201
|
Herold S, Kalb J, Büchel G, Ade CP, Baluapuri A, Xu J, Koster J, Solvie D, Carstensen A, Klotz C, Rodewald S, Schülein-Völk C, Dobbelstein M, Wolf E, Molenaar J, Versteeg R, Walz S, Eilers M. Recruitment of BRCA1 limits MYCN-driven accumulation of stalled RNA polymerase. Nature 2019; 567:545-549. [PMID: 30894746 DOI: 10.1038/s41586-019-1030-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 02/18/2019] [Indexed: 01/17/2023]
Abstract
MYC is an oncogenic transcription factor that binds globally to active promoters and promotes transcriptional elongation by RNA polymerase II (RNAPII)1,2. Deregulated expression of the paralogous protein MYCN drives the development of neuronal and neuroendocrine tumours and is often associated with a particularly poor prognosis3. Here we show that, similar to MYC, activation of MYCN in human neuroblastoma cells induces escape of RNAPII from promoters. If the release of RNAPII from transcriptional pause sites (pause release) fails, MYCN recruits BRCA1 to promoter-proximal regions. Recruitment of BRCA1 prevents MYCN-dependent accumulation of stalled RNAPII and enhances transcriptional activation by MYCN. Mechanistically, BRCA1 stabilizes mRNA decapping complexes and enables MYCN to suppress R-loop formation in promoter-proximal regions. Recruitment of BRCA1 requires the ubiquitin-specific protease USP11, which binds specifically to MYCN when MYCN is dephosphorylated at Thr58. USP11, BRCA1 and MYCN stabilize each other on chromatin, preventing proteasomal turnover of MYCN. Because BRCA1 is highly expressed in neuronal progenitor cells during early development4 and MYC is less efficient than MYCN in recruiting BRCA1, our findings indicate that a cell-lineage-specific stress response enables MYCN-driven tumours to cope with deregulated RNAPII function.
Collapse
Affiliation(s)
- Steffi Herold
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Jacqueline Kalb
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Carsten P Ade
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jiajia Xu
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel Solvie
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Anne Carstensen
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christina Klotz
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sabrina Rodewald
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Christina Schülein-Völk
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jan Molenaar
- Department of Translational Research, Prinses Máxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne Walz
- Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
202
|
Abstract
MYC is an oncogenic transcription factor that binds globally to active promoters and promotes transcriptional elongation by RNA polymerase II (RNAPII)1,2. Deregulated expression of the paralogous protein MYCN drives the development of neuronal and neuroendocrine tumours and is often associated with a particularly poor prognosis3. Here we show that, similar to MYC, activation of MYCN in human neuroblastoma cells induces escape of RNAPII from promoters. If the release of RNAPII from transcriptional pause sites (pause release) fails, MYCN recruits BRCA1 to promoter-proximal regions. Recruitment of BRCA1 prevents MYCN-dependent accumulation of stalled RNAPII and enhances transcriptional activation by MYCN. Mechanistically, BRCA1 stabilizes mRNA decapping complexes and enables MYCN to suppress R-loop formation in promoter-proximal regions. Recruitment of BRCA1 requires the ubiquitin-specific protease USP11, which binds specifically to MYCN when MYCN is dephosphorylated at Thr58. USP11, BRCA1 and MYCN stabilize each other on chromatin, preventing proteasomal turnover of MYCN. Because BRCA1 is highly expressed in neuronal progenitor cells during early development4 and MYC is less efficient than MYCN in recruiting BRCA1, our findings indicate that a cell-lineage-specific stress response enables MYCN-driven tumours to cope with deregulated RNAPII function.
Collapse
|
203
|
The deubiquitylating enzyme USP15 regulates homologous recombination repair and cancer cell response to PARP inhibitors. Nat Commun 2019; 10:1224. [PMID: 30874560 PMCID: PMC6420636 DOI: 10.1038/s41467-019-09232-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Poly-(ADP-ribose) polymerase inhibitors (PARPi) selectively kill breast and ovarian cancers with defects in homologous recombination (HR) caused by BRCA1/2 mutations. There is also clinical evidence for the utility of PARPi in breast and ovarian cancers without BRCA mutations, but the underlying mechanism is not clear. Here, we report that the deubiquitylating enzyme USP15 affects cancer cell response to PARPi by regulating HR. Mechanistically, USP15 is recruited to DNA double-strand breaks (DSBs) by MDC1, which requires the FHA domain of MDC1 and phosphorylated Ser678 of USP15. Subsequently, USP15 deubiquitinates BARD1 BRCT domain, and promotes BARD1-HP1γ interaction, resulting in BRCA1/BARD1 retention at DSBs. USP15 knockout mice exhibit genomic instability in vivo. Furthermore, cancer-associated USP15 mutations, with decreased USP15-BARD1 interaction, increases PARP inhibitor sensitivity in cancer cells. Thus, our results identify a novel regulator of HR, which is a potential biomarker for therapeutic treatment using PARP inhibitors in cancers. Deubiquitinases have been shown to be involved in double strand break repair pathways. Here the authors reveal that USP15 deybiquitinase plays a role in homologues recombination repair by targeting BARD1 and affecting cells response to PARP inhibitors.
Collapse
|
204
|
Nakamura K, Saredi G, Becker JR, Foster BM, Nguyen NV, Beyer TE, Cesa LC, Faull PA, Lukauskas S, Frimurer T, Chapman JR, Bartke T, Groth A. H4K20me0 recognition by BRCA1-BARD1 directs homologous recombination to sister chromatids. Nat Cell Biol 2019; 21:311-318. [PMID: 30804502 PMCID: PMC6420097 DOI: 10.1038/s41556-019-0282-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
Genotoxic DNA double-strand breaks (DSBs) can be repaired by error-free homologous recombination (HR) or mutagenic non-homologous end-joining1. HR supresses tumorigenesis1, but is restricted to the S and G2 phases of the cell cycle when a sister chromatid is present2. Breast cancer type 1 susceptibility protein (BRCA1) promotes HR by antagonizing the anti-resection factor TP53-binding protein 1(53BP1) (refs. 2-5), but it remains unknown how BRCA1 function is limited to the S and G2 phases. We show that BRCA1 recruitment requires recognition of histone H4 unmethylated at lysine 20 (H4K20me0), linking DSB repair pathway choice directly to sister chromatid availability. We identify the ankyrin repeat domain of BRCA1-associated RING domain protein 1 (BARD1)-the obligate BRCA1 binding partner3-as a reader of H4K20me0 present on new histones in post-replicative chromatin6. BARD1 ankyrin repeat domain mutations disabling H4K20me0 recognition abrogate accumulation of BRCA1 at DSBs, causing aberrant build-up of 53BP1, and allowing anti-resection activity to prevail in S and G2. Consequently, BARD1 recognition of H4K20me0 is required for HR and resistance to poly (ADP-ribose) polymerase inhibitors. Collectively, this reveals that BRCA1-BARD1 monitors the replicative state of the genome to oppose 53BP1 function, routing only DSBs within sister chromatids to HR.
Collapse
Affiliation(s)
- Kyosuke Nakamura
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giulia Saredi
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dundee, UK
| | | | - Benjamin M Foster
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Nhuong V Nguyen
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Tracey E Beyer
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura C Cesa
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter A Faull
- MRC London Institute of Medical Sciences, London, UK
- Francis Crick Institute, London, UK
| | - Saulius Lukauskas
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- MRC London Institute of Medical Sciences, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Thomas Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Anja Groth
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
205
|
Cloer EW, Goldfarb D, Schrank TP, Weissman BE, Major MB. NRF2 Activation in Cancer: From DNA to Protein. Cancer Res 2019; 79:889-898. [PMID: 30760522 PMCID: PMC6397706 DOI: 10.1158/0008-5472.can-18-2723] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/16/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022]
Abstract
The Cancer Genome Atlas catalogued alterations in the Kelch-like ECH-associated protein 1 and nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway in 6.3% of patient samples across 226 studies, with significant enrichment in lung and upper airway cancers. These alterations constitutively activate NRF2-dependent gene transcription to promote many of the cancer hallmarks, including cellular resistance to oxidative stress, xenobiotic efflux, proliferation, and metabolic reprogramming. Almost universally, NRF2 activity strongly associates with poor patient prognosis and chemo- and radioresistance. Yet to date, FDA-approved drugs targeting NRF2 activity in cancer have not been realized. Here, we review various mechanisms that contribute to NRF2 activation in cancer, organized around the central dogma of molecular biology (i) at the DNA level with genomic and epigenetic alterations, (ii) at the RNA level including differential mRNA splicing and stability, and (iii) at the protein level comprising altered posttranslational modifications and protein-protein interactions. Ultimately, defining and understanding the mechanisms responsible for NRF2 activation in cancer may lead to novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Erica W Cloer
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Travis P Schrank
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Bernard E Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Michael B Major
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
206
|
Loureiro A, da Silva GJ. CRISPR-Cas: Converting A Bacterial Defence Mechanism into A State-of-the-Art Genetic Manipulation Tool. Antibiotics (Basel) 2019; 8:E18. [PMID: 30823430 PMCID: PMC6466564 DOI: 10.3390/antibiotics8010018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages are pervasive viruses that infect bacteria, relying on their genetic machinery to replicate. In order to protect themselves from this kind of invader, bacteria developed an ingenious adaptive defence system, clustered regularly interspaced short palindromic repeats (CRISPR). Researchers soon realised that a specific type of CRISPR system, CRISPR-Cas9, could be modified into a simple and efficient genetic engineering technology, with several improvements over currently used systems. This discovery set in motion a revolution in genetics, with new and improved CRISPR systems being used in plenty of in vitro and in vivo experiments in recent years. This review illustrates the mechanisms behind CRISPR-Cas systems as a means of bacterial immunity against phage invasion and how these systems were engineered to originate new genetic manipulation tools. Newfound CRISPR-Cas technologies and the up-and-coming applications of these systems on healthcare and other fields of science are also discussed.
