201
|
Saito Y, Higuchi Y, Kawakami S, Yamashita F, Hashida M. Immunostimulatory Characteristics Induced by Linear Polyethyleneimine–Plasmid DNA Complexes in Cultured Macrophages. Hum Gene Ther 2009; 20:137-45. [DOI: 10.1089/hum.2008.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Yasunori Saito
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigeru Kawakami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
202
|
He S, Zhang D, Cheng F, Gong F, Guo Y. Applications of RNA interference in cancer therapeutics as a powerful tool for suppressing gene expression. Mol Biol Rep 2009; 36:2153-63. [PMID: 19117119 DOI: 10.1007/s11033-008-9429-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 12/08/2008] [Indexed: 01/07/2023]
Abstract
Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. The history of RNA interference (RNAi) has only a dozen years, however, further studies have revealed that it is a potent method of gene silencing that has developed rapidly over the past few years as a result of its extensive importance in the study of genetics, molecular biology and physiology. RNAi is a natural process by which small interfering RNA (siRNA) duplex directs sequence specific post-transcriptional silencing of homologous genes by binding to its complementary mRNA and triggering its elimination. RNAi has been extensively used as a novel and effective gene silencing tool for the fundamental research of cancer therapeutics, and has displayed great potential in clinical treatment.
Collapse
Affiliation(s)
- Song He
- Molecular Medicine & Tumor Research Center, Chongqing Medical University, Chongqing, China.
| | | | | | | | | |
Collapse
|
203
|
Tf-lipoplexes for neuronal siRNA delivery: A promising system to mediate gene silencing in the CNS. J Control Release 2008; 132:113-23. [DOI: 10.1016/j.jconrel.2008.08.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 06/16/2008] [Accepted: 08/22/2008] [Indexed: 01/15/2023]
|
204
|
Permanent silencing of NKG2A expression for cell-based therapeutics. J Mol Med (Berl) 2008; 87:199-210. [PMID: 19002424 DOI: 10.1007/s00109-008-0417-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 01/05/2023]
Abstract
Natural killer (NK) and T-cell cytotoxicity is significantly reduced by signaling via CD94/NKG2A receptors. High levels of NKG2A on NK cells have been shown to compromise the graft-versus-leukemia effect in hematopoietic stem cell transplantation. We therefore evaluated the functional relevance of NKG2A silencing for the cytotoxic potential of genetically engineered NK and T cells. Lentiviral vectors containing short hairpin RNA (shRNA) sequences targeting NKG2A transcripts were used to transduce NKG2A(+) primary NK and T cells. NKG2A expression levels were measured by flow cytometry and real-time PCR. The effect of NKG2A silencing on the cytolytic potential of NK and T cells was evaluated in cytotoxicity assays using K562 and B lymphoblastoid cells as targets. Granzyme B mRNA transcript levels were detected by real-time PCR. The transduction of inducible RNAi cassettes containing the sequences for shRNAs targeting NKG2A reduced protein expression in NK and T cells by up to 95%. The cytotoxicity assays demonstrated that NKG2A silencing effectively enhanced NK and CD8+ T-cell lysis by up to 40% and 15%, respectively. However, lysis of K562 cells which lack human leukocyte antigen-E, the ligand of NKG2A, was associated with an upregulation of the natural cytotoxicity receptor NKp30 in NKG2A-silenced NK cells. Our data suggest that RNAi-mediated silencing of NKG2A in effector cells could improve the efficacy of cell-based immunotherapies but also show that indirect effects of NKG2A knockdown exist that have to be considered when designing therapeutic protocols with genetically engineered NK or T cells.
Collapse
|
205
|
Collingwood MA, Rose SD, Huang L, Hillier C, Amarzguioui M, Wiiger MT, Soifer HS, Rossi JJ, Behlke MA. Chemical modification patterns compatible with high potency dicer-substrate small interfering RNAs. Oligonucleotides 2008; 18:187-200. [PMID: 18637735 DOI: 10.1089/oli.2008.0123] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dicer-substrate small interfering RNAs (DsiRNAs) are synthetic RNA duplexes that are processed by Dicer into 21-mer species and show improved potency as triggers of RNA interference, particularly when used at low dose. Chemical modification patterns that are compatible with high potency 21-mer small interfering RNAs have been reported by several groups. However, modification patterns have not been studied for Dicer-substrate duplexes. We therefore synthesized a series of chemically modified 27-mer DsiRNAs and correlated modification patterns with functional potency. Some modification patterns profoundly reduced function although other patterns maintained high potency. Effects of sequence context were observed, where the relative potency of modification patterns varied between sites. A modification pattern involving alternating 2'-O-methyl RNA bases was developed that generally retains high potency when tested in different sites in different genes, evades activation of the innate immune system, and improves stability in serum.
Collapse
|
206
|
Eberle F, Giessler K, Deck C, Heeg K, Peter M, Richert C, Dalpke AH. Modifications in small interfering RNA that separate immunostimulation from RNA interference. THE JOURNAL OF IMMUNOLOGY 2008; 180:3229-37. [PMID: 18292547 DOI: 10.4049/jimmunol.180.5.3229] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synthetic small interfering RNA (siRNA) can suppress the expression of endogenous mRNA through RNA interference. It has been reported that siRNA can induce type I IFN production from plasmacytoid dendritic cells, leading to off-target effects. To separate immunostimulation from the desired gene-specific inhibitory activity, we designed RNA strands with chemical modifications at strategic positions of the ribose or nucleobase residues. Substitution of uridine residues by 2'-deoxyuridine or thymidine residues was found to decrease type I IFN production upon in vitro stimulation of human PBMC. Thymidine residues in both strands of a siRNA duplex further decreased immunostimulation. Fortunately, the thymidine residues did not affect gene-silencing activity. In contrast, 2'-O-methyl groups at adenosine and uridine residues reduced both IFN-alpha secretion and gene-silencing activity. Oligoribonucleotides with 2'-O-methyladenosine residues actively inhibited IFN-alpha secretion induced by other immunostimulatory RNAs, an effect not observed for strands with 2'-deoxynucleosides. Furthermore, neither 5-methylcytidine nor 7-deazaguanosine residues in the stimulatory strands affected IFN-alpha secretion, suggesting that recognition does not involve sites in the major groove of duplex regions. The activity data, together with structure prediction and exploratory UV-melting analyses, suggest that immunostimulatory sequences adopt folded structures. The results show that immunostimulation can be suppressed by suitable chemical modifications without losing siRNA potency by introducing seemingly minor structural changes.
Collapse
Affiliation(s)
- Florian Eberle
- Department of Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
207
|
Raemdonck K, Vandenbroucke RE, Demeester J, Sanders NN, De Smedt SC. Maintaining the silence: reflections on long-term RNAi. Drug Discov Today 2008; 13:917-31. [PMID: 18620073 PMCID: PMC7108305 DOI: 10.1016/j.drudis.2008.06.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/16/2008] [Accepted: 06/06/2008] [Indexed: 10/26/2022]
Abstract
Since the demonstration of RNA interference (RNAi) in mammalian cells, considerable research and financial effort has gone towards implementing RNAi as a viable therapeutic platform. RNAi is, without doubt, the most promising strategy for the treatment of human genetic disorders. Because many of the targets proposed for RNAi therapy require chronic treatment, researchers agree that the emphasis must now be placed on the safe and long-term application of RNAi drugs to reap the benefits at last.
