201
|
Wilson SA, Roberts SC. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:249-68. [PMID: 22059985 PMCID: PMC3288596 DOI: 10.1111/j.1467-7652.2011.00664.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant cell culture systems were initially explored for use in commercial synthesis of several high-value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field-grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field-grown crops is significant and therefore processes must be optimized with regard to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes.
Collapse
Affiliation(s)
- Sarah A Wilson
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | | |
Collapse
|
202
|
Zhao XQ, Bai FW. Zinc and yeast stress tolerance: Micronutrient plays a big role. J Biotechnol 2012; 158:176-83. [DOI: 10.1016/j.jbiotec.2011.06.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/20/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
|
203
|
Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode. Metab Eng 2012; 14:91-103. [DOI: 10.1016/j.ymben.2012.01.007] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/11/2012] [Accepted: 01/26/2012] [Indexed: 11/21/2022]
|
204
|
Zeng QP, Zeng LX, Lu WJ, Feng LL, Yang RY, Qiu F. Enhanced artemisinin production from engineered yeast precursors upon biotransformation. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.661723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
205
|
Development of petri net-based dynamic model for improved production of farnesyl pyrophosphate by integrating mevalonate and methylerythritol phosphate pathways in yeast. Appl Biochem Biotechnol 2012; 167:1172-82. [PMID: 22350871 DOI: 10.1007/s12010-012-9583-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
Abstract
In this case study, we designed a farnesyl pyrophosphate (FPP) biosynthetic network using hybrid functional Petri net with extension (HFPNe) which is derived from traditional Petri net theory and allows easy modeling with graphical approach of various types of entities in the networks together. Our main objective is to improve the production of FPP in yeast, which is further converted to amorphadiene (AD), a precursor of artemisinin (antimalarial drug). Natively, mevalonate (MEV) pathway is present in yeast. Methyl erythritol phosphate pathways (MEP) are present only in higher plant plastids and eubacteria, but not present in yeast. IPP and DAMP are common isomeric intermediate in these two pathways, which immediately yields FPP. By integrating these two pathways in yeast, we augmented the FPP synthesis approximately two folds higher (431.16 U/pt) than in MEV pathway alone (259.91 U/pt) by using HFPNe technique. Further enhanced FPP levels converted to AD by amorphadiene synthase gene yielding 436.5 U/pt of AD which approximately two folds higher compared to the AD (258.5 U/pt) synthesized by MEV pathway exclusively. Simulation and validation processes performed using these models are reliable with identified biological information and data.
Collapse
|
206
|
Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, Yang W, Zhu Z, Li G, Zhu G, Huang L, Zhao ZK. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc 2012; 134:3234-41. [PMID: 22280121 DOI: 10.1021/ja2114486] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microbial production can be advantageous over the extraction of phytoterpenoids from natural plant sources, but it remains challenging to rationally and rapidly access efficient pathway variants. Previous engineering attempts mainly focused on the mevalonic acid (MVA) or methyl-d-erythritol phosphate (MEP) pathways responsible for the generation of precursors for terpenoids biosynthesis, and potential interactions between diterpenoids synthases were unexplored. Miltiradiene, the product of the stepwise conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP) catalyzed by diterpene synthases SmCPS and SmKSL, has recently been identified as the precursor to tanshionones, a group of abietane-type norditerpenoids rich in the Chinese medicinal herb Salvia miltiorrhiza . Here, we present the modular pathway engineering (MOPE) strategy and its application for rapid assembling synthetic miltiradiene pathways in the yeast Saccharomyces cerevisiae . We predicted and analyzed the molecular interactions between SmCPS and SmKSL, and engineered their active sites into close proximity for enhanced metabolic flux channeling to miltiradiene biosynthesis by constructing protein fusions. We show that the fusion of SmCPS and SmKSL, as well as the fusion of BTS1 (GGPP synthase) and ERG20 (farnesyl diphosphate synthase), led to significantly improved miltiradiene production and reduced byproduct accumulation. The MOPE strategy facilitated a comprehensive evaluation of pathway variants involving multiple genes, and, as a result, our best pathway with the diploid strain YJ2X reached miltiradiene titer of 365 mg/L in a 15-L bioreactor culture. These results suggest that terpenoids synthases and the precursor supplying enzymes should be engineered systematically to enable an efficient microbial production of phytoterpenoids.
Collapse
Affiliation(s)
- Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian 116023, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Toward biosynthetic design and implementation of Escherichia coli-derived paclitaxel and other heterologous polyisoprene compounds. Appl Environ Microbiol 2012; 78:2497-504. [PMID: 22287010 DOI: 10.1128/aem.07391-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Escherichia coli offers unparalleled engineering capacity in the context of heterologous natural product biosynthesis. However, as with other heterologous hosts, cellular metabolism must be designed or redesigned to support final compound formation. This task is at once complicated and aided by the fact that the cell does not natively produce an abundance of natural products. As a result, the metabolic engineer avoids complicated interactions with native pathways closely associated with the outcome of interest, but this convenience is tempered by the need to implement the required metabolism to allow functional biosynthesis. This review focuses on engineering E. coli for the purpose of polyisoprene formation, as it is related to isoprenoid compounds currently being pursued through a heterologous approach. In particular, the review features the compound paclitaxel and early efforts to design and overproduce intermediates through E. coli.
Collapse
|
208
|
Nikapitiya C. Bioactive secondary metabolites from marine microbes for drug discovery. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 65:363-87. [PMID: 22361200 DOI: 10.1016/b978-0-12-416003-3.00024-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The isolation and extraction of novel bioactive secondary metabolites from marine microorganisms have a biomedical potential for future drug discovery as the oceans cover 70% of the planet's surface and life on earth originates from sea. Wide range of novel bioactive secondary metabolites exhibiting pharmacodynamic properties has been isolated from marine microorganisms and many to be discovered. The compounds isolated from marine organisms (macro and micro) are important in their natural form and also as templates for synthetic modifications for the treatments for variety of deadly to minor diseases. Many technical issues are yet to overcome before wide-scale bioprospecting of marine microorganisms becomes a reality. This chapter focuses on some novel secondary metabolites having antitumor, antivirus, enzyme inhibitor, and other bioactive properties identified and isolated from marine microorganisms including bacteria, actinomycetes, fungi, and cyanobacteria, which could serve as potentials for drug discovery after their clinical trials.