Collapse
Affiliation(s)
- Alexandre Loureiro
- Laboratory of Microbiology, Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Gabriela Jorge da Silva
- Laboratory of Microbiology, Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- Center for Neurosciences Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
207
|
Clague MJ, Urbé S, Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 2019; 20:338-352. [DOI: 10.1038/s41580-019-0099-1] [Citation(s) in RCA: 315] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
208
|
Piazza A, Heyer WD. Homologous Recombination and the Formation of Complex Genomic Rearrangements. Trends Cell Biol 2019; 29:135-149. [PMID: 30497856 PMCID: PMC6402879 DOI: 10.1016/j.tcb.2018.10.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
The maintenance of genome integrity involves multiple independent DNA damage avoidance and repair mechanisms. However, the origin and pathways of the focal chromosomal reshuffling phenomena collectively referred to as chromothripsis remain mechanistically obscure. We discuss here the role, mechanisms, and regulation of homologous recombination (HR) in the formation of simple and complex chromosomal rearrangements. We emphasize features of the recently characterized multi-invasion (MI)-induced rearrangement (MIR) pathway which uniquely amplifies the initial DNA damage. HR intermediates and cellular contexts that endanger genomic stability are discussed as well as the emerging roles of various classes of nucleases in the formation of genome rearrangements. Long-read sequencing and improved mapping of repeats should enable better appreciation of the significance of recombination in generating genomic rearrangements.
Collapse
Affiliation(s)
- Aurèle Piazza
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; Spatial Regulation of Genomes, Department of Genomes and Genetics, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 3525, Institut Pasteur, 75015 Paris, France
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
209
|
Sanidas I, Morris R, Fella KA, Rumde PH, Boukhali M, Tai EC, Ting DT, Lawrence MS, Haas W, Dyson NJ. A Code of Mono-phosphorylation Modulates the Function of RB. Mol Cell 2019; 73:985-1000.e6. [PMID: 30711375 DOI: 10.1016/j.molcel.2019.01.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/26/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
Hyper-phosphorylation of RB controls its interaction with E2F and inhibits its tumor suppressor properties. However, during G1 active RB can be mono-phosphorylated on any one of 14 CDK phosphorylation sites. Here, we used quantitative proteomics to profile protein complexes formed by each mono-phosphorylated RB isoform (mP-RB) and identified the associated transcriptional outputs. The results show that the 14 sites of mono-phosphorylation co-ordinate RB's interactions and confer functional specificity. All 14 mP-RBs interact with E2F/DP proteins, but they provide different shades of E2F regulation. RB mono-phosphorylation at S811, for example, alters RB transcriptional activity by promoting its association with NuRD complexes. The greatest functional differences between mP-RBs are evident beyond the cell cycle machinery. RB mono-phosphorylation at S811 or T826 stimulates the expression of oxidative phosphorylation genes, increasing cellular oxygen consumption. These results indicate that RB activation signals are integrated in a phosphorylation code that determines the diversity of RB activity.
Collapse
Affiliation(s)
- Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Katerina A Fella
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Purva H Rumde
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Eric C Tai
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
210
|
Spiliotopoulos A, Blokpoel Ferreras L, Densham RM, Caulton SG, Maddison BC, Morris JR, Dixon JE, Gough KC, Dreveny I. Discovery of peptide ligands targeting a specific ubiquitin-like domain-binding site in the deubiquitinase USP11. J Biol Chem 2019; 294:424-436. [PMID: 30373771 PMCID: PMC6333900 DOI: 10.1074/jbc.ra118.004469] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/11/2018] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin-specific proteases (USPs) reverse ubiquitination and regulate virtually all cellular processes. Defined noncatalytic domains in USP4 and USP15 are known to interact with E3 ligases and substrate recruitment factors. No such interactions have been reported for these domains in the paralog USP11, a key regulator of DNA double-strand break repair by homologous recombination. We hypothesized that USP11 domains adjacent to its protease domain harbor unique peptide-binding sites. Here, using a next-generation phage display (NGPD) strategy, combining phage display library screening with next-generation sequencing, we discovered unique USP11-interacting peptide motifs. Isothermal titration calorimetry disclosed that the highest affinity peptides (KD of ∼10 μm) exhibit exclusive selectivity for USP11 over USP4 and USP15 in vitro Furthermore, a crystal structure of a USP11-peptide complex revealed a previously unknown binding site in USP11's noncatalytic ubiquitin-like (UBL) region. This site interacted with a helical motif and is absent in USP4 and USP15. Reporter assays using USP11-WT versus a binding pocket-deficient double mutant disclosed that this binding site modulates USP11's function in homologous recombination-mediated DNA repair. The highest affinity USP11 peptide binder fused to a cellular delivery sequence induced significant nuclear localization and cell cycle arrest in S phase, affecting the viability of different mammalian cell lines. The USP11 peptide ligands and the paralog-specific functional site in USP11 identified here provide a framework for the development of new biochemical tools and therapeutic agents. We propose that an NGPD-based strategy for identifying interacting peptides may be applied also to other cellular targets.
Collapse
Affiliation(s)
- Anastasios Spiliotopoulos
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
- the School of Veterinary Medicine and Science, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD
| | - Lia Blokpoel Ferreras
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
| | - Ruth M Densham
- the Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham B15 2TT, and
| | - Simon G Caulton
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
| | - Ben C Maddison
- ADAS, School of Veterinary Medicine and Science, Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Joanna R Morris
- the Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental Schools, University of Birmingham, Birmingham B15 2TT, and
| | - James E Dixon
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD
| | - Kevin C Gough
- the School of Veterinary Medicine and Science, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD,
| | - Ingrid Dreveny
- From the Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD,
| |
Collapse
|
211
|
Maupin-Furlow JA. Putting phage to work in deubiquitinase ligand discovery. J Biol Chem 2019; 294:437-438. [PMID: 30635442 DOI: 10.1074/jbc.h118.006803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibiting deubiquitinase (DUB) function is a promising strategy for the treatment of cancers and other human diseases. Of the hundreds of human DUBs, USP11 has emerged as an ideal therapeutic target, as it regulates DNA double-strand break repair by homologous recombination (HR) and other functions central to eukaryotic cell survival. A new study by Spiliotopoulos et al. cleverly uses next-generation phage display (NGPD) to identify peptide ligands that bind USP11 in a unique pocket that impacts HR. The study provides an important step toward novel DUB inhibitors that may reduce the resistance of some cancers to current treatment options.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- From the Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, and Genetics Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
212
|
Ducy M, Sesma-Sanz L, Guitton-Sert L, Lashgari A, Gao Y, Brahiti N, Rodrigue A, Margaillan G, Caron MC, Côté J, Simard J, Masson JY. The Tumor Suppressor PALB2: Inside Out. Trends Biochem Sci 2019; 44:226-240. [PMID: 30638972 DOI: 10.1016/j.tibs.2018.10.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 12/26/2022]
Abstract
Partner and Localizer of BRCA2 (PALB2) has emerged as an important and versatile player in genome integrity maintenance. Biallelic mutations in PALB2 cause Fanconi anemia (FA) subtype FA-N, whereas monoallelic mutations predispose to breast, and pancreatic familial cancers. Herein, we review recent developments in our understanding of the mechanisms of regulation of the tumor suppressor PALB2 and its functional domains. Regulation of PALB2 functions in DNA damage response and repair occurs on multiple levels, including homodimerization, phosphorylation, and ubiquitylation. With a molecular emphasis, we present PALB2-associated cancer mutations and their detailed analysis by functional assays.
Collapse
Affiliation(s)
- Mandy Ducy
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Laura Sesma-Sanz
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Laure Guitton-Sert
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Anahita Lashgari
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Yuandi Gao
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Nadine Brahiti
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Guillaume Margaillan
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada
| | - Marie-Christine Caron
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Jacques Côté
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Jacques Simard
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada.
| |
Collapse
|
213
|
Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W. Methodologies for Improving HDR Efficiency. Front Genet 2019; 9:691. [PMID: 30687381 PMCID: PMC6338032 DOI: 10.3389/fgene.2018.00691] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is a precise genome manipulating technology that can be programmed to induce double-strand break (DSB) in the genome wherever needed. After nuclease cleavage, DSBs can be repaired by non-homologous end joining (NHEJ) or homology-directed repair (HDR) pathway. For producing targeted gene knock-in or other specific mutations, DSBs should be repaired by the HDR pathway. While NHEJ can cause various length insertions/deletion mutations (indels), which can lead the targeted gene to lose its function by shifting the open reading frame (ORF). Furthermore, HDR has low efficiency compared with the NHEJ pathway. In order to modify the gene precisely, numerous methods arose by inhibiting NHEJ or enhancing HDR, such as chemical modulation, synchronized expression, and overlapping homology arm. Here we focus on the efficiency and other considerations of these methodologies.