Collapse
Affiliation(s)
- Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
208
|
Tang KF, Ren H, Cao J, Zeng GL, Xie J, Chen M, Wang L, He CX. Decreased Dicer expression elicits DNA damage and up-regulation of MICA and MICB. ACTA ACUST UNITED AC 2008; 182:233-9. [PMID: 18644891 PMCID: PMC2483517 DOI: 10.1083/jcb.200801169] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA interference (RNAi) acts constitutively to silence the innate immune response, and innate immunity genes are misregulated in Dicer-deficient Caenorhabditis elegans. Here, we show that inhibition of Dicer expression by RNAi in human cells up-regulates major histocompatibility complex class I–related molecules A and B (MICA and MICB). MICA and MICB are innate immune system ligands for the NKG2D receptor expressed by natural killer cells and activated CD8(+)T cells. We reveal that knockdown of Dicer elicits DNA damage. Up-regulation of MICA and MICB by Dicer knockdown is prevented by pharmacologic or genetic inhibition of DNA damage pathway components, including ataxia telangiectasia mutated (ATM) kinase, ATM- and Rad3-related kinase, or checkpoint kinase 1. Therefore we conclude that up-regulation of MICA and MICB is the result of DNA damage response activation caused by Dicer knockdown. Our results suggest that RNAi is indirectly linked to the human innate immune system via the DNA damage pathway.
Collapse
Affiliation(s)
- Kai-Fu Tang
- Key Laboratory of Molecular Biology for Infectious Diseases of the State Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Global gene expression profiling in cultured cells is strongly influenced by treatment with siRNA-cationic liposome complexes. Pharm Res 2008; 25:2497-504. [PMID: 18581204 DOI: 10.1007/s11095-008-9663-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE The purpose of this study is to determine if the treatment with siRNA-lipoplexes significantly influences on global gene expression in the treated cells. METHODS We investigated global gene expression in a HT1080 cell line by a cDNA microarray. We also evaluated the effect of lipofection on global gene expression by determining the change of the expression of an exogenous gene, green fluorescence protein (GFP), and also determined treatment-related cytotoxicity. RESULTS Treatment of the cells with either siRNA-lipoplexes or cationic liposomes altered the expression of approximately 2,500 genes. When lipoplexes containing non-specific siRNAs were used, GFP expression was enhanced. In this case the effect was independent on the dose and type of siRNA in the formulation. By contrast, when lipoplexes containing a specific siRNA against GFP was used, GFP expression was markedly diminished. These results clearly indicate that an efficient reduction of a targeted gene expression by a specific siRNA is accompanied by a significant alteration of the expression of numerous non-targeted genes. In addition, treatment-related cytotoxicity increased with siRNA- and cationic lipid-doses, but was not dependent on siRNA type. CONCLUSION Non-specific effects of siRNA-lipoplexes may either enhance, attenuate or even fully mask the desired outcomes of siRNA-based biochemical studies and therapies.
Collapse
|
210
|
Central delivery of Dicer-substrate siRNA: a direct application for pain research. Mol Ther 2008; 16:1331-9. [PMID: 18523447 DOI: 10.1038/mt.2008.98] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
RNA interference (RNAi) is gaining acceptance as a potential therapeutic strategy against peripheral disease, and several clinical trials are already underway with 21-mer small-interfering RNA (siRNA) as the active pharmaceutical agent. However, for central affliction like pain, such innovating therapies are limited but nevertheless crucial to improve pain research and management. We demonstrate here the proof-of-concept of the use of 27-mer Dicer-substrate siRNA (DsiRNA) for silencing targets related to CNS disorders such as pain states. Indeed, low dose DsiRNA (0.005 mg/kg) was highly efficient in reducing the expression of the neurotensin receptor-2 (NTS2, a G-protein-coupled receptor (GPCR) involved in ascending nociception) in rat spinal cord through intrathecal (IT) administration formulated with the cationic lipid i-Fect. Along with specific decrease in NTS2 mRNA and protein, our results show a significant alteration in the analgesic effect of a selective-NTS2 agonist, reaching 93% inhibition up to 3-4 days after administration of DsiRNA. In order to ensure that these findings were not biased by unsuspected off-target effects (OTEs), we also demonstrated that treatment with a second NTS2-specific DsiRNA also reversed NTS2-induced antinociception, and that NTS2-specific 27-mer duplexes did not alter signaling through NTS1, a closely related receptor. Altogether, DsiRNAi represents a potent tool for dissecting nociceptive pathways and could further lead to a new class of central active drugs.
Collapse
|
211
|
Gantier MP, Tong S, Behlke MA, Xu D, Phipps S, Foster PS, Williams BRG. TLR7 is involved in sequence-specific sensing of single-stranded RNAs in human macrophages. THE JOURNAL OF IMMUNOLOGY 2008; 180:2117-24. [PMID: 18250417 DOI: 10.4049/jimmunol.180.4.2117] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human TLR7 and 8 (hTLR7/8) have been implicated in the sequence-dependent detection of RNA oligonucleotides in immune cells. Although hTLR7 sequence-specific sensing of short RNAs has been inferred from studies of murine TLR7, this has yet to be established for hTLR7. We found that different short ssRNA sequences selectively induced either TNF-alpha or IFN-alpha in human PBMCs. The sequence-specific TNF-alpha response to ssRNAs observed in PBMCs could be replicated in activated human macrophage-like (THP-1) cells pretreated with IFN-gamma. Surprisingly, suppression of hTLR7 expression by RNA interference in this model reduced sensing of all immunostimulatory ssRNAs tested. Modulation of the relative expression ratio of hTLR7 to hTLR8 in THP-1 cells correlated with differential sensing of immunostimulatory sequences. Furthermore, the sequence-specific IFN-alpha induction profile in human PBMCs was accurately modeled by a sequence-specific activation of murine TLR7 in mouse macrophages. Thus, we demonstrate for the first time that hTLR7 is involved in sequence-specific sensing of ssRNAs. We establish a novel cell model for the prediction of TNF-alpha induction by short RNAs in human macrophages. Our results suggest that differential sequence-specific sensing of RNA oligonucleotides between human and mouse macrophages is due to the modulation of TLR7 sensing by human TLR8.
Collapse
Affiliation(s)
- Michael P Gantier
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
212
|
McNamara JO, Kolonias D, Pastor F, Mittler RS, Chen L, Giangrande PH, Sullenger B, Gilboa E. Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest 2008; 118:376-86. [PMID: 18060045 DOI: 10.1172/jci33365] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 10/29/2007] [Indexed: 12/14/2022] Open
Abstract
4-1BB is a major costimulatory receptor that promotes the survival and expansion of activated T cells. Administration of agonistic anti-4-1BB Abs has been previously shown to enhance tumor immunity in mice. Abs are cell-based products posing significant cost, manufacturing, and regulatory challenges. Aptamers are oligonucleotide-based ligands that exhibit specificity and avidity comparable to, or exceeding, that of Abs. To date, various aptamers have been shown to inhibit the function of their cognate target. Here, we have described the development of an aptamer that binds 4-1BB expressed on the surface of activated mouse T cells and shown that multivalent configurations of the aptamer costimulated T cell activation in vitro and mediated tumor rejection in mice. Because aptamers can be chemically synthesized, manufacturing and the regulatory approval process should be substantially simpler and less costly than for Abs. Agonistic aptamers could therefore represent a superior alternative to Abs for the therapeutic manipulation of the immune system.
Collapse
Affiliation(s)
- James O McNamara
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Higuchi Y, Kawakami S, Hashida M. [Development of cell-selective targeting systems of NFkappaB decoy for inflammation therapy]. YAKUGAKU ZASSHI 2008; 128:209-18. [PMID: 18239368 DOI: 10.1248/yakushi.128.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NFkappaB regulate several inflammatory related molecules and evoke immune and inflammatory response by several stimuli, therefore inhibition of NFkappaB activation would be a novel therapeutic strategy. To date, there are many conventional drugs including nonsteroldal or steroldal anti-inflammatory drugs or immune suppressors etc. were known to inhibit NFkappaB activation, however, several side effects were also reported. Recently, double stranded oligonucleotide including NFkappaB binding sequence, called NFkappaB decoy, was developed to prevent NFkappaB activation, which is powerful tool in a new class of anti-gene strategy for molecular therapy with low side effect. However, NFkappaB decoy is easily degraded by nuclease and rapidly excreted to urine, therefore it is necessary to develop carrier for NFkappaB decoy therapy. Here, we shall review delivery system for NFkappaB decoy and introduce our cell-selective delivery system for NFkappaB decoy using sugar decorated cationic liposomes.
