201
|
Pesini C, Hidalgo S, Arias MA, Santiago L, Calvo C, Ocariz-Díez M, Isla D, Lanuza PM, Agustín MJ, Galvez EM, Ramírez-Labrada A, Pardo J. PD-1 is expressed in cytotoxic granules of NK cells and rapidly mobilized to the cell membrane following recognition of tumor cells. Oncoimmunology 2022; 11:2096359. [PMID: 35813574 PMCID: PMC9262365 DOI: 10.1080/2162402x.2022.2096359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The contribution of the T cell-related inhibitory checkpoint PD-1 to the regulation of NK cell activity is still not clear with contradictory results concerning its expression and role in the modulation of NK cell cytotoxicity. We provide novel key findings on the mechanism involved in the regulation of PD-1 expression on NK cell membrane and its functional consequences for the elimination of cancer cells. In contrast to freshly isolated NK cells from cancer patients, those from healthy donors did not express PD-1 on the cell membrane. However, when healthy NK cells were incubated with tumor target cells, membrane PD-1 expression increased, concurrent with the CD107a surface mobilization. This finding suggested that PD-1 was translocated to the cell membrane during NK cell degranulation after contact with target cells. Indeed, cytosolic PD-1 was expressed in freshly-isolated-NK cells and partly co-localized with CD107a and GzmB, confirming that membrane PD-1 corresponded to a pool of preformed PD-1. Moreover, NK cells that had mobilized PD-1 to the cell membrane presented a significantly reduced anti-tumor activity on PD-L1-expressing-tumor cells in vitro and in vivo, which was partly reversed by using anti-PD-1 blocking antibodies. Our results indicate that NK cells from healthy individuals express cytotoxic granule-associated PD-1, which is rapidly mobilized to the cell membrane after interaction with tumor target cells. This novel finding helps to understand how PD-1 expression is regulated on NK cell membrane and the functional consequences of this expression during the elimination of tumor cells, which will help to design more efficient NK cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Sandra Hidalgo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatrics and Public Health, ARAID Foundation/University of Zaragoza, Zaragoza, Spain
| | - Maykel A. Arias
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatrics and Public Health, ARAID Foundation/University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Infecciosas, Madrid, Spain
| | - Llipsy Santiago
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatrics and Public Health, ARAID Foundation/University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Infecciosas, Madrid, Spain
| | - Carlota Calvo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Medical Oncopediatry Department, Aragón Health Research Institute (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Maitane Ocariz-Díez
- Medical Oncology Department, Aragón Health Research Institute (IIS Aragón), Hospital Clinico Universitario Lozano Blesa, Zaragoza, Spain
| | - Dolores Isla
- Medical Oncology Department, Aragón Health Research Institute (IIS Aragón), Hospital Clinico Universitario Lozano Blesa, Zaragoza, Spain
| | - Pilar M. Lanuza
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - M José Agustín
- Pharmacy Department, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Eva M Galvez
- CSIC, Instituto de Carboquimica (ICB), Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Biomedical Research Center of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatrics and Public Health, ARAID Foundation/University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
202
|
Niu R, Yang Q, Dong Y, Hou Y, Liu G. Selenium metabolism and regulation of immune cells in immune-associated diseases. J Cell Physiol 2022; 237:3449-3464. [PMID: 35788930 DOI: 10.1002/jcp.30824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Selenium, as one of the essential microelements, plays an irreplaceable role in metabolism regulation and cell survival. Selenium metabolism and regulation have great effects on physiological systems especially the immune system. Therefore, selenium is tightly related to various diseases like cancer. Although recent research works have revealed much about selenium metabolism, the ways in which selenium regulates immune cells' functions and immune-associated diseases still remain much unclear. In this review, we will briefly introduce the regulatory role of selenium metabolism in immune cells and immune-associated diseases.
Collapse
Affiliation(s)
- Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
203
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
204
|
Moreno Tellez C, Leyfman Y, D'Angelo SP, Wilky BA, Dufresne A. Immunotherapy in Sarcoma: Where Do Things Stand? Surg Oncol Clin N Am 2022; 31:381-397. [PMID: 35715140 DOI: 10.1016/j.soc.2022.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Early experiences with modern immunotherapy have been disappointing in trials of unselected sarcoma subtypes. However, remarkable efficacy has been observed with immune checkpoint inhibitors (ICIs) in a subset of patients, with the most promising outcomes to date in alveolar soft part sarcoma, cutaneous angiosarcoma, undifferentiated pleomorphic sarcoma (UPS), and dedifferentiated liposarcoma (dLPS). Adoptive cellular therapies targeting cancer testis antigens have shown promising activity, but only synovial sarcoma (SS) and myxoid/round cell liposarcomas reliably express these targets. The majority of sarcomas are immunologically "cold" with sparse immune infiltration, which may explain the poor response to immunotherapy. Current immunotherapy trials for sarcomas explore combination therapies with checkpoint inhibitors to overcome immune evasion and novel targets in adoptive cellular therapies. The role of tertiary lymphoid structures, PD-L1 expression, tumor mutational burden, microsatellite instability, and tumor lymphocytes as biomarkers for response are areas of active investigation. In this review, we highlight prior and ongoing clinical efforts to improve outcomes with immunotherapy and discuss the current state of understanding for biomarkers to select patients most likely to benefit from this approach.
Collapse
Affiliation(s)
- Cristiam Moreno Tellez
- Department of Medicine, University of Colorado School of Medicine, 12801 E 17th Avenue, Mailstop 8117, Aurora, CO 80045, USA
| | - Yan Leyfman
- Department of Hematology Oncology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Sandra P D'Angelo
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, 300 East 66th Street, New York, NY 10065, USA
| | - Breelyn A Wilky
- Department of Medicine, University of Colorado School of Medicine, 12801 E 17th Avenue, Mailstop 8117, Aurora, CO 80045, USA.
| | - Armelle Dufresne
- Department of Medical Oncology, Centre Leon Berard, 28 rue Laennec, Lyon 69008, France
| |
Collapse
|
205
|
Joshi S, Sharabi A. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol Ther 2022; 235:108114. [DOI: 10.1016/j.pharmthera.2022.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/09/2022]
|
206
|
Lin X, Li F, Gu Q, Wang X, Zheng Y, Li J, Guan J, Yao C, Liu X. Gold-seaurchin based immunomodulator enabling photothermal intervention and αCD16 transfection to boost NK cell adoptive immunotherapy. Acta Biomater 2022; 146:406-420. [PMID: 35470078 DOI: 10.1016/j.actbio.2022.04.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/02/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Abstract
Despite huge potentials of NK cells in adoptive cell therapy (ACT), formidable physical barriers of the tumor tissue and deficiency of recognizing signals on tumor cells severely prevent NK cell infiltrating, activating and killing performances. Herein, a nano-immunomodulator AuNSP@αCD16 (CD16 antibody encoding plasmid) is explored to remodel the tumor microenvironment (TME) for improving the antitumor effects of adoptive NK cells. The as-prepared AuNSP, with a seaurchin-like gold core and a cationic polymer shell, exhibited a high gene transfection efficiency and a stable NIR-II photothermal capacity. The AuNSP could trigger mild photothermal intervention to partly destroy tumors and collapse the dense physical barriers, making a permeable TME for NK cell infiltration. What's more, the AuNSP could achieve αCD16 gene transfection to modify tumor surface with CD16 antibody, marking a unique structure on tumor cells for NK cell recognition and then lead to strong NK cell activation by CD16-mediated antibody-dependent cellular cytotoxicity (ADCC). As expected, the designed AuNSP@αCD16 induced an immune-favorable TME for NK cell performing killing functions against solid tumors, increasing the release of cytolytic granules and proinflammatory cytokines, which ultimately achieved a robustly boosted NK cell-based immunotherapy. Hence, the AuNSP@αCD16-mediated TME reconstituting strategy provides a substantial perspective for NK-based ACT on solid tumors. STATEMENT OF SIGNIFICANCE: In adoptive cell therapy (ACT), natural killer (NK) cells exhibit greater off-the-shelf utility and improved safety comparing with T cells, but the efficacy of NK cell therapy is severely compromised by formidable physical barriers of the tumor tissue and deficiency of NK cell recognizing signals on tumor cells. Herein, a nano-immunomodulator AuNSP@αCD16, with the abilities of inducing mild photothermal intervention and modifying the tumor cell surface with αCD16, is explored to reconstruct an infiltration-favorable and activation-facilitating tumor microenvironment for NK cells to perform killing functions. Such a simple and safe strategy is believed as a very promising candidate for future NK-based ACT.
Collapse
Affiliation(s)
- Xinyi Lin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China; Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, China
| | - Feida Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Gu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoyan Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China; Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, China
| | - Jiong Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianhua Guan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China; Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
207
|
Xu Z, Yin J, Sun Q, Hu J, Hong M, Qian S, Liu W. The prognostic role of NKG2A expression for patients with chronic myeloid leukemia after treatment discontinuation. Leuk Lymphoma 2022; 63:2616-2626. [PMID: 35758278 DOI: 10.1080/10428194.2022.2090549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study aims to evaluate the possibility of tyrosine kinase inhibitors (TKIs) discontinuation in chronic myeloid leukemia (CML) patients who obtained sustained deep molecular response (DMR) and to explore the prognostic role of NK cells in treatment-free remission (TFR). Sixty CML patients who discontinued TKI treatment were enrolled, and we also investigated the immune profiles in 27 CML patients after TKI cessation. Of the 60 patients, the estimated TFR rate was 60.8% [95% CI: 49.5-74.8%] at 12 months. Patients who had longer TKI duration, major molecular response, and DMR maintenance time had a significantly higher TFR rate. And a higher percentage of NKG2A+NK cells and NKG2A+CD56brightCD16-NK cells were independent prognostic factors of TFR in multivariate analysis. These results indicate the practicality of the cessation of TKIs and patients with stable NK cell counts accompanied by higher cytotoxicity and increased killing capacity are more inclined to get sustained treatment-free survival.