Collapse
Affiliation(s)
- Mingjie Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Saad Rehman
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xidian Tang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Kui Gu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Qinlei Fan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
214
|
Nishi R, Wijnhoven PWG, Kimura Y, Matsui M, Konietzny R, Wu Q, Nakamura K, Blundell TL, Kessler BM. The deubiquitylating enzyme UCHL3 regulates Ku80 retention at sites of DNA damage. Sci Rep 2018; 8:17891. [PMID: 30559450 PMCID: PMC6297141 DOI: 10.1038/s41598-018-36235-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/16/2018] [Indexed: 02/02/2023] Open
Abstract
Non-homologous end-joining (NHEJ), which can promote genomic instability when dysfunctional, is a major DNA double-strand break (DSB) repair pathway. Although ubiquitylation of the core NHEJ factor, Ku (Ku70-Ku80), which senses broken DNA ends, is important for its removal from sites of damage upon completion of NHEJ, the mechanism regulating Ku ubiquitylation remains elusive. We provide evidence showing that the ubiquitin carboxyl-terminal hydrolase L3 (UCHL3) interacts with and directly deubiquitylates one of the Ku heterodimer subunits, Ku80. Additionally, depleting UCHL3 resulted in reduced Ku80 foci formation, Ku80 binding to chromatin after DSB induction, moderately sensitized cells to ionizing radiation and decreased NHEJ efficiencies. Mechanistically, we show that DNA damage induces UCHL3 phosphorylation, which is dependent on ATM, downstream NHEJ factors and UCHL3 catalytic activity. Furthermore, this phosphorylation destabilizes UCHL3, despite having no effect on its catalytic activity. Collectively, these data suggest that UCHL3 facilitates cellular viability after DSB induction by antagonizing Ku80 ubiquitylation to enhance Ku80 retention at sites of damage.
Collapse
Affiliation(s)
- Ryotaro Nishi
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan.
| | - Paul W G Wijnhoven
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom
- Bioscience Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Yusuke Kimura
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Misaki Matsui
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Rebecca Konietzny
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, United Kingdom
| | - Qian Wu
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Keisuke Nakamura
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
215
|
Devkota S. The road less traveled: strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis. BMB Rep 2018. [PMID: 30103848 PMCID: PMC6177507 DOI: 10.5483/bmbrep.2018.51.9.187] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Non-homologous end joining (NHEJ), and to a lesser extent, the error-free pathway known as homology-directed repair (HDR) are cellular mechanisms for recovery from double-strand DNA breaks (DSB) induced by RNA-guided programmable nuclease CRISPR/Cas. Since NHEJ is equivalent to using a duck tape to stick two pieces of metals together, the outcome of this repair mechanism is prone to error. Any out-of-frame mutations or premature stop codons resulting from NHEJ repair mechanism are extremely handy for loss-of-function studies. Substitution of a mutation on the genome with the correct exogenous repair DNA requires coordination via an error-free HDR, for targeted transgenesis. However, several practical limitations exist in harnessing the potential of HDR to replace a faulty mutation for therapeutic purposes in all cell types and more so in somatic cells. In germ cells after the DSB, copying occurs from the homologous chromosome, which increases the chances of incorporation of exogenous DNA with some degree of homology into the genome compared with somatic cells where copying from the identical sister chromatid is always preferred. This review summarizes several strategies that have been implemented to increase the frequency of HDR with a focus on somatic cells. It also highlights the limitations of this technology in gene therapy and suggests specific solutions to circumvent those barriers.
Collapse
Affiliation(s)
- Sushil Devkota
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
216
|
Yamamoto Y, Gerbi SA. Making ends meet: targeted integration of DNA fragments by genome editing. Chromosoma 2018; 127:405-420. [PMID: 30003320 PMCID: PMC6330168 DOI: 10.1007/s00412-018-0677-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/27/2022]
Abstract
Targeted insertion of large pieces of DNA is an important goal of genetic engineering. However, this goal has been elusive since classical methods for homology-directed repair are inefficient and often not feasible in many systems. Recent advances are described here that enable site-specific genomic insertion of relatively large DNA with much improved efficiency. Using the preferred repair pathway in the cell of nonhomologous end-joining, DNA of up to several kb could be introduced with remarkably good precision by the methods of HITI and ObLiGaRe with an efficiency up to 30-40%. Recent advances utilizing homology-directed repair (methods of PITCh; short homology arms including ssODN; 2H2OP) have significantly increased the efficiency for DNA insertion, often to 40-50% or even more depending on the method and length of DNA. The remaining challenges of integration precision and off-target site insertions are summarized. Overall, current advances provide major steps forward for site-specific insertion of large DNA into genomes from a broad range of cells and organisms.
Collapse
Affiliation(s)
- Yutaka Yamamoto
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Sidney Frank Hall room 260, 185 Meeting Street, Providence, RI, 02912, USA
| | - Susan A Gerbi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Sidney Frank Hall room 260, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
217
|
Lomova A, Clark DN, Campo-Fernandez B, Flores-Bjurström C, Kaufman ML, Fitz-Gibbon S, Wang X, Miyahira EY, Brown D, DeWitt MA, Corn JE, Hollis RP, Romero Z, Kohn DB. Improving Gene Editing Outcomes in Human Hematopoietic Stem and Progenitor Cells by Temporal Control of DNA Repair. Stem Cells 2018; 37:284-294. [PMID: 30372555 DOI: 10.1002/stem.2935] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated system (Cas9)-mediated gene editing of human hematopoietic stem cells (hHSCs) is a promising strategy for the treatment of genetic blood diseases through site-specific correction of identified causal mutations. However, clinical translation is hindered by low ratio of precise gene modification using the corrective donor template (homology-directed repair, HDR) to gene disruption (nonhomologous end joining, NHEJ) in hHSCs. By using a modified version of Cas9 with reduced nuclease activity in G1 phase of cell cycle when HDR cannot occur, and transiently increasing the proportion of cells in HDR-preferred phases (S/G2), we achieved a four-fold improvement in HDR/NHEJ ratio over the control condition in vitro, and a significant improvement after xenotransplantation of edited hHSCs into immunodeficient mice. This strategy for improving gene editing outcomes in hHSCs has important implications for the field of gene therapy, and can be applied to diseases where increased HDR/NHEJ ratio is critical for therapeutic success. Stem Cells 2019;37:284-294.
Collapse
Affiliation(s)
- Anastasia Lomova
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Danielle N Clark
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Carmen Flores-Bjurström
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Michael L Kaufman
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Sorel Fitz-Gibbon
- Institute of Genomics and Proteomics, UCLA, Los Angeles, California, USA
| | - Xiaoyan Wang
- Department of General Internal Medicine and Health Services Research, UCLA, Los Angeles, California, USA
| | - Eric Y Miyahira
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Devin Brown
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Mark A DeWitt
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Jacob E Corn
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Roger P Hollis
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Zulema Romero
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - Donald B Kohn
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, USA.,Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, UCLA, Los Angeles, California, USA
| |
Collapse
|
218
|
Song F, Li M, Liu G, Swapna G, Daigham NS, Xia B, Montelionep GT, Bunting SF. Antiparallel Coiled-Coil Interactions Mediate the Homodimerization of the DNA Damage-Repair Protein PALB2. Biochemistry 2018; 57:6581-6591. [PMID: 30289697 PMCID: PMC6652205 DOI: 10.1021/acs.biochem.8b00789] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Deficits in DNA damage-repair pathways are the root cause of several human cancers. In mammalian cells, DNA double-strand break repair is carried out by multiple mechanisms, including homologous recombination (HR). The partner and localizer of BRCA2 (PALB2), which is an essential factor for HR, binds to the breast cancer susceptibility 1 (BRCA1) protein at DNA double-strand breaks. At the break site, PALB2 also associates with the breast cancer susceptibility 2 (BRCA2) protein to form a multiprotein complex that facilitates HR. The BRCA1-PALB2 interaction is mediated by association of predicted helical coiled-coil regions in both proteins. PALB2 can also homodimerize through the formation of a coiled coil by the self-association of helical elements at the N-terminus of the PALB2 protein, and this homodimerization has been proposed to regulate the efficiency of HR. We have produced a segment of PALB2, designated PALB2cc (PALB2 coiled coil segment) that forms α-helical structures, which assemble into stable homodimers. PALB2cc also forms heterodimers with a helical segment of BRCA1, called BRCA1cc (BRCA1 coiled coil segment). The three-dimensional structure of the homodimer formed by PALB2cc was determined by solution NMR spectroscopy. This PALB2cc homodimer is a classical antiparallel coiled-coil leucine zipper. NMR chemical-shift perturbation studies were used to study dimer formation for both the PALB2cc homodimer and the PALB2cc/BRCA1cc heterodimer. The mutation of residue Leu24 of PALB2cc significantly reduces its homodimer stability, but has a more modest effect on the stability of the heterodimer formed between PALB2cc and BRCA1cc. We show that mutation of Leu24 leads to genomic instability and reduced cell viability after treatment with agents that induce DNA double-strand breaks. These studies may allow the identification of distinct mutations of PALB2cc that selectively disrupt homodimeric versus heterodimeric interactions, and reveal the specific role of PALB2cc homodimerization in HR.
Collapse
Affiliation(s)
- Fei Song
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Minxing Li
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Gaohua Liu
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - G.V.T. Swapna
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Nourhan S. Daigham
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Gaetano T. Montelionep
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Samuel F. Bunting
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
219
|
Abstract
Recent advances in both the technologies used to measure chromatin movement and the biophysical analysis used to model them have yielded a fuller understanding of chromatin dynamics and the polymer structure that underlies it. Changes in nucleosome packing, checkpoint kinase activation, the cell cycle, chromosomal tethers, and external forces acting on nuclei in response to external and internal stimuli can alter the basal mobility of DNA in interphase nuclei of yeast or mammalian cells. Although chromatin movement is assumed to be necessary for many DNA-based processes, including gene activation by distal enhancer–promoter interaction or sequence-based homology searches during double-strand break repair, experimental evidence supporting an essential role in these activities is sparse. Nonetheless, high-resolution tracking of chromatin dynamics has led to instructive models of the higher-order folding and flexibility of the chromatin polymer. Key regulators of chromatin motion in physiological conditions or after damage induction are reviewed here.
