2 Links Transcription Termination to DNA Damage and Replication Stress. PLoS Genet 2016; 12:e1006107. [PMID: 27437695 PMCID: PMC4954731 DOI: 10.1371/journal.pgen.1006107] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/14/2016] [Indexed: 11/18/2022] Open
Abstract
XRN2 is a 5’-3’ exoribonuclease implicated in transcription termination. Here we demonstrate an unexpected role for XRN2 in the DNA damage response involving resolution of R-loop structures and prevention of DNA double-strand breaks (DSBs). We show that XRN2 undergoes DNA damage-inducible nuclear re-localization, co-localizing with 53BP1 and R loops, in a transcription and R-loop-dependent process. XRN2 loss leads to increased R loops, genomic instability, replication stress, DSBs and hypersensitivity of cells to various DNA damaging agents. We demonstrate that the DSBs that arise with XRN2 loss occur at transcriptional pause sites. XRN2-deficient cells also exhibited an R-loop- and transcription-dependent delay in DSB repair after ionizing radiation, suggesting a novel role for XRN2 in R-loop resolution, suppression of replication stress, and maintenance of genomic stability. Our study highlights the importance of regulating transcription-related activities as a critical component in maintaining genetic stability. Genomic instability is one of the primary causes of disease states, in particular cancer. One major cause of genomic instability is the formation of DNA double strand breaks (DSBs), which are one of the most dangerous types of DNA lesions the cell can encounter. If not repaired in a timely manner, one DSB can lead not only to cell death. If misrepaired, one DSB can lead to a hazardous chromosomal aberration, such as a translocation, that can eventually lead to cancer. The cell encounters and repairs DSBs that arise from naturally occurring cellular processes on a daily basis. A number of studies have demonstrated that aberrant structures that form during transcription under certain circumstances, in particular RNA:DNA hybrids (R loops), can lead to DSB formation and genomic instability, especially during DNA synthesis. Thus, it is important to understand how the cell responds and repairs transcription-mediated DNA damage in general and R loop-related DNA damage in particular. This paper both demonstrates that the XRN transcription termination factor links transcription and DNA damage, but also provides a better understanding of how the cell prevents transcription-related DNA damage.
Collapse
Affiliation(s)
- Julio C. Morales
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
- * E-mail: (JCM); (DAB)
| | - Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Praveen L. Patidar
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Edward A. Motea
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tuyen T. Dang
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
| | - James L. Manley
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - David A. Boothman
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (JCM); (DAB)
| |
Collapse
|
229
|
Heinäniemi M, Vuorenmaa T, Teppo S, Kaikkonen MU, Bouvy-Liivrand M, Mehtonen J, Niskanen H, Zachariadis V, Laukkanen S, Liuksiala T, Teittinen K, Lohi O. Transcription-coupled genetic instability marks acute lymphoblastic leukemia structural variation hotspots. eLife 2016; 5. [PMID: 27431763 PMCID: PMC4951197 DOI: 10.7554/elife.13087] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
Progression of malignancy to overt disease requires multiple genetic hits. Activation-induced deaminase (AID) can drive lymphomagenesis by generating off-target DNA breaks at loci that harbor highly active enhancers and display convergent transcription. The first active transcriptional profiles from acute lymphoblastic leukemia (ALL) patients acquired here reveal striking similarity at structural variation (SV) sites. Specific transcriptional features, namely convergent transcription and Pol2 stalling, were detected at breakpoints. The overlap was most prominent at SV with recognition motifs for the recombination activating genes (RAG). We present signal feature analysis to detect vulnerable regions and quantified from human cells how convergent transcription contributes to R-loop generation and RNA polymerase stalling. Wide stalling regions were characterized by high DNAse hypersensitivity and unusually broad H3K4me3 signal. Based on 1382 pre-B-ALL patients, the ETV6-RUNX1 fusion positive patients had over ten-fold elevation in RAG1 while high expression of AID marked pre-B-ALL lacking common cytogenetic changes.