Collapse
Affiliation(s)
- Ziyao Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Jinyu Yin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Qian Sun
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Jinhua Hu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Ming Hong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Sixuan Qian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Wenjie Liu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| |
Collapse
|
208
|
Rossi F, Fredericks N, Snowden A, Allegrezza MJ, Moreno-Nieves UY. Next Generation Natural Killer Cells for Cancer Immunotherapy. Front Immunol 2022; 13:886429. [PMID: 35720306 PMCID: PMC9202478 DOI: 10.3389/fimmu.2022.886429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, immunotherapy for cancer has become mainstream with several products now authorized for therapeutic use in the clinic and are becoming the standard of care for some malignancies. Chimeric antigen receptor (CAR)-T cell therapies have demonstrated substantial efficacy for the treatment of hematological malignancies; however, they are complex and currently expensive to manufacture, and they can generate life-threatening adverse events such as cytokine release syndrome (CRS). The limitations of current CAR-T cells therapies have spurred an interest in alternative immunotherapy approaches with safer risk profiles and with less restrictive manufacturing constraints. Natural killer (NK) cells are a population of immune effector cells with potent anti-viral and anti-tumor activity; they have the capacity to swiftly recognize and kill cancer cells without the need of prior stimulation. Although NK cells are naturally equipped with cytotoxic potential, a growing body of evidence shows the added benefit of engineering them to better target tumor cells, persist longer in the host, and be fitter to resist the hostile tumor microenvironment (TME). NK-cell-based immunotherapies allow for the development of allogeneic off-the-shelf products, which have the potential to be less expensive and readily available for patients in need. In this review, we will focus on the advances in the development of engineering of NK cells for cancer immunotherapy. We will discuss the sourcing of NK cells, the technologies available to engineer NK cells, current clinical trials utilizing engineered NK cells, advances on the engineering of receptors adapted for NK cells, and stealth approaches to avoid recipient immune responses. We will conclude with comments regarding the next generation of NK cell products, i.e., armored NK cells with enhanced functionality, fitness, tumor-infiltration potential, and with the ability to overcome tumor heterogeneity and immune evasion.
Collapse
Affiliation(s)
- Fiorella Rossi
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Nathaniel Fredericks
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Andrew Snowden
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Michael J Allegrezza
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| | - Uriel Y Moreno-Nieves
- Janssen Research and Development, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, United States
| |
Collapse
|
209
|
Jia Z, Jia J, Yao L, Li Z. Crosstalk of Exosomal Non-Coding RNAs in The Tumor Microenvironment: Novel Frontiers. Front Immunol 2022; 13:900155. [PMID: 35663957 PMCID: PMC9162146 DOI: 10.3389/fimmu.2022.900155] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/22/2022] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment (TME) is defined as a complex and dynamic tissue entity composed of endothelial, stromal, immune cells, and the blood system. The homeostasis and evolution of the TME are governed by intimate interactions among cellular compartments. The malignant behavior of cancer cells, such as infiltrating growth, proliferation, invasion, and metastasis, is predominantly dependent on the bidirectional communication between tumor cells and the TME. And such dialogue mainly involves the transfer of multifunctional regulatory molecules from tumor cells and/or stromal cells within the TME. Interestingly, increasing evidence has confirmed that exosomes carrying regulatory molecules, proteins, and nucleic acids act as an active link in cellular crosstalk in the TME. Notably, extensive studies have identified non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), that could be encapsulated by exosomes, which regulate the coordinated function within the TME and thus participate in cancer development and progression. In this review, we summarize recent literature around the topic of the functions and mechanisms of exosomal ncRNAs in the TME and highlight their clinical significance.
Collapse
Affiliation(s)
- Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Second General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinlin Jia
- National Research Institute for Family Planning, National Human Genetic Resources Center, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Lihui Yao
- Department of Otolaryngology, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhihan Li
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
210
|
Yamada Y, Sato Y, Nakamura T, Harashima H. Innovative cancer nanomedicine based on immunology, gene editing, intracellular trafficking control. J Control Release 2022; 348:357-369. [PMID: 35623492 DOI: 10.1016/j.jconrel.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
The recent rapid progress in the area of drug delivery systems (DDS) has opened a new era in medicine with a strong linkage to understanding the molecular mechanisms associated with cancer survival. In this review, we summarize new cancer strategies that have recently been developed based on our DDS technology. Cancer immunotherapy will be improved based on the concept of the cancer immunity cycle, which focuses on dynamic interactions between various types of cancer and immune cells in our body. The new technology of genome editing will also be discussed with reference to how these new DDS technologies can be used to introduce therapeutic cargoes into our body. Lastly, a new organelle, mitochondria will be the focus of creating a new cancer treatment strategy by a MITO-Porter which can deliver macromolecules directly to mitochondria of cancer cells via a membrane fusion approach and the impact of controlled intracellular trafficking will be discussed.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Japan Science and Technology Agency (JST) Fusion Oriented REsearch for disruptive Science and Technology (FOREST) Program, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
211
|
Ramírez-Labrada A, Pesini C, Santiago L, Hidalgo S, Calvo-Pérez A, Oñate C, Andrés-Tovar A, Garzón-Tituaña M, Uranga-Murillo I, Arias MA, Galvez EM, Pardo J. All About (NK Cell-Mediated) Death in Two Acts and an Unexpected Encore: Initiation, Execution and Activation of Adaptive Immunity. Front Immunol 2022; 13:896228. [PMID: 35651603 PMCID: PMC9149431 DOI: 10.3389/fimmu.2022.896228] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
NK cells are key mediators of immune cell-mediated cytotoxicity toward infected and transformed cells, being one of the main executors of cell death in the immune system. NK cells recognize target cells through an array of inhibitory and activating receptors for endogenous or exogenous pathogen-derived ligands, which together with adhesion molecules form a structure known as immunological synapse that regulates NK cell effector functions. The main and best characterized mechanisms involved in NK cell-mediated cytotoxicity are the granule exocytosis pathway (perforin/granzymes) and the expression of death ligands. These pathways are recognized as activators of different cell death programmes on the target cells leading to their destruction. However, most studies analyzing these pathways have used pure recombinant or native proteins instead of intact NK cells and, thus, extrapolation of the results to NK cell-mediated cell death might be difficult. Specially, since the activation of granule exocytosis and/or death ligands during NK cell-mediated elimination of target cells might be influenced by the stimulus received from target cells and other microenvironment components, which might affect the cell death pathways activated on target cells. Here we will review and discuss the available experimental evidence on how NK cells kill target cells, with a special focus on the different cell death modalities that have been found to be activated during NK cell-mediated cytotoxicity; including apoptosis and more inflammatory pathways like necroptosis and pyroptosis. In light of this new evidence, we will develop the new concept of cell death induced by NK cells as a new regulatory mechanism linking innate immune response with the activation of tumour adaptive T cell responses, which might be the initiating stimulus that trigger the cancer-immunity cycle. The use of the different cell death pathways and the modulation of the tumour cell molecular machinery regulating them might affect not only tumour cell elimination by NK cells but, in addition, the generation of T cell responses against the tumour that would contribute to efficient tumour elimination and generate cancer immune memory preventing potential recurrences.
Collapse
Affiliation(s)
- Ariel Ramírez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Llipsy Santiago
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Sandra Hidalgo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Adanays Calvo-Pérez
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Carmen Oñate
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Alejandro Andrés-Tovar
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Marcela Garzón-Tituaña
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Maykel A Arias
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain
| | - Eva M Galvez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Carboquimica (ICB), CSIC, Zaragoza, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, Fundación Agencia Aragonesa para la Investigación y el Desarrollo ARAID Foundation, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
212
|
Rad HS, Shiravand Y, Radfar P, Ladwa R, Perry C, Han X, Warkiani ME, Adams MN, Hughes BGM, O'Byrne K, Kulasinghe A. Understanding the tumor microenvironment in head and neck squamous cell carcinoma. Clin Transl Immunology 2022; 11:e1397. [PMID: 35686027 PMCID: PMC9170522 DOI: 10.1002/cti2.1397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a heterogeneous group of tumors. While significant progress has been made using multimodal treatment, the 5-year survival remains at 50%. Developing effective therapies, such as immunotherapy, will likely lead to better treatment of primary and metastatic disease. However, not all HNSCC tumors respond to immune checkpoint blockade therapy. Understanding the complex cellular composition and interactions of the tumor microenvironment is likely to lead to new knowledge for effective therapies and treatment resistance. In this review, we discuss HNSCC characteristics, predictive biomarkers, factors influencing immunotherapy response, with a focus on the tumor microenvironment.
Collapse
Affiliation(s)
- Habib Sadeghi Rad
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
| | - Yavar Shiravand
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Payar Radfar
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
| | - Rahul Ladwa
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
- Princess Alexandra HospitalBrisbaneQLDAustralia
| | - Chris Perry
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
- Princess Alexandra HospitalBrisbaneQLDAustralia
| | - Xiaoyuan Han
- Department of Biomedical ScienceUniversity of the Pacific, Arthur A. Dugoni School of DentistryStocktonCAUSA
| | - Majid Ebrahimi Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
- Institute of Molecular MedicineSechenov First Moscow State UniversityMoscowRussia
| | - Mark N Adams
- Centre for Genomics and Personalised HealthSchool of Biomedical SciencesQueensland University of TechnologyBrisbaneQLDAustralia
| | - Brett GM Hughes
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
- Royal Brisbane and Women's HospitalBrisbaneQLDAustralia
| | - Ken O'Byrne
- Princess Alexandra HospitalBrisbaneQLDAustralia
- Centre for Genomics and Personalised HealthSchool of Biomedical SciencesQueensland University of TechnologyBrisbaneQLDAustralia
| | - Arutha Kulasinghe
- University of Queensland Diamantina Institutethe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
213
|
Demel I, Koristek Z, Motais B, Hajek R, Jelinek T. Natural killer cells: Innate immune system as a part of adaptive immunotherapy in hematological malignancies. Am J Hematol 2022; 97:802-817. [PMID: 35285978 DOI: 10.1002/ajh.26529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/06/2022] [Accepted: 03/03/2022] [Indexed: 11/06/2022]
Abstract
Natural killer (NK) cells are part of a phylogenetically old defense system, which is characterized by its strong cytolytic function against physiologically stressed cells such as tumor cells and virus-infected cells. Their use in the treatment of hematological malignancies may be more advantageous in several ways when compared with the already established T lymphocyte-based immunotherapy. Given the different mechanisms of action, allogeneic NK cell products can be produced in a non-personal based manner without the risk of the formidable graft-versus-host disease. Advanced manufacturing processes are capable of producing NK cells relatively easily in large and clinically sufficient numbers, useable without subsequent manipulations or after genetic modifications, which can solve the lack of specificity and improve clinical efficacy of NK cell products. This review summarizes the basic characteristics of NK cells and provides a quick overview of their sources. Results of clinical trials in hematological malignancies are presented, and strategies on how to improve the clinical outcome of NK cell therapy are discussed.