Collapse
Affiliation(s)
- Yuriko Higuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | |
Collapse
|
214
|
Zamanian-Daryoush M, Marques JT, Gantier MP, Behlke MA, John M, Rayman P, Finke J, Williams BR. Determinants of Cytokine Induction by Small Interfering RNA in Human Peripheral Blood Mononuclear Cells. J Interferon Cytokine Res 2008; 28:221-33. [DOI: 10.1089/jir.2007.0090] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Maryam Zamanian-Daryoush
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Joao T. Marques
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208
| | - Michael P. Gantier
- Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | | - Matthias John
- Biology & Bioanalytics, Alnylam Europe AG, 95326 Kulmbach, Germany. Current address: Roche Kulmbach GmbH, D-95326 Kulmbach, Germany
| | - Patricia Rayman
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - James Finke
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Bryan R.G. Williams
- Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
215
|
Stewart CK, Li J, Golovan SP. Adverse effects induced by short hairpin RNA expression in porcine fetal fibroblasts. Biochem Biophys Res Commun 2008; 370:113-7. [PMID: 18358831 DOI: 10.1016/j.bbrc.2008.03.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Accepted: 03/10/2008] [Indexed: 12/23/2022]
Abstract
RNA interference is a recent, gene silencing technique that could be extremely valuable in studying gene function, treating diseases, and developing novel animal models for human diseases. Here, we investigated the feasibility of applying shRNA-mediated RNA interference in fetal fibroblasts for silencing of the myostatin gene and investigate adverse effects of RNAi. We report that up to 97% silencing of myostatin mRNA was achieved using shRNA constructs in transiently and stably transfected fetal fibroblasts (p<0.05). At the same time we also demonstrate that high level of shRNA expression resulted in 10- to 1000-fold induction of interferon responsive genes (OAS1, IFN-beta) (p<0.05). In addition we also report novel adverse effect of shRNA expression in stably transfected cells-interference with microRNA processing/transport which led to 500-fold increase in the level of miR21 precursors (p<0.05). Reduction of these side effects will be essential to obtain long term stable RNAi silencing.
Collapse
Affiliation(s)
- Candace K Stewart
- Department of Animal and Poultry Science, University of Guelph, 50 Stone Road, Guelph, Ont., Canada N1G 2W1
| | | | | |
Collapse
|
216
|
Affiliation(s)
- Francis Szoka
- Department of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0446, USA.
| |
Collapse
|
217
|
Advances in Molecular and Cellular Therapies for Hearing Loss. Mol Ther 2008; 16:224-236. [DOI: 10.1038/sj.mt.6300351] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 10/10/2007] [Indexed: 02/07/2023] Open
|
218
|
Competition potency of siRNA is specified by the 5′-half sequence of the guide strand. Biochem Biophys Res Commun 2008; 367:78-83. [DOI: 10.1016/j.bbrc.2007.12.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 12/11/2007] [Indexed: 12/24/2022]
|
219
|
Chhabra A, Chakraborty NG, Mukherji B. Silencing of endogenous IL-10 in human dendritic cells leads to the generation of an improved CTL response against human melanoma associated antigenic epitope, MART-1 27-35. Clin Immunol 2008; 126:251-9. [PMID: 18249038 DOI: 10.1016/j.clim.2007.11.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/22/2007] [Accepted: 11/05/2007] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DC) present antigenic epitopes to and activate T cells. They also polarize the ensuing T cell response to Th1 or Th2 type response, depending on their cytokine production profile. For example, IL-12 producing DC generate Th1 type T cell response whereas IL-10 producing DC is usually tolerogenic. Different strategies--such as the use of cytokines and anti-cytokine antibodies, dominant negative forms of protein, anti-sense RNA etc.--have been employed to influence the cytokine synthetic profile of DC as well as to make DC more immunogenic. Utilizing GFP expressing recombinant adenoviruses in association with lipid-mediated transfection of siRNA, we have silenced the endogenous IL-10 gene in DC. We show that IL-10 gene silenced DC produces more IL-12 and also generates a better cytolytic T cell response against the human melanoma associated epitope, MART-1(27-35), in vitro. We also show that the GFP expressing adenoviral vector can be used to optimize the parameters for siRNA delivery in primary cells and show that RNA interference methodology can efficiently knock down virus encoded genes transcribed at very high multiplicity of infection in DC.
Collapse
Affiliation(s)
- Arvind Chhabra
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA.
| | | | | |
Collapse
|
220
|
Langton S, Gudas LJ. CYP26A1 knockout embryonic stem cells exhibit reduced differentiation and growth arrest in response to retinoic acid. Dev Biol 2007; 315:331-54. [PMID: 18241852 DOI: 10.1016/j.ydbio.2007.12.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 12/13/2007] [Accepted: 12/17/2007] [Indexed: 01/08/2023]
Abstract
CYP26A1, a cytochrome P450 enzyme, metabolizes all-trans-retinoic acid (RA) into polar metabolites, e.g. 4-oxo-RA and 4-OH-RA. To determine if altering RA metabolism affects embryonic stem (ES) cell differentiation, we disrupted both alleles of Cyp26a1 by homologous recombination. CYP26a1(-/-) ES cells had a 11.0+/-3.2-fold higher intracellular RA concentration than Wt ES cells after RA treatment for 48 h. RA-treated CYP26A1(-/-) ES cells exhibited 2-3 fold higher mRNA levels of Hoxa1, a primary RA target gene, than Wt ES cells. Despite increased intracellular RA levels, CYP26a1(-/-) ES cells were more resistant than Wt ES cells to RA-induced proliferation arrest. Transcripts for parietal endodermal differentiation markers, including laminin, J6(Hsp 47), and J31(SPARC, osteonectin) were expressed at lower levels in RA-treated CYP26a1(-/-) ES cells, indicating that the lack of CYP26A1 activity inhibits RA-associated differentiation. Microarray analyses revealed that RA-treated CYP26A1(-/-) ES cells exhibited lower mRNA levels than Wt ES cells for genes involved in differentiation, particularly in neural (Epha4, Pmp22, Nrp1, Gap43, Ndn) and smooth muscle differentiation (Madh3, Nrp1, Tagln Calponin, Caldesmon1). In contrast, genes involved in the stress response (e.g. Tlr2, Stk2, Fcgr2b, Bnip3, Pdk1) were expressed at higher levels in CYP26A1(-/-) than in Wt ES cells without RA. Collectively, our results show that CYP26A1 activity regulates intracellular RA levels, cell proliferation, transcriptional regulation of primary RA target genes, and ES cell differentiation to parietal endoderm.
Collapse
Affiliation(s)
- Simne Langton
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, Rm. E-409, New York, NY 10021, USA
| | | |
Collapse
|
221
|
Gantier MP, Baugh JA, Donnelly SC. Nuclear transcription of long hairpin RNA triggers innate immune responses. J Interferon Cytokine Res 2007; 27:789-97. [PMID: 17892400 DOI: 10.1089/jir.2006.0152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RNA interference (RNAi) is one of the most promising tools for deciphering the human genome and has great therapeutic potential. However, its high target specificity limits its efficiency for therapeutic protection from viruses with high rates of genetic mutation. This limitation may be overcome by the expression of long hairpin RNAs (lhRNAs). Indeed, lhRNAs have been shown recently to have increased efficacy over short interfering RNAs (siRNAs) as protective antiviral agents. Here, we investigate the expression of lhRNAs and demonstrate unintended effects. We show that overexpressed lhRNAs are exported to the cytoplasm. As a consequence, we detect activation of innate immune signaling pathways by lhRNAs. With growing concerns about the complexity of cytoplasmic detection of dsRNAs by the innate immune machinery, this work highlights the need for closer scrutiny when using lhRNAs as potential antiviral agents.