Collapse
Affiliation(s)
- Chamilani Nikapitiya
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
209
|
Ye VM, Bhatia SK. Metabolic engineering for the production of clinically important molecules: Omega-3 fatty acids, artemisinin, and taxol. Biotechnol J 2011; 7:20-33. [PMID: 22021189 DOI: 10.1002/biot.201100289] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/28/2011] [Accepted: 09/02/2011] [Indexed: 11/07/2022]
Abstract
Driven by requirements for sustainability as well as affordability and efficiency, metabolic engineering of plants and microorganisms is increasingly being pursued to produce compounds for clinical applications. This review discusses three such examples of the clinical relevance of metabolic engineering: the production of omega-3 fatty acids for the prevention of cardiovascular disease; the biosynthesis of artemisinic acid, an anti-malarial drug precursor, for the treatment of malaria; and the production of the complex natural molecule taxol, an anti-cancer agent. In terms of omega-3 fatty acids, bioengineering of fatty acid metabolism by expressing desaturases and elongases, both in soybeans and oleaginous yeast, has resulted in commercial-scale production of these beneficial molecules. Equal success has been achieved with the biosynthesis of artemisinic acid at low cost for developing countries. This is accomplished through channeling the flux of the isoprenoid pathway to the specific genes involved in artemisinin biosynthesis. Efficient coupling of the isoprenoid pathway also leads to the construction of an Escherichia coli strain that produces a high titer of taxadiene-the first committed intermediate for taxol biosynthesis. These examples of synthetic biology demonstrate the versatility of metabolic engineering to bring new solutions to our health needs.
Collapse
Affiliation(s)
- Victor M Ye
- Health Promotion and Disease Prevention, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
210
|
FU AS, LIU R, ZHU J, LIU TG. Genetic engineering of microbial metabolic pathway for production of advanced biodiesel. YI CHUAN = HEREDITAS 2011; 33:1121-33. [DOI: 10.3724/sp.j.1005.2011.01121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
211
|
Overexpression of the Trichoderma brevicompactum tri5 gene: effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings. Toxins (Basel) 2011; 3:1220-32. [PMID: 22069764 PMCID: PMC3202873 DOI: 10.3390/toxins3091220] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 09/15/2011] [Accepted: 09/21/2011] [Indexed: 11/18/2022] Open
Abstract
Trichoderma brevicompactum IBT 40841 produces trichodermin, a trichothecene-type toxin that shares most of the steps of its biosynthesis with harzianum A, another trichothecene produced by several Trichoderma species. The first specific step in the trichothecene biosynthesis is carried out by a terpene cylcase, trichodiene synthase, that catalyzes the conversion of farnesyl pyrophosphate to trichodiene and that is encoded by the tri5 gene. Overexpression of tri5 resulted in increased levels of trichodermin production, but also in an increase in tyrosol and hydroxytyrosol production, two antioxidant compounds that may play a regulatory role in trichothecene biosynthesis, and also in a higher expression of three trichothecene genes, tri4, tri6 and tri10, and of the erg1 gene, which participates in the synthesis of triterpenes. The effect of tri5 overexpression on tomato seedling disease response was also studied.
Collapse
|
212
|
The imminent role of protein engineering in synthetic biology. Biotechnol Adv 2011; 30:541-9. [PMID: 21963685 DOI: 10.1016/j.biotechadv.2011.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 01/08/2023]
Abstract
Protein engineering has for decades been a powerful tool in biotechnology for generating vast numbers of useful enzymes for industrial applications. Today, protein engineering has a crucial role in advancing the emerging field of synthetic biology, where metabolic engineering efforts alone are insufficient to maximize the full potential of synthetic biology. This article reviews the advancements in protein engineering techniques for improving biocatalytic properties to optimize engineered pathways in host systems, which are instrumental to achieve high titer production of target molecules. We also discuss the specific means by which protein engineering has improved metabolic engineering efforts and provide our assessment on its potential to continue to advance biology engineering as a whole.
Collapse
|
213
|
Du J, Shao Z, Zhao H. Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 2011; 38:873-90. [PMID: 21526386 PMCID: PMC3142293 DOI: 10.1007/s10295-011-0970-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 04/01/2011] [Indexed: 01/07/2023]
Abstract
Microorganisms have become an increasingly important platform for the production of drugs, chemicals, and biofuels from renewable resources. Advances in protein engineering, metabolic engineering, and synthetic biology enable redesigning microbial cellular networks and fine-tuning physiological capabilities, thus generating industrially viable strains for the production of natural and unnatural value-added compounds. In this review, we describe the recent progress on engineering microbial factories for synthesis of valued-added products including alkaloids, terpenoids, flavonoids, polyketides, non-ribosomal peptides, biofuels, and chemicals. Related topics on lignocellulose degradation, sugar utilization, and microbial tolerance improvement will also be discussed.
Collapse
Affiliation(s)
- Jing Du
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
214
|
Song H, Payne S, Tan C, You L. Programming microbial population dynamics by engineered cell-cell communication. Biotechnol J 2011; 6:837-49. [PMID: 21681967 PMCID: PMC3697107 DOI: 10.1002/biot.201100132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/30/2011] [Accepted: 04/26/2011] [Indexed: 11/08/2022]
Abstract
A major aim of synthetic biology is to program novel cellular behavior using engineered gene circuits. Early endeavors focused on building simple circuits that fulfill simple functions, such as logic gates, bistable toggle switches, and oscillators. These gene circuits have primarily focused on single-cell behaviors since they operate intracellularly. Thus, they are often susceptible to cell-cell variations due to stochastic gene expression. Cell-cell communication offers an efficient strategy to coordinate cellular behavior at the population level. To this end, we review recent advances in engineering cell-cell communication to achieve reliable population dynamics, spanning from communication within single species to multispecies, from one-way sender-receiver communication to two-way communication in synthetic microbial ecosystems. These engineered systems serve as well-defined model systems to better understand design principles of their naturally occurring counterparts and to facilitate novel biotechnology applications.
