201
|
Harutyunyan AS, Chen H, Lu T, Horth C, Nikbakht H, Krug B, Russo C, Bareke E, Marchione DM, Coradin M, Garcia BA, Jabado N, Majewski J. H3K27M in Gliomas Causes a One-Step Decrease in H3K27 Methylation and Reduced Spreading within the Constraints of H3K36 Methylation. Cell Rep 2020; 33:108390. [PMID: 33207202 PMCID: PMC7703850 DOI: 10.1016/j.celrep.2020.108390] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/23/2020] [Accepted: 10/23/2020] [Indexed: 12/05/2022] Open
Abstract
The discovery of H3K27M mutations in pediatric gliomas marked a new chapter in cancer epigenomics. Numerous studies have investigated the effect of this mutation on H3K27 trimethylation, but only recently have we started to realize its additional effects on the epigenome. Here, we use isogenic glioma H3K27M+/− cell lines to investigate H3K27 methylation and its interaction with H3K36 and H3K9 modifications. We describe a “step down” effect of H3K27M on the distribution of H3K27 methylation: me3 is reduced to me2, me2 is reduced to me1, whereas H3K36me2/3 delineates the boundaries for the spread of H3K27me marks. We also observe a replacement of H3K27me2/3 silencing by H3K9me3. Using a computational simulation, we explain our observations by reduced effectiveness of PRC2 and constraints imposed on the deposition of H3K27me by antagonistic H3K36 modifications. Our work further elucidates the effects of H3K27M in gliomas as well as the general principles of deposition in H3K27 methylation. Harutyunyan et al. use isogenic glioma H3K27M+/− cell lines to demonstrate the rewiring of the epigenome, specifically H3K27me1/2/3, H3K36me2/3, and H3K9me3. The dynamic deposition of histone marks is simulated by a stochastic model. This work further advances the understanding of the deposition of H3K27 methylation in H3K27M mutant gliomas.
Collapse
Affiliation(s)
- Ashot S Harutyunyan
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada; The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Haifen Chen
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Tianyuan Lu
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Quantitative Life Sciences Program, McGill University, Montreal, QC H3A 2A7, Canada
| | - Cynthia Horth
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Hamid Nikbakht
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Caterina Russo
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada; The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics and the Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariel Coradin
- Department of Biochemistry and Biophysics and the Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics and the Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada; The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
202
|
Histone H3.3 G34 mutations promote aberrant PRC2 activity and drive tumor progression. Proc Natl Acad Sci U S A 2020; 117:27354-27364. [PMID: 33067396 DOI: 10.1073/pnas.2006076117] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A high percentage of pediatric gliomas and bone tumors reportedly harbor missense mutations at glycine 34 in genes encoding histone variant H3.3. We find that these H3.3 G34 mutations directly alter the enhancer chromatin landscape of mesenchymal stem cells by impeding methylation at lysine 36 on histone H3 (H3K36) by SETD2, but not by the NSD1/2 enzymes. The reduction of H3K36 methylation by G34 mutations promotes an aberrant gain of PRC2-mediated H3K27me2/3 and loss of H3K27ac at active enhancers containing SETD2 activity. This altered histone modification profile promotes a unique gene expression profile that supports enhanced tumor development in vivo. Our findings are mirrored in G34W-containing giant cell tumors of bone where patient-derived stromal cells exhibit gene expression profiles associated with early osteoblastic differentiation. Overall, we demonstrate that H3.3 G34 oncohistones selectively promote PRC2 activity by interfering with SETD2-mediated H3K36 methylation. We propose that PRC2-mediated silencing of enhancers involved in cell differentiation represents a potential mechanism by which H3.3 G34 mutations drive these tumors.
Collapse
|
203
|
Li Q, Liu KY, Liu Q, Wang G, Jiang W, Meng Q, Yi Y, Yang Y, Wang R, Zhu S, Li C, Wu L, Zhao D, Yan L, Zhang L, Kim JS, Zu X, Kozielski AJ, Qian W, Chang JC, Patnaik A, Chen K, Cao Q. Antihistamine Drug Ebastine Inhibits Cancer Growth by Targeting Polycomb Group Protein EZH2. Mol Cancer Ther 2020; 19:2023-2033. [PMID: 32855270 PMCID: PMC7541747 DOI: 10.1158/1535-7163.mct-20-0250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/21/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
Enhancer of zester homolog 2 (EZH2), a histone lysine methyltransferase and the catalytic component of polycomb repressive complex 2, has been extensively investigated as a chromatin regulator and a transcriptional suppressor by methylating H3 at lysine 27 (H3K27). EZH2 is upregulated or mutated in most cancers, and its expression levels are negatively associated with clinical outcomes. However, the current developed small-molecule inhibitors targeting EZH2 enzymatic activities could not inhibit the growth and progression of solid tumors. Here, we discovered an antihistamine drug, ebastine, as a novel EZH2 inhibitor by targeting EZH2 transcription and subsequently downregulating EZH2 protein level and H3K27 trimethylation in multiple cancer cell lines at concentrations below 10 μmol/L. The inhibition of EZH2 by ebastine further impaired the progression, migration, and invasiveness of these cancer cells. Overexpression of Ezh2 wild-type and its mutant, H689A (lacking methyltransferase activity), rescued the neoplastic properties of these cancer cells after ebastine treatment, suggesting that EZH2 targeted by ebastine is independent of its enzymatic function. Next-generation RNA-sequencing analysis also revealed that C4-2 cells treated with 8 μmol/L ebastine showed a gene profiling pattern similar to EZH2-knockdown C4-2 cells, which was distinctively different from cells treated with GSK126, an EZH2 enzyme inhibitor. In addition, ebastine treatment effectively reduced tumor growth and progression, and enhanced progression-free survival in triple-negative breast cancer and drug-resistant castration-resistant prostate cancer patient-derived xenograft mice. Our data demonstrated that ebastine is a novel, safe, and potent anticancer agent for patients with advanced cancer by targeting the oncoprotein EZH2.
Collapse
Affiliation(s)
- Qiaqia Li
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas
| | - Kilia Y Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Qipeng Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas
| | - Guangyu Wang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, Texas
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, New York
| | - Weihua Jiang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas
| | - Qingshu Meng
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas
| | - Yang Yi
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas
| | - Yongyong Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Rui Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas
| | - Sen Zhu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, New York
| | - Chao Li
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas
| | - Longxiang Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dongyu Zhao
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, Texas
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, New York
| | - Lin Yan
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas
| | - Lili Zhang
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, New York
| | - Jung-Sun Kim
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - Wei Qian
- Houston Methodist Cancer Center, Houston, Texas
| | | | - Akash Patnaik
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Kaifu Chen
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, Texas.
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, Cornell University, New York, New York
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas
- Houston Methodist Cancer Center, Houston, Texas
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
204
|
Sangatsuda Y, Miura F, Araki H, Mizoguchi M, Hata N, Kuga D, Hatae R, Akagi Y, Amemiya T, Fujioka Y, Arai Y, Yoshida A, Shibata T, Yoshimoto K, Iihara K, Ito T. Base-resolution methylomes of gliomas bearing histone H3.3 mutations reveal a G34 mutant-specific signature shared with bone tumors. Sci Rep 2020; 10:16162. [PMID: 32999376 PMCID: PMC7527345 DOI: 10.1038/s41598-020-73116-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Two recurrent mutations, K27M and G34R/V, in H3F3A, encoding non-canonical histone H3.3, are reported in pediatric and young adult gliomas, whereas G34W mutation is prevalent in bone tumors. In contrast to K27M mutation, it remains elusive how G34 mutations affect the epigenome. Here we performed whole-genome bisulfite sequencing of four G34R-mutated gliomas and the G34V-mutated glioma cell line KNS-42 for comparison with gliomas harboring K27M and no mutations in H3F3A and with G34W-mutated bone tumors. G34R-mutated gliomas exhibited lower global methylation levels, similar CpG island (CGI) methylation levels, and compromised hypermethylation of telomere-proximal CGIs, compared to the other two glioma subgroups. Hypermethylated regions specific to G34R-mutated gliomas were enriched for CGIs, including those of OLIG1, OLIG2, and canonical histone genes in the HIST1 cluster. They were notably hypermethylated in osteosarcomas with, but not without, G34W mutation. Independent component analysis revealed that G34 mutation-specific components shared a significant similarity between glioma and osteosarcoma, suggesting that G34 mutations exert characteristic methylomic effects regardless of the tumor tissue-of-origin. CRISPR/Cas9-mediated disruption of G34V-allele in KNS-42 cells led to demethylation of a subset of CGIs hypermethylated in G34R-mutated gliomas. These findings will provide a basis for elucidating epigenomic roles of G34 oncohistone in tumorigenesis.