Collapse
Affiliation(s)
- Merja Heinäniemi
- School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tapio Vuorenmaa
- School of Medicine, University of Eastern Finland, Kuopio, Finland.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Susanna Teppo
- School of Medicine, University of Tampere, Tampere, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Juha Mehtonen
- School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Olli Lohi
- School of Medicine, University of Tampere, Tampere, Finland.,Tampere University Hospital, Tampere, Finland
| |
Collapse
|
230
|
Turowski TW, Leśniewska E, Delan-Forino C, Sayou C, Boguta M, Tollervey D. Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts. Genome Res 2016; 26:933-44. [PMID: 27206856 PMCID: PMC4937561 DOI: 10.1101/gr.205492.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/20/2016] [Indexed: 01/25/2023]
Abstract
RNA polymerase III (RNAPIII) synthesizes a range of highly abundant small stable RNAs, principally pre-tRNAs. Here we report the genome-wide analysis of nascent transcripts attached to RNAPIII under permissive and restrictive growth conditions. This revealed strikingly uneven polymerase distributions across transcription units, generally with a predominant 5' peak. This peak was higher for more heavily transcribed genes, suggesting that initiation site clearance is rate-limiting during RNAPIII transcription. Down-regulation of RNAPIII transcription under stress conditions was found to be uneven; a subset of tRNA genes showed low response to nutrient shift or loss of the major transcription regulator Maf1, suggesting potential "housekeeping" roles. Many tRNA genes were found to generate long, 3'-extended forms due to read-through of the canonical poly(U) terminators. The degree of read-through was anti-correlated with the density of U-residues in the nascent tRNA, and multiple, functional terminators can be located far downstream. The steady-state levels of 3'-extended pre-tRNA transcripts are low, apparently due to targeting by the nuclear surveillance machinery, especially the RNA binding protein Nab2, cofactors for the nuclear exosome, and the 5'-exonuclease Rat1.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland; Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Ewa Leśniewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Clementine Delan-Forino
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Camille Sayou
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Magdalena Boguta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| |
Collapse
|
231
|
Al-Hadid Q, Yang Y. R-loop: an emerging regulator of chromatin dynamics. Acta Biochim Biophys Sin (Shanghai) 2016; 48:623-31. [PMID: 27252122 DOI: 10.1093/abbs/gmw052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/29/2016] [Indexed: 12/27/2022] Open
Abstract
The dynamic structure of chromatin, which exists in two conformational states: heterochromatin and euchromatin, alters the accessibility of the DNA to regulatory factors during transcription, replication, recombination, and DNA damage repair. Chemical modifications of histones and DNA, as well as adenosine triphospahate-dependent nucleosome remodeling, have been the major focus of research on chromatin dynamics over the past two decades. However, recent studies using a DNA-RNA hybrid-specific antibody and next-generation sequencing approaches have revealed that the formation of R-loops, one of the most common non-canonical DNA structures, is an emerging regulator of chromatin states. This review focuses on recent insights into the interplay between R-loop formation and the epigenetic modifications of chromatin in normal and disease states.
Collapse
Affiliation(s)
- Qais Al-Hadid
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010, USA
| | - Yanzhong Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
232
|
Sanz LA, Hartono SR, Lim YW, Steyaert S, Rajpurkar A, Ginno PA, Xu X, Chédin F. Prevalent, Dynamic, and Conserved R-Loop Structures Associate with Specific Epigenomic Signatures in Mammals. Mol Cell 2016; 63:167-78. [PMID: 27373332 DOI: 10.1016/j.molcel.2016.05.032] [Citation(s) in RCA: 365] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/11/2016] [Accepted: 05/23/2016] [Indexed: 11/28/2022]
Abstract
R-loops are three-stranded nucleic acid structures formed upon annealing of an RNA strand to one strand of duplex DNA. We profiled R-loops using a high-resolution, strand-specific methodology in human and mouse cell types. R-loops are prevalent, collectively occupying up to 5% of mammalian genomes. R-loop formation occurs over conserved genic hotspots such as promoter and terminator regions of poly(A)-dependent genes. In most cases, R-loops occur co-transcriptionally and undergo dynamic turnover. Detailed epigenomic profiling revealed that R-loops associate with specific chromatin signatures. At promoters, R-loops associate with a hyper-accessible state characteristic of unmethylated CpG island promoters. By contrast, terminal R-loops associate with an enhancer- and insulator-like state and define a broad class of transcription terminators. Together, this suggests that the retention of nascent RNA transcripts at their site of expression represents an abundant, dynamic, and programmed component of the mammalian chromatin that affects chromatin patterning and the control of gene expression.