Collapse
Affiliation(s)
- Hao Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Stephen Payne
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
- Center for Systems Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
215
|
Weeks AM, Chang MCY. Constructing de novo biosynthetic pathways for chemical synthesis inside living cells. Biochemistry 2011; 50:5404-18. [PMID: 21591680 PMCID: PMC3768262 DOI: 10.1021/bi200416g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Living organisms have evolved a vast array of catalytic functions that make them ideally suited for the production of medicinally and industrially relevant small-molecule targets. Indeed, native metabolic pathways in microbial hosts have long been exploited and optimized for the scalable production of both fine and commodity chemicals. Our increasing capacity for DNA sequencing and synthesis has revealed the molecular basis for the biosynthesis of a variety of complex and useful metabolites and allows the de novo construction of novel metabolic pathways for the production of new and exotic molecular targets in genetically tractable microbes. However, the development of commercially viable processes for these engineered pathways is currently limited by our ability to quickly identify or engineer enzymes with the correct reaction and substrate selectivity as well as the speed by which metabolic bottlenecks can be determined and corrected. Efforts to understand the relationship among sequence, structure, and function in the basic biochemical sciences can advance these goals for synthetic biology applications while also serving as an experimental platform for elucidating the in vivo specificity and function of enzymes and reconstituting complex biochemical traits for study in a living model organism. Furthermore, the continuing discovery of natural mechanisms for the regulation of metabolic pathways has revealed new principles for the design of high-flux pathways with minimized metabolic burden and has inspired the development of new tools and approaches to engineering synthetic pathways in microbial hosts for chemical production.
Collapse
Affiliation(s)
- Amy M. Weeks
- Department of Chemistry, University of California, Berkeley, Berkeley California 94720-1460
| | - Michelle C. Y. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley California 94720-1460
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley California 94720-1460
| |
Collapse
|
216
|
Reinsvold RE, Jinkerson RE, Radakovits R, Posewitz MC, Basu C. The production of the sesquiterpene β-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:848-52. [PMID: 21185107 DOI: 10.1016/j.jplph.2010.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 05/12/2023]
Abstract
The plant secondary metabolite, β-caryophyllene, is a ubiquitous component of many plant resins that has traditionally been used in the cosmetics industry to provide a woody, spicy aroma to cosmetics and perfumes. Clinical studies have shown it to be potentially effective as an antibiotic, anesthetic, and anti-inflammatory agent. Additionally, there is significant interest in engineering phototrophic microorganisms with sesquiterpene synthase genes for the production of biofuels. Currently, the isolation of β-caryophyllene relies on purification methods from oleoresins extracted from large amounts of plant material. An engineered cyanobacterium platform that produces β-caryophyllene may provide a more sustainable and controllable means of production. To this end, the β-caryophyllene synthase gene (QHS1) from Artemisia annua was stably inserted, via double homologous recombination, into the genome of the cyanobacterium Synechocystis sp. strain PCC6803. Gene insertion into Synechocystis was confirmed through PCR assays and sequencing reactions. Transcription and expression of QHS1 were confirmed using RT-PCR, and synthesis of β-caryophyllene was confirmed in the transgenic strain using GC-FID and GC-MS analysis.
Collapse
Affiliation(s)
- Robert E Reinsvold
- School of Biological Sciences, University of Northern Colorado, Ross Hall, Room 2480, Greeley, CO 80639, United States
| | | | | | | | | |
Collapse
|
217
|
Meylemans HA, Quintana RL, Goldsmith BR, Harvey BG. Solvent-free conversion of linalool to methylcyclopentadiene dimers: a route to renewable high-density fuels. CHEMSUSCHEM 2011; 4:465-469. [PMID: 21488169 DOI: 10.1002/cssc.201100017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Indexed: 05/28/2023]
Affiliation(s)
- Heather A Meylemans
- Research Department, Chemistry Division, US Navy, Naval Air Warfare Center Weapons Division, China Lake, CA 93555, USA
| | | | | | | |
Collapse
|
218
|
Meng H, Wang Y, Hua Q, Zhang S, Wang X. In silico analysis and experimental improvement of taxadiene heterologous biosynthesis in Escherichia coli. BIOTECHNOL BIOPROC E 2011; 16:205-215. [DOI: 10.1007/s12257-010-0329-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
219
|
Abstract
Advances in systems biology are increasingly dependent upon the integration of various types of data and different methodologies to reconstruct how cells work at the systemic level. Thus, teams with a varied array of expertise and people with interdisciplinary training are needed. So far this training was thought to be more productive if aimed at the Masters or PhD level. At this level, multiple specialised and in-depth courses on the different subject matters of systems biology are taught to already well-prepared students. This approach is mostly based on the recognition that systems biology requires a wide background that is hard to find in undergraduate students. Nevertheless, and given the importance of the field, the authors argue that exposition of undergraduate students to the methods and paradigms of systems biology would be advantageous. Here they present and discuss a successful experiment in teaching systems biology to third year undergraduate biotechnology students at the University of Lleida in Spain. The authors' experience, together with that from others, argues for the adequateness of teaching systems biology at the undergraduate level. [Includes supplementary material].
Collapse
Affiliation(s)
- R Alves
- Universitat de Lleida, Departament Ciencies Mediques Basiques, Spain
| | | | | |
Collapse
|
220
|
Ignea C, Cvetkovic I, Loupassaki S, Kefalas P, Johnson CB, Kampranis SC, Makris AM. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids. Microb Cell Fact 2011; 10:4. [PMID: 21276210 PMCID: PMC3042375 DOI: 10.1186/1475-2859-10-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 01/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Terpenoids constitute a large family of natural products, attracting commercial interest for a variety of uses as flavours, fragrances, drugs and alternative fuels. Saccharomyces cerevisiae offers a versatile cell factory, as the precursors of terpenoid biosynthesis are naturally synthesized by the sterol biosynthetic pathway. RESULTS S. cerevisiae wild type yeast cells, selected for their capacity to produce high sterol levels were targeted for improvement aiming to increase production. Recyclable integration cassettes were developed which enable the unlimited sequential integration of desirable genetic elements (promoters, genes, termination sequence) at any desired locus in the yeast genome. The approach was applied on the yeast sterol biosynthetic pathway genes HMG2, ERG20 and IDI1 resulting in several-fold increase in plant monoterpene and sesquiterpene production. The improved strains were robust and could sustain high terpenoid production levels for an extended period. Simultaneous plasmid-driven co-expression of IDI1 and the HMG2 (K6R) variant, in the improved strain background, maximized monoterpene production levels. Expression of two terpene synthase enzymes from the sage species Salvia fruticosa and S. pomifera (SfCinS1, SpP330) in the modified yeast cells identified a range of terpenoids which are also present in the plant essential oils. Co-expression of the putative interacting protein HSP90 with cineole synthase 1 (SfCinS1) also improved production levels, pointing to an additional means to improve production. CONCLUSIONS Using the developed molecular tools, new yeast strains were generated with increased capacity to produce plant terpenoids. The approach taken and the durability of the strains allow successive rounds of improvement to maximize yields.
