201
|
Affiliation(s)
- Malin E V Johansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
202
|
Abeler-Dörner L, Swamy M, Williams G, Hayday AC, Bas A. Butyrophilins: an emerging family of immune regulators. Trends Immunol 2011; 33:34-41. [PMID: 22030238 DOI: 10.1016/j.it.2011.09.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/04/2011] [Accepted: 09/19/2011] [Indexed: 11/17/2022]
Abstract
Butyrophilins (Btns) and butyrophilin-like (Btnl) molecules are emerging as novel regulators of immune responses in mice and humans. Several clues point to their probable importance: many of the genes are located within the MHC; they are structurally related to B7-co-stimulatory molecules; they are functionally implicated in T cell inhibition and in the modulation of epithelial cell-T cell interactions; and they are genetically associated with inflammatory diseases. Nonetheless, initial immersion into the current literature can uncover confusion over even basic information such as gene names and expression patterns, and seemingly conflicting data regarding the biological activities of different family members. This review addresses each of these issues, concluding with the attractive potential of Btn and Btnl molecules to act as specific attenuators of tissue-associated inflammatory responses.
Collapse
Affiliation(s)
- Lucie Abeler-Dörner
- Peter Gorer Department of Immunobiology, King's College School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | | | | | | | | |
Collapse
|
203
|
Kushwah R, Oliver JR, Wu J, Chang Z, Hu J. Elf3 regulates allergic airway inflammation by controlling dendritic cell-driven T cell differentiation. THE JOURNAL OF IMMUNOLOGY 2011; 187:4639-53. [PMID: 21948981 DOI: 10.4049/jimmunol.1101967] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Elf3 belongs to the Ets family of transcription factors and has been implicated in inflammation. Elf3 is highly expressed in the lungs, and Elf3(-/-) mice are impaired in IL-6 production after intranasal LPS exposure. To identify the role of Elf3 in Th17-driven pulmonary inflammation, we have performed epicutaneous sensitization of Elf3(-/-) mice with OVA followed by airway OVA challenge and have identified Elf3(-/-) mice to be impaired in induction of Th17 response, attributable to impairment of IL-6 production by dendritic cells (DCs). However, increased serum levels of OVA-specific IgG1 and IgE were observed, pointing toward an exaggerated Th2 response. To study Th2 response, we performed i.p. sensitization of Elf3(-/-) mice with OVA and confirmed loss of Elf3 to result in an aggravated Th2 response, characterized by increased generation of IL-4-producing T cells, increased levels of OVA-specific IgE and IgG1 Ab titers, and increased serum levels of Th2 cytokines, together with extensive inflammation and mucus production in airways. Elf3(-/-) DCs were impaired in priming Th1 differentiation, which, in turn, promoted Th2 differentiation. This was mediated by the ability of Elf3(-/-) DCs to undergo hypermaturation but secrete significantly lower levels of IL-12 in response to inflammatory stimuli. The impairment of IL-12 production was due to impairment of IL-12p40 gene induction in Elf3(-/-) DCs in response to inflammatory stimuli. Taken together, our study identifies a novel function of Elf3 in regulating allergic airway inflammation by regulating DC-driven Th1, Th2, and Th17 differentiation.
Collapse
Affiliation(s)
- Rahul Kushwah
- Physiology and Experimental Medicine Research Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
204
|
Gao N, Yin J, Yoon GS, Mi QS, Yu FSX. Dendritic cell-epithelium interplay is a determinant factor for corneal epithelial wound repair. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2243-53. [PMID: 21924232 DOI: 10.1016/j.ajpath.2011.07.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/13/2011] [Accepted: 07/19/2011] [Indexed: 12/21/2022]
Abstract
The functions of intraepithelial dendritic cells (DCs) are critical for mucosal innate and adaptive immunity, but little is known about the role of tissue-specific DCs in epithelial homeostasis and tissue repair. By using the epithelial debridement wound model and CD11c-diphtheria toxin receptor mice that express a CD11c promoter-driven diphtheria toxin receptor, we showed that DCs migrate along with the epithelial sheet to cover the wound and that local depletion of DCs resulted in a significant delay in epithelial wound closure. In response to wounding, migratory epithelia produce CXCL10, thymic stromal lymphopoietin, and IL-1β and its antagonist soluble IL-1 receptor antagonist (sIL-1Ra); depletion of corneal DCs reversed their elevated expressions to a different extent, suggesting a DC-mediated positive feedback loop in epithelial gene expression. Furthermore, both CXCL10 and thymic stromal lymphopoietin were localized in migratory epithelia, suggesting that epithelial cells play a key role in DC infiltration and activation in injured corneas. On the other hand, DC depletion resulted in suppressed epithelial AKT activation, increased cell apoptosis, and decreased polymorphonuclear leukocyte infiltration in the healing cornea. These results indicate that DCs and epithelium form a functional entity at mucosal surfaces for maintaining corneal homeostasis and for tissue repair.