Collapse
Affiliation(s)
- Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome Center, 1 Shields Avenue, University of California, Davis, Davis, CA 95616, USA
| | - Stella R Hartono
- Department of Molecular and Cellular Biology and Genome Center, 1 Shields Avenue, University of California, Davis, Davis, CA 95616, USA
| | - Yoong Wearn Lim
- Department of Molecular and Cellular Biology and Genome Center, 1 Shields Avenue, University of California, Davis, Davis, CA 95616, USA
| | - Sandra Steyaert
- Department of Mathematical Modeling, Statistics, and Bioinformatics, University of Ghent, Ghent 9000, Belgium
| | - Aparna Rajpurkar
- Department of Molecular and Cellular Biology and Genome Center, 1 Shields Avenue, University of California, Davis, Davis, CA 95616, USA
| | - Paul A Ginno
- Department of Molecular and Cellular Biology and Genome Center, 1 Shields Avenue, University of California, Davis, Davis, CA 95616, USA
| | - Xiaoqin Xu
- Department of Molecular and Cellular Biology and Genome Center, 1 Shields Avenue, University of California, Davis, Davis, CA 95616, USA
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, 1 Shields Avenue, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
233
|
Abstract
Transcription termination is a fundamental process in which RNA polymerase ceases RNA chain extension and dissociates from the chromatin template, thereby defining the end of the transcription unit. Our understanding of the biological role and functional importance of termination by RNA polymerase II and the range of processes in which it is involved has grown significantly in recent years. A large set of nucleic acid-binding proteins and enzymes have been identified as part of the termination machinery. A greater appreciation for the coupling of termination to RNA processing and metabolism has been recognized. In addition to serving as an essential step at the end of the transcription cycle, termination is involved in the regulation of a broad range of cellular processes. More recently, a role for termination in pervasive transcription, non-coding RNA regulation, genetic stability, chromatin remodeling, the immune response, and disease has come to the fore. Interesting mechanistic questions remain, but the last several years have resulted in significant insights into termination and an increasing recognition of its biological importance.
Collapse
Affiliation(s)
- Travis J Loya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
234
|
Abstract
Hybridization of RNA to its template DNA strand during transcription induces formation of R-loops-RNA:DNA hybrids with unpaired non-template DNA strands. Although unresolved R-loops can be detrimental, some R-loops contribute to regulation of chromatin structure. Consequently, R-loops help regulate gene expression and play important roles in numerous cellular processes.
Collapse
Affiliation(s)
- Thomas G Fazzio
- a Department of Molecular, Cell, and Cancer Biology , University of Massachusetts Medical School , Worcester , MA , USA.,b Program in Molecular Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| |
Collapse
|
235
|
Abstract
Terminating transcription is a highly intricate process for mammalian protein-coding genes. First, the chromatin template slows down transcription at the gene end. Then, the transcript is cleaved at the poly(A) signal to release the messenger RNA. The remaining transcript is selectively unraveled and degraded. This induces critical conformational changes in the heart of the enzyme that trigger termination. Termination can also occur at variable positions along the gene and so prevent aberrant transcript formation or intentionally make different transcripts. These may form multiple messenger RNAs with altered regulatory properties or encode different proteins. Finally, termination can be perturbed to achieve particular cellular needs or blocked in cancer or virally infected cells. In such cases, failure to terminate transcription can spell disaster for the cell.
Collapse
Affiliation(s)
- Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
236
|
Much C, Auchynnikava T, Pavlinic D, Buness A, Rappsilber J, Benes V, Allshire R, O’Carroll D. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein. PLoS Genet 2016; 12:e1006095. [PMID: 27254021 PMCID: PMC4890738 DOI: 10.1371/journal.pgen.1006095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse.