Collapse
Affiliation(s)
- Ivo Demel
- Department of Hematooncology University Hospital Ostrava Ostrava Czech Republic
| | - Zdenek Koristek
- Department of Hematooncology University Hospital Ostrava Ostrava Czech Republic
- Faculty of Medicine University of Ostrava Ostrava Czech Republic
| | - Benjamin Motais
- Faculty of Medicine University of Ostrava Ostrava Czech Republic
- Faculty of Science University of Ostrava Ostrava Czech Republic
| | - Roman Hajek
- Department of Hematooncology University Hospital Ostrava Ostrava Czech Republic
- Faculty of Medicine University of Ostrava Ostrava Czech Republic
| | - Tomas Jelinek
- Department of Hematooncology University Hospital Ostrava Ostrava Czech Republic
- Faculty of Medicine University of Ostrava Ostrava Czech Republic
| |
Collapse
|
214
|
Kim HJ, Ji YR, Lee YM. Crosstalk between angiogenesis and immune regulation in the tumor microenvironment. Arch Pharm Res 2022; 45:401-416. [PMID: 35759090 PMCID: PMC9250479 DOI: 10.1007/s12272-022-01389-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cancer creates a complex tumor microenvironment (TME) composed of immune cells, stromal cells, blood vessels, and various other cellular and extracellular elements. It is essential for the development of anti-cancer combination therapies to understand and overcome this high heterogeneity and complexity as well as the dynamic interactions between them within the TME. Recent treatment strategies incorporating immune-checkpoint inhibitors and anti-angiogenic agents have brought many changes and advances in clinical cancer treatment. However, there are still challenges for immune suppressive tumors, which are characterized by a lack of T cell infiltration and treatment resistance. In this review, we will investigate the crosstalk between immunity and angiogenesis in the TME. In addition, we will look at strategies designed to enhance anti-cancer immunity, to convert "immune suppressive tumors" into "immune activating tumors," and the mechanisms by which these strategies enhance effector immune cell infiltration.
Collapse
Affiliation(s)
- Hei Jung Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Young Rae Ji
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
- Department of Molecular Pathophysiology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
215
|
Gómez-Luque JM, Urrutia-Maldonado E, Rueda PMD, Abril-Molina A, Ocete-Hita E. Killer immunoglobulin-like receptor and cancer. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2022; 96:410-415. [DOI: 10.1016/j.anpede.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
|
216
|
Gemelli M, Noonan DM, Carlini V, Pelosi G, Barberis M, Ricotta R, Albini A. Overcoming Resistance to Checkpoint Inhibitors: Natural Killer Cells in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:886440. [PMID: 35712510 PMCID: PMC9194506 DOI: 10.3389/fonc.2022.886440] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 12/05/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatments over the last 10 years, with even increasing indications in many neoplasms. Non-small cell lung cancer (NSCLC) is considered highly immunogenic, and ICIs have found a wide set of applications in this area, in both early and advanced lines of treatment, significantly changing the prognosis of these patients. Unfortunately, not all patients can benefit from the treatment, and resistance to ICIs can develop at any time. In addition to T lymphocytes, which are the major target, a variety of other cells present in the tumor microenvironment (TME) act in a complex cross-talk between tumor, stromal, and immune cells. An imbalance between activating and inhibitory signals can shift TME from an “anti-” to a “pro-tumorigenic” phenotype and vice versa. Natural killer cells (NKs) are able to recognize cancer cells, based on MHC I (self and non-self) and independently from antigen presentation. They represent an important link between innate and adaptive immune responses. Little data are available about the role of pro-inflammatory NKs in NSCLC and how they can influence the response to ICIs. NKs express several ligands of the checkpoint family, such as PD-1, TIGIT, TIM-3, LAG3, CD96, IL1R8, and NKG2A. We and others have shown that TME can also shape NKs, converting them into a pro-tumoral, pro-angiogenic “nurturing” phenotype through “decidualization.” The features of these NKs include expression of CD56, CD9, CD49a, and CXCR3; low CD16; and poor cytotoxicity. During ICI therapy, tumor-infiltrating or associated NKs can respond to the inhibitors or counteract the effect by acting as pro-inflammatory. There is a growing interest in NKs as a promising therapeutic target, as a basis for adoptive therapy and chimeric antigen receptor (CAR)-NK technology. In this review, we analyzed current evidence on NK function in NSCLC, focusing on their possible influence in response to ICI treatment and resistance development, addressing their prognostic and predictive roles and the rationale for exploiting NKs as a tool to overcome resistance in NSCLC, and envisaging a way to repolarize decidual NK (dNK)-like cells in lung cancer.
Collapse
Affiliation(s)
- Maria Gemelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Douglas M. Noonan
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica Science and Technology Park, Milan, Italy
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Valentina Carlini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica Science and Technology Park, Milan, Italy
| | - Giuseppe Pelosi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica Science and Technology Park, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Massimo Barberis
- Department of Pathology, European Institute of Oncology (IEO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Riccardo Ricotta
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- *Correspondence: Adriana Albini, ; Riccardo Ricotta,
| | - Adriana Albini
- European Institute of Oncology (IEO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- *Correspondence: Adriana Albini, ; Riccardo Ricotta,
| |
Collapse
|
217
|
Li B, Gu X, Zhang H, Xiong H. Comprehensive analysis of the prognostic value and immune implications of the TTK gene in lung adenocarcinoma: a meta-analysis and bioinformatics analysis. Anim Cells Syst (Seoul) 2022; 26:108-118. [PMID: 35784389 PMCID: PMC9246214 DOI: 10.1080/19768354.2022.2079718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background High expression levels of the TTK gene are closely related to tumor occurrence and poor prognosis, as confirmed by some studies. Our study explored the prognosis of lung adenocarcinoma (LUAD) patients with different TTK levels and the possible pathological mechanism of TTK in LUAD. Methods We extensively searched literature databases and high-throughput sequencing databases and included relevant literature or datasets in the meta-analysis according to the inclusion and exclusion criteria. Hazard ratios (HRs) and 95% confidence intervals (CIs) related to TTK expression were calculated, publication bias was assessed, and sensitivity tests were performed. We also compared the relationship between cancer immune infiltrating cells and tumor mutation burden (TMB) in patients with different TTK expression levels via bioinformatics analysis. The half maximal inhibitory concentration (IC50) of some chemotherapeutic and targeted therapy drugs were calculated. The potential biological functions or pathways associated with different TTK expression levels were determined by gene set enrichment analysis (GSEA). Results The meta-analysis revealed that higher TTK expression level was significantly associated with poor prognosis in LUAD patients, both in overall survival (OS) and progression-free survival (PFS). The expression level of TTK was significantly correlated with presence of some immune cells and TMB. Tumors with higher TTK expression levels were mostly enriched for the cell cycle, DNA replication and homologous recombination pathways. In addition, patients with different TTK expression levels were differently sensitive to some antitumor drugs. Conclusion TTK may be a promising prognostic biomarker for LUAD and is worthy of further investigation.
Collapse
Affiliation(s)
- Bo Li
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Yibin, Yibin City, People’s Republic of China
| | - Xiaojuan Gu
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Yibin, Yibin City, People’s Republic of China
| | - Hanbing Zhang
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Yibin, Yibin City, People’s Republic of China
| | - Hao Xiong
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Yibin, Yibin City, People’s Republic of China
| |
Collapse
|
218
|
Chu J, Gao F, Yan M, Zhao S, Yan Z, Shi B, Liu Y. Natural killer cells: a promising immunotherapy for cancer. J Transl Med 2022; 20:240. [PMID: 35606854 PMCID: PMC9125849 DOI: 10.1186/s12967-022-03437-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022] Open
Abstract
As a promising alternative platform for cellular immunotherapy, natural killer cells (NK) have recently gained attention as an important type of innate immune regulatory cell. NK cells can rapidly kill multiple adjacent cancer cells through non-MHC-restrictive effects. Although tumors may develop multiple resistance mechanisms to endogenous NK cell attack, in vitro activation, expansion, and genetic modification of NK cells can greatly enhance their anti-tumor activity and give them the ability to overcome drug resistance. Some of these approaches have been translated into clinical applications, and clinical trials of NK cell infusion in patients with hematological malignancies and solid tumors have thus far yielded many encouraging clinical results. CAR-T cells have exhibited great success in treating hematological malignancies, but their drawbacks include high manufacturing costs and potentially fatal toxicity, such as cytokine release syndrome. To overcome these issues, CAR-NK cells were generated through genetic engineering and demonstrated significant clinical responses and lower adverse effects compared with CAR-T cell therapy. In this review, we summarize recent advances in NK cell immunotherapy, focusing on NK cell biology and function, the types of NK cell therapy, and clinical trials and future perspectives on NK cell therapy.
Collapse
Affiliation(s)
- Junfeng Chu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Fengcai Gao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Meimei Yan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Shuang Zhao
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Zheng Yan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China
| | - Bian Shi
- Department of Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China.
| | - Yanyan Liu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
219
|
Zecca A, Barili V, Olivani A, Biasini E, Boni C, Fisicaro P, Montali I, Tiezzi C, Dalla Valle R, Ferrari C, Cariani E, Missale G. Targeting Stress Sensor Kinases in Hepatocellular Carcinoma-Infiltrating Human NK Cells as a Novel Immunotherapeutic Strategy for Liver Cancer. Front Immunol 2022; 13:875072. [PMID: 35677052 PMCID: PMC9168800 DOI: 10.3389/fimmu.2022.875072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells may become functionally exhausted entering hepatocellular carcinoma (HCC), and this has been associated with tumor progression and poor clinical outcome. Hypoxia, low nutrients, immunosuppressive cells, and soluble mediators characterize the intratumor microenvironment responsible for the metabolic deregulation of infiltrating immune cells such as NK cells. HCC-infiltrating NK cells from patients undergoing liver resection for HCC were sorted, and genome-wide transcriptome profiling was performed. We have identified a marked general upregulation of gene expression profile along with metabolic impairment of glycolysis, OXPHOS, and autophagy as well as functional defects of NK cells. Targeting p38 kinase, a stress-responsive mitogen-activated protein kinase, we could positively modify the metabolic profile of NK cells with functional restoration in terms of TNF-α production and cytotoxicity. We found a metabolic and functional derangement of HCC-infiltrating NK cells that is part of the immune defects associated with tumor progression and recurrence. NK cell exhaustion due to the hostile tumor microenvironment may be restored with p38 inhibitors with a selective mechanism that is specific for tumor-infiltrating-not affecting liver-infiltrating-NK cells. These results may represent the basis for the development of a new immunotherapeutic strategy to integrate and improve the available treatments for HCC.