Collapse
Affiliation(s)
- Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
- Current affiliation: Harvard Center for Advanced Imaging, Cambridge, MA 02138, USA
| | - Michael H. Hauer
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
220
|
Abstract
PALB2 (Partner and Localizer of BRCA2) was first identified as a BRCA2-interacting protein. Subsequently, PALB2 has been recognized as a cog in the cellular machinery for DNA repair by homologous recombination (HR). PALB2 also mediates S and G2 DNA damage checkpoints, and has an apparent function in protecting transcriptionally active genes from genotoxic stress. PALB2 also interacts with, is localized by, and functions downstream of BRCA1. Further, PALB2 interacts with other essential effectors of HR, including RAD51 and RAD51C, as well as BRCA2. Consistent with its function in HR and its interaction with key HR proteins, PALB2-deficient cells are hypersensitive to ionizing radiation and DNA interstrand crosslinking agents such as mitomycin C and cisplatin. Mechanistically, PALB2 is required for HR by mediating the recruitment of BRCA2 and the RAD51 recombinase to sites of DNA damage. Similar to bi-allelic loss-of-function mutations of BRCA1, BRCA2, RAD51 and RAD51C, bi-allelic mutations in PALB2 cause Fanconi anemia (FA), a rare childhood disorder which is associated with progressive bone marrow failure, congenital anomalies, and a predisposition to leukemia and solid tumors. Due to their close functional relationship, bi-allelic mutations of PALB2 and BRCA2 cause particularly severe forms of FA, called FANCN and FANCD1, both characterized by severe congenital abnormalities and very early onset of various cancers. This includes acute leukemias, Wilms tumor, medulloblastoma and neuroblastomas. Also, heterozygous germ-line mutations of PALB2, like mutations in several other essential HR genes listed above, yield an increased susceptibility to breast and pancreatic cancer.
Collapse
Affiliation(s)
- Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen Germany
| | - Paul R Andreassen
- Division of Experimental Hematology & Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA
| |
Collapse
|
221
|
Dökümcü K, Simonian M, Farahani RM. miR4673 improves fitness profile of neoplastic cells by induction of autophagy. Cell Death Dis 2018; 9:1068. [PMID: 30341280 PMCID: PMC6195512 DOI: 10.1038/s41419-018-1088-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
Abstract
Therapeutic resistance of neoplasms is mainly attributed to gradual evolution of mutational profile1. Here, we demonstrate a microRNA-mediated mechanism that effectively improves fitness of SKBR3 mammary carcinoma cells by cytoplasmic reprogramming. The reprogramming is triggered by endogenous miR4673 transcribed from notch-1 locus. The miRNA downregulates cdk-18, a cyclin-dependent kinase that regulates M-G1 transition in cycling cells2,3. Suppression of cdk-18 triggers mitophagy and autophagy. Due to high autophagic flux, oestrogen receptor-1+/progesterone receptor+/p53+ (Esr1+/Pr+/p53+) SKBR3 cells are coerced into an Esr1-/Prlow/p53-profile. Increased mitophagy in combination with proteasomal degradation of p53 transiently arrests the cycling cells at G0 and enhances radio-resistance of the SKBR3 population. These findings highlight the impact on cancer therapy of non-encoded neoplastic resistance, arising as a consequence of miRNA-mediated autophagic reprogramming that uncouples phenotype and genotype.
Collapse
Affiliation(s)
- Kağan Dökümcü
- Institute of Dental Research, Westmead Institute for Medical Research and Westmead Centre for Oral Health, Westmead, NSW, Australia
- Department of Life Sciences, The University of Sydney Dental School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mary Simonian
- Institute of Dental Research, Westmead Institute for Medical Research and Westmead Centre for Oral Health, Westmead, NSW, Australia
| | - Ramin M Farahani
- Institute of Dental Research, Westmead Institute for Medical Research and Westmead Centre for Oral Health, Westmead, NSW, Australia.
- Department of Life Sciences, The University of Sydney Dental School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
222
|
Simhadri S, Vincelli G, Huo Y, Misenko S, Foo TK, Ahlskog J, Sørensen CS, Oakley GG, Ganesan S, Bunting SF, Xia B. PALB2 connects BRCA1 and BRCA2 in the G2/M checkpoint response. Oncogene 2018; 38:1585-1596. [PMID: 30337689 PMCID: PMC6408219 DOI: 10.1038/s41388-018-0535-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/13/2018] [Accepted: 09/21/2018] [Indexed: 01/07/2023]
Abstract
The G2/M checkpoint inhibits mitotic entry upon DNA damage thereby preventing segregation of broken chromosomes and preserving genome stability. The tumor suppressor proteins BRCA1, PALB2 and BRCA2 constitute a BRCA1-PALB2-BRCA2 axis that is essential for homologous recombination (HR)-based DNA double strand break repair. Besides HR, BRCA1 has been implicated in both the initial activation and the maintenance of the G2/M checkpoint, while BRCA2 and PALB2 have been shown to be critical for its maintenance. Here we show that all 3 proteins can play a significant role in both checkpoint activation and checkpoint maintenance, depending on cell type and context, and that PALB2 links BRCA1 and BRCA2 in checkpoint response. The BRCA1-PALB2 interaction can be important for checkpoint activation, whereas the PALB2-BRCA2 complex formation appears to be more critical for checkpoint maintenance. Interestingly, the function of PALB2 in checkpoint response appears to be independent of CHK1 and CHK2 phosphorylation. Following ionizing radiation, cells with disengaged BRCA1-PALB2 interaction show greatly increased chromosomal abnormalities due apparently to combined defects in HR and checkpoint control. These findings provide new insights into DNA damage checkpoint control and further underscore the critical importance of the proper cooperation of the BRCA and PALB2 proteins in genome maintenance.
Collapse
Affiliation(s)
- Srilatha Simhadri
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Gabriele Vincelli
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Yanying Huo
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Sarah Misenko
- Department of Molecular Biology and Biochemistry, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tzeh Keong Foo
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Johanna Ahlskog
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Claus S Sørensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Gregory G Oakley
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Samuel F Bunting
- Department of Molecular Biology and Biochemistry, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey, New Brunswick, USA. .,Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
223
|
High fidelity CRISPR/Cas9 increases precise monoallelic and biallelic editing events in primordial germ cells. Sci Rep 2018; 8:15126. [PMID: 30310080 PMCID: PMC6181960 DOI: 10.1038/s41598-018-33244-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
Primordial germ cells (PGCs), the embryonic precursors of the sperm and egg, are used for the introduction of genetic modifications into avian genome. Introduction of small defined sequences using genome editing has not been demonstrated in bird species. Here, we compared oligonucleotide-mediated HDR using wild type SpCas9 (SpCas9-WT) and high fidelity SpCas9-HF1 in PGCs and show that many loci in chicken PGCs can be precise edited using donors containing CRISPR/Cas9-blocking mutations positioned in the protospacer adjacent motif (PAM). However, targeting was more efficient using SpCas9-HF1 when mutations were introduced only into the gRNA target sequence. We subsequently employed an eGFP-to-BFP conversion assay, to directly compare HDR mediated by SpCas9-WT and SpCas9-HF1 and discovered that SpCas9-HF1 increases HDR while reducing INDEL formation. Furthermore, SpCas9-HF1 increases the frequency of single allele editing in comparison to SpCas9-WT. We used SpCas9-HF1 to demonstrate the introduction of monoallelic and biallelic point mutations into the FGF20 gene and generate clonal populations of edited PGCs with defined homozygous and heterozygous genotypes. Our results demonstrate the use of oligonucleotide donors and high fidelity CRISPR/Cas9 variants to perform precise genome editing with high efficiency in PGCs.
Collapse
|
224
|
Nandi B, Talluri S, Kumar S, Yenumula C, Gold JS, Prabhala R, Munshi NC, Shammas MA. The roles of homologous recombination and the immune system in the genomic evolution of cancer. ACTA ACUST UNITED AC 2018; 5. [PMID: 30873294 PMCID: PMC6411307 DOI: 10.15761/jts.1000282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A variety of factors, whether extracellular (mutagens/carcinogens and viruses in the environment, chronic inflammation and radiation associated with the environment and/or electronic devices/machines) and/or intracellular (oxidative metabolites of food, oxidative stress due to inflammation, acid production, replication stress, DNA replication/repair errors, and certain hormones, cytokines, growth factors), pose a constant threat to the genomic integrity of a living cell. However, in the normal cellular environment multiple biological pathways including DNA repair, cell cycle, apoptosis and the immune system work in a precise, regulated (tightly controlled), timely and concerted manner to ensure genomic integrity, stability and proper functioning of a cell. If damage to DNA takes place, it is efficiently and accurately repaired by the DNA repair systems. Homologous recombination (HR) which utilizes either a homologous chromosome (in G1 phase) or a sister chromatid (in G2) as a template to repair the damage, is known to be the most precise repair system. HR in G2 which utilizes a sister chromatid as a template is also called an error free repair system. If DNA damage in a cell is so extensive that it overwhelms the repair system/s, the cell is eliminated by apoptosis. Thus, multiple pathways ensure that genome of a cell is intact and stable. However, constant exposure to DNA damage and/or dysregulation of DNA repair mechanism/s poses a risk of mutation and cancer. Oncogenesis, which seems to be a multistep process, is associated with acquisition of a number of genomic changes that enable a normal cell to progress from benign to malignant transformation. Transformed/cancer cells are recognized and killed by the immune system. However, the ongoing acquisition of new genomic changes enables cancer cells to survive/escape immune attack, evolve into a more aggressive phenotype, and eventually develop resistance to therapy. Although DNA repair (especially the HR) and the immune system play unique roles in preserving genomic integrity of a cell, they can also contribute to DNA damage, genomic instability and oncogenesis. The purpose of this article is to highlight the roles of DNA repair (especially HR) and the immune system in genomic evolution, with special focus on gastrointestinal cancer.