Collapse
Affiliation(s)
- Yuhei Sangatsuda
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yojiro Akagi
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takeo Amemiya
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Koji Iihara
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
205
|
Graham MS, Mellinghoff IK. Histone-Mutant Glioma: Molecular Mechanisms, Preclinical Models, and Implications for Therapy. Int J Mol Sci 2020; 21:E7193. [PMID: 33003625 PMCID: PMC7582376 DOI: 10.3390/ijms21197193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Pediatric high-grade glioma (pHGG) is the leading cause of cancer death in children. Despite histologic similarities, it has recently become apparent that this disease is molecularly distinct from its adult counterpart. Specific hallmark oncogenic histone mutations within pediatric malignant gliomas divide these tumors into subgroups with different neuroanatomic and chronologic predilections. In this review, we will summarize the characteristic molecular alterations of pediatric high-grade gliomas, with a focus on how preclinical models of these alterations have furthered our understanding of their oncogenicity as well as their potential impact on developing targeted therapies for this devastating disease.
Collapse
Affiliation(s)
- Maya S. Graham
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Ingo K. Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
206
|
Pearson AD, Stegmaier K, Bourdeaut F, Reaman G, Heenen D, Meyers ML, Armstrong SA, Brown P, De Carvalho D, Jabado N, Marshall L, Rivera M, Smith M, Adamson PC, Barone A, Baumann C, Blackman S, Buenger V, Donoghue M, Duncan AD, Fox E, Gadbaw B, Hattersley M, Ho P, Jacobs I, Kelly MJ, Kieran M, Lesa G, Ligas F, Ludwinski D, McDonough J, Nikolova Z, Norga K, Senderowicz A, Taube T, Weiner S, Karres D, Vassal G. Paediatric Strategy Forum for medicinal product development of epigenetic modifiers for children: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2020; 139:135-148. [PMID: 32992153 DOI: 10.1016/j.ejca.2020.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022]
Abstract
The fifth multistakeholder Paediatric Strategy Forum focussed on epigenetic modifier therapies for children and adolescents with cancer. As most mutations in paediatric malignancies influence chromatin-associated proteins or transcription and paediatric cancers are driven by developmental gene expression programs, targeting epigenetic mechanisms is predicted to be a very important therapeutic approach in paediatric cancer. The Research to Accelerate Cures and Equity (RACE) for Children Act FDARA amendments to section 505B of the FD&C Act was implemented in August 2020, and as there are many epigenetic targets on the FDA Paediatric Molecular Targets List, clinical evaluation of epigenetic modifiers in paediatric cancers should be considered early in drug development. Companies are also required to submit to the EMA paediatric investigation plans aiming to ensure that the necessary data to support the authorisation of a medicine for children in EU are of high quality and ethically researched. The specific aims of the forum were i) to identify epigenetic targets or mechanisms of action associated with epigenetic modification relevant to paediatric cancers and ii) to define the landscape for paediatric drug development of epigenetic modifier therapies. DNA methyltransferase inhibitors/hypomethylating agents and histone deacetylase inhibitors were largely excluded from discussion as the aim was to discuss those targets for which therapeutic agents are currently in early paediatric and adult development. Epigenetics is an evolving field and could be highly relevant to many paediatric cancers; the biology is multifaceted and new targets are frequently emerging. Targeting epigenetic mechanisms in paediatric malignancy has in most circumstances yet to reach or extend beyond clinical proof of concept, as many targets do not yet have available investigational drugs developed. Eight classes of medicinal products were discussed and prioritised based on the existing level of science to support early evaluation in children: inhibitors of menin, DOT1L, EZH2, EED, BET, PRMT5 and LSD1 and a retinoic acid receptor alpha agonist. Menin inhibitors should be moved rapidly into paediatric development, in view of their biological rationale, strong preclinical activity and ability to fulfil an unmet clinical need. A combination approach is critical for successful utilisation of any epigenetic modifiers (e.g. EZH2 and EED) and exploration of the optimum combination(s) should be supported by preclinical research and, where possible, molecular biomarker validation in advance of clinical translation. A follow-up multistakeholder meeting focussing on BET inhibitors will be held to define how to prioritise the multiple compounds in clinical development that could be evaluated in children with cancer. As epigenetic modifiers are relatively early in development in paediatrics, there is a clear opportunity to shape the landscape of therapies targeting the epigenome in order that efficient and optimum plans for their evaluation in children and adolescents are developed in a timely manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lynley Marshall
- Royal Marsden NHS Foundation Trust/Institute of Cancer Research, UK
| | | | | | - Peter C Adamson
- Sanofi US, Emeritus Professor of Paediatrics and Pharmacology, Perelman School of Medicine, University of Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | | | | | | | - Koen Norga
- Antwerp University Hospital, Paediatric Committee of the European Medicines Agency, Federal Agency for Medicines and Health Products, Belgium
| | | | | | | | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Medicines Division, European Medicines Agency (EMA), Amsterdam, Netherlands
| | | |
Collapse
|
207
|
Dastmalchi N, Safaralizadeh R, Nargesi MM. LncRNAs: Potential Novel Prognostic and Diagnostic Biomarkers in Colorectal Cancer. Curr Med Chem 2020; 27:5067-5077. [PMID: 30827228 DOI: 10.2174/0929867326666190227230024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), a type of regulatory RNAs, play a key role in numerous cellular pathways. Ectopic expression of this group of non-coding RNAs has been specified to be involved in numerous diseases. Moreover, the role of lncRNAs in the initiation and development of cancers including colorectal cancer (CRC) has been acknowledged. OBJECTIVE In the present review, the role of lncRNAs as prognostic and diagnostic biomarkers in CRC as well as the molecular mechanisms of their contribution to development of CRC has been addressed. RESULTS The presented studies have indicated the ectopic expression of various lncRNAs in CRC. Some lncRNAs which were considered as tumor suppressors were downregulated in the colorectal cancerous tissues compared with healthy controls; however, some with oncogenic effects were upregulated. LncRNAs contribute to tumor development via various molecular mechanisms such as epigenetically controlling the expression of target genes, interacting with miRNAs as their sponge, etc. Conclusion: LncRNAs that have been recognized as prognostic biomarkers may pave the way for clinical management to offer adjuvant treatments for patients with CRC.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mirsaed Miri Nargesi
- Molecular Virology Section, Department of Virology and Immunology, LabPLUS, Auckland District Health Board (ADHB), Auckland, New Zealand
| |
Collapse
|
208
|
Chung C, Sweha SR, Pratt D, Tamrazi B, Panwalkar P, Banda A, Bayliss J, Hawes D, Yang F, Lee HJ, Shan M, Cieslik M, Qin T, Werner CK, Wahl DR, Lyssiotis CA, Bian Z, Shotwell JB, Yadav VN, Koschmann C, Chinnaiyan AM, Blüml S, Judkins AR, Venneti S. Integrated Metabolic and Epigenomic Reprograming by H3K27M Mutations in Diffuse Intrinsic Pontine Gliomas. Cancer Cell 2020; 38:334-349.e9. [PMID: 32795401 PMCID: PMC7494613 DOI: 10.1016/j.ccell.2020.07.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/28/2020] [Accepted: 07/15/2020] [Indexed: 01/08/2023]
Abstract
H3K27M diffuse intrinsic pontine gliomas (DIPGs) are fatal and lack treatments. They mainly harbor H3.3K27M mutations resulting in H3K27me3 reduction. Integrated analysis in H3.3K27M cells, tumors, and in vivo imaging in patients showed enhanced glycolysis, glutaminolysis, and tricarboxylic acid cycle metabolism with high alpha-ketoglutarate (α-KG) production. Glucose and/or glutamine-derived α-KG maintained low H3K27me3 in H3.3K27M cells, and inhibition of key enzymes in glycolysis or glutaminolysis increased H3K27me3, altered chromatin accessibility, and prolonged survival in animal models. Previous studies have shown that mutant isocitrate-dehydrogenase (mIDH)1/2 glioma cells convert α-KG to D-2-hydroxyglutarate (D-2HG) to increase H3K27me3. Here, we show that H3K27M and IDH1 mutations are mutually exclusive and experimentally synthetic lethal. Overall, we demonstrate that H3.3K27M and mIDH1 hijack a conserved and critical metabolic pathway in opposing ways to maintain their preferred epigenetic state. Consequently, interruption of this metabolic/epigenetic pathway showed potent efficacy in preclinical models, suggesting key therapeutic targets for much needed treatments.