Collapse
Affiliation(s)
- Codruta Ignea
- Department of Natural Products and Biotechnology, Centre International de Hautes Etudes Agronomiques Méditerranéennes, Mediterranean Agronomic Institute of Chania, PO Box 85, Chania 73100, Greece
| | | | | | | | | | | | | |
Collapse
|
221
|
Zhang YHP, Myung S, You C, Zhu Z, Rollin JA. Toward low-cost biomanufacturing through in vitro synthetic biology: bottom-up design. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12078f] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
222
|
Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genet Biol 2010; 48:285-96. [PMID: 21145409 DOI: 10.1016/j.fgb.2010.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/06/2010] [Accepted: 11/25/2010] [Indexed: 11/20/2022]
Abstract
Trichoderma brevicompactum produces trichodermin, a simple trichothecene-type toxin that shares the first steps of the sesquiterpene biosynthetic pathway with other phytotoxic trichothecenes from Fusarium spp. Trichodiene synthase catalyses the conversion of farnesyl pyrophosphate to trichodiene and it is encoded by the tri5 gene that was cloned and analysed functionally by homologous overexpression in T. brevicompactum. tri5 expression was up-regulated in media with glucose, H(2)O(2) or glycerol. tri5 repression was observed in cultures supplemented with the antioxidants ferulic acid and tyrosol. Acetone extracts of tri5-overexpressing transformants displayed higher antifungal activity than those from the wild-type. Chromatographic and spectroscopic analyses revealed that tri5 overexpression led to an increased production of trichodermin and tyrosol. Agar diffusion assays with these two purified metabolites from the tri5-overexpressing transformant T. brevicompactum Tb41tri5 showed that only trichodermin had antifungal activity against Saccharomyces cerevisiae, Kluyveromyces marxianus, Candida albicans, Candida glabrata, Candida tropicalis and Aspergillus fumigatus, in most cases such activity being higher than that observed for amphotericin B and hygromycin. Our results point to the significant role of tri5 in the production of trichodermin and in the antifungal activity of T. brevicompactum.
Collapse
|
223
|
Meng X, Yang J, Cao Y, Li L, Jiang X, Xu X, Liu W, Xian M, Zhang Y. Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms. J Ind Microbiol Biotechnol 2010; 38:919-25. [PMID: 20972897 DOI: 10.1007/s10295-010-0861-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 08/24/2010] [Indexed: 01/09/2023]
Abstract
Unlike many oleaginous microorganisms, E. coli only maintains a small amount of natural lipids in cells, impeding its utility to overproduce fatty acids. In this study, acetyl-CoA carboxylase (ACC) from Acinetobacter calcoaceticus was expressed in E. coli to redirect the carbon flux to the generation of malonyl-CoA, which resulted in a threefold increase in intracellular lipids. Moreover, providing a high level of NADPH by overexpressing malic enzyme and adding malate to the culture medium resulted in a fourfold increase in intracellular lipids (about 197.74 mg/g). Co-expression of ACC and malic enzyme resulted in 284.56 mg/g intracellular lipids, a 5.6-fold increase compared to the wild-type strain. This study provides some attractive strategies for increasing lipid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms, which could aid the development of a prokaryotic fatty acid producer.
Collapse
Affiliation(s)
- Xin Meng
- Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Eudes A, Baidoo EEK, Yang F, Burd H, Hadi MZ, Collins FW, Keasling JD, Loqué D. Production of tranilast [N-(3′,4′-dimethoxycinnamoyl)-anthranilic acid] and its analogs in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010; 89:989-1000. [DOI: 10.1007/s00253-010-2939-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
225
|
Hsieh FL, Chang TH, Ko TP, Wang AHJ. Enhanced specificity of mint geranyl pyrophosphate synthase by modifying the R-loop interactions. J Mol Biol 2010; 404:859-73. [PMID: 20965200 DOI: 10.1016/j.jmb.2010.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/07/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
Isoprenoids, most of them synthesized by prenyltransferases (PTSs), are a class of important biologically active compounds with diverse functions. The mint geranyl pyrophosphate synthase (GPPS) is a heterotetramer composed of two LSU·SSU (large/small subunit) dimers. In addition to C(10)-GPP, the enzyme also produces geranylgeranyl pyrophosphate (C(20)-GGPP) in vitro, probably because of the conserved active-site structures between the LSU of mint GPPS and the homodimeric GGPP synthase from mustard. By contrast, the SSU lacks the conserved aspartate-rich motifs for catalysis. A major active-site cavity loop in the LSU and other trans-type PTSs is replaced by the regulatory R-loop in the SSU. Only C(10)-GPP, but not C(20)-GGPP, was produced when intersubunit interactions of the R-loop were disrupted by either deletion or multiple point mutations. The structure of the deletion mutant, determined in two different crystal forms, shows an intact (LSU·SSU)(2) heterotetramer, as previously observed in the wild-type enzyme. The active-site of LSU remains largely unaltered, except being slightly more open to the bulk solvent. The R-loop of SSU acts by regulating the product release from LSU, just as does its equivalent loop in a homodimeric PTS, which prevents the early reaction intermediates from escaping the active site of the other subunit. In this way, the product-retaining function of R-loop provides a more stringent control for chain-length determination, complementary to the well-established molecular ruler mechanism. We conclude that the R-loop may be used not only to conserve the GPPS activity but also to produce portions of C(20)-GGPP in mint.