Collapse
Affiliation(s)
- Michael P Gantier
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, and St. Vincent's University Hospital, Dublin, Ireland
| | | | | |
Collapse
|
222
|
Homma Y, Cao S, Shi X, Ma X. The Th2 transcription factor c-Maf inhibits IL-12p35 gene expression in activated macrophages by targeting NF-kappaB nuclear translocation. J Interferon Cytokine Res 2007; 28:469-76. [PMID: 17892401 DOI: 10.1089/jir.2007.0006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The inflammatory response of macrophages to infectious agents is a highly dynamic and orchestrated process involving the release of a variety of inflammatory mediators, including interleukin-12 (IL-12), as a consequence of the recognition of the pathogens. Regulation of IL-12 gene expression by the anti-inflammatory cytokine IL-10 represents a major homeostatic process underlying host-pathogen and host-self interactions. Our group first reported that the Th2-specific transcription factor c-Maf is expressed also in macrophages treated with lipopolysaccharide (LPS) and IL-10. When overexpressed, c-Maf can potently suppress IL-12 production. However, c-Maf does not appear to be a physiologic regulator of IL-12p40 gene transcription because p40 production is not dysregulated in c-Maf-deficient macrophages. In this study, we investigated the role of c-Maf in regulation of the transcription of the p35 gene, which encodes the chain that is rate limiting in the synthesis of the heterodimeric IL-12. We report that c-Maf is a physiologic modulator of IL-12p35 gene expression and IL-12p70 production. We identify a novel NF-kappaB element within the proximal p35 promoter and show that c-Maf inhibits p35 transcription by antagonizing the effects of NF-kappaB, especially c-Rel, on p35 activation. It does so not by directly interacting with the target DNA but by interfering with the nuclear localization of NF-kappaB c-Rel. This study contributes to our understanding of the molecular basis of the homeostatic regulation of IL-12 production by c-Maf, which plays a dual role both in the function of antigen-presenting cells (APCs) and in T helper cell differentiation.
Collapse
Affiliation(s)
- Yoichiro Homma
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
223
|
siRNA as a molecular tool for use in Aspergillus niger. Biotechnol Lett 2007; 30:885-90. [PMID: 18066687 DOI: 10.1007/s10529-007-9614-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
Gene silencing using siRNA has been examined in the industrially-important fungus, Aspergillus niger. Protoplasts of an A. niger strain containing a single genomic copy of the Escherichia coli uidA gene, encoding beta-glucuronidase (GUS), under control of the A. niger glaA promoter at the same genomic locus, were exposed to siRNA targeted against the uidA gene. Down-regulation of uidA mRNA and GUS activity by siRNA was observed in mycelia that developed from the protoplasts. The down-regulation was transient and was not carried over to conidiation. We concluded that gene silencing by siRNA provides a relatively quick method for analysis of gene function in A. niger.
Collapse
|
224
|
Rhoads RE, Dinkova TD, Jagus R. Approaches for analyzing the differential activities and functions of eIF4E family members. Methods Enzymol 2007; 429:261-97. [PMID: 17913628 DOI: 10.1016/s0076-6879(07)29013-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The translational initiation factor eIF4E binds to the m(7)G-containing cap of mRNA and participates in recruitment of mRNA to ribosomes for protein synthesis. eIF4E also functions in nucleocytoplasmic transport of mRNA, sequestration of mRNA in a nontranslatable state, and stabilization of mRNA against decay in the cytosol. Multiple eIF4E family members have been identified in a wide range of organisms that includes plants, flies, mammals, frogs, birds, nematodes, fish, and various protists. This chapter reviews methods that have been applied to learn the biochemical properties and physiological functions that differentiate eIF4E family members within a given organism. Much has been learned to date about approaches to discover new eIF4E family members, their in vitro properties (cap binding, stimulation of cell-free translation systems), tissue and developmental expression patterns, protein-binding partners, and their effects on the translation or repression of specific subsets of mRNA. Despite these advances, new eIF4E family members continue to be found and new physiological roles discovered.
Collapse
Affiliation(s)
- Robert E Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | | | | |
Collapse
|
225
|
Abstract
TLRs (Toll-like receptors) are a family of innate immune receptors that induce protective immune responses against infections. Single-stranded viral RNA and bacterial DNA containing unmethylated CpG motifs are the ligands for TLR7 and TLR8 and 9 respectively. We have carried out extensive structure–activity relationship studies of DNA- and RNA-based compounds to elucidate the impact of nucleotide motifs and structures on these TLR-mediated immune responses. These studies have led us to design novel DNA- and RNA-based compounds, which act as potent agonists of TLR9 and TLR7 and 8 respectively. These novel synthetic agonists produce different immune response profiles depending on the structures and nucleotide motifs present in them. The ability to modulate TLR-mediated immune responses with these novel DNA- and RNA-based agonists in a desired fashion may allow targeting a broad range of diseases, including cancers, asthma, allergies and infections, alone or in combination with other therapeutic agents, and their use as adjuvants with vaccines. IMO-2055, our first lead candidate, is a TLR9 agonist that is currently in clinical evaluation in oncology patients. A second candidate, IMO-2125, is also a TLR9 agonist that has been shown to induce high and sustained levels of IFN (interferon) in non-human primates and is being evaluated in HepC-infected human subjects.
Collapse
|
226
|
Abstract
RNA interference (RNAi) is an evolutionally conserved gene silencing mechanism present in a variety of eukaryotic species. RNAi uses short double-stranded RNA (dsRNA) to trigger degradation or translation repression of homologous RNA targets in a sequence-specific manner. This system can be induced effectively in vitro and in vivo by direct application of small interfering RNAs (siRNAs), or by expression of short hairpin RNA (shRNA) with non-viral and viral vectors. To date, RNAi has been extensively used as a novel and effective tool for functional genomic studies, and has displayed great potential in treating human diseases, including human genetic and acquired disorders such as cancer and viral infections. In the present review, we focus on the recent development in the use of RNAi in the prevention and treatment of viral infections. The mechanisms, strategies, hurdles and prospects of employing RNAi in the pharmaceutical industry are also discussed.
Collapse
Affiliation(s)
- Yan Ma
- Stanley Ho Centre for Emerging Infectious Diseases, and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | |
Collapse
|
227
|
Compagno D, Merle C, Morin A, Gilbert C, Mathieu JRR, Bozec A, Mauduit C, Benahmed M, Cabon F. SIRNA-directed in vivo silencing of androgen receptor inhibits the growth of castration-resistant prostate carcinomas. PLoS One 2007; 2:e1006. [PMID: 17925854 PMCID: PMC1994591 DOI: 10.1371/journal.pone.0001006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 09/18/2007] [Indexed: 11/30/2022] Open
Abstract
Background Prostate carcinomas are initially dependent on androgens, and castration or androgen antagonists inhibit their growth. After some time though, tumors become resistant and recur with a poor prognosis. The majority of resistant tumors still expresses a functional androgen receptor (AR), frequently amplified or mutated. Methodology/Principal Findings To test the hypothesis that AR is not only expressed, but is still a key therapeutic target in advanced carcinomas, we injected siRNA targeting AR into mice bearing exponentially growing castration-resistant tumors. Quantification of siRNA into tumors and mouse tissues demonstrated their efficient uptake. This uptake silenced AR in the prostate, testes and tumors. AR silencing in tumors strongly inhibited their growth, and importantly, also markedly repressed the VEGF production and angiogenesis. Conclusions/Significance Our results demonstrate that carcinomas resistant to hormonal manipulations still depend on the expression of the androgen receptor for their development in vivo. The siRNA-directed silencing of AR, which allows targeting overexpressed as well as mutated isoforms, triggers a strong antitumoral and antiangiogenic effect. siRNA-directed silencing of this key gene in advanced and resistant prostate tumors opens promising new therapeutic perspectives and tools.