Collapse
Affiliation(s)
- Christian Much
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Tania Auchynnikava
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas Buness
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Robin Allshire
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Dónal O’Carroll
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
237
|
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Sevilla 41092, Spain; ,
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Sevilla 41092, Spain; ,
| |
Collapse
|
238
|
Jimeno-González S, Reyes JC. Chromatin structure and pre-mRNA processing work together. Transcription 2016; 7:63-8. [PMID: 27028548 PMCID: PMC4984687 DOI: 10.1080/21541264.2016.1168507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022] Open
Abstract
Chromatin is the natural context for transcription elongation. However, the elongating RNA polymerase II (RNAPII) is forced to pause by the positioned nucleosomes present in gene bodies. Here, we briefly discuss the current results suggesting that those pauses could serve as a mechanism to coordinate transcription elongation with pre-mRNA processing. Further, histone post-translational modifications have been found to regulate the recruitment of factors involved in pre-mRNA processing. This view highlights the important regulatory role of the chromatin context in the whole process of the mature mRNA synthesis.
Collapse
Affiliation(s)
- Silvia Jimeno-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - José C. Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| |
Collapse
|
239
|
Pefanis E, Wang J, Rothschild G, Lim J, Kazadi D, Sun J, Federation A, Chao J, Elliott O, Liu ZP, Economides AN, Bradner JE, Rabadan R, Basu U. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 2016; 161:774-89. [PMID: 25957685 DOI: 10.1016/j.cell.2015.04.034] [Citation(s) in RCA: 332] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/11/2015] [Accepted: 04/20/2015] [Indexed: 01/19/2023]
Abstract
We have ablated the cellular RNA degradation machinery in differentiated B cells and pluripotent embryonic stem cells (ESCs) by conditional mutagenesis of core (Exosc3) and nuclear RNase (Exosc10) components of RNA exosome and identified a vast number of long non-coding RNAs (lncRNAs) and enhancer RNAs (eRNAs) with emergent functionality. Unexpectedly, eRNA-expressing regions accumulate R-loop structures upon RNA exosome ablation, thus demonstrating the role of RNA exosome in resolving deleterious DNA/RNA hybrids arising from active enhancers. We have uncovered a distal divergent eRNA-expressing element (lncRNA-CSR) engaged in long-range DNA interactions and regulating IgH 3' regulatory region super-enhancer function. CRISPR-Cas9-mediated ablation of lncRNA-CSR transcription decreases its chromosomal looping-mediated association with the IgH 3' regulatory region super-enhancer and leads to decreased class switch recombination efficiency. We propose that the RNA exosome protects divergently transcribed lncRNA expressing enhancers by resolving deleterious transcription-coupled secondary DNA structures, while also regulating long-range super-enhancer chromosomal interactions important for cellular function.
Collapse
Affiliation(s)
- Evangelos Pefanis
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Regeneron Pharmaceuticals and Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | - Jiguang Wang
- Department of Biomedical Informatics and Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gerson Rothschild
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Junghyun Lim
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - David Kazadi
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jianbo Sun
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Jaime Chao
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Oliver Elliott
- Department of Biomedical Informatics and Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Aris N Economides
- Regeneron Pharmaceuticals and Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | - James E Bradner
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Raul Rabadan
- Department of Biomedical Informatics and Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
240
|
Dao P, Wojtowicz D, Nelson S, Levens D, Przytycka TM. Ups and Downs of Poised RNA Polymerase II in B-Cells. PLoS Comput Biol 2016; 12:e1004821. [PMID: 27078128 PMCID: PMC4831825 DOI: 10.1371/journal.pcbi.1004821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 02/19/2016] [Indexed: 11/18/2022] Open
Abstract
Recent genome-wide analyses have uncovered a high accumulation of RNA polymerase II (Pol II) at the 5' end of genes. This elevated Pol II presence at promoters, referred to here as Poll II poising, is mainly (but not exclusively) attributed to temporal pausing of transcription during early elongation which, in turn, has been proposed to be a regulatory step for processes that need to be activated "on demand". Yet, the full genome-wide regulatory role of Pol II poising is yet to be delineated. To elucidate the role of Pol II poising in B cell activation, we compared Pol II profiles in resting and activated B cells. We found that while Pol II poised genes generally overlap functionally among different B cell states and correspond to the functional groups previously identified for other cell types, non-poised genes are B cell state specific. Focusing on the changes in transcription activity upon B cell activation, we found that the majority of such changes were from poised to non-poised state. The genes showing this type of transition were functionally enriched in translation, RNA processing and mRNA metabolic process. Interestingly, we also observed a transition from non-poised to poised state. Within this set of genes we identified several Immediate Early Genes (IEG), which were highly expressed in resting B cell and shifted from non-poised to poised state after B cell activation. Thus Pol II poising does not only mark genes for rapid expression in the future, but it is also associated with genes that are silenced after a burst of their expression. Finally, we performed comparative analysis of the presence of G4 motifs in the context of poised versus non-poised but active genes. Interestingly we observed a differential enrichment of these motifs upstream versus downstream of TSS depending on poising status. The enrichment of G4 sequence motifs upstream of TSS of non-poised active genes suggests a potential role of quadruplexes in expression regulation.