Collapse
Affiliation(s)
- Chan Chung
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Michigan Medicine, University of Michigan, 3520E MSRB 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109-41804, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stefan R Sweha
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Michigan Medicine, University of Michigan, 3520E MSRB 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109-41804, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Drew Pratt
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Michigan Medicine, University of Michigan, 3520E MSRB 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109-41804, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Benita Tamrazi
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Pooja Panwalkar
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Michigan Medicine, University of Michigan, 3520E MSRB 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109-41804, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Adam Banda
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Michigan Medicine, University of Michigan, 3520E MSRB 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109-41804, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jill Bayliss
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Michigan Medicine, University of Michigan, 3520E MSRB 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109-41804, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Debra Hawes
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Fusheng Yang
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mengrou Shan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christian K Werner
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhiguo Bian
- Centralized Medicinal Chemistry, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - J Brad Shotwell
- Centralized Medicinal Chemistry, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Viveka Nand Yadav
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Carl Koschmann
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stefan Blüml
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Michigan Medicine, University of Michigan, 3520E MSRB 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109-41804, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
209
|
Lin GL, Wilson KM, Ceribelli M, Stanton BZ, Woo PJ, Kreimer S, Qin EY, Zhang X, Lennon J, Nagaraja S, Morris PJ, Quezada M, Gillespie SM, Duveau DY, Michalowski AM, Shinn P, Guha R, Ferrer M, Klumpp-Thomas C, Michael S, McKnight C, Minhas P, Itkin Z, Raabe EH, Chen L, Ghanem R, Geraghty AC, Ni L, Andreasson KI, Vitanza NA, Warren KE, Thomas CJ, Monje M. Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Sci Transl Med 2020; 11:11/519/eaaw0064. [PMID: 31748226 DOI: 10.1126/scitranslmed.aaw0064] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 07/22/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022]
Abstract
Diffuse midline gliomas (DMGs) are universally lethal malignancies occurring chiefly during childhood and involving midline structures of the central nervous system, including thalamus, pons, and spinal cord. These molecularly related cancers are characterized by high prevalence of the histone H3K27M mutation. In search of effective therapeutic options, we examined multiple DMG cultures in sequential quantitative high-throughput screens (HTS) of 2706 approved and investigational drugs. This effort generated 19,936 single-agent dose responses that inspired a series of HTS-enabled drug combination assessments encompassing 9195 drug-drug examinations. Top combinations were validated across patient-derived cell cultures representing the major DMG genotypes. In vivo testing in patient-derived xenograft models validated the combination of the multi-histone deacetylase (HDAC) inhibitor panobinostat and the proteasome inhibitor marizomib as a promising therapeutic approach. Transcriptional and metabolomic surveys revealed substantial alterations to key metabolic processes and the cellular unfolded protein response after treatment with panobinostat and marizomib. Mitigation of drug-induced cytotoxicity and basal mitochondrial respiration with exogenous application of nicotinamide mononucleotide (NMN) or exacerbation of these phenotypes when blocking nicotinamide adenine dinucleotide (NAD+) production via nicotinamide phosphoribosyltransferase (NAMPT) inhibition demonstrated that metabolic catastrophe drives the combination-induced cytotoxicity. This study provides a comprehensive single-agent and combinatorial drug screen for DMG and identifies concomitant HDAC and proteasome inhibition as a promising therapeutic strategy that underscores underrecognized metabolic vulnerabilities in DMG.
Collapse
Affiliation(s)
- Grant L Lin
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Benjamin Z Stanton
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Pamelyn J Woo
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sara Kreimer
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elizabeth Y Qin
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - James Lennon
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Surya Nagaraja
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Michael Quezada
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shawn M Gillespie
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Damien Y Duveau
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Aleksandra M Michalowski
- Laboratory of Cancer Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Shinn
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Sam Michael
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Crystal McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Paras Minhas
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zina Itkin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Eric H Raabe
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Reem Ghanem
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anna C Geraghty
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lijun Ni
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katrin I Andreasson
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas A Vitanza
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katherine E Warren
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA. .,Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford Institute for Stem Cell and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
210
|
Exosome-transferred LINC01559 promotes the progression of gastric cancer via PI3K/AKT signaling pathway. Cell Death Dis 2020; 11:723. [PMID: 32895368 PMCID: PMC7477231 DOI: 10.1038/s41419-020-02810-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
Abstract
Increasing evidence indicates that long non-coding RNAs (lncRNAs) are associated with the progression of human cancers. However, the expression level and function of LINC01559 (long intergenic non-protein coding RNA 1559) in gastric cancer (GC) are rarely reported. Here we found that LINC01559 was upregulated in GC tissues based on GEPIA (Gene Expression Profiling Interactive Analysis) and TCGA (The Cancer Genome Atlas) databases. Also, LINC01559 was expressed at a lower level in GC cells than in mesenchymal stem cells (MSCs). In vitro experiments revealed that silencing LINC01559 remarkably hindered GC cell proliferation, migration and stemness. Then, we identified that LINC01559 was transmitted form MSCs to GC cells via the exosomes. Immunofluorescence staining and electron microscope validated the existence of exosomes in GC cells. Mechanistically, LINC01559 sponged miR-1343-3p to upregulate PGK1 (phosphoglycerate kinase 1), therefore activating PI3K/AKT pathway. Moreover, LINC01559 recruited EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) to PTEN (phosphatase and tensin homolog) promoter, inducing the methylation of PTEN promoter and finally resulting in PTEN repression. Of note, LINC01559 targeted both PGK1 and PTEN to promote GC progression by activating PI3K/AKT pathway. Taken together, our study demonstrated that LINC01559 accelerated GC progression via upregulating PGK1 and downregulating PTEN to trigger phosphatidylinositol 3-kinase/AKT serine/threonine kinase (PI3K/AKT) pathway, indicating LINC01559 as a potential biomarker for GC treatment.