Collapse
Affiliation(s)
- Nan Gao
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|
205
|
Ceelen L, Haesebrouck F, Vanhaecke T, Rogiers V, Vinken M. Modulation of connexin signaling by bacterial pathogens and their toxins. Cell Mol Life Sci 2011; 68:3047-64. [PMID: 21656255 PMCID: PMC11115019 DOI: 10.1007/s00018-011-0737-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/12/2011] [Accepted: 05/17/2011] [Indexed: 02/07/2023]
Abstract
Inherent to their pivotal tasks in the maintenance of cellular homeostasis, gap junctions, connexin hemichannels, and pannexin hemichannels are frequently involved in the dysregulation of this critical balance. The present paper specifically focuses on their roles in bacterial infection and disease. In particular, the reported biological outcome of clinically important bacteria including Escherichia coli, Shigella flexneri, Yersinia enterocolitica, Helicobacter pylori, Bordetella pertussis, Aggregatibacter actinomycetemcomitans, Pseudomonas aeruginosa, Citrobacter rodentium, Clostridium species, Streptococcus pneumoniae, and Staphylococcus aureus and their toxic products on connexin- and pannexin-related signaling in host cells is reviewed. Particular attention is paid to the underlying molecular mechanisms of these effects as well as to the actual biological relevance of these findings.
Collapse
Affiliation(s)
- Liesbeth Ceelen
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
206
|
Platt MP, Soler Z, Metson R, Stankovic KM. Pathways analysis of molecular markers in chronic sinusitis with polyps. Otolaryngol Head Neck Surg 2011; 144:802-8. [PMID: 21493366 DOI: 10.1177/0194599810395091] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To perform a comprehensive molecular pathways analysis of genes identified through genome-wide expression profiling and the published literature for chronic sinusitis with polyps. STUDY DESIGN Molecular pathways analysis. SETTING Academic medical center. METHODS A molecular pathways analysis of gene biomarkers discovered through hypothesis-driven and high-throughput molecular studies was performed. Genes identified with a PubMed literature search were analyzed with Ingenuity Pathways Analysis software to identify central molecules implicated in the pathogenesis of chronic sinusitis with polyps. The central pathways were then compared with those identified through genome-wide expression profiling of ethmoid polyps. RESULTS A total of 97 molecules were investigated with Ingenuity Pathways Analysis based on 55 studies that evaluated differences in gene expression (39), genetic variation (12), or proteomics (4). The analysis revealed 9 statistically significant molecular networks containing central nodes that included transcription factors, protein kinases, cytokines, and growth factors/receptors. The highest scoring networks implicated nuclear factor kappa-B, tumor necrosis factor, and mitogen-activated protein kinases. The majority of pathways in the literature review analysis overlapped with those identified through a single genome-wide expression study. CONCLUSIONS Chronic sinusitis with polyps is a complex disease with suspected contribution of multiple genetic and environmental factors. The search for causative genes has led to the discovery of numerous candidates. Pathways analysis applied to these candidate genes identified common central molecules that are likely to be key mediators of the disease process. Novel therapies targeting these molecules may be applicable for the treatment of chronic sinusitis with polyps.