Collapse
Affiliation(s)
- Alessandra Zecca
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
| | - Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Olivani
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
| | - Elisabetta Biasini
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
| | - Carolina Boni
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
| | - Paola Fisicaro
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
| | - Ilaria Montali
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Camilla Tiezzi
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Carlo Ferrari
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Gabriele Missale
- Unit of Infectious Diseases and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero–Universitaria of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
220
|
Bernard PL, Delconte R, Pastor S, Laletin V, Costa Da Silva C, Goubard A, Josselin E, Castellano R, Krug A, Vernerey J, Devillier R, Olive D, Verhoeyen E, Vivier E, Huntington ND, Nunes J, Guittard G. Targeting CISH enhances natural cytotoxicity receptor signaling and reduces NK cell exhaustion to improve solid tumor immunity. J Immunother Cancer 2022; 10:jitc-2021-004244. [PMID: 35589278 PMCID: PMC9121483 DOI: 10.1136/jitc-2021-004244] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 12/11/2022] Open
Abstract
Background The success and limitations of current immunotherapies have pushed research toward the development of alternative approaches and the possibility to manipulate other cytotoxic immune cells such as natural killer (NK) cells. Here, we targeted an intracellular inhibiting protein ‘cytokine inducible SH2-containing protein’ (CISH) in NK cells to evaluate the impact on their functions and antitumor properties. Methods To further understand CISH functions in NK cells, we developed a conditional Cish-deficient mouse model in NK cells (Cishfl/flNcr1Ki/+). NK cells cytokine expression, signaling and cytotoxicity has been evaluated in vitro. Using intravenous injection of B16F10 melanoma cell line and EO711 triple negative breast cancer cell line, metastasis evaluation was performed. Then, orthotopic implantation of breast tumors was performed and tumor growth was followed using bioluminescence. Infiltration and phenotype of NK cells in the tumor was evaluated. Finally, we targeted CISH in human NK-92 or primary NK cells, using a technology combining the CRISPR(i)-dCas9 tool with a new lentiviral pseudotype. We then tested human NK cells functions. Results In Cishfl/flNcr1Ki/+ mice, we detected no developmental or homeostatic difference in NK cells. Global gene expression of Cishfl/flNcr1Ki/+ NK cells compared with Cish+/+Ncr1Ki/+ NK cells revealed upregulation of pathways and genes associated with NK cell cycling and activation. We show that CISH does not only regulate interleukin-15 (IL-15) signaling pathways but also natural cytotoxicity receptors (NCR) pathways, triggering CISH protein expression. Primed Cishfl/flNcr1Ki/+ NK cells display increased activation upon NCR stimulation. Cishfl/flNcr1Ki/+ NK cells display lower activation thresholds and Cishfl/flNcr1Ki/+ mice are more resistant to tumor metastasis and to primary breast cancer growth. CISH deletion favors NK cell accumulation to the primary tumor, optimizes NK cell killing properties and decreases TIGIT immune checkpoint receptor expression, limiting NK cell exhaustion. Finally, using CRISPRi, we then targeted CISH in human NK-92 or primary NK cells. In human NK cells, CISH deletion also favors NCR signaling and antitumor functions. Conclusion This study represents a crucial step in the mechanistic understanding and safety of Cish targeting to unleash NK cell antitumor function in solid tumors. Our results validate CISH as an emerging therapeutic target to enhance NK cell immunotherapy.
Collapse
Affiliation(s)
- Pierre-Louis Bernard
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Institut Paoli-Calmettes, Inserm, CNRS, Cancer Research Centre, CRCM, Marseille, France
| | - Rebecca Delconte
- Immunology Program, Sloan-Kettering Institute, New York City, New York, USA
| | - Sonia Pastor
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Institut Paoli-Calmettes, Inserm, CNRS, Cancer Research Centre, CRCM, Marseille, France
| | - Vladimir Laletin
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Institut Paoli-Calmettes, Inserm, CNRS, Cancer Research Centre, CRCM, Marseille, France
| | - Cathy Costa Da Silva
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Institut Paoli-Calmettes, Inserm, CNRS, Cancer Research Centre, CRCM, Marseille, France
| | - Armelle Goubard
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Institut Paoli-Calmettes, Inserm, CNRS, Cancer Research Centre, CRCM, Marseille, France
| | - Emmanuelle Josselin
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Institut Paoli-Calmettes, Inserm, CNRS, Cancer Research Centre, CRCM, Marseille, France
| | - Rémy Castellano
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Institut Paoli-Calmettes, Inserm, CNRS, Cancer Research Centre, CRCM, Marseille, France
| | - Adrien Krug
- INSERM, Unité 1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 5308, CIRI-International Center for Infectiology Research, Nice, France
| | - Julien Vernerey
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Institut Paoli-Calmettes, Inserm, CNRS, Cancer Research Centre, CRCM, Marseille, France
| | - Raynier Devillier
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Institut Paoli-Calmettes, Inserm, CNRS, Cancer Research Centre, CRCM, Marseille, France
| | - Daniel Olive
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Institut Paoli-Calmettes, Inserm, CNRS, Cancer Research Centre, CRCM, Marseille, France
| | - Els Verhoeyen
- INSERM, Unité 1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 5308, CIRI-International Center for Infectiology Research, Nice, France
| | - Eric Vivier
- Innate Pharma Research Labs, Innate Pharma; Centre d'Immunologie de Marseille-Luminy, CIML; Service d'Immunologie, Marseille Immunopole, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jacques Nunes
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Institut Paoli-Calmettes, Inserm, CNRS, Cancer Research Centre, CRCM, Marseille, France
| | - Geoffrey Guittard
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Institut Paoli-Calmettes, Inserm, CNRS, Cancer Research Centre, CRCM, Marseille, France
| |
Collapse
|
221
|
Ham H, Medlyn M, Billadeau DD. Locked and Loaded: Mechanisms Regulating Natural Killer Cell Lytic Granule Biogenesis and Release. Front Immunol 2022; 13:871106. [PMID: 35558071 PMCID: PMC9088006 DOI: 10.3389/fimmu.2022.871106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
NK cell-mediated cytotoxicity is a critical element of our immune system required for protection from microbial infections and cancer. NK cells bind to and eliminate infected or cancerous cells via direct secretion of cytotoxic molecules toward the bound target cells. In this review, we summarize the current understanding of the molecular regulations of NK cell cytotoxicity, focusing on lytic granule development and degranulation processes. NK cells synthesize apoptosis-inducing proteins and package them into specialized organelles known as lytic granules (LGs). Upon activation of NK cells, LGs converge with the microtubule organizing center through dynein-dependent movement along microtubules, ultimately polarizing to the cytotoxic synapse where they subsequently fuse with the NK plasma membrane. From LGs biogenesis to degranulation, NK cells utilize several strategies to protect themselves from their own cytotoxic molecules. Additionally, molecular pathways that enable NK cells to perform serial killing are beginning to be elucidated. These advances in the understanding of the molecular pathways behind NK cell cytotoxicity will be important to not only improve current NK cell-based anti-cancer therapies but also to support the discovery of additional therapeutic opportunities.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Michael Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Billadeau
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States.,Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
222
|
Li J, Smalley I, Chen Z, Wu JY, Phadke MS, Teer JK, Nguyen T, Karreth FA, Koomen JM, Sarnaik AA, Zager JS, Khushalani NI, Tarhini AA, Sondak VK, Rodriguez PC, Messina JL, Chen YA, Smalley KSM. Single-cell Characterization of the Cellular Landscape of Acral Melanoma Identifies Novel Targets for Immunotherapy. Clin Cancer Res 2022; 28:2131-2146. [PMID: 35247927 PMCID: PMC9106889 DOI: 10.1158/1078-0432.ccr-21-3145] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
PURPOSE Acral melanoma is a rare subtype of melanoma that arises on the non-hair-bearing skin of the palms, soles, and nail beds. In this study, we used single-cell RNA sequencing (scRNA-seq) to map the transcriptional landscape of acral melanoma and identify novel immunotherapeutic targets. EXPERIMENTAL DESIGN We performed scRNA-seq on nine clinical specimens (five primary, four metastases) of acral melanoma. Detailed cell type curation was performed, the immune landscapes were mapped, and key results were validated by analysis of The Cancer Genome Atlas (TCGA) and single-cell datasets. Cell-cell interactions were inferred and compared with those in nonacral cutaneous melanoma. RESULTS Multiple phenotypic subsets of T cells, natural killer (NK) cells, B cells, macrophages, and dendritic cells with varying levels of activation/exhaustion were identified. A comparison between primary and metastatic acral melanoma identified gene signatures associated with changes in immune responses and metabolism. Acral melanoma was characterized by a lower overall immune infiltrate, fewer effector CD8 T cells and NK cells, and a near-complete absence of γδ T cells compared with nonacral cutaneous melanomas. Immune cells associated with acral melanoma exhibited expression of multiple checkpoints including PD-1, LAG-3, CTLA-4, V-domain immunoglobin suppressor of T cell activation (VISTA), TIGIT, and the Adenosine A2A receptor (ADORA2). VISTA was expressed in 58.3% of myeloid cells and TIGIT was expressed in 22.3% of T/NK cells. CONCLUSIONS Acral melanoma has a suppressed immune environment compared with that of cutaneous melanoma from nonacral skin. Expression of multiple, therapeutically tractable immune checkpoints were observed, offering new options for clinical translation.