Collapse
|
211
|
Berlandi J, Chaouch A, De Jay N, Tegeder I, Thiel K, Shirinian M, Kleinman CL, Jeibmann A, Lasko P, Jabado N, Hasselblatt M. Identification of genes functionally involved in the detrimental effects of mutant histone H3.3-K27M in Drosophila melanogaster. Neuro Oncol 2020; 21:628-639. [PMID: 30715493 DOI: 10.1093/neuonc/noz021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recurrent specific mutations in evolutionarily conserved histone 3 (H3) variants drive pediatric high-grade gliomas (HGGs), but little is known about their downstream effects. The aim of this study was to identify genes involved in the detrimental effects of mutant H3.3-K27M, the main genetic driver in lethal midline HGG, in a transgenic Drosophila model. METHODS Mutant and wild-type histone H3.3-expressing flies were generated using a φC31-based integration system. Genetic modifier screens were performed by crossing H3.3-K27M expressing driver strains and 194 fly lines expressing short hairpin RNA targeting genes selected based on their potential role in the detrimental effects of mutant H3. Expression of the human orthologues of genes with functional relevance in the fly model was validated in H3-K27M mutant HGG. RESULTS Ubiquitous and midline glia-specific expression of H3.3-K27M but not wild-type H3.3 caused pupal lethality, morphological alterations, and decreased H3K27me3. Knockdown of 17 candidate genes shifted the lethal phenotype to later stages of development. These included histone modifying and chromatin remodeling genes as well as genes regulating cell differentiation and proliferation. Notably, several of these genes were overexpressed in mutant H3-K27M mutated HGG. CONCLUSIONS Rapid screening, identification, and validation of relevant targets in "oncohistone" mediated pathogenesis have proven a challenge and a barrier to providing novel therapies. Our results provide further evidence on the role of chromatin modifiers in the genesis of H3.3-K27M. Notably, they validate Drosophila as a model system for rapid identification of relevant genes functionally involved in the detrimental effects of H3.3-K27M mutagenesis.
Collapse
Affiliation(s)
- Johannes Berlandi
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Amel Chaouch
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Nicolas De Jay
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,The Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Isabel Tegeder
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Katharina Thiel
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology, and Microbiology Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,The Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Paul Lasko
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Nada Jabado
- Department of Paediatrics, McGill University and the McGill University Health Center Research Institute, Montreal, Quebec, Canada
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| |
Collapse
|
212
|
Wang J, Lu QR. Convergent epigenetic regulation of glial plasticity in myelin repair and brain tumorigenesis: A focus on histone modifying enzymes. Neurobiol Dis 2020; 144:105040. [PMID: 32800999 DOI: 10.1016/j.nbd.2020.105040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/27/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Brain regeneration and tumorigenesis are complex processes involving in changes in chromatin structure to regulate cellular states at the molecular and genomic level. The modulation of chromatin structure dynamics is critical for maintaining progenitor cell plasticity, growth and differentiation. Oligodendrocyte precursor cells (OPC) can be differentiated into mature oligodendrocytes, which produce myelin sheathes to permit saltatory nerve conduction. OPCs and their primitive progenitors such as pri-OPC or pre-OPC are highly adaptive and plastic during injury repair or brain tumor formation. Recent studies indicate that chromatin modifications and epigenetic homeostasis through histone modifying enzymes shape genomic regulatory landscape conducive to OPC fate specification, lineage differentiation, maintenance of myelin sheaths, as well as brain tumorigenesis. Thus, histone modifications can be convergent mechanisms in regulating OPC plasticity and malignant transformation. In this review, we will focus on the impact of histone modifying enzymes in modulating OPC plasticity during normal development, myelin regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
213
|
Variations in attitudes towards stereotactic biopsy of adult diffuse midline glioma patients: a survey of members of the AANS/CNS Tumor Section. J Neurooncol 2020; 149:161-170. [PMID: 32705457 PMCID: PMC7452882 DOI: 10.1007/s11060-020-03585-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/11/2020] [Indexed: 02/01/2023]
Abstract
Purpose Diffuse midline gliomas are rare midline CNS malignancies that primarily affect children but can also affect adults. While radiation is standard treatment, prognosis remains fatal. Furthermore, due to its sensitive anatomic location, many physicians have been reluctant to perform biopsies without potential for improved prognosis. However, recent advancements in molecular-targeted therapeutics have encouraged greater tissue sampling. While the literature reflects this progress, the landscape of how clinicians actually manage these patients remains unclear. Our goal was to assess the attitudes of current practicing neurosurgical oncologists towards management of adult diffuse midline gliomas, reasons behind their practices, and factors that might influence these practices. Methods We created and distributed a survey with 16 multiple choice and open-ended questions to members of the Tumor Section of the Congress of Neurological Surgeons. Results A total of 81 physicians responded to the survey. Although time since training and volume of glioma patients did not significantly affect the decision to consider clinical trials or to offer biopsy, those that operated on fewer gliomas (< 25/year) were more likely to cite surgical morbidity as the primary reason not to biopsy these midline locations. Further, surgeons with access to more advanced molecular testing were significantly more likely to consider clinical trial eligibility when offering biopsies. Conclusion Factors that affect the management of diffuse midline gliomas and the role of biopsy are relatively uniform across the field, however, there were a few notable differences that reflect the changes within the neuro-oncology field in response to clinical trials. Electronic supplementary material The online version of this article (10.1007/s11060-020-03585-7) contains supplementary material, which is available to authorized users.
Collapse
|
214
|
Sasaki T, Katagi H, Goldman S, Becher OJ, Hashizume R. Convection-Enhanced Delivery of Enhancer of Zeste Homolog-2 (EZH2) Inhibitor for the Treatment of Diffuse Intrinsic Pontine Glioma. Neurosurgery 2020; 87:E680-E688. [PMID: 32674144 DOI: 10.1093/neuros/nyaa301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/02/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brain tumor and the majority of patients die within 2 yr after initial diagnosis. Factors that contribute to the dismal prognosis of these patients include the infiltrative nature and anatomic location in an eloquent area of the brain, which precludes total surgical resection, and the presence of the blood-brain barrier (BBB), which reduces the distribution of systemically administered agents. Convection-enhanced delivery (CED) is a direct infusion technique to deliver therapeutic agents into a target site in the brain and able to deliver a high concentration drug to the infusion site without systemic toxicities. OBJECTIVE To assess the efficacy of enhancer of zeste homolog-2 (EZH2) inhibitor by CED against human DIPG xenograft models. METHODS The concentration of EZH2 inhibitor (EPZ-6438) in the brainstem tumor was evaluated by liquid chromatography-mass spectrometry (LC/MS). We treated mice-bearing human DIPG xenografts with EPZ-6438 using systemic (intraperitoneal) or CED administration. Intracranial tumor growth was monitored by bioluminescence image, and the therapeutic response was evaluated by animal survival. RESULTS LC/MS analysis showed that the concentration of EPZ-6438 in the brainstem tumor was 3.74% of serum concentration after systemic administration. CED of EPZ-6438 suppressed tumor growth and significantly extended animal survival when compared to systemic administration of EPZ-6438 (P = .0475). CONCLUSION Our results indicate that CED of an EZH2 inhibitor is a promising strategy to bypass the BBB and to increase the efficacy of an EZH2 inhibitor for the treatment of DIPG.