Collapse
Affiliation(s)
- Michael P Platt
- Department of Otolaryngology-Head and Neck Surgery, Boston University, Boston, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
207
|
Roberson EC, Tully JE, Guala AS, Reiss JN, Godburn KE, Pociask DA, Alcorn JF, Riches DWH, Dienz O, Janssen-Heininger YMW, Anathy V. Influenza induces endoplasmic reticulum stress, caspase-12-dependent apoptosis, and c-Jun N-terminal kinase-mediated transforming growth factor-β release in lung epithelial cells. Am J Respir Cell Mol Biol 2011; 46:573-81. [PMID: 21799120 DOI: 10.1165/rcmb.2010-0460oc] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Influenza A virus (IAV) infection is known to induce endoplasmic reticulum (ER) stress, Fas-dependent apoptosis, and TGF-β production in a variety of cells. However, the relationship between these events in murine primary tracheal epithelial cells (MTECS), which are considered one of the primary sites of IAV infection and replication, is unclear. We show that IAV infection induced ER stress marker activating transcription factor-6 and endoplasmic reticulum protein 57-kD (ERp57), but not C/EBP homologous protein (CHOP). In contrast, the ER stress inducer thapsigargin (THP) increased CHOP. IAV infection activated caspases and apoptosis, independently of Fas and caspase-8, in MTECs. Instead, apoptosis was mediated by caspase-12. A decrease in ERp57 attenuated the IAV burden and decreased caspase-12 activation and apoptosis in epithelial cells. TGF-β production was enhanced in IAV-infected MTECs, compared with THP or staurosporine. IAV infection caused the activation of c-Jun N-terminal kinase (JNK). Furthermore, IAV-induced TGF-β production required the presence of JNK1, a finding that suggests a role for JNK1 in IAV-induced epithelial injury and subsequent TGF-β production. These novel findings suggest a potential mechanistic role for a distinct ER stress response induced by IAV, and a profibrogenic/repair response in contrast to other pharmacological inducers of ER stress. These responses may also have a potential role in acute lung injury, fibroproliferative acute respiratory distress syndrome, and the recently identified H1N1 influenza-induced exacerbations of chronic obstructive pulmonary disease (Wedzicha JA. Proc Am Thorac Soc 2004;1:115-120) and idiopathic pulmonary fibrosis (Umeda Y, et al. Int Med 2010;49:2333-2336).
Collapse
Affiliation(s)
- Elle C Roberson
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Turchinovich G, Hayday AC. Skint-1 identifies a common molecular mechanism for the development of interferon-γ-secreting versus interleukin-17-secreting γδ T cells. Immunity 2011; 35:59-68. [PMID: 21737317 DOI: 10.1016/j.immuni.2011.04.018] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/26/2011] [Accepted: 04/05/2011] [Indexed: 01/11/2023]
Abstract
Murine T cell development begins with the generation of a unique Vγ5(+)Vδ1(+) epidermal γδ T cell compartment and a unique, more broadly distributed Vγ6(+)Vδ1(+) subset that is an important source of interleukin-17 (IL-17). This study showed that these respective functional programs were determined by Skint-1, a thymic epithelial cell determinant. By engaging Skint-1(+) cells, Vγ5(+)Vδ1(+) thymocytes induced an Egr3-mediated pathway, provoking differentiation and the potential to produce IFN-γ while suppressing the γδ T cell lineage factor, Sox13, and a RORγt transcription factor-associated IL-17-producing capacity. Hence, the functions of the earliest T cells are substantially preprogrammed in the thymus. Additionally, the phenotype of Skint-1-selected fetal thymocytes permitted identification in the adult thymus of an analogous gene regulatory network regulated by the γδ T cell receptor. Hence, these observations describe a molecular pathway by which distinct stress-responsive lymphocyte repertoires may emerge throughout ontogeny and offer parallels with emerging perspectives on the functional selection of other lymphoid cells.
Collapse
Affiliation(s)
- Gleb Turchinovich
- London Research Institute, Cancer Research UK, and Peter Gorer Department of Immunobiology, King's College School of Medicine at Guy's Hospital, London SE1 9RT, UK
| | | |
Collapse
|
209
|
Li Y, Wang J, He HY, Ma LJ, Zeng J, Deng GC, Liu X, Engelhardt JF, Wang Y. Immunohistochemical demonstration of airway epithelial cell markers of guinea pig. Tissue Cell 2011; 43:283-90. [PMID: 21705035 DOI: 10.1016/j.tice.2011.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 05/15/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022]
Abstract
The guinea pig (Cavea porcellus) is a mammalian non-rodent species in the Caviidae family. The sensitivity of the respiratory system and the susceptibility to infectious diseases allows the guinea pig to be a useful model for both infectious and non-infectious lung diseases such as asthma and tuberculosis. In this report, we demonstrated for the first time, the major cell types and composition in the guinea pig airway epithelium, using cell type-specific markers by immunohistochemical staining using the commercial available immunological reagents that cross-react with guinea pig. Our results revealed the availability of antibodies cross-reacting with airway epithelial cell types of basal, non-ciliated columnar, ciliated, Clara, goblet and alveolar type II cells, as well as those cells expressing Mucin 5AC, Mucin 2, Aquaporin 4 and Calcitonin Gene Related Peptide. The distribution of these various cell types were quantified in the guinea pig airway by immunohistochemical staining and were comparable with morphometric studies using an electron microscopy assay. Moreover, this study also demonstrated that goblet cells are the main secretory cell type in the guinea pig's airway, distinguishing this species from rats and mice. These results provide useful information for the understanding of airway epithelial cell biology and mechanisms of epithelial-immune integration in guinea pig models.