Collapse
Affiliation(s)
- Phuong Dao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Damian Wojtowicz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steevenson Nelson
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
241
|
Rizzu P, Blauwendraat C, Heetveld S, Lynes EM, Castillo-Lizardo M, Dhingra A, Pyz E, Hobert M, Synofzik M, Simón-Sánchez J, Francescatto M, Heutink P. C9orf72 is differentially expressed in the central nervous system and myeloid cells and consistently reduced in C9orf72, MAPT and GRN mutation carriers. Acta Neuropathol Commun 2016; 4:37. [PMID: 27079381 PMCID: PMC4832459 DOI: 10.1186/s40478-016-0306-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 12/12/2022] Open
Abstract
A non-coding hexanucleotide repeat expansion (HRE) in C9orf72 is a common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) acting through a loss of function mechanism due to haploinsufficiency of C9orf72 or a gain of function mediated by aggregates of bidirectionally transcribed HRE-RNAs translated into di-peptide repeat (DPR) proteins. To fully understand regulation of C9orf72 expression we surveyed the C9orf72 locus using Cap Analysis of Gene Expression sequence data (CAGEseq). We observed C9orf72 was generally lowly expressed with the exception of a subset of myeloid cells, particularly CD14+ monocytes that showed up to seven fold higher expression as compared to central nervous system (CNS) and other tissues. The expression profile at the C9orf72 locus showed a complex architecture with differential expression of the transcription start sites (TSSs) for the annotated C9orf72 transcripts between myeloid and CNS tissues suggesting cell and/or tissue specific functions. We further detected novel TSSs in both the sense and antisense strand at the C9orf72 locus and confirmed their existence in brain tissues and CD14+ monocytes. Interestingly, our experiments showed a consistent decrease of C9orf72 coding transcripts not only in brain tissue and monocytes from C9orf72-HRE patients, but also in brains from MAPT and GRN mutation carriers together with an increase in antisense transcripts suggesting these could play a role in regulation of C9orf72. We found that the non-HRE related expression changes cannot be explained by promoter methylation but by the presence of the C9orf72-HRE risk haplotype and unknown functional interactions between C9orf72, MAPT and GRN.