Collapse
Affiliation(s)
- Jiannong Li
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Inna Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Zhihua Chen
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jheng-Yu Wu
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Manali S. Phadke
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jamie K. Teer
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Thanh Nguyen
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Florian A. Karreth
- The Department of Molecular Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - John M. Koomen
- The Department of Molecular Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Amod A. Sarnaik
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jonathan S. Zager
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Nikhil I. Khushalani
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Ahmad A. Tarhini
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Vernon K. Sondak
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Paulo C. Rodriguez
- The Department of Immunology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jane L. Messina
- The Department of Immunology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Y. Ann Chen
- The Department of Biostatistics and Bioinformatics, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Keiran S. M. Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| |
Collapse
|
223
|
Infiltrating natural killer cells bind, lyse and increase chemotherapy efficacy in glioblastoma stem-like tumorospheres. Commun Biol 2022; 5:436. [PMID: 35538218 PMCID: PMC9090761 DOI: 10.1038/s42003-022-03402-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastomas remain the most lethal primary brain tumors. Natural killer (NK) cell-based therapy is a promising immunotherapeutic strategy in the treatment of glioblastomas, since these cells can select and lyse therapy-resistant glioblastoma stem-like cells (GSLCs). Immunotherapy with super-charged NK cells has a potential as antitumor approach since we found their efficiency to kill patient-derived GSLCs in 2D and 3D models, potentially reversing the immunosuppression also seen in the patients. In addition to their potent cytotoxicity, NK cells secrete IFN-γ, upregulate GSLC surface expression of CD54 and MHC class I and increase sensitivity of GSLCs to chemotherapeutic drugs. Moreover, NK cell localization in peri-vascular regions in glioblastoma tissues and their close contact with GSLCs in tumorospheres suggests their ability to infiltrate glioblastoma tumors and target GSLCs. Due to GSLC heterogeneity and plasticity in regards to their stage of differentiation personalized immunotherapeutic strategies should be designed to effectively target glioblastomas. “Super-charged” NK cells kill patient-derived glioblastoma stem-like cells (GSLCs) in 2D and 3D tumor models, secrete IFN-γ and upregulate the surface expression of CD54 and MHC class I in GSLCs.
Collapse
|
224
|
Advances of research of Fc-fusion protein that activate NK cells for tumor immunotherapy. Int Immunopharmacol 2022; 109:108783. [PMID: 35561479 DOI: 10.1016/j.intimp.2022.108783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022]
Abstract
The rapid development of bioengineering technology has introduced Fc-fusion proteins, representing a novel kind of recombinant protein, as promising biopharmaceutical products in tumor therapy. Numerous related anti-tumor Fc-fusion proteins have been investigated and are in different stages of development. Fc-fusion proteins are constructed by fusing the Fc-region of the antibody with functional proteins or peptides. They retain the bioactivity of the latter and partial properties of the former. This structural and functional advantage makes Fc-fusion proteins an effective tool in tumor immunotherapy, especially for the recruitment and activation of natural killer (NK) cells, which play a critical role in tumor immunotherapy. Even though tumor cells have developed mechanisms to circumvent the cytotoxic effect of NK cells or induce defective NK cells, Fc-fusion proteins have been proven to effectively activate NK cells to kill tumor cells in different ways, such as antibody-dependent cell-mediated cytotoxicity (ADCC), activate NK cells in different ways in order to promote killing of tumor cells. In this review, we focus on NK cell-based immunity for cancers and current research progress of the Fc-fusion proteins for anti-tumor therapy by activating NK cells.
Collapse
|
225
|
Liang S, Li J, Zou Z, Mao M, Ming S, Lin F, Zhang Z, Cao C, Zhou J, Zhang Y, Li J, Wu M. Tetrahedral DNA nanostructures synergize with MnO 2 to enhance antitumor immunity via promoting STING activation and M1 polarization. Acta Pharm Sin B 2022; 12:2494-2505. [PMID: 35646524 PMCID: PMC9136606 DOI: 10.1016/j.apsb.2021.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022] Open
Abstract
Stimulator of interferon genes (STING) is a cytosolic DNA sensor which is regarded as a potential target for antitumor immunotherapy. However, clinical trials of STING agonists display limited anti-tumor effects and dose-dependent side-effects like inflammatory damage and cell toxicity. Here, we showed that tetrahedral DNA nanostructures (TDNs) actively enter macrophages to promote STING activation and M1 polarization in a size-dependent manner, and synergized with Mn2+ to enhance the expressions of IFN-β and iNOS, as well as the co-stimulatory molecules for antigen presentation. Moreover, to reduce the cytotoxicity of Mn2+, we constructed a TDN-MnO2 complex and found that it displayed a much higher efficacy than TDN plus Mn2+ to initiate macrophage activation and anti-tumor response both in vitro and in vivo. Together, our studies explored a novel immune activation effect of TDN in cancer therapy and its synergistic therapeutic outcomes with MnO2. These findings provide new therapeutic opportunities for cancer therapy.
Collapse
|
226
|
Interleukin-15 augments NK cell-mediated ADCC of alemtuzumab in patients with CD52+ T-cell malignancies. Blood Adv 2022; 7:384-394. [PMID: 35475910 PMCID: PMC9898617 DOI: 10.1182/bloodadvances.2021006440] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Interleukin-15 (IL-15) monotherapy substantially increases the number and activity of natural killer (NK) cells and CD8+ T cells but has not produced clinical responses. In a xenograft mouse model, IL-15 enhanced the NK cell-mediated antibody-dependent cell cytotoxicity (ADCC) of the anti-CD52 antibody alemtuzumab and led to significantly more durable responses than alemtuzumab alone. To evaluate whether IL-15 potentiates ADCC in humans, we conducted a phase 1 single-center study of recombinant human IL-15 and alemtuzumab in patients with CD52-positive mature T-cell malignances. We gave IL-15 subcutaneously 5 days per week for 2 weeks in a 3 + 3 dose escalation scheme (at 0.5, 1, and 2 μg/kg), followed by standard 3 times weekly alemtuzumab IV for 4 weeks. There were no dose-limiting toxicities or severe adverse events attributable to IL-15 in the 11 patients treated. The most common adverse events were lymphopenia (100%), alemtuzumab-related infusion reactions (90%), anemia (90%), and neutropenia (72%). There were 3 partial and 2 complete responses, with an overall response rate of 45% and median duration of response 6 months. Immediately after 10 days of IL-15, there was a median 7.2-fold increase in NK cells and 2.5-fold increase in circulating CD8+ T cells, whereas the number of circulating leukemic cells decreased by a median 38% across all dose levels. Treatment with IL-15 was associated with increased expression of NKp46 and NKG2D, markers of NK-cell activation, and increased ex vivo ADCC activity of NK cells, whereas inhibitory receptors PD1 and Tim3 were decreased. This trial was registered at www.clinicaltrials.gov as #NCT02689453.
Collapse
|
227
|
Pan R, Ryan J, Pan D, Wucherpfennig KW, Letai A. Augmenting NK cell-based immunotherapy by targeting mitochondrial apoptosis. Cell 2022; 185:1521-1538.e18. [PMID: 35447071 PMCID: PMC9097966 DOI: 10.1016/j.cell.2022.03.030] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 03/18/2022] [Indexed: 12/11/2022]
Abstract
Interest in harnessing natural killer (NK) cells for cancer immunotherapy is rapidly growing. However, efficacy of NK cell-based immunotherapy remains limited in most trials. Strategies to augment the killing efficacy of NK cells are thus much needed. In the current study, we found that mitochondrial apoptosis (mtApoptosis) pathway is essential for efficient NK killing, especially at physiologically relevant effector-to-target ratios. Furthermore, NK cells can prime cancer cells for mtApoptosis and mitochondrial priming status affects cancer-cell susceptibility to NK-mediated killing. Interestingly, pre-activating NK cells confers on them resistance to BH3 mimetics. Combining BH3 mimetics with NK cells synergistically kills cancer cells in vitro and suppresses tumor growth in vivo. The ideal BH3 mimetic to use in such an approach can be predicted by BH3 profiling. We herein report a rational and precision strategy to augment NK-based immunotherapy, which may be adaptable to T cell-based immunotherapies as well.
Collapse
Affiliation(s)
- Rongqing Pan
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA.
| | - Jeremy Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Deng Pan
- Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Kai W Wucherpfennig
- Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
228
|
Gao F, Zhou Z, Lin Y, Shu G, Yin G, Zhang T. Biology and Clinical Relevance of HCMV-Associated Adaptive NK Cells. Front Immunol 2022; 13:830396. [PMID: 35464486 PMCID: PMC9022632 DOI: 10.3389/fimmu.2022.830396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are an important component of the innate immune system due to their strong ability to kill virally infected or transformed cells without prior exposure to the antigen (Ag). However, the biology of human NK (hNK) cells has largely remained elusive. Recent advances have characterized several novel hNK subsets. Among them, adaptive NK cells demonstrate an intriguing specialized antibody (Ab)-dependent response and several adaptive immune features. Most adaptive NK cells express a higher level of NKG2C but lack an intracellular signaling adaptor, FcϵRIγ (hereafter abbreviated as FcRγ). The specific expression pattern of these genes, with other signature genes, is the result of a specific epigenetic modification. The expansion of adaptive NK cells in vivo has been documented in various viral infections, while the frequency of adaptive NK cells among peripheral blood mononuclear cells correlates with improved prognosis of monoclonal Ab treatment against leukemia. This review summarizes the discovery and signature phenotype of adaptive NK cells. We also discuss the reported association between adaptive NK cells and pathological conditions. Finally, we briefly highlight the application of adaptive NK cells in adoptive cell therapy against cancer.