Collapse
Affiliation(s)
- Fu-Lien Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | | | |
Collapse
|
226
|
|
227
|
Ajikumar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 2010; 330:70-4. [PMID: 20929806 PMCID: PMC3034138 DOI: 10.1126/science.1191652] [Citation(s) in RCA: 1205] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Taxol (paclitaxel) is a potent anticancer drug first isolated from the Taxus brevifolia Pacific yew tree. Currently, cost-efficient production of Taxol and its analogs remains limited. Here, we report a multivariate-modular approach to metabolic-pathway engineering that succeeded in increasing titers of taxadiene--the first committed Taxol intermediate--approximately 1 gram per liter (~15,000-fold) in an engineered Escherichia coli strain. Our approach partitioned the taxadiene metabolic pathway into two modules: a native upstream methylerythritol-phosphate (MEP) pathway forming isopentenyl pyrophosphate and a heterologous downstream terpenoid-forming pathway. Systematic multivariate search identified conditions that optimally balance the two pathway modules so as to maximize the taxadiene production with minimal accumulation of indole, which is an inhibitory compound found here. We also engineered the next step in Taxol biosynthesis, a P450-mediated 5α-oxidation of taxadiene to taxadien-5α-ol. More broadly, the modular pathway engineering approach helped to unlock the potential of the MEP pathway for the engineered production of terpenoid natural products.
Collapse
Affiliation(s)
- Parayil Kumaran Ajikumar
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Chemical and Pharmaceutical Engineering Program, Singapore-MIT Alliance, 117546 Singapore
| | - Wen-Hai Xiao
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Keith E. J. Tyo
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Yong Wang
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Fritz Simeon
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Effendi Leonard
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Oliver Mucha
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Too Heng Phon
- Chemical and Pharmaceutical Engineering Program, Singapore-MIT Alliance, 117546 Singapore
| | - Blaine Pfeifer
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Chemical and Pharmaceutical Engineering Program, Singapore-MIT Alliance, 117546 Singapore
| |
Collapse
|
228
|
Introduction of the early pathway to taxol biosynthesis in yeast by means of biosynthetic gene cluster construction using SOE-PCR and homologous recombination. Methods Mol Biol 2010; 643:145-63. [PMID: 20552450 DOI: 10.1007/978-1-60761-723-5_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Metabolic engineering of plant natural product pathways in heterologous systems requires the highly concerted action of several biosynthetic genes. Besides the functional heterologous expression of the genes encoding the natural product biosynthetic pathway, often additional extensive modifications in the host primary metabolism are also needed, in order to obtain efficient supply of the required biosynthetic building blocks to support the engineered natural product biosynthesis. Selection markers in heterologous expression systems, like baker's yeast (Saccharomyces cerevisiae), are often limited and the chromosomal insertion prevents later modifications of engineered pathway, e.g. exchange of gene promoters, or the introduction of additional genetic regulatory elements in a timely manner. Thus the construction of biosynthetic gene clusters on episomal expression vectors seems a logical solution for this dilemma. Although manipulation of long DNA fragments still represents a challenge, by using PCR and in vitro homologous recombination, we assembled a biosynthetic gene cluster for the concerted heterologous expression of three important genes for the metabolic engineering of taxoid biosynthesis in yeast.
Collapse
|
229
|
de Carvalho CCCR. Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 2010; 29:75-83. [PMID: 20837129 DOI: 10.1016/j.biotechadv.2010.09.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
Abstract
The use of enzymes and whole bacterial cells has allowed the production of a plethora of compounds that have been used for centuries in foods and beverages. However, only recently we have been able to master techniques that allow the design and development of new biocatalysts with high stability and productivity. Rational redesign and directed evolution have lead to engineered enzymes with new characteristics whilst the understanding of adaptation mechanisms in bacterial cells has allowed their use under new operational conditions. Bacteria able to thrive under the most extreme conditions have also provided new and extraordinary catalytic processes. In this review, the new tools available for the improvement of biocatalysts are presented and discussed.
Collapse
Affiliation(s)
- Carla C C R de Carvalho
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
230
|
Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae. Appl Environ Microbiol 2010; 76:6449-54. [PMID: 20675444 DOI: 10.1128/aem.02987-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Linalool production was evaluated in different Saccharomyces cerevisiae strains expressing the Clarkia breweri linalool synthase gene (LIS). The wine strain T(73) was shown to produce higher levels of linalool than conventional laboratory strains (i.e., almost three times the amount). The performance of this strain was further enhanced by manipulating the endogenous mevalonate (MVA) pathway: deregulated overexpression of the rate-limiting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) doubled linalool production. In a haploid laboratory strain, engineering of this key step also improved linalool yield.
Collapse
|
231
|
Catabolism of citronellol and related acyclic terpenoids in pseudomonads. Appl Microbiol Biotechnol 2010; 87:859-69. [DOI: 10.1007/s00253-010-2644-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/23/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
|
232
|
Yadav VG, Stephanopoulos G. Reevaluating synthesis by biology. Curr Opin Microbiol 2010; 13:371-6. [PMID: 20447859 DOI: 10.1016/j.mib.2010.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/01/2010] [Indexed: 11/17/2022]
Abstract
The two cornerstones of synthetic biology are the introduction of the new technology of chemical DNA synthesis and its subsequent emphasis on the use of standardized biological parts in the construction of genetic systems aimed at eliciting of desired cellular behavior. A number of high-impact applications have been proposed for this technology, notable among them being the biological synthesis of valuable compounds for chemical or pharmaceutical use. To this end, synthetic biologists propose assembling metabolic pathways in toto by combining genes isolated from a variety of sources. While pathway construction is similar to approaches established long ago by Metabolic Engineering, the two methods deviate significantly when it comes to pathway optimization. Synthetic biologists opt for gene-combinatorial methods whereby large numbers of pathways, comprising several combinations of genes from different sources, and their mutants, are evaluated in search for an optimal pathway configuration. Metabolic engineering, on the contrary, aims to optimize pathways by tuning the activity of the intermediate reaction steps. Both, rational methods based on kinetics and regulation, as well as combinatorial methods, typically in this order, are used to this end. We argue that a systematic approach consisting of fine-tuning the properties of individual pathway components, prominently enzymes, is a superior strategy to searches spanning large genetic spaces in engineering optimal microbes for the production of chemical and pharmaceutical products.