Collapse
|
242
|
Bunch H. Role of genome guardian proteins in transcriptional elongation. FEBS Lett 2016; 590:1064-75. [PMID: 27010360 DOI: 10.1002/1873-3468.12152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022]
Abstract
Maintaining genomic integrity is vital for cell survival and homeostasis. Mutations in critical genes in germ-line and somatic cells are often implicated with the onset or progression of diseases. DNA repair enzymes thus take important roles as guardians of the genome in the cell. Besides the known function to repair DNA damage, recent findings indicate that DNA repair enzymes regulate the transcription of protein-coding and noncoding RNA genes. In particular, a novel role of DNA damage response signaling has been identified in the regulation of transcriptional elongation. Topoisomerases-mediated DNA breaks appear important for the regulation. In this review, recent findings of these DNA break- and repair-associated enzymes in transcription and potential roles of transcriptional activation-coupled DNA breaks are discussed.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
243
|
Zhang T, Termanis A, Özkan B, Bao XX, Culley J, de Lima Alves F, Rappsilber J, Ramsahoye B, Stancheva I. G9a/GLP Complex Maintains Imprinted DNA Methylation in Embryonic Stem Cells. Cell Rep 2016; 15:77-85. [PMID: 27052169 PMCID: PMC4826439 DOI: 10.1016/j.celrep.2016.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/17/2016] [Accepted: 02/26/2016] [Indexed: 12/02/2022] Open
Abstract
DNA methylation at imprinting control regions (ICRs) is established in gametes in a sex-specific manner and has to be stably maintained during development and in somatic cells to ensure the correct monoallelic expression of imprinted genes. In addition to DNA methylation, the ICRs are marked by allele-specific histone modifications. Whether these marks are essential for maintenance of genomic imprinting is largely unclear. Here, we show that the histone H3 lysine 9 methylases G9a and GLP are required for stable maintenance of imprinted DNA methylation in embryonic stem cells; however, their catalytic activity and the G9a/GLP-dependent H3K9me2 mark are completely dispensable for imprinting maintenance despite the genome-wide loss of non-imprinted DNA methylation in H3K9me2-depleted cells. We provide additional evidence that the G9a/GLP complex protects imprinted DNA methylation by recruitment of de novo DNA methyltransferases, which antagonize TET dioxygenass-dependent erosion of DNA methylation at ICRs. ESCs lacking G9a and GLP display loss of DNA methylation from ICRs The enzymatic activity of G9a/GLP is dispensable for imprinted DNA methylation G9a/GLP stabilize imprinting by recruitment of de novo DNA methyltransferases to ICRs Recruitment of DNMTs to ICRs antagonizes TET-dependent loss of DNA methylation
Collapse
Affiliation(s)
- Tuo Zhang
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Ausma Termanis
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Burak Özkan
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Xun X Bao
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Jayne Culley
- Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK; Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany
| | - Bernard Ramsahoye
- Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Irina Stancheva
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
244
|
Niblock M, Smith BN, Lee YB, Sardone V, Topp S, Troakes C, Al-Sarraj S, Leblond CS, Dion PA, Rouleau GA, Shaw CE, Gallo JM. Retention of hexanucleotide repeat-containing intron in C9orf72 mRNA: implications for the pathogenesis of ALS/FTD. Acta Neuropathol Commun 2016; 4:18. [PMID: 26916632 PMCID: PMC4766718 DOI: 10.1186/s40478-016-0289-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The most common forms of amyotrophic lateral sclerosis and frontotemporal dementia are caused by a large GGGGCC repeat expansion in the first intron of the C9orf72 gene. The repeat-containing intron should be degraded after being spliced out, however GGGGCC repeat-containing RNA species either accumulate in nuclear foci or are exported to the cytoplasm where they are translated into potentially toxic dipeptide repeat proteins by repeat-associated non-AUG-initiated (RAN) translation. RESULTS In order to determine the mechanisms of repeat-containing intron misprocessing, we have analyzed C9orf72 transcripts in lymphoblasts from C9orf72 expansion carriers (n = 15) and control individuals (n = 15). We have identified polyadenylated C9orf72 RNA species retaining the repeat-containing intron and in which downstream exons are spliced correctly resulting in a C9orf72 mRNA with an enlarged 5'-UTR containing the GGGGCC repeats. Intron-retaining transcripts are produced from both wild-type and mutant alleles. Intron-retaining C9orf72 transcripts were also detected in brain with a 2.7 fold increase measured in the frontal cortex from heterozygous expansion carriers (n = 11) compared to controls (n = 10). The level of intron-retaining transcripts was increased 5.9 fold in a case homozygous for the expansion. We also show that a large proportion of intron 1-retaining C9orf72 transcripts accumulate in the nucleus. CONCLUSIONS Retention of the repeat-containing intron in mature C9orf72 mRNA can potentially explain nuclear foci formation as well as nuclear export of GGGGCC repeat RNA and suggests that the misprocessing of C9orf72 transcripts initiates the pathogenic process caused by C9orf72 hexanucleotide repeat expansions as well as provides the basis for novel therapeutic strategies.