Collapse
Affiliation(s)
- Fei Gao
- Immuno-Oncology Laboratory, Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Zhengwei Zhou
- Immuno-Oncology Laboratory, Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Ying Lin
- Immuno-Oncology Laboratory, Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Guang Shu
- Immuno-Oncology Laboratory, Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Gang Yin
- Immuno-Oncology Laboratory, Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
229
|
Zang X, Chen S, Zhu J, Ma J, Zhai Y. The Emerging Role of Central and Peripheral Immune Systems in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:872134. [PMID: 35547626 PMCID: PMC9082639 DOI: 10.3389/fnagi.2022.872134] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
For decades, it has been widely believed that the blood-brain barrier (BBB) provides an immune privileged environment in the central nervous system (CNS) by blocking peripheral immune cells and humoral immune factors. This view has been revised in recent years, with increasing evidence revealing that the peripheral immune system plays a critical role in regulating CNS homeostasis and disease. Neurodegenerative diseases are characterized by progressive dysfunction and the loss of neurons in the CNS. An increasing number of studies have focused on the role of the connection between the peripheral immune system and the CNS in neurodegenerative diseases. On the one hand, peripherally released cytokines can cross the BBB, cause direct neurotoxicity and contribute to the activation of microglia and astrocytes. On the other hand, peripheral immune cells can also infiltrate the brain and participate in the progression of neuroinflammatory and neurodegenerative diseases. Neurodegenerative diseases have a high morbidity and disability rate, yet there are no effective therapies to stop or reverse their progression. In recent years, neuroinflammation has received much attention as a therapeutic target for many neurodegenerative diseases. In this review, we highlight the emerging role of the peripheral and central immune systems in neurodegenerative diseases, as well as their interactions. A better understanding of the emerging role of the immune systems may improve therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Zang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Si Chen
- Department of Neurology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - JunYao Zhu
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junwen Ma
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongzhen Zhai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
230
|
Omata D, Munakata L, Maruyama K, Suzuki R. Ultrasound and microbubble-mediated drug delivery and immunotherapy. J Med Ultrason (2001) 2022:10.1007/s10396-022-01201-x. [PMID: 35403931 DOI: 10.1007/s10396-022-01201-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
Abstract
Ultrasound induces the oscillation and collapse of microbubbles such as those of an ultrasound contrast agent, where these behaviors generate mechanical and thermal effects on cells and tissues. These, in turn, induce biological responses in cells and tissues, such as cellular signaling, endocytosis, or cell death. These physiological effects have been used for therapeutic purposes. Most pharmaceutical agents need to pass through the blood vessel walls and reach the parenchyma cells to produce therapeutic effects in drug delivery. Therefore, the blood vessel walls act as an obstacle to drug delivery. The combination of ultrasound and microbubbles is a promising strategy to enhance vascular permeability, improving drug transport from blood to tissues. This combination has also been applied to gene and protein delivery, such as cytokines and antigens for immunotherapy. Immunotherapy, in particular, is an attractive technique for cancer treatment as it induces a cancer cell-specific response. However, sufficient anti-tumor effects have not been achieved with the conventional cancer immunotherapy. Recently, new therapies based on immunomodulation with immune checkpoint inhibitors have been reported. Immunomodulation can be regarded as a new strategy for cancer immunotherapy. It was also reported that mechanical and thermal effects induced by the combination of ultrasound and microbubbles could suppress tumor growth by promoting the cancer-immunity cycle via immunomodulation in the tumor microenvironment. In this review, we provide an overview of the application of ultrasound and microbubble combination for drug delivery and activation of the immune system in the microenvironment of tumor tissue.
Collapse
Affiliation(s)
- Daiki Omata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Lisa Munakata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuo Maruyama
- Department of Theranostics, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, 2-21-1, Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, 2-21-1, Kaga, Itabashi-ku, Tokyo, 173-0003, Japan.
| |
Collapse
|
231
|
Sugimoto C, Murakami Y, Ishii E, Fujita H, Wakao H. Reprogramming and redifferentiation of mucosal-associated invariant T cells reveal tumor inhibitory activity. eLife 2022; 11:70848. [PMID: 35379387 PMCID: PMC8983048 DOI: 10.7554/elife.70848] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/08/2022] [Indexed: 12/15/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells belong to a family of innate-like T cells that bridge innate and adaptive immunities. Although MAIT cells have been implicated in tumor immunity, it currently remains unclear whether they function as tumor-promoting or inhibitory cells. Therefore, we herein used induced pluripotent stem cell (iPSC) technology to investigate this issue. Murine MAIT cells were reprogrammed into iPSCs and redifferentiated towards MAIT-like cells (m-reMAIT cells). m-reMAIT cells were activated by an agonist in the presence and absence of antigen-presenting cells and MR1-tetramer, a reagent to detect MAIT cells. This activation accompanied protein tyrosine phosphorylation and the production of T helper (Th)1, Th2, and Th17 cytokines and inflammatory chemokines. Upon adoptive transfer, m-reMAIT cells migrated to different organs with maturation in mice. Furthermore, m-reMAIT cells inhibited tumor growth in the lung metastasis model and prolonged mouse survival upon tumor inoculation through the NK cell-mediated reinforcement of cytolytic activity. Collectively, the present results demonstrated the utility and role of m-reMAIT cells in tumor immunity and provide insights into the function of MAIT cells in immunity.
Collapse
Affiliation(s)
- Chie Sugimoto
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| | - Yukie Murakami
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| | - Eisuke Ishii
- Department of Dermatology, School of Medicine, Dokkyo Medical University, Mibu, Japan
| | - Hiroyoshi Fujita
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| | - Hiroshi Wakao
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Japan
| |
Collapse
|
232
|
The tricks for fighting against cancer using CAR NK cells: A review. Mol Cell Probes 2022; 63:101817. [DOI: 10.1016/j.mcp.2022.101817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
|
233
|
Chan LY, Dass SA, Tye GJ, Imran SAM, Wan Kamarul Zaman WS, Nordin F. CAR-T Cells/-NK Cells in Cancer Immunotherapy and the Potential of MSC to Enhance Its Efficacy: A Review. Biomedicines 2022; 10:biomedicines10040804. [PMID: 35453554 PMCID: PMC9024487 DOI: 10.3390/biomedicines10040804] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The chimeric antigen receptor (CAR) plays a dynamic role in targeting tumour-associated antigens in cancer cells. This novel therapeutic discovery combines fragments of monoclonal antibodies with the signalling and co-stimulatory domains that have been modified to its current fourth generation. CAR has been widely implemented in T-cells and natural killer (NK) cells immunotherapy. The significant advancement in CAR technology is evident based on numerous ongoing clinical trials on CAR-T/-NK cells and successful CAR-related products such as Kymriah (Novartis) and Yescarta (Kite Pharma, Gilead). Another important cell-based therapy is the engineering of mesenchymal stem cells (MSC). Researchers have been exploring MSCs and their innate homing abilities to tumour sites and secretion cytokines that bridge both CAR and MSC technologies as a therapeutic agent. This combination allows for both therapies to overcome each one’s flaw as an immunotherapy intervention. Herein, we have provided a concise review on the background of CAR and its applications in different cancers, as well as MSCs’ unique ability as delivery vectors for cancer therapy and the possibility of enhancing the CAR-immune cells’ activity. Hence, we have highlighted throughout this review the synergistic effects of both interventions.
Collapse
Affiliation(s)
- Ler Yie Chan
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (L.Y.C.); (S.A.M.I.)
- INTEC Education College, Jalan Senangin Satu 17/2A, Seksyen 17, Shah Alam 40200, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Malaysia; (S.A.D.); (G.J.T.)
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Malaysia; (S.A.D.); (G.J.T.)
| | - Siti A. M. Imran
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (L.Y.C.); (S.A.M.I.)
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (L.Y.C.); (S.A.M.I.)
- Correspondence: ; Tel.: +60-3-91457670
| |
Collapse
|
234
|
Rethacker L, Boy M, Bisio V, Roussin F, Denizeau J, Vincent-Salomon A, Borcoman E, Sedlik C, Piaggio E, Toubert A, Dulphy N, Caignard A. Innate lymphoid cells: NK and cytotoxic ILC3 subsets infiltrate metastatic breast cancer lymph nodes. Oncoimmunology 2022; 11:2057396. [PMID: 35371620 PMCID: PMC8973349 DOI: 10.1080/2162402x.2022.2057396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Innate lymphoid cells (ILCs) – which include cytotoxic Natural Killer (NK) cells and helper-type ILC – are important regulators of tissue immune homeostasis, with possible roles in tumor surveillance. We analyzed ILC and their functionality in human lymph nodes (LN). In LN, NK cells and ILC3 were the prominent subpopulations. Among the ILC3s, we identified a CD56+/ILC3 subset with a phenotype close to ILC3 but also expressing cytotoxicity genes shared with NK. In tumor-draining LNs (TD-LNs) and tumor samples from breast cancer (BC) patients, NK cells were prominent, and proportions of ILC3 subsets were low. In tumors and TD-LN, NK cells display reduced levels of NCR (Natural cytotoxicity receptors), despite high transcript levels and included a small subset CD127− CD56− NK cells with reduced function. Activated by cytokines CD56+/ILC3 cells from donor and patients LN acquired cytotoxic capacity and produced IFNg. In TD-LN, all cytokine activated ILC populations produced TNFα in response to BC cell line. Analyses of cytotoxic and helper ILC indicate a switch toward NK cells in TD-LN. The local tumor microenvironment inhibited NK cell functions through downregulation of NCR, but cytokine stimulation restored their functionality.
Collapse
Affiliation(s)
- Louise Rethacker
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Maxime Boy
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Valeria Bisio
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - France Roussin
- Service d’Anesthésie-Réanimation, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Jordan Denizeau
- INSERM U932, Département de Recherche Translationelle, Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Anne Vincent-Salomon
- Diagnostic and Theranostic Medicine Division, Institut Curie, PSL Research University, Paris, France
| | - Edith Borcoman
- Department of Medical Oncology, Institut Curie, Paris, France
- Université Paris Diderot, Université de Paris, Paris, France
| | - Christine Sedlik
- INSERM U932, Département de Recherche Translationelle, Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Eliane Piaggio
- INSERM U932, Département de Recherche Translationelle, Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Antoine Toubert
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
- Université Paris Diderot, Université de Paris, Paris, France
- Assistance Publique–Hôpitaux de Paris (AP–HP), Hôpital Saint-Louis, Laboratoire d’Immunologie et Histocompatibilité, Paris, France
| | - Nicolas Dulphy
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
- Université Paris Diderot, Université de Paris, Paris, France
- Assistance Publique–Hôpitaux de Paris (AP–HP), Hôpital Saint-Louis, Laboratoire d’Immunologie et Histocompatibilité, Paris, France
| | - Anne Caignard
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| |
Collapse
|
235
|
Li D, Brackenridge S, Walters LC, Swanson O, Harlos K, Rozbesky D, Cain DW, Wiehe K, Scearce RM, Barr M, Mu Z, Parks R, Quastel M, Edwards RJ, Wang Y, Rountree W, Saunders KO, Ferrari G, Borrow P, Jones EY, Alam SM, Azoitei ML, Gillespie GM, McMichael AJ, Haynes BF. Mouse and human antibodies bind HLA-E-leader peptide complexes and enhance NK cell cytotoxicity. Commun Biol 2022; 5:271. [PMID: 35347236 PMCID: PMC8960791 DOI: 10.1038/s42003-022-03183-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/17/2022] [Indexed: 12/16/2022] Open
Abstract
The non-classical class Ib molecule human leukocyte antigen E (HLA-E) has limited polymorphism and can bind HLA class Ia leader peptides (VL9). HLA-E-VL9 complexes interact with the natural killer (NK) cell receptors NKG2A-C/CD94 and regulate NK cell-mediated cytotoxicity. Here we report the isolation of 3H4, a murine HLA-E-VL9-specific IgM antibody that enhances killing of HLA-E-VL9-expressing cells by an NKG2A+ NK cell line. Structural analysis reveal that 3H4 acts by preventing CD94/NKG2A docking on HLA-E-VL9. Upon in vitro maturation, an affinity-optimized IgG form of 3H4 showes enhanced NK killing of HLA-E-VL9-expressing cells. HLA-E-VL9-specific IgM antibodies similar in function to 3H4 are also isolated from naïve B cells of cytomegalovirus (CMV)-negative, healthy humans. Thus, HLA-E-VL9-targeting mouse and human antibodies isolated from the naïve B cell antibody pool have the capacity to enhance NK cell cytotoxicity.