Collapse
Affiliation(s)
- Takahiro Sasaki
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiroaki Katagi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stewart Goldman
- Division of Hematology, Oncology and Stem Cell Transplantation in the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Oren J Becher
- Division of Hematology, Oncology and Stem Cell Transplantation in the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rintaro Hashizume
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
215
|
Chen KY, Bush K, Klein RH, Cervantes V, Lewis N, Naqvi A, Carcaboso AM, Lechpammer M, Knoepfler PS. Reciprocal H3.3 gene editing identifies K27M and G34R mechanisms in pediatric glioma including NOTCH signaling. Commun Biol 2020; 3:363. [PMID: 32647372 PMCID: PMC7347881 DOI: 10.1038/s42003-020-1076-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Histone H3.3 mutations are a hallmark of pediatric gliomas, but their core oncogenic mechanisms are not well-defined. To identify major effectors, we used CRISPR-Cas9 to introduce H3.3K27M and G34R mutations into previously H3.3-wildtype brain cells, while in parallel reverting the mutations in glioma cells back to wildtype. ChIP-seq analysis broadly linked K27M to altered H3K27me3 activity including within super-enhancers, which exhibited perturbed transcriptional function. This was largely independent of H3.3 DNA binding. The K27M and G34R mutations induced several of the same pathways suggesting key shared oncogenic mechanisms including activation of neurogenesis and NOTCH pathway genes. H3.3 mutant gliomas are also particularly sensitive to NOTCH pathway gene knockdown and drug inhibition, reducing their viability in culture. Reciprocal editing of cells generally produced reciprocal effects on tumorgenicity in xenograft assays. Overall, our findings define common and distinct K27M and G34R oncogenic mechanisms, including potentially targetable pathways. Kuang-Yui Chen et al. show that histone H3.3 K27M and G34R mutations share key oncogenic mechanisms such as activation of neurogenesis and NOTCH pathway genes. They find that H3.3 mutant gliomas are sensitive to inhibition of the NOTCH pathway, suggesting a potentially targetable pathway in pediatric gliomas.
Collapse
Affiliation(s)
- Kuang-Yui Chen
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Kelly Bush
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Rachel Herndon Klein
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Vanessa Cervantes
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Nichole Lewis
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Aasim Naqvi
- Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | | | | | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA. .,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA. .,Department Pathology and Laboratory Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
216
|
Rugo HS, Jacobs I, Sharma S, Scappaticci F, Paul TA, Jensen-Pergakes K, Malouf GG. The Promise for Histone Methyltransferase Inhibitors for Epigenetic Therapy in Clinical Oncology: A Narrative Review. Adv Ther 2020; 37:3059-3082. [PMID: 32445185 PMCID: PMC7467409 DOI: 10.1007/s12325-020-01379-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 12/21/2022]
Abstract
Epigenetic processes are essential for normal development and the maintenance of tissue-specific gene expression in mammals. Changes in gene expression and malignant cellular transformation can result from disruption of epigenetic mechanisms, and global disruption in the epigenetic landscape is a key feature of cancer. The study of epigenetics in cancer has revealed that human cancer cells harbor both genetic alterations and epigenetic abnormalities that interplay at all stages of cancer development. Unlike genetic mutations, epigenetic aberrations are potentially reversible through epigenetic therapy, providing a therapeutically relevant treatment option. Histone methyltransferase inhibitors are emerging as an epigenetic therapy approach with great promise in the field of clinical oncology. The recent accelerated approval of the enhancer of zeste homolog 2 (EZH2; also known as histone-lysine N-methyltransferase EZH2) inhibitor tazemetostat for metastatic or locally advanced epithelioid sarcoma marks the first approval of such a compound for the treatment of cancer. Many other histone methyltransferase inhibitors are currently in development, some of which are being tested in clinical studies. This review focuses on histone methyltransferase inhibitors, highlighting their potential in the treatment of cancer. We also discuss the role for such epigenetic drugs in overcoming epigenetically driven drug resistance mechanisms, and their value in combination with other therapeutic approaches such as immunotherapy.
Collapse
|
217
|
Molecular Characterization of Astrocytoma Progression Towards Secondary Glioblastomas Utilizing Patient-Matched Tumor Pairs. Cancers (Basel) 2020; 12:cancers12061696. [PMID: 32604718 PMCID: PMC7352509 DOI: 10.3390/cancers12061696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022] Open
Abstract
Astrocytomas are primary human brain tumors including diffuse or anaplastic astrocytomas that develop towards secondary glioblastomas over time. However, only little is known about molecular alterations that drive this progression. We measured multi-omics profiles of patient-matched astrocytoma pairs of initial and recurrent tumors from 22 patients to identify molecular alterations associated with tumor progression. Gene copy number profiles formed three major subcluters, but more than half of the patient-matched astrocytoma pairs differed in their gene copy number profiles like astrocytomas from different patients. Chromosome 10 deletions were not observed for diffuse astrocytomas, but occurred in corresponding recurrent tumors. Gene expression profiles formed three other major subclusters and patient-matched expression profiles were much more heterogeneous than their copy number profiles. Still, recurrent tumors showed a strong tendency to switch to the mesenchymal subtype. The direct progression of diffuse astrocytomas to secondary glioblastomas showed the largest number of transcriptional changes. Astrocytoma progression groups were further distinguished by signaling pathway expression signatures affecting cell division, interaction and differentiation. As expected, IDH1 was most frequently mutated closely followed by TP53, but also MUC4 involved in the regulation of apoptosis and proliferation was frequently mutated. Astrocytoma progression groups differed in their mutation frequencies of these three genes. Overall, patient-matched astrocytomas can differ substantially within and between patients, but still molecular signatures associated with the progression to secondary glioblastomas exist and should be analyzed for their potential clinical relevance in future studies.
Collapse
|
218
|
Wimalasena VK, Wang T, Sigua LH, Durbin AD, Qi J. Using Chemical Epigenetics to Target Cancer. Mol Cell 2020; 78:1086-1095. [PMID: 32407673 PMCID: PMC8033568 DOI: 10.1016/j.molcel.2020.04.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022]
Abstract
Transcription is epigenetically regulated by the orchestrated function of chromatin-binding proteins that tightly control the expression of master transcription factors, effectors, and supportive housekeeping genes required for establishing and propagating the normal and malignant cell state. Rapid advances in chemical biology and functional genomics have facilitated exploration of targeting epigenetic proteins, yielding effective strategies to target transcription while reducing toxicities to untransformed cells. Here, we review recent developments in conventional active site and allosteric inhibitors, peptidomimetics, and novel proteolysis-targeted chimera (PROTAC) technology that have deepened our understanding of transcriptional processes and led to promising preclinical compounds for therapeutic translation, particularly in cancer.
Collapse
Affiliation(s)
| | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Logan H Sigua
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adam D Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
219
|
Felker J, Broniscer A. Improving long-term survival in diffuse intrinsic pontine glioma. Expert Rev Neurother 2020; 20:647-658. [PMID: 32543245 DOI: 10.1080/14737175.2020.1775584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Diffuse intrinsic pontine glioma (DIPG) is an almost universally fatal pediatric brain cancer. There has been no improvement in event-free survival (EFS) or overall survival (OS) despite immense effort through a multitude of clinical trials to find a cure. Recently, there has been a surge in the knowledge of DIPG biology, including the discovery of a recurrent H3F3A mutation in over 80% of these tumors. AREAS COVERED The authors review the most recent approaches to diagnosis and treatment of DIPG including chemotherapy, biologics, surgical approaches, and immunotherapy. EXPERT OPINION The authors propose four main opportunities to improve long-term survival. First, patients should be enrolled in scientifically sound clinical trials that include molecularly profiling either via stereotactic biopsy or liquid biopsy. Second, clinical trials should include more innovative endpoints other than traditional EFS and OS such as MRI/PET imaging findings combined with surrogates of activity (e.g. serial liquid biopsies) to better ascertain biologically active treatments. Third, innovative clinical trial approaches are needed to help allow for the rapid development of combination therapies to be tested. Finally, effort should be concentrated on reversing the effects of the histone mutation, as this malfunctioning development program seems to be key to DIPG relentlessness.