Collapse
|
245
|
Li L, Matsui M, Corey DR. Activating frataxin expression by repeat-targeted nucleic acids. Nat Commun 2016; 7:10606. [PMID: 26842135 PMCID: PMC4742999 DOI: 10.1038/ncomms10606] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Friedreich's ataxia is an incurable genetic disorder caused by a mutant expansion of the trinucleotide GAA within an intronic FXN RNA. This expansion leads to reduced expression of frataxin (FXN) protein and evidence suggests that transcriptional repression is caused by an R-loop that forms between the expanded repeat RNA and complementary genomic DNA. Synthetic agents that increase levels of FXN protein might alleviate the disease. We demonstrate that introducing anti-GAA duplex RNAs or single-stranded locked nucleic acids into patient-derived cells increases FXN protein expression to levels similar to analogous wild-type cells. Our data are significant because synthetic nucleic acids that target GAA repeats can be lead compounds for restoring curative FXN levels. More broadly, our results demonstrate that interfering with R-loop formation can trigger gene activation and reveal a new strategy for upregulating gene expression.
Collapse
Affiliation(s)
- Liande Li
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, Texas 75390-9041, USA
| | - Masayuki Matsui
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, Texas 75390-9041, USA
| | - David R. Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, 6001 Forest Park Road, Dallas, Texas 75390-9041, USA
| |
Collapse
|
246
|
The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 2016; 17:227-39. [PMID: 26726035 DOI: 10.1038/nrm.2015.15] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RNA exosome complex is the most versatile RNA-degradation machine in eukaryotes. The exosome has a central role in several aspects of RNA biogenesis, including RNA maturation and surveillance. Moreover, it is emerging as an important player in regulating the expression levels of specific mRNAs in response to environmental cues and during cell differentiation and development. Although the mechanisms by which RNA is targeted to (or escapes from) the exosome are still not fully understood, general principles have begun to emerge, which we discuss in this Review. In addition, we introduce and discuss novel, previously unappreciated functions of the nuclear exosome, including in transcription regulation and in the maintenance of genome stability.
Collapse
|
247
|
Mellor J, Woloszczuk R, Howe FS. The Interleaved Genome. Trends Genet 2016; 32:57-71. [DOI: 10.1016/j.tig.2015.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/29/2015] [Accepted: 10/23/2015] [Indexed: 12/25/2022]
|
248
|
Wang J, Haeusler AR, Simko EAJ. Emerging role of RNA•DNA hybrids in C9orf72-linked neurodegeneration. Cell Cycle 2015; 14:526-32. [PMID: 25590632 DOI: 10.1080/15384101.2014.995490] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA plays an active role in structural polymorphism of the genome through the formation of stable RNA•DNA hybrids (R-loops). R-loops can modulate normal physiological processes and are also associated with pathological conditions, such as those related to nucleotide repeat expansions. A guanine-rich hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) has been linked to a spectrum of neurological conditions including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we discuss the possible roles, both locally and genome-wide, of R-loops that may arise from the C9orf72 hexanucleotide repeat. R-loops have the potential to influence the pathological processes identified in many repeat expansion diseases, such as repeat instability, transcriptional dysregulation, epigenetic modification, and antisense-mediated gene regulation. We propose that, given the wide-ranging consequences of R-loops in the cell, these structures could underlie multiple pathological processes in C9orf72-linked neurodegeneration.