Collapse
Affiliation(s)
- Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Simon Brackenridge
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Lucy C Walters
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Olivia Swanson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Daniel Rozbesky
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Cell Biology, Charles University, Prague, 12800, Czech Republic
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Richard M Scearce
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Zekun Mu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Max Quastel
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Mihai L Azoitei
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Geraldine M Gillespie
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
236
|
Saw PE, Chen J, Song E. Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer 2022; 8:527-555. [PMID: 35331673 DOI: 10.1016/j.trecan.2022.03.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022]
Abstract
The view of cancer as a tumor cell-centric disease is now replaced by our understanding of the interconnection and dependency of tumor stroma. Cancer-associated fibroblasts (CAFs), the most abundant stromal cells in the tumor microenvironment (TME), are involved in anticancer therapeutic resistance. As we unearth more solid evidence on the link between CAFs and tumor progression, we gain insight into the role of CAFs in establishing resistance to cancer therapies. Herein, we review the origin, heterogeneity, and function of CAFs, with a focus on how CAF subsets can be used as biomarkers and can contribute to therapeutic resistance in cancer. We also depict current breakthroughs in targeting CAFs to overcome anticancer therapeutic resistance and discuss emerging CAF-targeting modalities.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Fountain-Valley Institute for Life Sciences, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
237
|
Zhang L, Meng Y, Feng X, Han Z. CAR-NK cells for cancer immunotherapy: from bench to bedside. Biomark Res 2022; 10:12. [PMID: 35303962 PMCID: PMC8932134 DOI: 10.1186/s40364-022-00364-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells and manifest rapid and potent cytotoxicity for cancer immunotherapy and pathogen removal without the requirement of prior sensitization or recognition of peptide antigens. Distinguish from the T lymphocyte-based cythotherapy with toxic side effects, chimeric antigen receptor-transduced NK (CAR-NK) cells are adequate to simultaneously improve efficacy and control adverse effects including acute cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GVHD). Moreover, considering the inherent properties of NK cells, the CAR-NK cells are “off-the-shelf” product satisfying the clinical demand for large-scale manufacture for cancer immunotherapy attribute to the cytotoxic effect via both NK cell receptor-dependent and CAR-dependent signaling cascades. In this review, we mainly focus on the latest updates of CAR-NK cell-based tactics, together with the opportunities and challenges for cancer immunotherapies, which represent the paradigm for boosting the immune system to enhance antitumor responses and ultimately eliminate malignancies. Collectively, we summarize and highlight the auspicious improvement in CAR-NK cells and will benefit the large-scale preclinical and clinical investigations in adoptive immunotherapy.
Collapse
Affiliation(s)
- Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China. .,Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, 250014, China. .,Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, 230031, Anhui Province, China. .,Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China. .,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 Donggangxi Road, Chengguan District, Lanzhou City, 730013, Gansu Province, China.
| | - Yuan Meng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Zhongchao Han
- Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China. .,State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China. .,Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, 550000, China.
| |
Collapse
|
238
|
Morton LT, Wachsmann TLA, Meeuwsen MH, Wouters AK, Remst DFG, van Loenen MM, Falkenburg JHF, Heemskerk MHM. T cell receptor engineering of primary NK cells to therapeutically target tumors and tumor immune evasion. J Immunother Cancer 2022; 10:jitc-2021-003715. [PMID: 35288464 PMCID: PMC8921915 DOI: 10.1136/jitc-2021-003715] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND T cell receptor (TCR)-engineered cells can be powerful tools in the treatment of malignancies. However, tumor resistance by Human Leukocyte antigen (HLA) class I downregulation can negatively impact the success of any TCR-mediated cell therapy. Allogeneic natural killer (NK) cells have demonstrated efficacy and safety against malignancies without inducing graft-versus-host-disease, highlighting the feasibility for an 'off the shelf' cellular therapeutic. Furthermore, primary NK cells can target tumors using a broad array of intrinsic activation mechanisms. In this study, we combined the antitumor effector functions of NK cells with TCR engineering (NK-TCR), creating a novel therapeutic strategy to avoid TCR-associated immune resistance. METHODS BOB1, is a transcription factor highly expressed in all healthy and malignant B cell lineages, including multiple myeloma (MM). Expression of an HLA-B*07:02 restricted BOB1-specifc TCR in peripheral blood-derived NK cells was achieved following a two-step retroviral transduction protocol. NK-TCR was then compared with TCR-negative NK cells and CD8-T cells expressing the same TCR for effector function against HLA-B*07:02+ B-cell derived lymphoblastoid cell lines (B-LCL), B-cell acute lymphoblastic leukemia and MM cell lines in vitro and in vivo. RESULTS Firstly, TCR could be reproducibly expressed in NK cells isolated from the peripheral blood of multiple healthy donors generating pure NK-TCR cell products. Secondly, NK-TCR demonstrated antigen-specific effector functions against malignancies which were previously resistant to NK-mediated lysis and enhanced NK efficacy in vivo using a preclinical xenograft model of MM. Moreover, antigen-specific cytotoxicity and cytokine production of NK-TCR was comparable to CD8 T cells expressing the same TCR. Finally, in a model of HLA-class I loss, tumor cells with B2M KO were lysed by NK-TCR in an NK-mediated manner but were resistant to T-cell based killing. CONCLUSION NK-TCR cell therapy enhances NK cell efficacy against tumors through additional TCR-mediated lysis. Furthermore, the dual efficacy of NK-TCR permits the specific targeting of tumors and the associated TCR-associated immune resistance, making NK-TCR a unique cellular therapeutic.
Collapse
Affiliation(s)
- Laura T Morton
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Miranda H Meeuwsen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne K Wouters
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis F G Remst
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marleen M van Loenen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
239
|
Abbasi B, Shamsasenjan K, Ahmadi M, Beheshti SA, Saleh M. Mesenchymal stem cells and natural killer cells interaction mechanisms and potential clinical applications. Stem Cell Res Ther 2022; 13:97. [PMID: 35255980 PMCID: PMC8900412 DOI: 10.1186/s13287-022-02777-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/09/2021] [Indexed: 12/29/2022] Open
Abstract
Natural killer cells (NK cells) are innate immune cells that are activated to fight tumor cells and virus-infected cells. NK cells also play an important role in the graft versus leukemia response. However, they can over-develop inflammatory reactions by secreting inflammatory cytokines and increasing Th1 differentiation, eventually leading to tissue damage. Today, researchers have attributed some autoimmune diseases and GVHD to NK cells. On the other hand, it has been shown that mesenchymal stem cells (MSCs) can modulate the activity of NK cells, while some researchers have shown that NK cells can cause MSCs to lysis. Therefore, we considered it is necessary to investigate the effect of these two cells and their signaling pathway in contact with each other, also their clinical applications.
Collapse
Affiliation(s)
- Batol Abbasi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedeh Ameneh Beheshti
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
240
|
Different inflammatory blood markers correlate with specific outcomes in incident HPV-negative head and neck squamous cell carcinoma: a retrospective cohort study. BMC Cancer 2022; 22:243. [PMID: 35248020 PMCID: PMC8897882 DOI: 10.1186/s12885-022-09327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Inflammatory blood markers have been associated with oncological outcomes in several cancers, but evidence for head and neck squamous cell carcinoma (HNSCC) is scanty. Therefore, this study aims at investigating the association between five different inflammatory blood markers and several oncological outcomes.
Methods
This multi-centre retrospective analysis included 925 consecutive patients with primary HPV-negative HNSCC (median age: 68 years) diagnosed between April 2004 and June 2018, whose pre-treatment blood parameters were available. Neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), lymphocyte to monocyte ratio (LMR), systemic inflammatory marker (SIM), and systemic immune-inflammation index (SII) were calculated; their associations with local, regional, and distant failure, disease-free survival (DFS), and overall survival (OS) was calculated.
Results
The median follow-up was 53 months. All five indexes were significantly associated with OS; the highest accuracy in predicting patients’ survival was found for SIM (10-year OS = 53.2% for SIM < 1.40 and 40.9% for SIM ≥ 2.46; c-index = 0.569) and LMR (10-year OS = 60.4% for LMR ≥ 3.76 and 40.5% for LMR < 2.92; c-index = 0.568). While LMR showed the strongest association with local failure (HR = 2.16; 95% CI:1.22–3.84), PLR showed the strongest association with regional (HR = 1.98; 95% CI:1.24–3.15) and distant failure (HR = 1.67; 95% CI:1.08–2.58).
Conclusion
Different inflammatory blood markers may be useful to identify patients at risk of local, regional, or distant recurrences who may benefit from treatment intensification or intensive surveillance programs.
Collapse
|
241
|
Balatsoukas A, Rossignoli F, Shah K. NK cells in the brain: implications for brain tumor development and therapy. Trends Mol Med 2022; 28:194-209. [PMID: 35078713 PMCID: PMC8882142 DOI: 10.1016/j.molmed.2021.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
Natural killer (NK) cells are innate lymphoid cells with robust antitumor functions rendering them promising therapeutic tools against malignancies. Despite constituting a minor fraction of the immune cells infiltrating tumors in the brain, insights into their role in central nervous system (CNS) pathophysiology are emerging. The challenges posed by a profoundly immunosuppressive microenvironment as well as by tumor resistance mechanisms necessitate exploring avenues to enhance the therapeutic potential of NK cells in both primary and metastatic brain malignancies. In this review, we summarize the role of NK cells in the pathogenesis of tumors in the brain and discuss the avenues investigated to harness their anticancer effects against primary and metastatic CNS tumors, including sources of therapeutic NK cells, combinations with other treatments, and novel engineering approaches for augmenting their cytotoxicity. We also highlight relevant preclinical evidence and clinical trials of NK cell-based therapies.