Collapse
Affiliation(s)
- B Nandi
- Harvard Medical School and Brigham and Women's Hospital, USA.,Researh Services, VA Healthcare System, West Roxbury, MA, USA
| | - S Talluri
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA.,Researh Services, VA Healthcare System, West Roxbury, MA, USA
| | - S Kumar
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA.,Harvard Medical School and Brigham and Women's Hospital, USA
| | - C Yenumula
- Harvard Medical School and Brigham and Women's Hospital, USA.,Researh Services, VA Healthcare System, West Roxbury, MA, USA
| | - J S Gold
- Harvard Medical School and Brigham and Women's Hospital, USA.,Surgery Services, VA Healthcare System, West Roxbury, MA, USA
| | - R Prabhala
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA.,Researh Services, VA Healthcare System, West Roxbury, MA, USA
| | - N C Munshi
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA.,Harvard Medical School and Brigham and Women's Hospital, USA.,Researh Services, VA Healthcare System, West Roxbury, MA, USA
| | - M A Shammas
- Harvard (Dana Farber) Cancer Institute, Boston, MA, USA.,Researh Services, VA Healthcare System, West Roxbury, MA, USA
| |
Collapse
|
225
|
Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance. Blood Cancer J 2018; 8:92. [PMID: 30301882 PMCID: PMC6177467 DOI: 10.1038/s41408-018-0129-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
We have previously reported that homologous recombination (HR) is dysregulated in multiple myeloma (MM) and contributes to genomic instability and development of drug resistance. We now demonstrate that base excision repair (BER) associated apurinic/apyrimidinic (AP) nucleases (APEX1 and APEX2) contribute to regulation of HR in MM cells. Transgenic as well as chemical inhibition of APEX1 and/or APEX2 inhibits HR activity in MM cells, whereas the overexpression of either nuclease in normal human cells, increases HR activity. Regulation of HR by AP nucleases could be attributed, at least in part, to their ability to regulate recombinase (RAD51) expression. We also show that both nucleases interact with major HR regulators and that APEX1 is involved in P73-mediated regulation of RAD51 expression in MM cells. Consistent with the role in HR, we also show that AP-knockdown or treatment with inhibitor of AP nuclease activity increases sensitivity of MM cells to melphalan and PARP inhibitor. Importantly, although inhibition of AP nuclease activity increases cytotoxicity, it reduces genomic instability caused by melphalan. In summary, we show that APEX1 and APEX2, major BER proteins, also contribute to regulation of HR in MM. These data provide basis for potential use of AP nuclease inhibitors in combination with chemotherapeutics such as melphalan for synergistic cytotoxicity in MM.
Collapse
|
226
|
Charlesworth CT, Camarena J, Cromer MK, Vaidyanathan S, Bak RO, Carte JM, Potter J, Dever DP, Porteus MH. Priming Human Repopulating Hematopoietic Stem and Progenitor Cells for Cas9/sgRNA Gene Targeting. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:89-104. [PMID: 30195800 PMCID: PMC6023838 DOI: 10.1016/j.omtn.2018.04.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022]
Abstract
Engineered nuclease-mediated gene targeting through homologous recombination (HR) in hematopoietic stem and progenitor cells (HSPCs) has the potential to treat a variety of genetic hematologic and immunologic disorders. Here, we identify critical parameters to reproducibly achieve high frequencies of RNA-guided (single-guide RNA [sgRNA]; CRISPR)-Cas9 nuclease (Cas9/sgRNA) and rAAV6-mediated HR at the β-globin (HBB) locus in HSPCs. We identified that by transducing HSPCs with rAAV6 post-electroporation, there was a greater than 2-fold electroporation-aided transduction (EAT) of rAAV6 endocytosis with roughly 70% of the cell population having undergone transduction within 2 hr. When HSPCs are cultured at low densities (1 × 105 cells/mL) prior to HBB targeting, HSPC expansion rates are significantly positively correlated with HR frequencies in vitro as well as in repopulating cells in immunodeficient NSG mice in vivo. We also show that culturing fluorescence-activated cell sorting (FACS)-enriched HBB-targeted HSPCs at low cell densities in the presence of the small molecules, UM171 and SR1, stimulates the expansion of gene-edited HSPCs as measured by higher engraftment levels in immunodeficient mice. This work serves not only as an optimized protocol for genome editing HSPCs at the HBB locus for the treatment of β-hemoglobinopathies but also as a foundation for editing HSPCs at other loci for both basic and translational research.
Collapse
Affiliation(s)
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Rasmus O Bak
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Jason M Carte
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Jason Potter
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
227
|
Devkota S. The road less traveled: strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis. BMB Rep 2018; 51:437-443. [PMID: 30103848 PMCID: PMC6177507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Indexed: 09/29/2023] Open
Abstract
Non-homologous end joining (NHEJ), and to a lesser extent, the error-free pathway known as homology-directed repair (HDR) are cellular mechanisms for recovery from double-strand DNA breaks (DSB) induced by RNA-guided programmable nuclease CRISPR/Cas. Since NHEJ is equivalent to using a duck tape to stick two pieces of metals together, the outcome of this repair mechanism is prone to error. Any out-of-frame mutations or premature stop codons resulting from NHEJ repair mechanism are extremely handy for loss-of-function studies. Substitution of a mutation on the genome with the correct exogenous repair DNA requires coordination via an error-free HDR, for targeted transgenesis. However, several practical limitations exist in harnessing the potential of HDR to replace a faulty mutation for therapeutic purposes in all cell types and more so in somatic cells. In germ cells after the DSB, copying occurs from the homologous chromosome, which increases the chances of incorporation of exogenous DNA with some degree of homology into the genome compared with somatic cells where copying from the identical sister chromatid is always preferred. This review summarizes several strategies that have been implemented to increase the frequency of HDR with a focus on somatic cells. It also highlights the limitations of this technology in gene therapy and suggests specific solutions to circumvent those barriers. [BMB Reports 2018; 51(9): 437-443].
Collapse
Affiliation(s)
- Sushil Devkota
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093,
USA
| |
Collapse
|
228
|
Fuentes CM, Schaffer DV. Adeno-associated virus-mediated delivery of CRISPR-Cas9 for genome editing in the central nervous system. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 7:33-41. [PMID: 34046535 PMCID: PMC8153090 DOI: 10.1016/j.cobme.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The emergence of CRISPR-Cas9 as a powerful genome editing tool has led to several studies exploring its potential to treat neurological disorders. Cas9 and its sgRNA can be readily engineered to target any gene and can be multiplexed to target several genes at once. Furthermore, the use of adeno-associated virus (AAV) to deliver with Cas9 and its sgRNA is a promising therapeutic combination with strong potential to reach the clinic. Here we discuss how Cas9 editing has been utilized for gene insertion, knockout, and deletion in vivo for applications in the central nervous system (CNS). Furthermore, we highlight major challenges that remain for AAV-Cas9-sgRNA clinical translation.
Collapse
Affiliation(s)
- Christina M. Fuentes
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - David V. Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemical and Biolomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
229
|
Abstract
Flaws in the DNA replication process have emerged as a leading driver of genome instability in human diseases. Alteration to replication fork progression is a defining feature of replication stress and the consequent failure to maintain fork integrity and complete genome duplication within a single round of S-phase compromises genetic integrity. This includes increased mutation rates, small and large scale genomic rearrangement and deleterious consequences for the subsequent mitosis that result in the transmission of additional DNA damage to the daughter cells. Therefore, preserving fork integrity and replication competence is an important aspect of how cells respond to replication stress and avoid genetic change. Homologous recombination is a pivotal pathway in the maintenance of genome integrity in the face of replication stress. Here we review our recent understanding of the mechanisms by which homologous recombination acts to protect, restart and repair replication forks. We discuss the dynamics of these genetically distinct functions and their contribution to faithful mitoticsegregation.
Collapse
|
230
|
Abstract
Ubiquitylation is an essential posttranslational modification that controls cell division, differentiation, and survival in all eukaryotes. By combining multiple E3 ligases (writers), ubiquitin-binding effectors (readers), and de-ubiquitylases (erasers) with functionally distinct ubiquitylation tags, the ubiquitin system constitutes a powerful signaling network that is employed in similar ways from yeast to humans. Here, we discuss conserved principles of ubiquitin-dependent signaling that illustrate how this posttranslational modification shapes intracellular signaling networks to establish robust development and homeostasis throughout the eukaryotic kingdom.