Collapse
Affiliation(s)
- James Felker
- Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA.,Pediatric Neuro-Oncology, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| | - Alberto Broniscer
- Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA.,Pediatric Neuro-Oncology, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| |
Collapse
|
220
|
Prognostic role of H3K27M mutation, histone H3K27 methylation status, and EZH2 expression in diffuse spinal cord gliomas. Brain Tumor Pathol 2020; 37:81-88. [PMID: 32529280 DOI: 10.1007/s10014-020-00369-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
The objective of this study is to clarify clinical significance of the H3F3A K27M mutation (H3K27M) and analyze the correlation between H3K27M, H3K27me3 status, and EZH2 expression and prognosis in spinal cord gliomas. Patients with spinal cord diffuse glioma regardless of World Health Organization (WHO) grade underwent genetic analysis for H3F3A, HIST1H3B, TERT promoter, IDH1/2, and BRAF. H3K27me3 status and EZH2 expression were analyzed through immunohistochemistry. Thereafter, the association between H3K27M, H3K27me3 status, and EZH2 expression and prognosis was retrospectively analyzed using the log-rank test. A total of 26 cases, 5 with WHO grade 4, 9 with grade 3, and 12 with grade 2 glioma, were analyzed. Although WHO grade 2 cases tended to present favorable overall survival, the difference was not statistically significant. H3K27M, which was detected in four grade 4 cases (80%) and three grade 3 cases (33%), was not associated with prognosis among grade 3 and 4 cases. Among WHO grade 2-4 cases, the combination of retained H3K27me3 and negative EZH2 expression was correlated with favorable overall survival (p = 0.03). The combination of H3K27me3 status and EZH2 expression was considered as a potential prognostic marker in WHO grade 2-4 diffuse spinal cord gliomas.
Collapse
|
221
|
Zsidó BZ, Hetényi C. Molecular Structure, Binding Affinity, and Biological Activity in the Epigenome. Int J Mol Sci 2020; 21:ijms21114134. [PMID: 32531926 PMCID: PMC7311975 DOI: 10.3390/ijms21114134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Development of valid structure–activity relationships (SARs) is a key to the elucidation of pathomechanisms of epigenetic diseases and the development of efficient, new drugs. The present review is based on selected methodologies and applications supplying molecular structure, binding affinity and biological activity data for the development of new SARs. An emphasis is placed on emerging trends and permanent challenges of new discoveries of SARs in the context of proteins as epigenetic drug targets. The review gives a brief overview and classification of the molecular background of epigenetic changes, and surveys both experimental and theoretical approaches in the field. Besides the results of sophisticated, cutting edge techniques such as cryo-electron microscopy, protein crystallography, and isothermal titration calorimetry, examples of frequently used assays and fast screening techniques are also selected. The review features how different experimental methods and theoretical approaches complement each other and result in valid SARs of the epigenome.
Collapse
|
222
|
Sun Y, Bailey CP, Sadighi Z, Zaky W, Chandra J. Pediatric high-grade glioma: aberrant epigenetics and kinase signaling define emerging therapeutic opportunities. J Neurooncol 2020; 150:17-26. [PMID: 32504402 PMCID: PMC10141680 DOI: 10.1007/s11060-020-03546-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Supratentorial pediatric high-grade gliomas (pHGGs) are aggressive malignancies that lack effective treatment options. Deep genomic sequencing by multiple groups has revealed that the primary alterations unique to pHGGs occur in epigenetic and kinase genes. These mutations, fusions, and deletions present a therapeutic opportunity by use of small molecules targeting epigenetic modifiers and kinases that contribute to pHGG growth. METHODS Using a targeted search of the pre-clinical literature and clinicaltrials.gov for kinase and epigenetic pathways in pHGG, we collectively describe how these mechanisms are being targeted in pre-clinical animal models and in current clinical trials, as well as propose unexplored therapeutic possibilities for future investigations. RESULTS Relevant pHGG kinases are targetable by several FDA-approved or clinical-stage kinase inhibitors, including altered BRAF/MET/NTRK/ALK and wild-type PI3K/EGFR/PDGFR/VEGF/AXL. Epigenetic proteins implicated in pHGG are also clinically targetable and include histone erasers, writers and readers such as HDACs, demethylases LSD1/JMJD3, methyltransferase EZH2, chromatin reader bromodomains, and chromatin remodeler subunit BMI-1. Crosstalk between these pathways can occur involving kinases such as EGFR and AMPK interacting with epigenetic modifiers such as HDACs or EZH2. Single agent trial results of kinase inhibitors or epigenetic targets alone are underwhelming and hampered by poor pharmacokinetics, adaptive resistance, and broad inclusion criteria. CONCLUSIONS The genetic and phenotypic diversity of pHGGs is now well characterized after large-scale sequencing studies on patient tissue. However, clinical treatment paradigms have not yet shifted in response to this information. Combination therapies targeting multiple kinases or epigenetic targets may hold more promise, especially if attempted in selected patient populations with hemispheric pHGG tumors and relevant targeted therapeutic biomarkers.
Collapse
Affiliation(s)
- Yusha Sun
- Department of Pediatrics - Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA
| | - Cavan P Bailey
- Department of Pediatrics - Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA
| | - Zsila Sadighi
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Wafik Zaky
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Joya Chandra
- Department of Pediatrics - Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA. .,Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA.
| |
Collapse
|
223
|
Richart L, Margueron R. Drugging histone methyltransferases in cancer. Curr Opin Chem Biol 2020; 56:51-62. [DOI: 10.1016/j.cbpa.2019.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
|
224
|
Dai L, Chen J, Lin Z, Wang Z, Mu S, Qin Z. Targeting Sphingosine Kinase by ABC294640 against Diffuse Intrinsic Pontine Glioma (DIPG). J Cancer 2020; 11:4683-4691. [PMID: 32626514 PMCID: PMC7330698 DOI: 10.7150/jca.46269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023] Open
Abstract
As a highly aggressive pediatric brainstem tumor, diffuse intrinsic pontine glioma (DIPG) accounts for 10% to 20% of childhood brain tumors. The survival rate for DIPG remains very low, with a median survival time as less than one year even under radiotherapy, the current standard treatment. Moreover, over than 250 clinical trials have failed when trying to improve the survival compared to radiotherapy. The sphingolipid metabolism and related signaling pathways have been found closely related to cancer cell survival; however, the sphingolipid metabolism targeted therapies have never been investigated in DIPG. In the current study, the anti-DIPG activity of ABC294640, the only first-in-class orally available Sphingosine kinase (SphK) inhibitor was explored. Treatment with ABC294640 significantly repressed DIPG cell growth by inducing intracellular pro-apoptotic ceramides production and cell apoptosis. We also profiled ABC294640-induced changes in gene expression within DIPG cells and identified many new genes tightly controlled by sphingolipid metabolism, such as IFITM1 and KAL1. These genes are required for DIPG cell survival and display clinical relevance in DIPG patients' samples. Together, our findings in this study indicate that targeting sphingolipid metabolism may represent a promising strategy to improve DIPG treatment.
Collapse
Affiliation(s)
- Lu Dai
- Departments of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Jungang Chen
- Departments of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Zhen Lin
- Department of Pathology, Tulane University Health Sciences Center, Tulane Cancer Center, 1700 Tulane Ave., New Orleans, LA 70112, USA
| | - Zhaoxiong Wang
- Department of Pathology, Tulane University Health Sciences Center, Tulane Cancer Center, 1700 Tulane Ave., New Orleans, LA 70112, USA
| | - Shengyu Mu
- Pharmacology & Toxicology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Zhiqiang Qin
- Departments of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| |
Collapse
|
225
|
Aziz-Bose R, Monje M. Diffuse intrinsic pontine glioma: molecular landscape and emerging therapeutic targets. Curr Opin Oncol 2020; 31:522-530. [PMID: 31464759 DOI: 10.1097/cco.0000000000000577] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brainstem malignancy. Despite advances in understanding of the molecular underpinnings of the tumor in the past decade, the dismal prognosis of DIPG has thus far remained unchanged. This review seeks to highlight promising therapeutic targets within three arenas: DIPG cell-intrinsic vulnerabilities, immunotherapeutic approaches to tumor clearance, and microenvironmental dependencies that promote tumor growth. RECENT FINDINGS Promising therapeutic strategies from recent studies include epigenetic modifying agents such as histone deacetylase inhibitors, bromodomain and extra-terminal motif (BET) protein inhibitors, and CDK7 inhibitors. Tumor-specific immunotherapies are emerging. Key interactions between DIPG and normal brain cells are coming to light, and targeting critical microenvironmental mechanisms driving DIPG growth in the developing childhood brain represents a new direction for therapy. SUMMARY Several DIPG treatment strategies are being evaluated in early clinical trials. Ultimately, we suspect that a multifaceted therapeutic approach utilizing cell-intrinsic, microenvironmental, and immunotherapeutic targets will be necessary for eradicating DIPG.