Collapse
Affiliation(s)
- Yong Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, Yinchuan, Ningxia 750021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Reynders A, Yessaad N, Vu Manh TP, Dalod M, Fenis A, Aubry C, Nikitas G, Escalière B, Renauld JC, Dussurget O, Cossart P, Lecuit M, Vivier E, Tomasello E. Identity, regulation and in vivo function of gut NKp46+RORγt+ and NKp46+RORγt- lymphoid cells. EMBO J 2011; 30:2934-47. [PMID: 21685873 PMCID: PMC3160256 DOI: 10.1038/emboj.2011.201] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/26/2011] [Indexed: 12/14/2022] Open
Abstract
The gut is a major barrier against microbes and encloses various innate lymphoid cells (ILCs), including two subsets expressing the natural cytotoxicity receptor NKp46. A subset of NKp46(+) cells expresses retinoic acid receptor-related orphan receptor γt (RORγt) and produces IL-22, like lymphoid tissue inducer (LTi) cells. Other NKp46(+) cells lack RORγt and produce IFN-γ, like conventional Natural Killer (cNK) cells. The identity, the regulation and the in vivo functions of gut NKp46(+) ILCs largely remain to be unravelled. Using pan-genomic profiling, we showed here that small intestine (SI) NKp46(+)RORγt(-) ILCs correspond to SI NK cells. Conversely, we identified a transcriptional programme conserved in fetal LTi cells and adult SI NKp46(+)RORγt(+) and NKp46(-)RORγt(+) ILCs. We also demonstrated that the IL-1β/IL-1R1/MyD88 pathway, but not the commensal flora, drove IL-22 production by NKp46(+)RORγt(+) ILCs. Finally, oral Listeria monocytogenes infection induced IFN-γ production in SI NK and IL-22 production in NKp46(+)RORγt(+) ILCs, but only IFN-γ contributed to control bacteria dissemination. NKp46(+) ILC heterogeneity is thus associated with subset-specific transcriptional programmes and effector functions that govern their implication in gut innate immunity.
Collapse
Affiliation(s)
- Ana Reynders
- Centre d'Immunologie de Marseille-Luminy, Université de la Mediterannée, Campus du Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Medicale U631, Marseille, France
- Centre National de la Recherche Scientifique, Unite Mixte de Recherche 6102, Marseille, France
| | - Nadia Yessaad
- Centre d'Immunologie de Marseille-Luminy, Université de la Mediterannée, Campus du Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Medicale U631, Marseille, France
- Centre National de la Recherche Scientifique, Unite Mixte de Recherche 6102, Marseille, France
| | - Thien-Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy, Université de la Mediterannée, Campus du Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Medicale U631, Marseille, France
- Centre National de la Recherche Scientifique, Unite Mixte de Recherche 6102, Marseille, France
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Université de la Mediterannée, Campus du Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Medicale U631, Marseille, France
- Centre National de la Recherche Scientifique, Unite Mixte de Recherche 6102, Marseille, France
| | - Aurore Fenis
- Centre d'Immunologie de Marseille-Luminy, Université de la Mediterannée, Campus du Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Medicale U631, Marseille, France
- Centre National de la Recherche Scientifique, Unite Mixte de Recherche 6102, Marseille, France
| | - Camille Aubry
- Unité des Interactions Bactéries-Cellules, Department of Cellular Biology and Infection, Institut Pasteur, Paris, France
- Inserm U604, Paris, France
- INRA USC2020, Paris, France
| | - Georgios Nikitas
- Inserm U604, Paris, France
- Microbes and Host Barriers Group, Department of Infection and Epidemiology, Institut Pasteur, Paris, France
| | - Bertrand Escalière
- Centre d'Immunologie de Marseille-Luminy, Université de la Mediterannée, Campus du Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Medicale U631, Marseille, France
- Centre National de la Recherche Scientifique, Unite Mixte de Recherche 6102, Marseille, France
| | - Jean Christophe Renauld
- Ludwig Institute for Cancer Research Ltd, Experimental Medicine Unit, Universite Catholique de Louvain, Brussels, Belgium
| | - Olivier Dussurget
- Unité des Interactions Bactéries-Cellules, Department of Cellular Biology and Infection, Institut Pasteur, Paris, France
- Inserm U604, Paris, France
- INRA USC2020, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Department of Cellular Biology and Infection, Institut Pasteur, Paris, France
- Inserm U604, Paris, France
- INRA USC2020, Paris, France
| | - Marc Lecuit
- Inserm U604, Paris, France
- Microbes and Host Barriers Group, Department of Infection and Epidemiology, Institut Pasteur, Paris, France
- Université Paris Descartes, Centre d'Infectiologie Necker-Pasteur, Service des Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Université de la Mediterannée, Campus du Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Medicale U631, Marseille, France
- Centre National de la Recherche Scientifique, Unite Mixte de Recherche 6102, Marseille, France
- Assistance Publique des Hôpitaux de Marseille, Hôpital de la Conception, Marseille, France
| | - Elena Tomasello
- Centre d'Immunologie de Marseille-Luminy, Université de la Mediterannée, Campus du Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Medicale U631, Marseille, France