Collapse
Affiliation(s)
- Daniel Compagno
- CNRS, University Paris-Sud, FRE2944, Epigenetics and Cancer, Institut André Lwoff, Villejuif, France
| | - Carole Merle
- CNRS, University Paris-Sud, FRE2944, Epigenetics and Cancer, Institut André Lwoff, Villejuif, France
| | - Aurélie Morin
- CNRS, University Paris-Sud, FRE2944, Epigenetics and Cancer, Institut André Lwoff, Villejuif, France
| | - Cristèle Gilbert
- CNRS, University Paris-Sud, FRE2944, Epigenetics and Cancer, Institut André Lwoff, Villejuif, France
| | - Jacques R. R. Mathieu
- CNRS, University Paris-Sud, FRE2944, Epigenetics and Cancer, Institut André Lwoff, Villejuif, France
| | | | | | | | - Florence Cabon
- CNRS, University Paris-Sud, FRE2944, Epigenetics and Cancer, Institut André Lwoff, Villejuif, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
228
|
Weisschuh N, Alavi MV, Bonin M, Wissinger B. Identification of genes that are linked with optineurin expression using a combined RNAi–microarray approach. Exp Eye Res 2007; 85:450-61. [PMID: 17663987 DOI: 10.1016/j.exer.2007.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/03/2007] [Accepted: 06/15/2007] [Indexed: 11/26/2022]
Abstract
Mutations in the optineurin gene are associated with open-angle glaucoma. Its gene product is a 74 kDa protein implicated in several cellular pathways. Although a range of interacting partners of optineurin have been identified, its physiological and pathophysiological role remains unclear. To understand comprehensive molecular mechanisms by which optineurin mediates, we identified genome-wide molecular changes upon silencing optineurin in HeLa cells by using microarray technology. A series of differentially expressed genes due to reduced expression of optineurin was identified. Network analyses showed that most of the functional categories of identified genes are associated with cellular function and maintenance as well as cellular assembly and organization. From these networks 22 genes were selected for confirmation by quantitative real-time PCR (Q-RT-PCR). To eliminate false-positive results due to off-target effects, a second siRNA was used to transfect HeLa cells and candidate genes were re-analyzed in these samples applying Q-RT-PCR. Several genes turned out to be differentially expressed in both siRNA experiments and changes in expression were confirmed on protein level. Coupling RNAi knockdown with microarray and Q-RT-PCR analyses provided several candidate genes that are linked with optineurin expression and confirms the assumption that optineurin is involved in trafficking processes and cellular morphology.
Collapse
Affiliation(s)
- Nicole Weisschuh
- Molecular Genetics Laboratory, University Eye Hospital, D-72076 Tuebingen, Germany.
| | | | | | | |
Collapse
|
229
|
Kawakami S, Hashida M. Targeted delivery systems of small interfering RNA by systemic administration. Drug Metab Pharmacokinet 2007; 22:142-51. [PMID: 17603214 DOI: 10.2133/dmpk.22.142] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNA interference (RNAi) is induced by 21-25 nucleotide, double-stranded small interfering RNA (siRNA), which is incorporated into the RNAi-induced silencing complex (RISC) and is a guide for cleavage of the complementary target mRNA in the cytoplasm. There are many obstacles to in vivo delivery of siRNAs, such as degradation by enzymes in blood, interaction with blood components and non-specific uptake by the cells, which govern biodistribution in the body. In order to achieve the knockdown by siRNAs in vivo, many delivery systems of siRNAs based on physical and pharmaceutical approaches have been proposed. In addition, the immune responses of siRNA must be taken into account when considering the application of siRNAs to in vivo therapy. This review focuses on recent reports about delivery systems and immune responses of siRNAs.
Collapse
Affiliation(s)
- Shigeru Kawakami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | | |
Collapse
|
230
|
De Paula D, Bentley MVLB, Mahato RI. Effect of iNOS and NF-kappaB gene silencing on beta-cell survival and function. J Drug Target 2007; 15:358-69. [PMID: 17541845 DOI: 10.1080/10611860701349695] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Type I diabetes results from beta-cell death and dysfunction, induced by infiltration of immune cells and local production of inflammatory cytokines. Therefore, we investigated the effect of iNOS and NF-kappaB gene silencing on beta-cell survival and function. METHODS Rat insulinoma INS-1E cells were transfected with chemically synthesized siRNA after complex formation with Lipofectamine 2000. Cells were then treated with a cocktail of inflammatory cytokines (IL-1beta+ TNF-alpha+ IFN-alpha), and glucose stimulated-insulin response and viability were determined. iNOS and NF-kappaB gene expression was assessed at mRNA level by real time RT-PCR. The effect of gene silencing was also correlated with cytokine-induced NO production and apoptosis. RESULTS Transfection of INS-1E cells with siRNAs silenced iNOS and NF-kappaB gene expression and reduced NO production in a sequence-specific manner without causing significant loss of cell viability and function. However, the abrogation of NO production did not prevent INS-1E cells from cytokine-induced apoptosis, suggesting that this event may not be totally dependent on NO production. CONCLUSION The gene silencing approach presented here is capable of attenuating the effects of inflammatory cytokines, such as iNOS expression and NO production and it will help to identify new target genes to improve islet transplantation.
Collapse
Affiliation(s)
- Daniel De Paula
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | | | | |
Collapse
|
231
|
Abstract
Double-stranded RNA (dsRNA) has long been recognized as a central component of the interferon (IFN) system. It was originally characterized as a key mediator of IFN induction in response to virus infection. Subsequently, it was identified as a prime activator of the antiviral response. In recent years the discovery of the RNA interference (RNAi) pathway in mammals has renewed interest in dsRNA-mediated cellular responses. This has coincided with the identification of key components of the IFN induction pathway. Here, we present an overview of the current knowledge of dsRNA-mediated pathways in mammalian cells and introduce a link between these pathways and application of RNAi.
Collapse
Affiliation(s)
- Michael P Gantier
- Monash Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | | |
Collapse
|
232
|
Xu Y, Mirmalek-Sani SH, Lin F, Zhang J, Oreffo ROC. Adipocyte differentiation induced using nonspecific siRNA controls in cultured human mesenchymal stem cells. RNA (NEW YORK, N.Y.) 2007; 13:1179-83. [PMID: 17556710 PMCID: PMC1924906 DOI: 10.1261/rna.527207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
RNA interference (RNAi) is gene silencing induced by double-stranded RNA of 21-23 nucleotides in length, termed small interfering RNA, or siRNA. RNAi-based techniques have been widely applied to elucidate gene function, identify drug targets, and used in trials as a promising adjunct to silence disease-causing genes. However, emerging evidence suggests unexpected changes in expression of untargeted genes as a consequence of an off-target effect by RNAi in mammalian cells. To date, our understanding of such effects on stem cells is limited. We transfected human fetal femur-derived mesenchymal stem cells using commercially available nonspecific siRNA controls and examined adipocyte differentiation in the cells using morphology, histochemistry, and quantitative real-time PCR to examine the expression of key genes for adipogenic or osteogenic differentiation. We report here the induction of adipocyte differentiation in human mesenchymal stem cells using nonspecific siRNAs raising concerns as to the specificity of RNAi in stem cells and, critically, a need to understand and delineate the rules governing the specificity of RNAi.