Collapse
|
233
|
Eoh H, Narayanasamy P, Brown AC, Parish T, Brennan PJ, Crick DC. Expression and characterization of soluble 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase from bacterial pathogens. ACTA ACUST UNITED AC 2010; 16:1230-9. [PMID: 20064433 DOI: 10.1016/j.chembiol.2009.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/09/2009] [Accepted: 10/21/2009] [Indexed: 11/17/2022]
Abstract
Many bacterial pathogens utilize the 2-C-methyl-D-erythritol 4-phosphate pathway for biosynthesizing isoprenoid precursors, a pathway that is vital for bacterial survival and absent from human cells, providing a potential source of drug targets. However, the characterization of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) kinase (IspE) has been hindered due to a lack of enantiopure CDP-ME and difficulty in obtaining pure IspE. Here, enantiopure CDP-ME was chemically synthesized and recombinant IspE from bacterial pathogens were purified and characterized. Although gene disruption was not possible in Mycobacterium tuberculosis, IspE is essential in Mycobacterium smegmatis. The biochemical and kinetic characteristics of IspE provide the basis for development of a high throughput screen and structural characterization.
Collapse
Affiliation(s)
- Hyungjin Eoh
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | |
Collapse
|
234
|
Zhang YHP. Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnol Bioeng 2010; 105:663-77. [PMID: 19998281 DOI: 10.1002/bit.22630] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cell-free synthetic (enzymatic) pathway biotransformation (SyPaB) is the assembly of a number of purified enzymes (usually more than 10) and coenzymes for the production of desired products through complicated biochemical reaction networks that a single enzyme cannot do. Cell-free SyPaB, as compared to microbial fermentation, has several distinctive advantages, such as high product yield, great engineering flexibility, high product titer, and fast reaction rate. Biocommodities (e.g., ethanol, hydrogen, and butanol) are low-value products where costs of feedstock carbohydrates often account for approximately 30-70% of the prices of the products. Therefore, yield of biocommodities is the most important cost factor, and the lowest yields of profitable biofuels are estimated to be ca. 70% of the theoretical yields of sugar-to-biofuels based on sugar prices of ca. US$ 0.18 per kg. The opinion that SyPaB is too costly for producing low-value biocommodities are mainly attributed to the lack of stable standardized building blocks (e.g., enzymes or their complexes), costly labile coenzymes, and replenishment of enzymes and coenzymes. In this perspective, I propose design principles for SyPaB, present several SyPaB examples for generating hydrogen, alcohols, and electricity, and analyze the advantages and limitations of SyPaB. The economical analyses clearly suggest that developments in stable enzymes or their complexes as standardized parts, efficient coenzyme recycling, and use of low-cost and more stable biomimetic coenzyme analogs, would result in much lower production costs than do microbial fermentations because the stabilized enzymes have more than 3 orders of magnitude higher weight-based total turn-over numbers than microbial biocatalysts, although extra costs for enzyme purification and stabilization are spent.
Collapse
Affiliation(s)
- Y-H Percival Zhang
- Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, 210-A Seitz Hall, Blacksburg, Virginia 24061, USA. USA.
| |
Collapse
|
235
|
Alterovitz G, Muso T, Ramoni MF. The challenges of informatics in synthetic biology: from biomolecular networks to artificial organisms. Brief Bioinform 2009; 11:80-95. [PMID: 19906839 DOI: 10.1093/bib/bbp054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The field of synthetic biology holds an inspiring vision for the future; it integrates computational analysis, biological data and the systems engineering paradigm in the design of new biological machines and systems. These biological machines are built from basic biomolecular components analogous to electrical devices, and the information flow among these components requires the augmentation of biological insight with the power of a formal approach to information management. Here we review the informatics challenges in synthetic biology along three dimensions: in silico, in vitro and in vivo. First, we describe state of the art of the in silico support of synthetic biology, from the specific data exchange formats, to the most popular software platforms and algorithms. Next, we cast in vitro synthetic biology in terms of information flow, and discuss genetic fidelity in DNA manipulation, development strategies of biological parts and the regulation of biomolecular networks. Finally, we explore how the engineering chassis can manipulate biological circuitries in vivo to give rise to future artificial organisms.
Collapse
Affiliation(s)
- Gil Alterovitz
- Children's Hospital Informatics Program, Harvard/MITDivision of Health Sciences and Technology, USA
| | | | | |
Collapse
|
236
|
Harada H, Misawa N. Novel approaches and achievements in biosynthesis of functional isoprenoids in Escherichia coli. Appl Microbiol Biotechnol 2009; 84:1021-31. [PMID: 19672590 DOI: 10.1007/s00253-009-2166-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 07/01/2009] [Accepted: 07/24/2009] [Indexed: 11/25/2022]
Abstract
Isoprenoids, also referred to as terpenes, are the most diverse class of natural products appearing in a variety of natural sources, specifically in higher plants, and have a wide range of biological functions. This review describes novel or recent approaches and achievements in pathway engineering of Escherichia coli towards efficient biosynthesis of functional isoprenoids, specifically carotenoids and sesquiterpene, following description of "regularity and simplicity" in the biosynthesis of isoprenoid basic structures. The introduction of heterologous mevalonate pathway-based genes into E. coli has been shown to improve the productivity of carotenoids or sesquiterpenes that are synthesized from farnesyl diphosphate. This achievement also enables relevant researchers to efficiently analyze an isolated gene candidate for a terpene synthase (terpene cyclase).
Collapse
Affiliation(s)
- Hisashi Harada
- Central Laboratories for Frontier Technology, Kirin Holdings Co., Ltd., i-BIRD, Suematsu, Nonoichi-machi, Ishikawa, Japan
| | | |
Collapse
|
237
|
Overproduction of geranylgeraniol by metabolically engineered Saccharomyces cerevisiae. Appl Environ Microbiol 2009; 75:5536-43. [PMID: 19592534 DOI: 10.1128/aem.00277-09] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
(E, E, E)-Geranylgeraniol (GGOH) is a valuable starting material for perfumes and pharmaceutical products. In the yeast Saccharomyces cerevisiae, GGOH is synthesized from the end products of the mevalonate pathway through the sequential reactions of farnesyl diphosphate synthetase (encoded by the ERG20 gene), geranylgeranyl diphosphate synthase (the BTS1 gene), and some endogenous phosphatases. We demonstrated that overexpression of the diacylglycerol diphosphate phosphatase (DPP1) gene could promote GGOH production. We also found that overexpression of a BTS1-DPP1 fusion gene was more efficient for producing GGOH than coexpression of these genes separately. Overexpression of the hydroxymethylglutaryl-coenzyme A reductase (HMG1) gene, which encodes the major rate-limiting enzyme of the mevalonate pathway, resulted in overproduction of squalene (191.9 mg liter(-1)) rather than GGOH (0.2 mg liter(-1)) in test tube cultures. Coexpression of the BTS1-DPP1 fusion gene along with the HMG1 gene partially redirected the metabolic flux from squalene to GGOH. Additional expression of a BTS1-ERG20 fusion gene resulted in an almost complete shift of the flux to GGOH production (228.8 mg liter(-1) GGOH and 6.5 mg liter(-1) squalene). Finally, we constructed a diploid prototrophic strain coexpressing the HMG1, BTS1-DPP1, and BTS1-ERG20 genes from multicopy integration vectors. This strain attained 3.31 g liter(-1) GGOH production in a 10-liter jar fermentor with gradual feeding of a mixed glucose and ethanol solution. The use of bifunctional fusion genes such as the BTS1-DPP1 and ERG20-BTS1 genes that code sequential enzymes in the metabolic pathway was an effective method for metabolic engineering.