- Centre National de la Recherche Scientifique, Unite Mixte de Recherche 6102, Marseille, France
| |
Collapse
|
211
|
Wu T, Jia L, Du R, Tao X, Chen J, Cheng B. Genome-wide analysis reveals the active roles of keratinocytes in oral mucosal adaptive immune response. Exp Biol Med (Maywood) 2011; 236:832-43. [PMID: 21676921 DOI: 10.1258/ebm.2011.010307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To elucidate the roles of oral keratinocytes in the adaptive immune response of oral mucosa, global gene expression analysis was performed by microarray technique and integrating computational methods, including hierarchical clustering, biological process Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, self-organizing maps (SOMs) and biological association network analysis (BAN). Raw data from microarray experiments were uploaded to the Gene Expression Omnibus Database, http://www.ncbi.nlm.nih.gov/geo/ (GEO accession GSE28035). We identified 666 differentially expressed genes in the early stage (48 h) and 993 in the late stage (96 h) of the oral mucosal adaptive immune response. The analysis revealed that oral keratinocytes exerted diverse biological functions in different stages of immune response. Specifically, in 48 h the differentially expressed genes encompassed an array of biological ontology associated with immune response, such as antigen processing and presentation, and positive regulation of T-cell-mediated cytotoxicity. Several pathways which have been reported to be critical in inflammation, including mitogen-activated protein kinase pathway, were activated. Furthermore, after BAN construction, some putative hub genes and networks such as interleukin-1α and its subnetwork were recognized. Taken together, these results give substantial evidence to support the active roles of keratinocytes in the oral mucosal adaptive immune response.
Collapse
Affiliation(s)
- Tong Wu
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
212
|
Senti G, von Moos S, Kündig TM. Epicutaneous allergen administration: is this the future of allergen-specific immunotherapy? Allergy 2011; 66:798-809. [PMID: 21518374 DOI: 10.1111/j.1398-9995.2011.02560.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
IgE-mediated allergies, such as allergic rhinoconjunctivitis and asthma, have become highly prevalent, today affecting up to 30% of the population in industrialized countries. Allergen-specific immunotherapy (SIT) either subcutaneously or via the sublingual route is effective, but only few patients (<5%) choose immunotherapy, as treatment takes several years and because allergen administrations are associated with local and, in some cases, even systemic allergic side-effects because of allergen accidentally reaching the circulation. In order to resolve these two major drawbacks, the ideal application site of SIT should have two characteristics. First, it should contain a high number of potent antigen-presenting cells to enhance efficacy and shorten treatment duration. Secondly, it should be nonvascularized in order to minimize inadvertent systemic distribution of the allergen and therefore systemic allergic side-effects. The epidermis, a nonvascularized multilayer epithelium, that contains high numbers of potent antigen-presenting Langerhans cells (LC) could therefore be an interesting administration route. The present review will discuss the immunological rational, history and actual clinical experience with epicutaneous allergen-specific immunotherapy.
Collapse
Affiliation(s)
- G Senti
- Clinical Trials Center, University Hospital of Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
213
|
Ying H, Elpek KG, Vinjamoori A, Zimmerman SM, Chu GC, Yan H, Fletcher-Sananikone E, Zhang H, Liu Y, Wang W, Ren X, Zheng H, Kimmelman AC, Paik JH, Lim C, Perry SR, Jiang S, Malinn B, Protopopov A, Colla S, Xiao Y, Hezel AF, Bardeesy N, Turley SJ, Wang YA, Chin L, Thayer SP, DePinho RA. PTEN is a major tumor suppressor in pancreatic ductal adenocarcinoma and regulates an NF-κB-cytokine network. Cancer Discov 2011; 1:158-69. [PMID: 21984975 DOI: 10.1158/2159-8290.cd-11-0031] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Initiation of pancreatic ductal adenocarcinoma (PDAC) is driven by oncogenic KRAS mutation, and disease progression is associated with frequent loss of tumor suppressors. In this study, human PDAC genome analyses revealed frequent deletion of the PTEN gene as well as loss of expression in primary tumor specimens. A potential role for PTEN as a haploinsufficient tumor suppressor is further supported by mouse genetic studies. The mouse PDAC driven by oncogenic Kras mutation and Pten deficiency also sustains spontaneous extinction of Ink4a expression and shows prometastatic capacity. Unbiased transcriptomic analyses established that combined oncogenic Kras and Pten loss promotes marked NF-κB activation and its cytokine network, with accompanying robust stromal activation and immune cell infiltration with known tumor-promoting properties. Thus, PTEN/phosphoinositide 3-kinase (PI3K) pathway alteration is a common event in PDAC development and functions in part to strongly activate the NF-κB network, which may serve to shape the PDAC tumor microenvironment.