Collapse
Affiliation(s)
| | - Michelle Monje
- Department of Neurology and Neurological Sciences.,Stanford Institute for Stem Cell Biology and Regenerative Medicine.,Stanford Cancer Institute.,Department of Pediatrics.,Department of Psychiatry and Behavioral Sciences.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
226
|
Chen J, Lin Z, Barrett L, Dai L, Qin Z. Identification of new therapeutic targets and natural compounds against diffuse intrinsic pontine glioma (DIPG). Bioorg Chem 2020; 99:103847. [PMID: 32311581 DOI: 10.1016/j.bioorg.2020.103847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
Diffuse Intrinsic Pontine Glioma (DIPG) is a highly aggressive pediatric brainstem tumor which accounts for about 10-20% of childhood brain tumors. The survival rate for DIPG remains very poor, with a median survival of less than 1 year. The dismal prognosis associated with DIPG has been exacerbated by the failure of a large number of clinical trials to meaningfully improve survival compared with radiotherapy, the current standard of care for DIPG. In the current study, we screened a natural product library and for the first time identified 6 natural compounds displaying inhibitory effects on DIPG proliferation and anchorage-independent growth through inducing tumor cell apoptosis and cell cycle arrest. Subsequent RNA-Sequencing and functional validation revealed the molecular mechanisms of these compounds with anti-DIPG activities, and identified new cellular factors such as Fibronectin 1 (FN1) and Eukaryotic translation initiation factor 3 subunit C-like (EIF3CL), required for DIPG survival as potential therapeutic targets. Our study provides promising directions to fight against this deadly pediatric cancer.
Collapse
Affiliation(s)
- Jungang Chen
- Departments of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Zhen Lin
- Department of Pathology, Tulane University Health Sciences Center, Tulane Cancer Center, 1700 Tulane Ave., New Orleans, LA 70112, USA
| | - Lindsey Barrett
- Departments of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Lu Dai
- Departments of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Zhiqiang Qin
- Departments of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA.
| |
Collapse
|
227
|
Affiliation(s)
- Robert Siddaway
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
228
|
Wu H, Lu H, Xiao W, Yang J, Du H, Shen Y, Qu H, Jia B, Manna SK, Ramachandran M, Xue X, Ma Z, Xu X, Wang Z, He Y, Lam KS, Zawadzki RJ, Li Y, Lin TY. Sequential Targeting in Crosslinking Nanotheranostics for Tackling the Multibarriers of Brain Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903759. [PMID: 32078198 PMCID: PMC7148201 DOI: 10.1002/adma.201903759] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/06/2020] [Indexed: 05/20/2023]
Abstract
The efficacy of therapeutics for brain tumors is seriously hampered by multiple barriers to drug delivery, including severe destabilizing effects in the blood circulation, the blood-brain barrier/blood-brain tumor barrier (BBB/BBTB), and limited tumor uptake. Here, a sequential targeting in crosslinking (STICK) nanodelivery strategy is presented to circumvent these important physiological barriers to improve drug delivery to brain tumors. STICK nanoparticles (STICK-NPs) can sequentially target BBB/BBTB and brain tumor cells with surface maltobionic acid (MA) and 4-carboxyphenylboronic acid (CBA), respectively, and simultaneously enhance nanoparticle stability with pH-responsive crosslinkages formed by MA and CBA in situ. STICK-NPs exhibit prolonged circulation time (17-fold higher area under curve) than the free agent, allowing increased opportunities to transpass the BBB/BBTB via glucose-transporter-mediated transcytosis by MA. The tumor acidic environment then triggers the transformation of the STICK-NPs into smaller nanoparticles and reveals a secondary CBA targeting moiety for deep tumor penetration and enhanced uptake in tumor cells. STICK-NPs significantly inhibit tumor growth and prolong the survival time with limited toxicity in mice with aggressive and chemoresistant diffuse intrinsic pontine glioma. This formulation tackles multiple physiological barriers on-demand with a simple and smart STICK design. Therefore, these features allow STICK-NPs to unleash the potential of brain tumor therapeutics to improve their treatment efficacy.
Collapse
Affiliation(s)
- Hao Wu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Hongwei Lu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Jinfan Yang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Hongxu Du
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Yingbin Shen
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Haijing Qu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Bei Jia
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Suman K Manna
- UC Davis RISE Eye-Pod Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA
| | - Mythili Ramachandran
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Xiangdong Xue
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Zhao Ma
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Xiaobao Xu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Zhongling Wang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Yixuan He
- Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Robert J Zawadzki
- UC Davis RISE Eye-Pod Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Tzu-Yin Lin
- Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| |
Collapse
|
229
|
Fortin J, Tian R, Zarrabi I, Hill G, Williams E, Sanchez-Duffhues G, Thorikay M, Ramachandran P, Siddaway R, Wong JF, Wu A, Apuzzo LN, Haight J, You-Ten A, Snow BE, Wakeham A, Goldhamer DJ, Schramek D, Bullock AN, Dijke PT, Hawkins C, Mak TW. Mutant ACVR1 Arrests Glial Cell Differentiation to Drive Tumorigenesis in Pediatric Gliomas. Cancer Cell 2020; 37:308-323.e12. [PMID: 32142668 PMCID: PMC7105820 DOI: 10.1016/j.ccell.2020.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/02/2019] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors for which there is currently no effective treatment. Some of these tumors combine gain-of-function mutations in ACVR1, PIK3CA, and histone H3-encoding genes. The oncogenic mechanisms of action of ACVR1 mutations are currently unknown. Using mouse models, we demonstrate that Acvr1G328V arrests the differentiation of oligodendroglial lineage cells, and cooperates with Hist1h3bK27M and Pik3caH1047R to generate high-grade diffuse gliomas. Mechanistically, Acvr1G328V upregulates transcription factors which control differentiation and DIPG cell fitness. Furthermore, we characterize E6201 as a dual inhibitor of ACVR1 and MEK1/2, and demonstrate its efficacy toward tumor cells in vivo. Collectively, our results describe an oncogenic mechanism of action for ACVR1 mutations, and suggest therapeutic strategies for DIPGs.