Collapse
|
238
|
Weber W, Fussenegger M. The impact of synthetic biology on drug discovery. Drug Discov Today 2009; 14:956-63. [PMID: 19580884 PMCID: PMC7108258 DOI: 10.1016/j.drudis.2009.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 11/30/2022]
Abstract
The emergence of synthetic biology is holding great hopes for providing solutions to the unmet needs of humankind. This review article describes how synthetic biology can deliver on this promise in the field of drug discovery by providing novel opportunities throughout the entire drug discovery process. Synthetic biology tools enable disease mechanisms and target identification to be elucidated and also provide avenues to discover small chemotherapeutic molecules or design novel biopharmaceuticals. Furthermore, synthetic biologists can design cost-effective microbial production processes for complex natural products, which could help overcome global drug shortages. These impressive advances have been achieved in only a few years, and are an indicator for the potential of synthetic biology.
Collapse
Affiliation(s)
- Wilfried Weber
- Centre for Biological Signalling Studies (bioss), Albert-Ludwigs-Universität Freiburg, Engesserstrasse 4b, D-79108 Freiburg, Germany
| | | |
Collapse
|
239
|
New microbial fuels: a biotech perspective. Curr Opin Microbiol 2009; 12:274-81. [DOI: 10.1016/j.mib.2009.04.004] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/09/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
|
240
|
Agapakis CM, Silver PA. Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks. MOLECULAR BIOSYSTEMS 2009; 5:704-13. [PMID: 19562109 DOI: 10.1039/b901484e] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Synthetic biology has been used to describe many biological endeavors over the past thirty years--from designing enzymes and in vitro systems, to manipulating existing metabolisms and gene expression, to creating entirely synthetic replicating life forms. What separates the current incarnation of synthetic biology from the recombinant DNA technology or metabolic engineering of the past is an emphasis on principles from engineering such as modularity, standardization, and rigorously predictive models. As such, synthetic biology represents a new paradigm for learning about and using biological molecules and data, with applications in basic science, biotechnology, and medicine. This review covers the canonical examples as well as some recent advances in synthetic biology in terms of what we know and what we can learn about the networks underlying biology, and how this endeavor may shape our understanding of living systems.
Collapse
|
241
|
Simonsen HT, Drew DP, Lunde C. Perspectives on using physcomitrella patens as an alternative production platform for thapsigargin and other terpenoid drug candidates. PERSPECTIVES IN MEDICINAL CHEMISTRY 2009; 3:1-6. [PMID: 19812738 PMCID: PMC2754923 DOI: 10.4137/pmc.s2220] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To overcome the potential future demand for terpenoids used as drugs, a new production platform is currently being established in our laboratory. The moss Physcomitrella has been chosen as the candidate organism for production of drug candidates based on terpenoids derived from plants, with a primary focus on the sesquiterpene lactone, thapsigargin. This drug candidate and other candidates/drugs with sesquiterpene skeleton are difficult to obtain by chemical synthesis due to their large number of chiral centers. Furthermore, they are not available in sufficient amounts from their original plant. The requirement for a new production system to meet the potential market demand for these compounds is not only obvious, but also essential if sufficient quantities of the drug candidates are to be available for the potential therapeutic use.
Collapse
Affiliation(s)
- Henrik Toft Simonsen
- VKR Research Centre Pro-Active Plants, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | | |
Collapse
|
242
|
Eoh H, Brennan PJ, Crick DC. The Mycobacterium tuberculosis MEP (2C-methyl-d-erythritol 4-phosphate) pathway as a new drug target. Tuberculosis (Edinb) 2009; 89:1-11. [PMID: 18793870 PMCID: PMC2646905 DOI: 10.1016/j.tube.2008.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/15/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) is still a major public health problem, compounded by the human immunodeficiency virus (HIV)-TB co-infection and recent emergence of multidrug-resistant (MDR) and extensively drug resistant (XDR)-TB. Novel anti-TB drugs are urgently required. In this context, the 2C-methyl-d-erythritol 4-phosphate (MEP) pathway of Mycobacterium tuberculosis has drawn attention; it is one of several pathways vital for M. tuberculosis viability and the human host lacks homologous enzymes. Thus, the MEP pathway promises bacterium-specific drug targets and the potential for identification of lead compounds unencumbered by target-based toxicity. Indeed, fosmidomycin is now known to inhibit the second step in the MEP pathway. This review describes the cardinal features of the main enzymes of the MEP pathway in M. tuberculosis and how these can be manipulated in high throughput screening campaigns in the search for new anti-infectives against TB.