Collapse
Affiliation(s)
- Haoqiang Ying
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
von Moos S, Kündig TM, Senti G. Novel Administration Routes for Allergen-Specific Immunotherapy: A Review of Intralymphatic and Epicutaneous Allergen-Specific Immunotherapy. Immunol Allergy Clin North Am 2011; 31:391-406, xi. [DOI: 10.1016/j.iac.2011.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
215
|
Repulsive guidance molecule-A (RGM-A) inhibits leukocyte migration and mitigates inflammation. Proc Natl Acad Sci U S A 2011; 108:6555-60. [PMID: 21467223 DOI: 10.1073/pnas.1015605108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Directed cell migration is a prerequisite not only for the development of the central nervous system, but also for topically restricted, appropriate immune responses. This is crucial for host defense and immune surveillance. Attracting environmental cues guiding leukocyte cell traffic are likely to be complemented by repulsive cues, which actively abolish cell migration. One such a paradigm exists in the developing nervous system, where neuronal migration and axonal path finding is balanced by chemoattractive and chemorepulsive cues, such as the neuronal repulsive guidance molecule-A (RGM-A). As expressed at the inflammatory site, the role of RGM-A within the immune response remains unclear. Here we report that RGM-A (i) is expressed by epithelium and leukocytes (granulocytes, monocytes, and T/B lymphocytes); (ii) inhibits leukocyte migration by contact repulsion and chemorepulsion, depending on dosage, through its receptor neogenin; and (iii) suppresses the inflammatory response in a model of zymosan-A-induced peritonitis. Systemic application of RGM-A attenuates the humoral proinflammatory response (TNF-α, IL-6, and macrophage inflammatory protein 1α), infiltration of inflammatory cell traffic, and edema formation. In contrast, the demonstrated anti-inflammatory effect of RGM-A is absent in mice homozygous for a gene trap mutation in the neo1 locus (encoding neogenin). Thus, our results suggest that RGM-A is a unique endogenous inhibitor of leukocyte chemotaxis that limits inflammatory leukocyte traffic and creates opportunities to better understand and treat pathologies caused by exacerbated or misdirected inflammatory responses.
Collapse
|
216
|
Sanos SL, Vonarbourg C, Mortha A, Diefenbach A. Control of epithelial cell function by interleukin-22-producing RORγt+ innate lymphoid cells. Immunology 2011; 132:453-65. [PMID: 21391996 PMCID: PMC3075499 DOI: 10.1111/j.1365-2567.2011.03410.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 12/30/2022] Open
Abstract
It is rapidly emerging that the defence system of innate lymphocytes is more diverse than previously recognized. In addition to natural killer (NK) cells, lymphoid tissue inducer (LTi) cells, and natural helper cells have now been identified. LTi cells are developmentally dependent on the orphan transcription factor RORγt and instruct lymph node development during embryogenesis. More recently, it has become evident, that in addition to their role for lymph organ development, LTi cells are also potent producers of cytokines such as interleukin-22 (IL-22) and IL-17 in adult mice. In addition to LTi cells, another RORγt-dependent innate lymphocyte subset co-expressing RORγt and NK cell receptors (NKRs) has been identified. These NKR(+) RORγt(+) cells are also potent producers of IL-22 but it is unclear whether they are part of the NK cell or LTi cell lineage. This review will highlight recent progress in understanding development and function of innate IL-22-producing lymphocyte subsets.