Collapse
Affiliation(s)
- Yunhe Xu
- Bone and Joint Research Group, Developmental Origins of Health and Disease, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | | | | | | | | |
Collapse
|
233
|
Abdelgany A, Wood M, Beeson D. Hairpin DNAzymes: a new tool for efficient cellular gene silencing. J Gene Med 2007; 9:727-38. [PMID: 17582227 DOI: 10.1002/jgm.1061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND RNA-based gene silencing is potentially a powerful therapeutic strategy. Catalytic 10-23 DNAzymes bind to target RNA by complimentary sequence arms on a Watson-Crick basis and thus can be targeted to effectively cleave specific mRNA species. However, for in vivo applications it is necessary to stabilise DNAzymes against nucleolytic attack. Chemical modifications can be introduced into the binding arms to increase stability but these may alter catalytic activity and in some cases increase cell toxicity. METHODS We designed novel 10-23 DNAzyme structures that incorporate stem-loop hairpins at either end on the DNAzyme binding arms. The catalytic activity of hairpin DNAzymes (hpDNAzyme) were tested in vitro against 32P-labelled cRNA encoding the muscle acetylcholine receptor (AChR) alpha-subunit. Resistance of hpDNAzymes to nucleolytic degradation was tested by incubation of the hpDNAzymes with Bal-31, DNase1 or HeLa cell extract. Gene silencing by hpDNAzymes was assessed by measuring reduced fluorescence from DsRed2 and EGFP reporters in cell culture systems, and reduced 125I-alpha-bungarotoxin binding in cells transfected with cDNA encoding the AChR. RESULTS We show that hpDNAzymes show remarkable resistance to nucleolytic degradation, and demonstrate that in cell culture systems the hpDNAzymes are far more effective than standard 10-23 DNAzymes in down-regulating protein expression from target mRNA species. CONCLUSION hpDNAzymes provide new molecular tools that, without chemical modification, give highly efficient gene silencing in cells, and may have potential therapeutic applications.
Collapse
MESH Headings
- Blotting, Western
- Bungarotoxins/metabolism
- Cells, Cultured
- DNA, Catalytic/physiology
- DNA, Single-Stranded/physiology
- Enzyme Stability
- Flow Cytometry
- Fluorescence
- Gene Silencing
- HeLa Cells
- Humans
- Kidney/metabolism
- Luminescent Proteins/antagonists & inhibitors
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Muscles/metabolism
- RNA, Complementary/chemistry
- RNA, Complementary/genetics
- RNA, Complementary/metabolism
- Receptors, Cholinergic/chemistry
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/metabolism
- Transfection
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Amr Abdelgany
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | | |
Collapse
|
234
|
Gearing AJH. Targeting toll‐like receptors for drug development: a summary of commercial approaches. Immunol Cell Biol 2007; 85:490-4. [PMID: 17667933 DOI: 10.1038/sj.icb.7100102] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) play a fundamental role in recognizing infectious and noxious agents as well as products of tissue damage. They are capable of initiating both protective and damaging inflammatory and immune responses. Several biotechnology and pharmaceutical companies have programmes to develop new drugs that are either: agonists of TLRs to enhance immune responses against tumours and infectious agents, or to correct allergic responses; or antagonists designed to reduce inflammation due to infection or autoimmune disease. This article reviews the commercial approaches being undertaken to develop new TLR drugs.
Collapse
Affiliation(s)
- Andrew J H Gearing
- Biocomm Squared and Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
235
|
Cardoso ALC, Simões S, de Almeida LP, Pelisek J, Culmsee C, Wagner E, Pedroso de Lima MC. siRNA delivery by a transferrin-associated lipid-based vector: a non-viral strategy to mediate gene silencing. J Gene Med 2007; 9:170-83. [PMID: 17351968 DOI: 10.1002/jgm.1006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND RNA interference provides a powerful technology for specific gene silencing. Therapeutic applications of small interfering RNA (siRNA) however require efficient vehicles for stable complexation, protection, and extra- and intracellular delivery of these nucleic acids. Here, we evaluated the potential of transferrin (Tf)-associated liposomes for siRNA complexation and gene silencing. METHODS Cationic liposomes composed of DOTAP : Cholesterol associated with or without transferrin (Tf) were complexed with siRNA at different lipid/siRNA charge ratios. Complexation and protection of siRNA from enzymatic degradation was assessed with the PicoGreen intercalation assay and gel electrophoresis. Cellular internalization of these siRNA Tf-lipoplexes was detected by confocal microscopy. Luciferase assay, immunoblot and fluorescence-activated cell sorting (FACS) analysis were used to evaluate reporter gene silencing in Huh-7 hepatocarcinoma and U-373 glioma cells. c-Jun knockdown in HT-22 cells was evaluated by quantitative real-time polymerase chain reaction (RT-PCR). Cytotoxicity of the siRNA complexes was assessed by Alamar blue, lactate dehydrogenase and MTT assays. RESULTS Complexation of siRNA with the cationic liposomes in the presence of Tf results in the formation of stable particles and prevents serum-mediated degradation. Confocal microscopy showed fast cellular internalization of the Tf-lipoplexes via endocytosis. In the GFP glioma cells Tf-lipoplexes showed enhanced gene silencing at minimum toxicity in comparison to Tf-free lipoplexes. Targeting luciferase in the hepatocarcinoma cell line resulted in more than 70% reduction of luciferase activity, while in HT-22 cells 50% knockdown of endogenous c-Jun resulted in a significant protection from glutamate-mediated toxicity. CONCLUSIONS Cationic liposomes associated with Tf form stable siRNA lipoplexes with reduced toxicity and enhanced specific gene knockdown activity compared to conventional lipoplexes. Thus, such formulations may constitute efficient delivery systems for therapeutic siRNA applications.
Collapse
Affiliation(s)
- A L C Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
236
|
Böldicke T. Blocking translocation of cell surface molecules from the ER to the cell surface by intracellular antibodies targeted to the ER. J Cell Mol Med 2007; 11:54-70. [PMID: 17367501 PMCID: PMC4401220 DOI: 10.1111/j.1582-4934.2007.00002.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intracellular antibodies (intrabodies) constitute a potent tool to neutralize the function of target proteins inside specific cell compartments (cytosol, nucleus, mitochondria and ER). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals and complements or replaces knockdown techniques such as antisense-RNA, RNAi and RNA aptamers. This article focuses on intrabodies targeted to the ER. Intracellular anti-bodies expressed and retained inside the ER (ER intrabodies) are shown to be highly efficient in blocking the translocation of secreted and cell surface molecules from the ER to the cell surface.The advantage of ER intrabodies over cytoplasmic intrabodies is that they are correctly folded and easier to select. A particular advantage of the intrabody technology over existing ones is the possibility of inhibiting selectively post-translational modifications of proteins.The main applications of ER intrabodies so far have been (i) inactivation of oncogenic receptors and (ii) functional inhibition of virus envelope proteins and virus-receptor molecules on the surface of host cells.In cancer research, the number of in vivo mouse models for evaluation of the therapeutic potential of intrabodies is increasing.In the future, endosomal localized receptors involved in bacterial and viral infections, intracellular oncogenic receptors and enzymes involved in glycosylation of tumour antigens might be new targets for ER intrabodies.
Collapse
Affiliation(s)
- Thomas Böldicke
- Helmholtz Centre for Infection Research, Department of Gene Regulation and Differentiation,Braunschweig, Germany.
| |
Collapse
|
237
|
Abstract
MicroRNAs (miRNAs) regulate protein-coding genes post transcriptionally in higher eukaryotes. Argonaute proteins are important in miRNA regulation and are also implicated in epigenetic mechanisms such as histone modifications and DNA methylation. Here, we review miRNA regulation and outline its connections to epigenetics.