Collapse
Affiliation(s)
- Agisilaos Balatsoukas
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA
| | - Filippo Rossignoli
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
242
|
Lu Z, Tian Y, Bai Z, Liu J, Zhang Y, Qi J, Jin M, Zhu J, Li X. Increased oxidative stress contributes to impaired peripheral CD56 dimCD57 + NK cells from patients with systemic lupus erythematosus. Arthritis Res Ther 2022; 24:48. [PMID: 35172900 PMCID: PMC8848960 DOI: 10.1186/s13075-022-02731-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is characterized by loss of immune tolerance and imbalance of immune cell subsets. Natural killer (NK) cells contribute to regulate both the innate and adaptive immune response. In this study, we aimed to detect alterations of peripheral NK cells and explore intrinsic mechanisms involving in NK cell abnormality in SLE. Methods Blood samples from healthy controls (HCs) and patients with SLE and rheumatoid arthritis (RA) were collected. The NK count, NK subsets (CD56bright, CD56dimCD57−, and CD56dimCD57+), phenotypes, and apoptosis were evaluated with flow cytometer. Mitochondrial reactive oxygen species (mtROS) and total ROS levels were detected with MitoSOX Red and DCFH-DA staining respectively. Published data (GSE63829 and GSE23695) from Gene Expression Omnibus (GEO) was analyzed by Gene Set Enrichment Analysis (GSEA). Results Total peripheral NK count was down-regulated in untreated SLE patients in comparison to that in untreated RA patients and HCs. SLE patients exhibited a selective reduction in peripheral CD56dimCD57+ NK cell proportion, which was negatively associated with disease activity and positively correlated with levels of complement(C)3 and C4. Compared with HCs, peripheral CD56dimCD57+ NK cells from SLE patients exhibited altered phenotypes, increased endogenous apoptosis and higher levels of mtROS and ROS. In addition, when treated with hydrogen peroxide (H2O2), peripheral CD56dimCD57+ NK cell subset was more prone to undergo apoptosis than CD56dimCD57− NK cells. Furthermore, this NK cell subset from SLE patients exhibited impaired cytotoxicity in response to activated CD4+ T cells in vitro. Conclusion Our study demonstrated a selective loss of mature CD56dimCD57+ NK cell subset in SLE patients, which may caused by preferential apoptosis of this subset under increased oxidative stress in SLE. The attenuated in vitro cytotoxicity of CD56dimCD57+ NK cells may contribute to the impaired ability of eliminating pathogenic CD4+ T cells in SLE. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02731-y.
Collapse
Affiliation(s)
- Zhimin Lu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People's Republic of China.,Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yao Tian
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People's Republic of China.,Flow Cytometry Center, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People's Republic of China
| | - Jiaqing Liu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People's Republic of China
| | - Yan Zhang
- Department of Rheumatology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Jingjing Qi
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People's Republic of China
| | - Minli Jin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People's Republic of China
| | - Jie Zhu
- Flow Cytometry Center, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
243
|
Russo E, Laffranchi M, Tomaipitinca L, Del Prete A, Santoni A, Sozzani S, Bernardini G. NK Cell Anti-Tumor Surveillance in a Myeloid Cell-Shaped Environment. Front Immunol 2022; 12:787116. [PMID: 34975880 PMCID: PMC8718597 DOI: 10.3389/fimmu.2021.787116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
NK cells are innate lymphoid cells endowed with cytotoxic capacity that play key roles in the immune surveillance of tumors. Increasing evidence indicates that NK cell anti-tumor response is shaped by bidirectional interactions with myeloid cell subsets such as dendritic cells (DCs) and macrophages. DC-NK cell crosstalk in the tumor microenvironment (TME) strongly impacts on the overall NK cell anti-tumor response as DCs can affect NK cell survival and optimal activation while, in turn, NK cells can stimulate DCs survival, maturation and tumor infiltration through the release of soluble factors. Similarly, macrophages can either shape NK cell differentiation and function by expressing activating receptor ligands and/or cytokines, or they can contribute to the establishment of an immune-suppressive microenvironment through the expression and secretion of molecules that ultimately lead to NK cell inhibition. Consequently, the exploitation of NK cell interaction with DCs or macrophages in the tumor context may result in an improvement of efficacy of immunotherapeutic approaches.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Luana Tomaipitinca
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Neuromed, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pozzilli, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Neuromed, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pozzilli, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
244
|
Ackerman RS, Muncey AR, Aldawoodi NN, Kotha R, Getting REG. Cancer Immunotherapies: What the Perioperative Physician Needs to Know. Curr Oncol Rep 2022; 24:399-414. [PMID: 35141856 PMCID: PMC9056594 DOI: 10.1007/s11912-022-01202-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
Purpose of Review For patients with cancer, treatment may include combination therapy, including surgery and immunotherapy. Here, we review perioperative considerations for the patient prescribed immunotherapeutic agents. Recent Findings The perioperative period is a poignant moment in the journey of a patient with cancer, potentially deemed most influential compared to other moments in the care continuum. Several immunotherapeutic medications have been employed near the time of surgery to potentially increase effectiveness. Of the various drug classes, including immune checkpoint inhibitors, cytokines, toll-like receptor agonists, and oncolytic viruses, among others, several notable immune-related adverse effects were noted. They range from minor effects to more serious ones, such as renal failure, myocarditis, and tumor growth. Summary Surgery and immunotherapy are often employed in combination for primary treatment and prevention of cancer recurrence. Careful review and consideration of the pharmacokinetics, pharmacodynamics, and toxicities of immunotherapy benefit the perioperative physician and their patients.
Collapse
Affiliation(s)
- Robert S Ackerman
- Department of Anesthesiology, Duke University Medical Center, 134 Research Drive, Durham, NC, 27710, USA.
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Aaron R Muncey
- Department of Anesthesiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nasrin N Aldawoodi
- Department of Anesthesiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rohini Kotha
- Department of Anesthesiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | |
Collapse
|
245
|
Guo Z, Zhang L, Yang Q, Peng R, Yuan X, Xu L, Wang Z, Chen F, Huang H, Liu Q, Tan W. Manipulation of Multiple Cell–Cell Interactions by Tunable DNA Scaffold Networks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhenzhen Guo
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Lili Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Qiuxia Yang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| | - Xi Yuan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Liujun Xu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Huidong Huang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
- Institute of Molecular Medicine (IMM) Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
246
|
Zeng Y, Li S, Zhang S, Wang L, Yuan H, Hu F. Cell membrane coated-nanoparticles for cancer immunotherapy. Acta Pharm Sin B 2022; 12:3233-3254. [PMID: 35967284 PMCID: PMC9366230 DOI: 10.1016/j.apsb.2022.02.023] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/14/2021] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy can effectively inhibit cancer progression by activating the autoimmune system, with low toxicity and high effectiveness. Some of cancer immunotherapy had positive effects on clinical cancer treatment. However, cancer immunotherapy is still restricted by cancer heterogeneity, immune cell disability, tumor immunosuppressive microenvironment and systemic immune toxicity. Cell membrane-coated nanoparticles (CMCNs) inherit abundant source cell-relevant functions, including “self” markers, cross-talking with the immune system, biological targeting, and homing to specific regions. These enable them to possess preferred characteristics, including better biological compatibility, weak immunogenicity, immune escaping, a prolonged circulation, and tumor targeting. Therefore, they are applied to precisely deliver drugs and promote the effect of cancer immunotherapy. In the review, we summarize the latest researches of biomimetic CMCNs for cancer immunotherapy, outline the existing specific cancer immune therapies, explore the unique functions and molecular mechanisms of various cell membrane-coated nanoparticles, and analyze the challenges which CMCNs face in clinical translation.
Collapse
|
247
|
Cell-based immunotherapies in gynecologic cancers. Curr Opin Obstet Gynecol 2022; 34:10-14. [PMID: 34967809 DOI: 10.1097/gco.0000000000000760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review provides an update on recent developments in cell-based immunotherapy in gynecologic cancers. RECENT FINDINGS Chimeric antigen receptor (CAR) technology has made significant progress allowing now for not only expressing CARs on T-cells, but also on other immune effector cells, such as natural killer cells and macrophages. Cell-based vaccines have started to show promising results in clinical trials. SUMMARY Cell-based immunotherapies in gynecologic cancers continue to evolve with promising clinical efficacy in select patients.
Collapse
|
248
|
A chimeric switch-receptor PD1-DAP10-41BB augments NK92-cell activation and killing for human lung Cancer H1299 Cell. Biochem Biophys Res Commun 2022; 600:94-100. [DOI: 10.1016/j.bbrc.2022.02.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/25/2022]
|
249
|
De Louche CD, Roghanian A. Human inhibitory leukocyte Ig-like receptors: from immunotolerance to immunotherapy. JCI Insight 2022; 7:151553. [PMID: 35076022 PMCID: PMC8855791 DOI: 10.1172/jci.insight.151553] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
250
|
Elebyary O, Barbour A, Fine N, Tenenbaum HC, Glogauer M. The Crossroads of Periodontitis and Oral Squamous Cell Carcinoma: Immune Implications and Tumor Promoting Capacities. FRONTIERS IN ORAL HEALTH 2022; 1:584705. [PMID: 35047982 PMCID: PMC8757853 DOI: 10.3389/froh.2020.584705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Periodontitis (PD) is increasingly considered to interact with and promote a number of inflammatory diseases, including cancer. In the case of oral squamous cell carcinoma (OSCC) the local inflammatory response associated with PD is capable of triggering altered cellular events that can promote cancer cell invasion and proliferation of existing primary oral carcinomas as well as supporting the seeding of metastatic tumor cells into the gingival tissue giving rise to secondary tumors. Both the immune and stromal components of the periodontium exhibit phenotypic alterations and functional differences during PD that result in a microenvironment that favors cancer progression. The inflammatory milieu in PD is ideal for cancer cell seeding, migration, proliferation and immune escape. Understanding the interactions governing this attenuated anti-tumor immune response is vital to unveil unexplored preventive or therapeutic possibilities. Here we review the many commonalities between the oral-inflammatory microenvironment in PD and oral-inflammatory responses that are associated with OSCC progression, and how these conditions can act to promote and sustain the hallmarks of cancer.
Collapse
Affiliation(s)
- Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Howard C Tenenbaum
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|