Collapse
|
217
|
Fowler EV. Is there a role for MICA in ulcerative colitis? J Gastroenterol Hepatol 2011; 26:422-3. [PMID: 21332538 DOI: 10.1111/j.1440-1746.2011.06601.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
218
|
Butyrophilin-like 1 encodes an enterocyte protein that selectively regulates functional interactions with T lymphocytes. Proc Natl Acad Sci U S A 2011; 108:4376-81. [PMID: 21368163 DOI: 10.1073/pnas.1010647108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although local regulation of T-cell responses by epithelial cells is increasingly viewed as important, few molecules mediating such regulation have been identified. Skint1, a recently identified member of the Ig-supergene family expressed by thymic epithelial cells and keratinocytes, specifies the murine epidermal intraepithelial lymphocyte (IEL) repertoire. Investigating whether Skint1-related molecules might regulate IEL in other compartments, this study focuses on buytrophilin-like 1 (Btnl1), which is conspicuously similar to Skint1 and primarily restricted to small intestinal epithelium. Btnl1 protein is mostly cytoplasmic, but surface expression can be induced, and in vivo Btnl1 can be detected adjacent to the IEL. In a newly developed culture system, enforced epithelial cell expression of Btnl1 attenuated the cells' response to activated IEL, as evidenced by suppression of IL-6 and other inflammatory mediators. These findings offer a unique perspective on emerging genetic data that Btnl genes may comprise novel and important local regulators of gut inflammation.
Collapse
|
219
|
Barbee SD, Woodward MJ, Turchinovich G, Mention JJ, Lewis JM, Boyden LM, Lifton RP, Tigelaar R, Hayday AC. Skint-1 is a highly specific, unique selecting component for epidermal T cells. Proc Natl Acad Sci U S A 2011; 108:3330-5. [PMID: 21300860 PMCID: PMC3044407 DOI: 10.1073/pnas.1010890108] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
αβ T-cell repertoire selection is mediated by peptide-MHC complexes presented by thymic epithelial or myeloid cells, and by lipid-CD1 complexes expressed by thymocytes. γδ T-cell repertoire selection, by contrast, is largely unresolved. Mice mutant for Skint-1, a unique Ig superfamily gene, do not develop canonical Vγ5Vδ1(+) dendritic epidermal T cells. This study shows that transgenic Skint-1, across a broad range of expression levels, precisely and selectively determines the Vγ5Vδ1(+) dendritic epidermal T-cell compartment. Skint-1 is expressed by medullary thymic epithelial cells, and unlike lipid-CD1 complexes, must be expressed by stromal cells to function efficiently. Its unusual transmembrane-cytoplasmic regions severely limit cell surface expression, yet increasing this or, conversely, retaining Skint1 intracellularly markedly compromises function. Each Skint1 domain appears nonredundant, including a unique decamer specifying IgV-domain processing. This investigation of Skint-1 biology points to complex events underpinning the positive selection of an intraepithelial γδ repertoire.
Collapse
Affiliation(s)
- Susannah D. Barbee
- London Research Institute, Cancer Research UK, London WC2A 3LY, United Kingdom
- Peter Gorer Department of Immunobiology, King's College at Guy's Hospital, London SE1 9RT, United Kingdom; and
| | - Martin J. Woodward
- London Research Institute, Cancer Research UK, London WC2A 3LY, United Kingdom
- Peter Gorer Department of Immunobiology, King's College at Guy's Hospital, London SE1 9RT, United Kingdom; and
| | - Gleb Turchinovich
- London Research Institute, Cancer Research UK, London WC2A 3LY, United Kingdom
- Peter Gorer Department of Immunobiology, King's College at Guy's Hospital, London SE1 9RT, United Kingdom; and
| | - Jean-Jacques Mention
- Peter Gorer Department of Immunobiology, King's College at Guy's Hospital, London SE1 9RT, United Kingdom; and
| | | | - Lynn M. Boyden
- Genetics and
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Richard P. Lifton
- Genetics and
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06511
| | | | - Adrian C. Hayday
- London Research Institute, Cancer Research UK, London WC2A 3LY, United Kingdom
- Peter Gorer Department of Immunobiology, King's College at Guy's Hospital, London SE1 9RT, United Kingdom; and
| |
Collapse
|
220
|
Preshaw PM, Taylor JJ. How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis? J Clin Periodontol 2011; 38 Suppl 11:60-84. [DOI: 10.1111/j.1600-051x.2010.01671.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
221
|
Claudin-4 induction by E-protein activity in later stages of CD4/8 double-positive thymocytes to increase positive selection efficiency. Proc Natl Acad Sci U S A 2011; 108:4075-80. [PMID: 21325057 DOI: 10.1073/pnas.1014178108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Claudins (Clds) are crucial constituents of tight-junction strands in epithelial cells and have a central role in barrier functions. We show that Cld4 is unexpectedly expressed in normal thymic lymphocytes independently of tight junctions. The Cld4 expression was mostly confined to a portion of the CD4/CD8 double-positive (DP) cells. The proportion of Cld4(+) DP cells was markedly increased in MHC-I(-/-) II(-/-) mice but decreased in Rorγ(-/-) mice, and Cld4(+) DP cells contained higher levels of the rearranged Tcra transcripts involving the most distal Va and Ja segments than Cld4(-) DP cells. The Cld4 expression levels were reduced in E47-deficient mice in a gene dose-dependent manner, and ChIP analysis indicated that E2A and HEB were bound to the E-box sites of the putative Cldn4 promoter region. Functionally, Cld4 showed a potent T-cell receptor costimulatory activity by coligation with CD3. The Cld4 was distributed diffusely on the cell surface and associated with CD4/lck independently of CD3 in the resting thymocytes. However, Cld4 was strongly recruited to the immunological synapse on specific T-cell receptor engagement through antigen-presenting cells. In the fetal thymic organ culture, knockdown of Cldn4 resulted in the reduced generation of CD4/CD8 single-positive cells from the DP cells. These results suggest that Cld4 is induced by E-protein activity in the later stages of DP cells to increase the efficiency of positive selection, uncovering a hitherto unrecognized function of a Cld family protein.