Collapse
Affiliation(s)
- Pål Saetrom
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
238
|
Kim SI, Shin D, Choi TH, Lee JC, Cheon GJ, Kim KY, Park M, Kim M. Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol Ther 2007; 15:1145-52. [PMID: 17440441 DOI: 10.1038/sj.mt.6300168] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tissue-targeted delivery of small interfering RNA (siRNA) must be achieved before RNA interference (RNAi) technology can be used in practical therapeutic approaches. In this study, the potential of apolipoprotein A-I (apo A-I) for the systemic delivery of nucleic acids to the liver is demonstrated using real-time in vivo imaging. As a proof of concept, synthetic siRNAs against hepatitis B virus (HBV) were formulated into complexes of apo A-I and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/cholesterol (DTC-Apo) and injected intravenously (i.v.) into a mouse model carrying replicating HBV. We show that administration of these nanoparticles can significantly reduce viral protein expression by receptor-mediated endocytosis. The advantages of the apo A-I-mediated siRNA delivery method are its liver specificity, its effectiveness at low doses (< or = 2 mg/kg) in only a single treatment, and its persistent antiviral effect up to 8 days. The liver-targeted gene silencing was also shown by in vivo images, in which bioluminescent signals emitted from the liver were efficiently reduced after i.v. administration of luciferase-specific siRNA and DTC-Apo lipoplex. Thus, our unique approach to siRNA delivery creates a foundation for the development of a new class of promising therapeutics against hepatitis viruses or hepatocyte genes related to tumor growth.
Collapse
Affiliation(s)
- Soo In Kim
- Immunology and Virology Group, Mogam Biotechnology Research Institute, Yongin-si, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
239
|
De Paula D, Bentley MVLB, Mahato RI. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA (NEW YORK, N.Y.) 2007; 13:431-56. [PMID: 17329355 PMCID: PMC1831859 DOI: 10.1261/rna.459807] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
RNA interference (RNAi) is an evolutionarily conserved process by which double-stranded small interfering RNA (siRNA) induces sequence-specific, post-transcriptional gene silencing. Unlike other mRNA targeting strategies, RNAi takes advantage of the physiological gene silencing machinery. The potential use of siRNA as therapeutic agents has attracted great attention as a novel approach for treating severe and chronic diseases. RNAi can be achieved by either delivery of chemically synthesized siRNAs or endogenous expression of small hairpin RNA, siRNA, and microRNA (miRNA). However, the relatively high dose of siRNA required for gene silencing limits its therapeutic applications. This review discusses several strategies to improve therapeutic efficacy as well as to abrogate off-target effects and immunostimulation caused by siRNAs. There is an in-depth discussion on various issues related to the (1) mechanisms of RNAi, (2) methods of siRNA production, (3) barriers to RNAi-based therapies, (4) biodistribution, (5) design of siRNA molecules, (6) chemical modification and bioconjugation, (7) complex formation with lipids and polymers, (8) encapsulation into lipid particles, and (9) target specificity for enhanced therapeutic effectiveness.
Collapse
Affiliation(s)
- Daniel De Paula
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | | | | |
Collapse
|
240
|
Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 2007; 59:75-86. [PMID: 17449137 PMCID: PMC1978219 DOI: 10.1016/j.addr.2007.03.005] [Citation(s) in RCA: 642] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 03/04/2007] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) was discovered less than a decade ago and already there are human clinical trials in progress or planned. A major advantage of RNAi versus other antisense based approaches for therapeutic applications is that it utilizes cellular machinery that efficiently allows targeting of complementary transcripts, often resulting in highly potent down-regulation of gene expression. Despite the excitement about this remarkable biological process for sequence specific gene regulation, there are a number of hurdles and concerns that must be overcome prior to making RNAi a real therapeutic modality, which include off-target effects, triggering of type I interferon responses, and effective delivery in vivo. This review discusses mechanistic aspects of RNAi, the potential problem areas and solutions and therapeutic applications. It is anticipated that RNAi will be a major therapeutic modality within the next several years, and clearly warrants intense investigation to fully understand the mechanisms involved.
Collapse
Affiliation(s)
- Lars Aagaard
- Division of Molecular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
241
|
Akhtar S, Benter I. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv Drug Deliv Rev 2007; 59:164-82. [PMID: 17481774 DOI: 10.1016/j.addr.2007.03.010] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 03/04/2007] [Indexed: 01/05/2023]
Abstract
RNA interference (RNAi) is an evolutionary conserved cellular process for the regulation of gene expression. In mammalian cells, RNAi is induced via short (21-23 nt) duplexes of RNA, termed small interfering RNA (siRNA), that can elicit highly sequence-specific gene silencing. However, synthetic siRNA duplexes are polyanionic macromolecules that do not readily enter cells and typically require the use of a delivery vector for effective gene silencing in vitro and in vivo. Choice of delivery system is usually made on its ability to enhance cellular uptake of siRNA. However, recent gene expression profiling (toxicogenomics) studies have shown that separate from their effects on cellular uptake, delivery systems can also elicit wide ranging gene changes in target cells that may impact on the 'off-target' effects of siRNA. Furthermore, if delivery systems also alter the expression of genes targeted for silencing, then siRNA activity may be compromised or enhanced depending on whether the target gene is up-regulated or down-regulated respectively. Citing recent examples from the literature, this article therefore reviews the toxicogenomics of non-viral delivery systems and highlights the importance of understanding the genomic signature of siRNA delivery reagents in terms of their impact on gene silencing activity and specificity. Such information will be essential in the selection of optimally acting siRNA-delivery system combinations for the many applications of RNA interference.
Collapse
Affiliation(s)
- Saghir Akhtar
- SA Pharma, Vesey Road 1, Sutton Coldfield, West Midlands, B73 5NP, United Kingdom.
| | | |
Collapse
|
242
|
Pauls E, Senserrich J, Bofill M, Clotet B, Esté JA. Induction of interleukins IL-6 and IL-8 by siRNA. Clin Exp Immunol 2007; 147:189-96. [PMID: 17177979 PMCID: PMC1810454 DOI: 10.1111/j.1365-2249.2006.03263.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The HIV-1 co-receptor CCR5 has been thought a relevant target for small interfering RNA (siRNA)-based therapeutics. However, recent findings suggest that siRNA can stimulate innate cytokine responses in mammals. All siRNA agents tested were able to down-regulate the expression of CCR5, albeit with different efficiency (51-74% down-regulation), block HIV-induced syncytia formation between HIV-1 BaL-infected and uninfected CD4(+) cells or block single-round HIV-1 infection as measured by a luciferase reporter assay (46-83% inhibition). Conversely, siRNA directed against CCR5 did not affect replication of a vesicular stomatitis virus (VSV) pseudotyped virus, suggesting that inhibition of HIV replication was specific to CCR5 down-regulation. However, two of four siRNA tested were able to induce the production of interleukin (IL) IL-6 (sixfold induction) and IL-8 (ninefold induction) but no interferon (IFN)-alpha, IFN-beta, IFN-gamma, tumour necrosis factor (TNF)-alpha, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, RANTES, IL-1beta, IL-10 or IL-12p70 cytokine induction was noted. In the absence of detectable IFN-alpha, IL-6 or IL-8 may represent markers of non-specific effects triggered by siRNA.