Collapse
Affiliation(s)
- Eugene Oh
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - David Akopian
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
231
|
Tamberg N, Tahk S, Koit S, Kristjuhan K, Kasvandik S, Kristjuhan A, Ilves I. Keap1-MCM3 interaction is a potential coordinator of molecular machineries of antioxidant response and genomic DNA replication in metazoa. Sci Rep 2018; 8:12136. [PMID: 30108253 PMCID: PMC6092318 DOI: 10.1038/s41598-018-30562-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/02/2018] [Indexed: 01/19/2023] Open
Abstract
Coordination of DNA replication and cellular redox homeostasis mechanisms is essential for the sustained genome stability due to the sensitivity of replicating DNA to oxidation. However, substantial gaps remain in our knowledge of underlying molecular pathways. In this study, we characterise the interaction of Keap1, a central antioxidant response regulator in Metazoa, with the replicative helicase subunit protein MCM3. Our analysis suggests that structural determinants of the interaction of Keap1 with its critical downstream target - Nrf2 master transactivator of oxidative stress response genes – may have evolved in evolution to mimic the conserved helix-2-insert motif of MCM3. We show that this has led to a competition between MCM3 and Nrf2 proteins for Keap1 binding, and likely recruited MCM3 for the competitive binding dependent modulation of Keap1 controlled Nrf2 activities. We hypothesise that such mechanism could help to adjust the Keap1-Nrf2 antioxidant response pathway according to the proliferative and replicative status of the cell, with possible reciprocal implications also for the regulation of cellular functions of MCM3. Altogether this suggests about important role of Keap1-MCM3 interaction in the cross-talk between replisome and redox homeostasis machineries in metazoan cells.
Collapse
Affiliation(s)
- Nele Tamberg
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia
| | - Siret Tahk
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia
| | - Sandra Koit
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia
| | - Kersti Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Sergo Kasvandik
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia
| | - Arnold Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Ivar Ilves
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia.
| |
Collapse
|
232
|
Cathepsin B contributes to radioresistance by enhancing homologous recombination in glioblastoma. Biomed Pharmacother 2018; 107:390-396. [PMID: 30099343 DOI: 10.1016/j.biopha.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/19/2023] Open
Abstract
Resistance to adjuvant radiotherapy is a major cause of treatment failure in patients with glioblastoma (GBM). Recently, the role of lysosome, especially lysosomal proteases, in radioresistance is being paid more and more attention to. Here, we investigated the radioresistant role of Cathepsin B (CTSB), one important member of cysteine proteases, in GBM cell lines. A protease array kit was used to test GBM cells before and after irradiation. Nude mice were implanted with GBM cells to generate orthotopic xenografts for in vivo studies. Response of U87 and U251 cells to treatment was examined using cell viability, flow cytometry. Cells were transfected with siRNA knockdown and gene expression constructs and molecules potentially mediating response were examined through western blot analysis, PCR and EdU assay. The results from protease array kit showed that CTSB was up-regulated the most among all proteases after irradiation. And this was verified by western blot analysis and immunohistochemistry of tumor samples both from in vivo study and clinical patients. Compared to negative control group, knocking down CTSB led to radiosensitivity. And this radiosensitive effect was achieved by decreasing homologous recombination (HR) efficiency. Further study showed that knocking down CTSB caused cell cycle arrested in G0/G1 phases, in which HR efficiency was impaired. Knocking down CTSB contributed to radiosensitivity in GBM cells by causing cell cycle arrest and down-regulating HR efficiency.
Collapse
|
233
|
Nrf2-Mediated Fibroblast Reprogramming Drives Cellular Senescence by Targeting the Matrisome. Dev Cell 2018; 46:145-161.e10. [PMID: 30016619 DOI: 10.1016/j.devcel.2018.06.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/14/2018] [Accepted: 06/14/2018] [Indexed: 01/06/2023]
Abstract
Nrf2 is a key regulator of the antioxidant defense system, and pharmacological Nrf2 activation is a promising strategy for cancer prevention and promotion of tissue repair. Here we show, however, that activation of Nrf2 in fibroblasts induces cellular senescence. Using a combination of transcriptomics, matrix proteomics, chromatin immunoprecipitation and bioinformatics we demonstrate that fibroblasts with activated Nrf2 deposit a senescence-promoting matrix, with plasminogen activator inhibitor-1 being a key inducer of the senescence program. In vivo, activation of Nrf2 in fibroblasts promoted re-epithelialization of skin wounds, but also skin tumorigenesis. The pro-tumorigenic activity is of general relevance, since Nrf2 activation in skin fibroblasts induced the expression of genes characteristic for cancer-associated fibroblasts from different mouse and human tumors. Therefore, activated Nrf2 qualifies as a marker of the cancer-associated fibroblast phenotype. These data highlight the bright and the dark sides of Nrf2 and the need for time-controlled activation of this transcription factor.
Collapse
|
234
|
Evangelista FM, Maglott-Roth A, Stierle M, Brino L, Soutoglou E, Tora L. Transcription and mRNA export machineries SAGA and TREX-2 maintain monoubiquitinated H2B balance required for DNA repair. J Cell Biol 2018; 217:3382-3397. [PMID: 30054449 PMCID: PMC6168256 DOI: 10.1083/jcb.201803074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 11/22/2022] Open
Abstract
The SAGA coactivator complex and the nuclear pore–associated TREX-2 complex couple transcription with mRNA export. Evangelista et al. identify a novel interplay between TREX-2 and the deubiquitination module of SAGA that is necessary to maintain monoubiquitinated H2B levels required for efficient DNA repair through homologous recombination. DNA repair is critical to maintaining genome integrity, and its dysfunction can cause accumulation of unresolved damage that leads to genomic instability. The Spt–Ada–Gcn5 acetyltransferase (SAGA) coactivator complex and the nuclear pore–associated transcription and export complex 2 (TREX-2) couple transcription with mRNA export. In this study, we identify a novel interplay between human TREX-2 and the deubiquitination module (DUBm) of SAGA required for genome stability. We find that the scaffold subunit of TREX-2, GANP, positively regulates DNA repair through homologous recombination (HR). In contrast, DUBm adaptor subunits ENY2 and ATXNL3 are required to limit unscheduled HR. These opposite roles are achieved through monoubiquitinated histone H2B (H2Bub1). Interestingly, the activity of the DUBm of SAGA on H2Bub1 is dependent on the integrity of the TREX-2 complex. Thus, we describe the existence of a functional interaction between human TREX-2 and SAGA DUBm that is key to maintaining the H2B/HB2ub1 balance needed for efficient repair and HR.
Collapse
Affiliation(s)
- Federica M Evangelista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Anne Maglott-Roth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Laurent Brino
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
235
|
CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat Genet 2018; 50:1132-1139. [PMID: 30054595 DOI: 10.1038/s41588-018-0174-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023]
Abstract
CRISPR-Cas genome editing creates targeted DNA double-strand breaks (DSBs) that are processed by cellular repair pathways, including the incorporation of exogenous DNA via single-strand template repair (SSTR). To determine the genetic basis of SSTR in human cells, we developed a coupled inhibition-cutting system capable of interrogating multiple editing outcomes in the context of thousands of individual gene knockdowns. We found that human Cas9-induced SSTR requires the Fanconi anemia (FA) pathway, which is normally implicated in interstrand cross-link repair. The FA pathway does not directly impact error-prone, non-homologous end joining, but instead diverts repair toward SSTR. Furthermore, FANCD2 protein localizes to Cas9-induced DSBs, indicating a direct role in regulating genome editing. Since FA is itself a genetic disease, these data imply that patient genotype and/or transcriptome may impact the effectiveness of gene editing treatments and that treatments biased toward FA repair pathways could have therapeutic value.
Collapse
|
236
|
Wijdeven RH, van Luijn MM, Wierenga-Wolf AF, Akkermans JJ, van den Elsen PJ, Hintzen RQ, Neefjes J. Chemical and genetic control of IFNγ-induced MHCII expression. EMBO Rep 2018; 19:embr.201745553. [PMID: 30021835 DOI: 10.15252/embr.201745553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/05/2018] [Accepted: 06/24/2018] [Indexed: 01/05/2023] Open
Abstract
The cytokine interferon-γ (IFNγ) can induce expression of MHC class II (MHCII) on many different cell types, leading to antigen presentation to CD4+ T cells and immune activation. This has also been linked to anti-tumour immunity and graft-versus-host disease. The extent of MHCII upregulation by IFNγ is cell type-dependent and under extensive control of epigenetic regulators and signalling pathways. Here, we identify novel genetic and chemical factors that control this form of MHCII expression. Loss of the oxidative stress sensor Keap1, autophagy adaptor p62/SQSTM1, ubiquitin E3-ligase Cullin-3 and chromatin remodeller BPTF impair IFNγ-mediated MHCII expression. A similar phenotype is observed for arsenite, an oxidative stressor. Effects of the latter can be reversed by the inhibition of HDAC1/2, linking oxidative stress conditions to epigenetic control of MHCII expression. Furthermore, dimethyl fumarate, an antioxidant used for the treatment of several autoimmune diseases, impairs the IFNγ response by manipulating transcriptional control of MHCII We describe novel pathways and drugs related to oxidative conditions in cells impacting on IFNγ-mediated MHCII expression, which provide a molecular basis for the understanding of MHCII-associated diseases.
Collapse
Affiliation(s)
- Ruud H Wijdeven
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jimmy J Akkermans
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| | | | - Rogier Q Hintzen
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| |
Collapse
|
237
|
Vesikansa A. Unraveling of Central Nervous System Disease Mechanisms Using CRISPR Genome Manipulation. J Cent Nerv Syst Dis 2018; 10:1179573518787469. [PMID: 30013417 PMCID: PMC6043941 DOI: 10.1177/1179573518787469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/09/2018] [Indexed: 12/26/2022] Open
Abstract
The complex structure and highly variable gene expression profile of the brain makes it among the most challenging fields to study in both basic and translational biological research. Most of the brain diseases are multifactorial and despite the rapidly increasing genomic data, molecular pathways and causal links between genes and central nervous system (CNS) diseases are largely unknown. The advent of an easy and flexible CRISPR-Cas genome editing technology has rapidly revolutionized the field of functional genomics and opened unprecedented possibilities to dissect the mechanisms of CNS disease. CRISPR-Cas allows a plenitude of applications for both gene-focused and genome-wide approaches, ranging from original “gene scissors” making permanent modifications in the genome to the regulation of gene expression and epigenetics. CRISPR technology provides a unique opportunity to establish new cellular and animal models of CNS diseases and holds potential for breakthroughs in the CNS research and drug development.