Collapse
Affiliation(s)
- Jiou Wang
- a Department of Biochemistry and Molecular Biology; Bloomberg School of Public Health ; Johns Hopkins University ; Baltimore , MD USA
| | | | | |
Collapse
|
249
|
Taylor DH, Chu ETJ, Spektor R, Soloway PD. Long non-coding RNA regulation of reproduction and development. Mol Reprod Dev 2015; 82:932-56. [PMID: 26517592 PMCID: PMC4762656 DOI: 10.1002/mrd.22581] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Abstract
Noncoding RNAs (ncRNAs) have long been known to play vital roles in eukaryotic gene regulation. Studies conducted over a decade ago revealed that maturation of spliced, polyadenylated coding mRNA occurs by reactions involving small nuclear RNAs and small nucleolar RNAs; mRNA translation depends on activities mediated by transfer RNAs and ribosomal RNAs, subject to negative regulation by micro RNAs; transcriptional competence of sex chromosomes and some imprinted genes is regulated in cis by ncRNAs that vary by species; and both small-interfering RNAs and piwi-interacting RNAs bound to Argonaute-family proteins regulate post-translational modifications on chromatin and local gene expression states. More recently, gene-regulating noncoding RNAs have been identified, such as long intergenic and long noncoding RNAs (collectively referred to as lncRNAs)--a class totaling more than 100,000 transcripts in humans, which include some of the previously mentioned RNAs that regulate dosage compensation and imprinted gene expression. Here, we provide an overview of lncRNA activities, and then review the role of lncRNAs in processes vital to reproduction, such as germ cell specification, sex determination and gonadogenesis, sex hormone responses, meiosis, gametogenesis, placentation, non-genetic inheritance, and pathologies affecting reproductive tissues. Results from many species are presented to illustrate the evolutionarily conserved processes lncRNAs are involved in.
Collapse
Affiliation(s)
- David H. Taylor
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
| | - Erin Tsi-Jia Chu
- Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York
| | - Roman Spektor
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
| | - Paul D. Soloway
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
- Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
250
|
García-Rubio ML, Pérez-Calero C, Barroso SI, Tumini E, Herrera-Moyano E, Rosado IV, Aguilera A. The Fanconi Anemia Pathway Protects Genome Integrity from R-loops. PLoS Genet 2015; 11:e1005674. [PMID: 26584049 PMCID: PMC4652862 DOI: 10.1371/journal.pgen.1005674] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/26/2015] [Indexed: 11/19/2022] Open
Abstract
Co-transcriptional RNA-DNA hybrids (R loops) cause genome instability. To prevent harmful R loop accumulation, cells have evolved specific eukaryotic factors, one being the BRCA2 double-strand break repair protein. As BRCA2 also protects stalled replication forks and is the FANCD1 member of the Fanconi Anemia (FA) pathway, we investigated the FA role in R loop-dependent genome instability. Using human and murine cells defective in FANCD2 or FANCA and primary bone marrow cells from FANCD2 deficient mice, we show that the FA pathway removes R loops, and that many DNA breaks accumulated in FA cells are R loop-dependent. Importantly, FANCD2 foci in untreated and MMC-treated cells are largely R loop dependent, suggesting that the FA functions at R loop-containing sites. We conclude that co-transcriptional R loops and R loop-mediated DNA damage greatly contribute to genome instability and that one major function of the FA pathway is to protect cells from R loops. R loops are co-transcriptional RNA-DNA hybrids that can have a physiological role in transcription and replication, but also may be a major threat to genome stability. To avoid the deleterious effects of R loops, specific factors prevent their formation or facilitate their removal. The double-strand break repair factor BRCA2 is among those that prevent R-loop accumulation. As BRCA2 also protects stalled replication forks and is the FANCD1 member of the Fanconi Anemia (FA) pathway, we studied the role of this pathway in preventing R loop accumulation and R loop-dependent genome instability. Using human and murine cells defective in FANCD2 or FANCA and primary bone marrow cells derived from FANCD2 deficient mice, we show that the FA pathway removes R loops and that many DNA breaks accumulated in FA cells are R loop-dependent. Importantly, FANCD2 foci accumulation is largely R loop-dependent, suggesting that the FA functions at R loop-containing sites. The FA pathway is primarily known as a DNA interstrand crosslinks (ICLs) repair pathway. Our findings reveal a novel function of the FA pathway in preventing R loop-mediated DNA damage, providing new clues to understand the relevance of R-loops as a natural source of genome instability and the way they are processed.
Collapse
Affiliation(s)
- María L. García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Carmen Pérez-Calero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sonia I. Barroso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Emanuela Tumini
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Emilia Herrera-Moyano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
| | - Iván V. Rosado
- Instituto de Biomedicina de Sevilla-Hospital Virgen del Rocío, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Seville, Spain
- * E-mail:
| |
Collapse
|