Collapse
Affiliation(s)
- E Pauls
- Retrovirology Laboratory irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | | | | | | | | |
Collapse
|
243
|
Federici T, Boulis NM. Ribonucleic acid interference for neurological disorders: candidate diseases, potential targets, and current approaches. Neurosurgery 2007; 60:3-15; discussion 15-6. [PMID: 17228249 DOI: 10.1227/01.neu.0000249214.42461.a5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Ribonucleic acid (RNA) interference (RNAi) is a conserved evolutionary defense mechanism that is gaining utility for therapeutic application by modulating gene expression or silencing disease-causing genes. METHODS This strategy has recently achieved success in mammalian cells via synthetic small interfering RNA or short hairpin RNA expressed in vectors for gene delivery. The vector-based RNAi strategy has particular potential because of the possibility of targeted gene delivery, long-term gene expression, and the potential means of penetrating the blood-brain barrier. RESULTS RNAi-based approaches have been proposed for a variety of neurological disorders, including dominant genetic diseases, neurodegenerative diseases, malignant brain tumors, pain, and viral-induced encephalopathies. CONCLUSION This review summarizes the current approaches of the RNAi strategy for neurological disorders, focusing on potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Thais Federici
- Department of Neuroscience The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
244
|
Carpentier PA, Williams BR, Miller SD. Distinct roles of protein kinase R and toll-like receptor 3 in the activation of astrocytes by viral stimuli. Glia 2007; 55:239-52. [PMID: 17091495 DOI: 10.1002/glia.20450] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Impaired immune surveillance and constitutive immunosuppressive properties make the central nervous system (CNS) a particular challenge to immune defense, and require that CNS-resident cells be capable of rapidly recognizing and responding to infection. We have previously shown that astrocytes respond to treatment with a TLR3 ligand, poly I:C, with the upregulation of innate immune functions. In the current study, we examine the activation of innate immune functions of astrocytes by Theiler's murine encephalomyelitis virus (TMEV), a picornavirus, which establishes a persistent infection in the CNS of susceptible strains of mice and leads to the development of an autoimmune demyelinating disease that resembles human multiple sclerosis. Astrocytes infected with TMEV are activated to produce type I interferons, the cytokine IL-6, and chemokines CCL2 and CXCL10. We further examined the mechanisms that are responsible for the activation of astrocytes in response to direct viral infection and treatment with poly I:C. We found that the cytoplasmic dsRNA-activated kinase PKR is important for innate immune responses to TMEV infection, but has no role in their induction by poly I:C delivered extracellularly. In contrast, we found that TLR3 has only a minor role in responses to TMEV infection, but is important for responses to poly I:C. These results highlight the differences between responses induced by direct, nonlytic virus infection and extracellular poly I:C. The activation of astrocytes through these different pathways has implications for the initiation and progression of viral encephalitis and demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Pamela A Carpentier
- Department of Microbiology-Immunology, Interdepartmental Immunobiology Center, Northwestern University Institute for Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
245
|
Davidson BL, Boudreau RL. RNA Interference: A Tool for Querying Nervous System Function and an Emerging Therapy. Neuron 2007; 53:781-8. [PMID: 17359914 DOI: 10.1016/j.neuron.2007.02.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RNA interference (RNAi), a mediator of gene silencing, has swiftly become one of the most exciting and applicable biological discoveries. There has been rapid progress in identifying RNAi pathway components and elucidating the mechanisms of microRNA (miRNA) biogenesis and gene suppression. As a result, RNAi technologies have been successfully employed in a variety of systems as biological tools, and studies are underway to test the therapeutic utility of RNAi. In the span of several years, significant advances in the delivery of inhibitory RNAs in the nervous system have been made. We have glimpses into how endogenous miRNAs interface with neuronal development and function; in addition, RNAi has shown therapeutic efficacy in several mouse models of human neurological conditions. In this review, we summarize the current state-of-the-art of RNAi and its utility to neuroscientists.
Collapse
Affiliation(s)
- Beverly L Davidson
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
246
|
Diebold SS, Massacrier C, Akira S, Paturel C, Morel Y, Reis e Sousa C. Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J Immunol 2007; 36:3256-67. [PMID: 17111347 DOI: 10.1002/eji.200636617] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Toll-like receptor 7 (TLR7) mediates innate responses by responding to viral RNA in endocytic compartments. However, the molecular pattern recognised by TLR7 and whether it differs between RNA of viral and self origin remains unclear. Here, we identify nucleic acids that act as TLR7 agonists for mouse and human cells. We show that uridine and ribose, the two defining features of RNA, are both necessary and sufficient for TLR7 stimulation, and that short single-stranded RNA (ssRNA) act as TLR7 agonists in a sequence-independent manner as long as they contain several uridines in close proximity. Consistent with the notion that TLR7 lacks specificity for sequence motifs, we show that it is triggered equally efficiently by viral or self RNA delivered to endosomes. Our results support the notion that TLR7 recognises uracil repeats in RNA and that it discriminates between viral and self ligands on the basis of endosomal accessibility rather than sequence.
Collapse
Affiliation(s)
- Sandra S Diebold
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, UK
| | | | | | | | | | | |
Collapse
|
247
|
Abstract
Short hairpin RNAs can provide stable gene silencing via RNA interference. Recent studies have shown toxicity in vivo that appears to be related to saturation of the endogenous microRNA pathway. Will these findings limit the therapeutic use of such hairpins?
Collapse
Affiliation(s)
- Ola Snøve
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91101, USA
- Interagon AS, Laboratoriesenteret, NO-7006 Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, NO-7006 Trondheim, Norway
| | - John J Rossi
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91101, USA
| |
Collapse
|
248
|
Abstract
Many studies in modern biology often rely on the introduction of a foreign molecule (i.e., transfection), be it DNA plasmids, siRNA molecules, protein biosensors, labeled tracers, and so on, into cells in order to answer the important questions of today's science. Many different methods have been developed over time to facilitate cellular transfection, but most of these methods were developed to work with a specific type of molecule (usually DNA plasmids) and none work well enough with difficult, sensitive, or primary cells to meet the needs of current life science researchers. A novel procedure that uses laser light to gently permeabilize large number of cells in a very short time has been developed and is described in detail in this chapter. This method allows difficult cells to be efficiently transfected in a high-throughput manner, with a wide variety of molecules, with extremely low toxicity.
Collapse
Affiliation(s)
- Kate Rhodes
- Cyntellect, Inc., San Diego, California 92121, USA
| | | | | | | | | | | |
Collapse
|
249
|
Chen J, Yang XX, Huang M, Hu ZP, He M, Duan W, Chan E, Sheu FS, Chen X, Zhou SF. Small interfering RNA-mediated silencing of cytochrome P450 3A4 gene. Drug Metab Dispos 2006; 34:1650-7. [PMID: 16760227 DOI: 10.1124/dmd.106.009837] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) is a specific and powerful tool used to manipulate gene expression and study gene function. The cytochrome P450 3A4 (CYP3A4) can metabolize more than 50% of drugs. In the present study, we investigated whether vector-expressed small interfering RNAs (siRNAs) altered the CYP3A4 expression and function using the Chinese hamster cell line (V79) overexpressing CYP3A4 (CHL-3A4). Three different siRNA oligonucleotides (3A4I, 3A4II, and 3A4III) were designed and tested for their ability to interfere with CYP3A4 gene expression. Our study demonstrated that transient transfection of CHL-3A4 cells with the 3A4III siRNAs, but not 3A4I and II, significantly reduced CYP3A4 mRNA levels by 65% and protein expression levels by 75%. All these siRNAs did not affect the expression of CYP3A5 at both mRNA and protein levels in V79 cells overexpressing CYP3A5. Transfection of CHL-3A4 cells with 3A4III siRNAs significantly diminished the cytotoxicity of two CYP3A4 substrate drugs, cyclophosphamide and ifosfamide, in CHL-3A4 cells, with the IC50 increased from 55 to 210 microM to >1000 microM. Nifedipine at 5.78, 14.44, and 28.88 microM was significantly (P < 0.01) depleted by approximately 100, 40, and 22%, respectively, in S9 fractions from CHL-3A4 cells compared with parental CHL-pIC19h cells. In addition, transfection of the CHL-3A4 cells with vectors expressing the 3A4III siRNAs almost completely inhibited CYP3A4-mediated nifedipine metabolism. This study demonstrated, for the first time, the specific suppression of CYP3A4 expression and function using vector-based RNAi technique. The use of RNAi is a promising tool for the study of cytochrome P450 family function.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Optimizing knockdown of gene expression using the TriFECTa™ Dicer-substrate RNAi reagent system. Nat Methods 2006. [DOI: 10.1038/nmeth919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|