Collapse
Affiliation(s)
- Aino Vesikansa
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
238
|
Rona G, Roberti D, Yin Y, Pagan JK, Homer H, Sassani E, Zeke A, Busino L, Rothenberg E, Pagano M. PARP1-dependent recruitment of the FBXL10-RNF68-RNF2 ubiquitin ligase to sites of DNA damage controls H2A.Z loading. eLife 2018; 7:e38771. [PMID: 29985131 PMCID: PMC6037479 DOI: 10.7554/elife.38771] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 12/05/2022] Open
Abstract
The mammalian FBXL10-RNF68-RNF2 ubiquitin ligase complex (FRRUC) mono-ubiquitylates H2A at Lys119 to repress transcription in unstressed cells. We found that the FRRUC is rapidly and transiently recruited to sites of DNA damage in a PARP1- and TIMELESS-dependent manner to promote mono-ubiquitylation of H2A at Lys119, a local decrease of H2A levels, and an increase of H2A.Z incorporation. Both the FRRUC and H2A.Z promote transcriptional repression, double strand break signaling, and homologous recombination repair (HRR). All these events require both the presence and activity of the FRRUC. Moreover, the FRRUC and its activity are required for the proper recruitment of BMI1-RNF2 and MEL18-RNF2, two other ubiquitin ligases that mono-ubiquitylate Lys119 in H2A upon genotoxic stress. Notably, whereas H2A.Z is not required for H2A mono-ubiquitylation, impairment of the latter results in the inhibition of H2A.Z incorporation. We propose that the recruitment of the FRRUC represents an early and critical regulatory step in HRR.
Collapse
Affiliation(s)
- Gergely Rona
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Domenico Roberti
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Yandong Yin
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Julia K Pagan
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Harrison Homer
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Elizabeth Sassani
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Andras Zeke
- Institute of Enzymology, Research Center for Natural SciencesHungarian Academy of SciencesBudapestHungary
| | - Luca Busino
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Eli Rothenberg
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Michele Pagano
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University School of MedicineNew YorkUnited States
| |
Collapse
|
239
|
Campillo-Marcos I, Lazo PA. Implication of the VRK1 chromatin kinase in the signaling responses to DNA damage: a therapeutic target? Cell Mol Life Sci 2018; 75:2375-2388. [PMID: 29679095 PMCID: PMC5986855 DOI: 10.1007/s00018-018-2811-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
DNA damage causes a local distortion of chromatin that triggers the sequential processes that participate in specific DNA repair mechanisms. This initiation of the repair response requires the involvement of a protein whose activity can be regulated by histones. Kinases are candidates to regulate and coordinate the connection between a locally altered chromatin and the response initiating signals that lead to identification of the type of lesion and the sequential steps required in specific DNA damage responses (DDR). This initiating kinase must be located in chromatin, and be activated independently of the type of DNA damage. We review the contribution of the Ser-Thr vaccinia-related kinase 1 (VRK1) chromatin kinase as a new player in the signaling of DNA damage responses, at chromatin and cellular levels, and its potential as a new therapeutic target in oncology. VRK1 is involved in the regulation of histone modifications, such as histone phosphorylation and acetylation, and in the formation of γH2AX, NBS1 and 53BP1 foci induced in DDR. Induction of DNA damage by chemotherapy or radiation is a mainstay of cancer treatment. Therefore, novel treatments can be targeted to proteins implicated in the regulation of DDR, rather than by directly causing DNA damage.
Collapse
Affiliation(s)
- Ignacio Campillo-Marcos
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, 37007, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
240
|
George VC, Ansari SA, Chelakkot VS, Chelakkot AL, Chelakkot C, Menon V, Ramadan W, Ethiraj KR, El-Awady R, Mantso T, Mitsiogianni M, Panagiotidis MI, Dellaire G, Vasantha Rupasinghe HP. DNA-dependent protein kinase: Epigenetic alterations and the role in genomic stability of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 780:92-105. [PMID: 31395353 DOI: 10.1016/j.mrrev.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 12/28/2022]
Abstract
DNA-dependent protein kinase (DNA-PK), a member of phosphatidylinositol-kinase family, is a key protein in mammalian DNA double-strand break (DSB) repair that helps to maintain genomic integrity. DNA-PK also plays a central role in immune cell development and protects telomerase during cellular aging. Epigenetic deregulation due to endogenous and exogenous factors may affect the normal function of DNA-PK, which in turn could impair DNA repair and contribute to genomic instability. Recent studies implicate a role for epigenetics in the regulation of DNA-PK expression in normal and cancer cells, which may impact cancer progression and metastasis as well as provide opportunities for treatment and use of DNA-PK as a novel cancer biomarker. In addition, several small molecules and biological agents have been recently identified that can inhibit DNA-PK function or expression, and thus hold promise for cancer treatments. This review discusses the impact of epigenetic alterations and the expression of DNA-PK in relation to the DNA repair mechanisms with a focus on its differential levels in normal and cancer cells.
Collapse
Affiliation(s)
- Vazhappilly Cijo George
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shabbir Ahmed Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Vipin Shankar Chelakkot
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | - Chaithanya Chelakkot
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Varsha Menon
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Wafaa Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Raafat El-Awady
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates; Cancer Biology Department, National Cancer Institute and College of Medicine, Cairo University, Cairo, Egypt
| | - Theodora Mantso
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Melina Mitsiogianni
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Mihalis I Panagiotidis
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
241
|
Genome editing by natural and engineered CRISPR-associated nucleases. Nat Chem Biol 2018; 14:642-651. [PMID: 29915237 DOI: 10.1038/s41589-018-0080-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022]
Abstract
Over the last decade, research on distinct types of CRISPR systems has revealed many structural and functional variations. Recently, several novel types of single-polypeptide CRISPR-associated systems have been discovered including Cas12a/Cpf1 and Cas13a/C2c2. Despite distant similarities to Cas9, these additional systems have unique structural and functional features, providing new opportunities for genome editing applications. Here, relevant fundamental features of natural and engineered CRISPR-Cas variants are compared. Moreover, practical matters are discussed that are essential for dedicated genome editing applications, including nuclease regulation and delivery, target specificity, as well as host repair diversity.
Collapse
|
242
|
Palmieri D, Tessari A, Coppola V. Scorpins in the DNA Damage Response. Int J Mol Sci 2018; 19:ijms19061794. [PMID: 29914204 PMCID: PMC6032341 DOI: 10.3390/ijms19061794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
The DNA Damage Response (DDR) is a complex signaling network that comes into play when cells experience genotoxic stress. Upon DNA damage, cellular signaling pathways are rewired to slow down cell cycle progression and allow recovery. However, when the damage is beyond repair, cells activate complex and still not fully understood mechanisms, leading to a complete proliferative arrest or cell death. Several conventional and novel anti-neoplastic treatments rely on causing DNA damage or on the inhibition of the DDR in cancer cells. However, the identification of molecular determinants directing cancer cells toward recovery or death upon DNA damage is still far from complete, and it is object of intense investigation. SPRY-containing RAN binding Proteins (Scorpins) RANBP9 and RANBP10 are evolutionarily conserved and ubiquitously expressed proteins whose biological functions are still debated. RANBP9 has been previously implicated in cell proliferation, survival, apoptosis and migration. Recent studies also showed that RANBP9 is involved in the Ataxia Telangiectasia Mutated (ATM) signaling upon DNA damage. Accordingly, cells lacking RANBP9 show increased sensitivity to genotoxic treatment. Although there is no published evidence, extensive protein similarities suggest that RANBP10 might have partially overlapping functions with RANBP9. Like RANBP9, RANBP10 bears sites putative target of PIK-kinases and high throughput studies found RANBP10 to be phosphorylated following genotoxic stress. Therefore, this second Scorpin might be another overlooked player of the DDR alone or in combination with RANBP9. This review focuses on the relatively unknown role played by RANBP9 and RANBP10 in responding to genotoxic stress.
Collapse
Affiliation(s)
- Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| |
Collapse
|
243
|
Cánovas B, Igea A, Sartori AA, Gomis RR, Paull TT, Isoda M, Pérez-Montoyo H, Serra V, González-Suárez E, Stracker TH, Nebreda AR. Targeting p38α Increases DNA Damage, Chromosome Instability, and the Anti-tumoral Response to Taxanes in Breast Cancer Cells. Cancer Cell 2018; 33:1094-1110.e8. [PMID: 29805078 DOI: 10.1016/j.ccell.2018.04.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 01/18/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022]
Abstract
Breast cancer is the second leading cause of cancer-related death among women. Here we report a role for the protein kinase p38α in coordinating the DNA damage response and limiting chromosome instability during breast tumor progression, and identify the DNA repair regulator CtIP as a p38α substrate. Accordingly, decreased p38α signaling results in impaired ATR activation and homologous recombination repair, with concomitant increases in replication stress, DNA damage, and chromosome instability, leading to cancer cell death and tumor regression. Moreover, we show that pharmacological inhibition of p38α potentiates the effects of taxanes by boosting chromosome instability in murine models and patient-derived xenografts, suggesting the potential interest of combining p38α inhibitors with chemotherapeutic drugs that induce chromosome instability.