Collapse
Affiliation(s)
- Hyungjin Eoh
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A. 80523
| | - Patrick J. Brennan
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A. 80523
| | - Dean C. Crick
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A. 80523
| |
Collapse
|
243
|
Harada H, Yu F, Okamoto S, Kuzuyama T, Utsumi R, Misawa N. Efficient synthesis of functional isoprenoids from acetoacetate through metabolic pathway-engineered Escherichia coli. Appl Microbiol Biotechnol 2009; 81:915-25. [PMID: 18836713 DOI: 10.1007/s00253-008-1724-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 09/12/2008] [Accepted: 09/17/2008] [Indexed: 11/28/2022]
Abstract
We show here an efficient synthesis system of isoprenoids from acetoacetate as the main substrate. We expressed in Escherichia coli a Streptomyces mevalonate pathway gene cluster starting from HMG-CoA synthase and including isopentenyl diphosphate isomerase (idi) type 2 gene and the yeast idi type 1 and rat acetoacetate-CoA ligase (Aacl) genes. When the alpha-humulene synthase (ZSS1) gene of shampoo ginger was expressed in this transformant, the resultant E. coli produced 958 mug/mL culture of alpha-humulene with a lithium acetoacetate (LAA) supplement, which was a 13.6-fold increase compared with a control E. coli strain expressing only ZSS1. Next, we investigated if this E. coli strain engineered to utilize acetoacetate can synthesize carotenoids effectively. When the crtE, crtB, and crtI genes required for lycopene synthesis were expressed in the transformant, lycopene amounts reached 12.5 mg/g dry cell weight with addition of LAA, an 11.8-fold increase compared with a control expressing only the three crt genes. As for astaxanthin production with the E. coli transformant, in which the crtE, crtB, crtI, crtY, crtZ, and crtW genes were expressed, the total amount of carotenoids produced (astaxanthin, lycopene, and phytoene) was significantly increased to 7.5 times that of a control expressing only the six crt genes.
Collapse
Affiliation(s)
- Hisashi Harada
- Central Laboratories for Frontier Technology, Kirin Holdings Co., Ltd., i-BIRD 3-570, Suematsu, Nonoichi-machi, Ishikawa 921-8836, Japan
| | | | | | | | | | | |
Collapse
|
244
|
Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 2008; 37:e16. [PMID: 19074487 PMCID: PMC2632897 DOI: 10.1093/nar/gkn991] [Citation(s) in RCA: 524] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The assembly of large recombinant DNA encoding a whole biochemical pathway or genome represents a significant challenge. Here, we report a new method, DNA assembler, which allows the assembly of an entire biochemical pathway in a single step via in vivo homologous recombination in Saccharomyces cerevisiae. We show that DNA assembler can rapidly assemble a functional d-xylose utilization pathway (∼9 kb DNA consisting of three genes), a functional zeaxanthin biosynthesis pathway (∼11 kb DNA consisting of five genes) and a functional combined d-xylose utilization and zeaxanthin biosynthesis pathway (∼19 kb consisting of eight genes) with high efficiencies (70–100%) either on a plasmid or on a yeast chromosome. As this new method only requires simple DNA preparation and one-step yeast transformation, it represents a powerful tool in the construction of biochemical pathways for synthetic biology, metabolic engineering and functional genomics studies.
Collapse
Affiliation(s)
- Zengyi Shao
- Department of Chemical and Biomolecular Engineering and Department of Chemistry, Biochemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hua Zhao
- Department of Chemical and Biomolecular Engineering and Department of Chemistry, Biochemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering and Department of Chemistry, Biochemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- *To whom correspondence should be addressed. Tel: +1 217 333 2631; Fax: +1 217 333 5052;
| |
Collapse
|
245
|
Johnson HE, Banack SA, Cox PA. Variability in content of the anti-AIDS drug candidate prostratin in Samoan populations of Homalanthus nutans. JOURNAL OF NATURAL PRODUCTS 2008; 71:2041-2044. [PMID: 19007283 PMCID: PMC2663895 DOI: 10.1021/np800295m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Indexed: 05/27/2023]
Abstract
Homalanthus nutans, used by Samoan healers to treat hepatitis, produces the antiviral compound 12-deoxyphorbol 13-acetate, prostratin (1). Prostratin is being developed as an adjuvant therapy to clear latent viral reservoirs, the major obstacle to eradication of HIV-AIDS within the human body. A validated reversed-phase HPLC method was developed to assay concentrations of 1 in H. nutans. A survey of four distinct populations on two different Samoan islands revealed significant variability in content. The stem tissue (range 0.2-52.6 microg/g 1), used by healers in indigenous therapies,gave a higher median concentration of prostratin (3.5 microg/g) than root or leaf tissues (2.9 and 2.5 microg/g, respectively).The high variability and skewness of these data indicate that cultivar selection for drug production will be important for this species. The reversed-phase HPLC assay will allow plants to be selected for agricultural development and genetic analysis by identifying those individuals above and below a 95% confidence interval for the median concentration.
Collapse
Affiliation(s)
| | | | - Paul Alan Cox
- Corresponding author. Tel: (307) 734-1680. Fax: (307) 734-1810. E-mail:
| |
Collapse
|
246
|
Leonard E, Nielsen D, Solomon K, Prather KJ. Engineering microbes with synthetic biology frameworks. Trends Biotechnol 2008; 26:674-81. [DOI: 10.1016/j.tibtech.2008.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/14/2008] [Accepted: 08/18/2008] [Indexed: 12/25/2022]
|
247
|
Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 2008; 19:556-63. [PMID: 18996194 DOI: 10.1016/j.copbio.2008.10.014] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
Abstract
The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.
Collapse
Affiliation(s)
- Sung Kuk Lee
- Joint BioEnergy Institute, Emeryville, CA 95608, USA
| | | | | | | | | |
Collapse
|
248
|
Ro DK, Ouellet M, Paradise EM, Burd H, Eng D, Paddon CJ, Newman JD, Keasling JD. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol 2008; 8:83. [PMID: 18983675 PMCID: PMC2588579 DOI: 10.1186/1472-6750-8-83] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 11/04/2008] [Indexed: 11/24/2022] Open
Abstract
Background Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Results Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 μg mL-1 in shake-flask cultures and 1 g L-1 in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by yeast microarray further demonstrated that the induction of drug-resistant genes such as ABC transporters and major facilitator superfamily (MSF) genes is the primary cellular stress-response; in addition, oxidative and osmotic stress responses were observed in the engineered yeast. Conclusion The data presented here suggest that the engineered yeast producing artemisinic acid suffers oxidative and drug-associated stresses. The use of plant-derived transporters and optimizing AMO activity may improve the yield of artemisinic acid production in the engineered yeast.
Collapse
Affiliation(s)
- Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Abstract
The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial ("white") biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate.
Collapse
|
250
|
Quantitative analysis of isoprenoid diphosphate intermediates in recombinant and wild-type Escherichia coli strains. Appl Microbiol Biotechnol 2008; 81:175-82. [DOI: 10.1007/s00253-008-1707-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/13/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
|