Collapse
|
222
|
LeibundGut-Landmann S, Weidner K, Hilbi H, Oxenius A. Nonhematopoietic cells are key players in innate control of bacterial airway infection. THE JOURNAL OF IMMUNOLOGY 2011; 186:3130-7. [PMID: 21270399 DOI: 10.4049/jimmunol.1003565] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Airborne pathogens encounter several hurdles during host invasion, including alveolar macrophages (AMs) and airway epithelial cells (AECs) and their products. Although growing evidence indicates pathogen-sensing capacities of epithelial cells, the relative contribution of hematopoietic versus nonhematopoietic cells in the induction of an inflammatory response and their possible interplay is still poorly defined in vivo in the context of infections with pathogenic microorganisms. In this study, we show that nonhematopoietic cells, including AECs, are critical players in the inflammatory process induced upon airway infection with Legionella pneumophila, and that they are essential for control of bacterial infections. Lung parenchymal cells, including AECs, are not infected themselves by L. pneumophila in vivo but rather act as sensors and amplifiers of inflammatory cues delivered by L. pneumophila-infected AM. We identified AM-derived IL-1β as the critical mediator to induce chemokine production in nonhematopoietic cells in the lung, resulting in swift and robust recruitment of infection-controlling neutrophils into the airways. These data add a new level of complexity to the coordination of the innate immune response to L. pneumophila and illustrate how the cross talk between leukocytes and nonhematopoietic cells contributes to efficient host protection.
Collapse
|
223
|
Abstract
CD4(+) T helper (T(H)) cells play a critical role in orchestrating a pleiotropy of immune activities against a large variety of pathogens. It is generally thought that this is achieved through the acquisition of highly specialized functions after activation followed by the differentiation into various functional subsets. The differentiation process of naive precursor T(H) cells into defined effector subsets is controlled by cells of the innate immune system and their complex array of effector molecules such as secreted cytokines and membrane bound costimulatory molecules. These provide a unique quantitative or qualitative signal initiating T(H) development, which is subsequently reinforced via T cell-mediated feedback signals and selective survival and proliferative cues, ultimately resulting in the predominance of a particular T cell subset. In recent years, the number of defined T(H)cell subsets has expanded and the once rigid division of labor among them has been blurred with reports of plasticity among the subsets. In this chapter, we summarize and speculate on the current knowledge of the differentiation requirements of T(H) cell lineages, with particular focus on the T(H)17 subset.
Collapse
|
224
|
Programming dendritic cells to induce T(H)2 and tolerogenic responses. Nat Immunol 2010; 11:647-55. [PMID: 20644570 DOI: 10.1038/ni.1894] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A fundamental puzzle in immunology is how the immune system decides what types of immune responses to launch against different stimuli. Although much is known about control of T helper type 1 (T(H)1) and T(H)17 responses, the mechanisms that initiate T(H)2 and T regulatory (T(reg)) responses remain obscure. Emerging studies suggest a fundamental role for the innate immune system, particularly dendritic cells (DCs), in this process. We review these studies, and suggest that the innate control of T(H)2 and T(reg) responses can be viewed as different hierarchies of organization, in which DCs, their innate receptors and signaling networks, and their interactions with other cells and local microenvironments represent different levels of the hierarchy.
Collapse
|