Collapse
Affiliation(s)
- Begoña Cánovas
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Ana Igea
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Alessandro A Sartori
- University of Zurich, Institute of Molecular Cancer Research, Zurich 8057, Switzerland
| | - Roger R Gomis
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain; Universitat de Barcelona and CIBERONC, Barcelona, Spain
| | - Tanya T Paull
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
| | - Michitaka Isoda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Héctor Pérez-Montoyo
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Violeta Serra
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Eva González-Suárez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
244
|
Murray JM, Carr AM. Integrating DNA damage repair with the cell cycle. Curr Opin Cell Biol 2018; 52:120-125. [PMID: 29587168 DOI: 10.1016/j.ceb.2018.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
DNA is labile and constantly subject to damage. In addition to external mutagens, DNA is continuously damaged by the aqueous environment, cellular metabolites and is prone to strand breakage during replication. Cell duplication is orchestrated by the cell division cycle and specific DNA structures are processed differently depending on where in the cell cycle they are detected. This is often because a specific structure is physiological in one context, for example during DNA replication, while indicating a potentially pathological event in another, such as interphase or mitosis. Thus, contextualising the biochemical entity with respect to cell cycle progression provides information necessary to appropriately regulate DNA processing activities. We review the links between DNA repair and cell cycle context, drawing together recent advances.
Collapse
Affiliation(s)
- Johanne M Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Susses, Falmer BN1 9RQ, United Kingdom
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Susses, Falmer BN1 9RQ, United Kingdom.
| |
Collapse
|
245
|
Khan TK, Nelson TJ. Protein kinase C activator bryostatin‐1 modulates proteasome function. J Cell Biochem 2018; 119:6894-6904. [PMID: 29693282 DOI: 10.1002/jcb.26887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tapan K. Khan
- Center for Neurodegenerative DiseasesBlanchette Rockefeller Neurosciences Institute, West Virginia UniversityMorgantownWest Virginia
| | - Thomas J. Nelson
- Center for Neurodegenerative DiseasesBlanchette Rockefeller Neurosciences Institute, West Virginia UniversityMorgantownWest Virginia
| |
Collapse
|
246
|
Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials 2018; 171:207-218. [PMID: 29704747 DOI: 10.1016/j.biomaterials.2018.04.031] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 02/06/2023]
Abstract
In recent years, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) genome editing systems have become one of the most robust platforms in basic biomedical research and therapeutic applications. To date, efficient in vivo delivery of the CRISPR/Cas9 system to the targeted cells remains a challenge. Although viral vectors have been widely used in the delivery of the CRISPR/Cas9 system in vitro and in vivo, their fundamental shortcomings, such as the risk of carcinogenesis, limited insertion size, immune responses and difficulty in large-scale production, severely limit their further applications. Alternative non-viral delivery systems for CRISPR/Cas9 are urgently needed. With the rapid development of non-viral vectors, lipid- or polymer-based nanocarriers have shown great potential for CRISPR/Cas9 delivery. In this review, we analyze the pros and cons of delivering CRISPR/Cas9 systems in the form of plasmid, mRNA, or protein and then discuss the limitations and challenges of CRISPR/Cas9-based genome editing. Furthermore, current non-viral vectors that have been applied for CRISPR/Cas9 delivery in vitro and in vivo are outlined in details. Finally, critical obstacles for non-viral delivery of CRISPR/Cas9 system are highlighted and promising strategies to overcome these barriers are proposed.
Collapse
Affiliation(s)
- Ling Li
- Department of PET Center, Xiangya Hospital, Central South University, Changsha, 410008, China; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Shuo Hu
- Department of PET Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
247
|
Deubiquitylation and stabilization of p21 by USP11 is critical for cell-cycle progression and DNA damage responses. Proc Natl Acad Sci U S A 2018; 115:4678-4683. [PMID: 29666278 PMCID: PMC5939064 DOI: 10.1073/pnas.1714938115] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous studies have demonstrated that p21 occupies a central position in cell-cycle regulation and DNA damage responses. As an unstable protein, the regulation of p21 stability has been extensively investigated over the past 20 years. Although p21 degradation by the ubiquitin-proteasome pathway has been well characterized, it is unclear whether ubiquitylated p21 can be recycled. Here, we identify USP11 as a deubiquitylase that directly removes p21 polyubiquitylation and stabilizes p21 protein, revealing that cellular p21 protein is finely regulated by a dynamic balance of USP11-mediated stabilization and proteasome-mediated degradation. Meanwhile, we also provide evidence that the USP11-p21 axis plays a crucial role in G1/S transition under physiological conditions and in regulating the balance between cytostasis and apoptosis. p21WAF1/CIP1 is a broad-acting cyclin-dependent kinase inhibitor. Its stability is essential for proper cell-cycle progression and cell fate decision. Ubiquitylation by the multiple E3 ubiquitin ligase complexes is the major regulatory mechanism of p21, which induces p21 degradation. However, it is unclear whether ubiquitylated p21 can be recycled. In this study, we report USP11 as a deubiquitylase of p21. In the nucleus, USP11 binds to p21, catalyzes the removal of polyubiquitin chains conjugated onto p21, and stabilizes p21 protein. As a result, USP11 reverses p21 polyubiquitylation and degradation mediated by SCFSKP2, CRL4CDT2, and APC/CCDC20 in a cell-cycle–independent manner. Loss of USP11 causes the destabilization of p21 and induces the G1/S transition in unperturbed cells. Furthermore, p21 accumulation mediated by DNA damage is completely abolished in cells depleted of USP11, which results in abrogation of the G2 checkpoint and induction of apoptosis. Functionally, USP11-mediated stabilization of p21 inhibits cell proliferation and tumorigenesis in vivo. These findings reveal an important mechanism by which p21 can be stabilized by direct deubiquitylation, and they pinpoint a crucial role of the USP11-p21 axis in regulating cell-cycle progression and DNA damage responses.
Collapse
|
248
|
Wilson MD, Durocher D. Reading chromatin signatures after DNA double-strand breaks. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0280. [PMID: 28847817 DOI: 10.1098/rstb.2016.0280] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are DNA lesions that must be accurately repaired in order to preserve genomic integrity and cellular viability. The response to DSBs reshapes the local chromatin environment and is largely orchestrated by the deposition, removal and detection of a complex set of chromatin-associated post-translational modifications. In particular, the nucleosome acts as a central signalling hub and landing platform in this process by organizing the recruitment of repair and signalling factors, while at the same time coordinating repair with other DNA-based cellular processes. While current research has provided a descriptive overview of which histone marks affect DSB repair, we are only beginning to understand how these marks are interpreted to foster an efficient DSB response. Here we review how the modified chromatin surrounding DSBs is read, with a focus on the insights gleaned from structural and biochemical studies.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Marcus D Wilson
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Daniel Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
249
|
Rother MB, van Attikum H. DNA repair goes hip-hop: SMARCA and CHD chromatin remodellers join the break dance. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0285. [PMID: 28847822 PMCID: PMC5577463 DOI: 10.1098/rstb.2016.0285] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Proper signalling and repair of DNA double-strand breaks (DSB) is critical to prevent genome instability and diseases such as cancer. The packaging of DNA into chromatin, however, has evolved as a mere obstacle to these DSB responses. Posttranslational modifications and ATP-dependent chromatin remodelling help to overcome this barrier by modulating nucleosome structures and allow signalling and repair machineries access to DSBs in chromatin. Here we recap our current knowledge on how ATP-dependent SMARCA- and CHD-type chromatin remodellers alter chromatin structure during the signalling and repair of DSBs and discuss how their dysfunction impacts genome stability and human disease. This article is part of the themed issue ‘Chromatin modifiers and remodellers in DNA repair and signalling’.
Collapse
Affiliation(s)
- Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
250
|
Isobe SY, Nagao K, Nozaki N, Kimura H, Obuse C. Inhibition of RIF1 by SCAI Allows BRCA1-Mediated Repair. Cell Rep 2018; 20:297-307. [PMID: 28700933 DOI: 10.1016/j.celrep.2017.06.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/24/2017] [Accepted: 06/21/2017] [Indexed: 12/19/2022] Open
Abstract
DNA double-strand breaks (DSBs) are repaired by either the homology-directed repair (HDR) or the non-homologous end-joining (NHEJ) pathway. RIF1 (RAP1-interacting factor homolog) was recently shown to stimulate NHEJ through an interaction with 53BP1 (p53-binding protein 1) phosphorylated at S/TQ sites, but the molecular mechanism underlying pathway choice remains unclear. Here, we show that SCAI (suppressor of cancer cell invasion) binds to 53BP1 phosphorylated at S/TP sites and facilitates HDR. Upon DNA damage, RIF1 immediately accumulates at damage sites and then gradually dissociates from 53BP1 and is subsequently replaced with SCAI. Depletion of SCAI reduces both the accumulation of HDR factors, including BRCA1 (breast cancer susceptibility gene 1), at damage sites and the efficiency of HDR, as detected by a reporter assay system. These data suggest that SCAI inhibits RIF1 function to allow BRCA1-mediated repair, which possibly includes alt-NHEJ and resection-dependent NHEJ in G1, as well as HDR in S/G2.
Collapse
Affiliation(s)
- Shin-Ya Isobe
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Koji Nagao
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Naohito Nozaki
- MAB Institute, Inc., 2070-11 Oosegi, Iida, Nagano 395-0157, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|