Collapse
MESH Headings
- Activin Receptors, Type I/antagonists & inhibitors
- Activin Receptors, Type I/chemistry
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Brain Neoplasms/drug therapy
- Brain Neoplasms/genetics
- Brain Neoplasms/pathology
- Cell Differentiation/genetics
- Cell Line, Tumor
- Class I Phosphatidylinositol 3-Kinases/genetics
- Class I Phosphatidylinositol 3-Kinases/metabolism
- Female
- Glioma/drug therapy
- Glioma/genetics
- Glioma/pathology
- Histones/genetics
- Histones/metabolism
- Humans
- Lactones/pharmacology
- Male
- Mice, Transgenic
- Mutation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Neuroglia/metabolism
- Neuroglia/pathology
- Oligodendroglia/pathology
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- SOXC Transcription Factors/genetics
- SOXC Transcription Factors/metabolism
Collapse
Affiliation(s)
- Jerome Fortin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Ruxiao Tian
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Ida Zarrabi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Graham Hill
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Eleanor Williams
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, P.O. Box 9600 RC, Leiden, the Netherlands
| | - Midory Thorikay
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, P.O. Box 9600 RC, Leiden, the Netherlands
| | | | - Robert Siddaway
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G1X8, Canada
| | - Jong Fu Wong
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Annette Wu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Lorraine N Apuzzo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06268, USA
| | - Jillian Haight
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Annick You-Ten
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Bryan E Snow
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Andrew Wakeham
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - David J Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06268, USA
| | - Daniel Schramek
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, P.O. Box 9600 RC, Leiden, the Netherlands
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G1X8, Canada; Division of Pathology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
230
|
Zhang X, Murray B, Mo G, Shern JF. The Role of Polycomb Repressive Complex in Malignant Peripheral Nerve Sheath Tumor. Genes (Basel) 2020; 11:genes11030287. [PMID: 32182803 PMCID: PMC7140867 DOI: 10.3390/genes11030287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas that can arise most frequently in patients with neurofibromatosis type 1 (NF1). Despite an increasing understanding of the molecular mechanisms that underlie these tumors, there remains limited therapeutic options for this aggressive disease. One potentially critical finding is that a significant proportion of MPNSTs exhibit recurrent mutations in the genes EED or SUZ12, which are key components of the polycomb repressive complex 2 (PRC2). Tumors harboring these genetic lesions lose the marker of transcriptional repression, trimethylation of lysine residue 27 on histone H3 (H3K27me3) and have dysregulated oncogenic signaling. Given the recurrence of PRC2 alterations, intensive research efforts are now underway with a focus on detailing the epigenetic and transcriptomic consequences of PRC2 loss as well as development of novel therapeutic strategies for targeting these lesions. In this review article, we will summarize the recent findings of PRC2 in MPNST tumorigenesis, including highlighting the functions of PRC2 in normal Schwann cell development and nerve injury repair, as well as provide commentary on the potential therapeutic vulnerabilities of a PRC2 deficient tumor cell.
Collapse
Affiliation(s)
- Xiyuan Zhang
- Pediatric Oncology Branch, Tumor Evolution and Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.Z.); (B.M.); (G.M.)
| | - Béga Murray
- Pediatric Oncology Branch, Tumor Evolution and Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.Z.); (B.M.); (G.M.)
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn road, Belfast BT9 7AE, UK
| | - George Mo
- Pediatric Oncology Branch, Tumor Evolution and Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.Z.); (B.M.); (G.M.)
- SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Jack F. Shern
- Pediatric Oncology Branch, Tumor Evolution and Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (X.Z.); (B.M.); (G.M.)
- Correspondence:
| |
Collapse
|
231
|
Budayeva HG, Kirkpatrick DS. Monitoring protein communities and their responses to therapeutics. Nat Rev Drug Discov 2020; 19:414-426. [PMID: 32139903 DOI: 10.1038/s41573-020-0063-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Most therapeutics are designed to alter the activities of proteins. From metabolic enzymes to cell surface receptors, connecting the function of a protein to a cellular phenotype, to the activity of a drug and to a clinical outcome represents key mechanistic milestones during drug development. Yet, even for therapeutics with exquisite specificity, the sequence of events following target engagement can be complex. Interconnected communities of structural, metabolic and signalling proteins modulate diverse downstream effects that manifest as interindividual differences in efficacy, adverse effects and resistance to therapy. Recent advances in mass spectrometry proteomics have made it possible to decipher these complex relationships and to understand how factors such as genotype, cell type, local environment and external perturbations influence them. In this Review, we explore how proteomic technologies are expanding our understanding of protein communities and their responses to large- and small-molecule therapeutics.
Collapse
Affiliation(s)
- Hanna G Budayeva
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
232
|
Morin A, Goncalves J, Moog S, Castro-Vega LJ, Job S, Buffet A, Fontenille MJ, Woszczyk J, Gimenez-Roqueplo AP, Letouzé E, Favier J. TET-Mediated Hypermethylation Primes SDH-Deficient Cells for HIF2α-Driven Mesenchymal Transition. Cell Rep 2020; 30:4551-4566.e7. [DOI: 10.1016/j.celrep.2020.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 01/24/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
|
233
|
Job Opening for Nucleosome Mechanic: Flexibility Required. Cells 2020; 9:cells9030580. [PMID: 32121488 PMCID: PMC7140402 DOI: 10.3390/cells9030580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
The nucleus has been studied for well over 100 years, and chromatin has been the intense focus of experiments for decades. In this review, we focus on an understudied aspect of chromatin biology, namely the chromatin fiber polymer’s mechanical properties. In recent years, innovative work deploying interdisciplinary approaches including computational modeling, in vitro manipulations of purified and native chromatin have resulted in deep mechanistic insights into how the mechanics of chromatin might contribute to its function. The picture that emerges is one of a nucleus that is shaped as much by external forces pressing down upon it, as internal forces pushing outwards from the chromatin. These properties may have evolved to afford the cell a dynamic and reversible force-induced communication highway which allows rapid coordination between external cues and internal genomic function.
Collapse
|
234
|
Mendez FM, Núñez FJ, Garcia-Fabiani MB, Haase S, Carney S, Gauss JC, Becher OJ, Lowenstein PR, Castro MG. Epigenetic reprogramming and chromatin accessibility in pediatric diffuse intrinsic pontine gliomas: a neural developmental disease. Neuro Oncol 2020; 22:195-206. [PMID: 32078691 PMCID: PMC7032633 DOI: 10.1093/neuonc/noz218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a rare but deadly pediatric brainstem tumor. To date, there is no effective therapy for DIPG. Transcriptomic analyses have revealed DIPGs have a distinct profile from other pediatric high-grade gliomas occurring in the cerebral hemispheres. These unique genomic characteristics coupled with the younger median age group suggest that DIPG has a developmental origin. The most frequent mutation in DIPG is a lysine to methionine (K27M) mutation that occurs on H3F3A and HIST1H3B/C, genes encoding histone variants. The K27M mutation disrupts methylation by polycomb repressive complex 2 on histone H3 at lysine 27, leading to global hypomethylation. Histone 3 lysine 27 trimethylation is an important developmental regulator controlling gene expression. This review discusses the developmental and epigenetic mechanisms driving disease progression in DIPG, as well as the profound therapeutic implications of epigenetic programming.
Collapse
Affiliation(s)
- Flor M Mendez
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Felipe J Núñez
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria B Garcia-Fabiani
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Santiago Haase
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Stephen Carney
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jessica C Gauss
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Oren J Becher
- Department of Pediatrics, Northwestern University, Chicago, Illinois
- Ann & Robert Lurie Children’s Hospital of Chicago, Division of Hematology-Oncology and Stem Cell Transplant, Chicago, Illinois
| | - Pedro R Lowenstein
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria G Castro
- Department of Cell and Developmental Biology and Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
235
|
Kluiver TA, Alieva M, van Vuurden DG, Wehrens EJ, Rios AC. Invaders Exposed: Understanding and Targeting Tumor Cell Invasion in Diffuse Intrinsic Pontine Glioma. Front Oncol 2020; 10:92. [PMID: 32117746 PMCID: PMC7020612 DOI: 10.3389/fonc.2020.00092] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Diffuse Intrinsic Pontine Glioma (DIPG) is a rare, highly aggressive pediatric brain tumor that originates in the pons. DIPG is untreatable and universally fatal, with a median life expectancy of less than a year. Resection is not an option, due to the anatomical location of the tumor, radiotherapy has limited effect and no chemotherapeutic or targeted treatment approach has proven to be successful. This poor prognosis is partly attributed to the tumor's highly infiltrative diffuse and invasive spread. Thus, targeting the invasive behavior of DIPG has the potential to be of therapeutic value. In order to target DIPG invasion successfully, detailed mechanistic knowledge on the underlying drivers is required. Here, we review both DIPG tumor cell's intrinsic molecular processes and extrinsic environmental factors contributing to DIPG invasion. Importantly, DIPG represents a heterogenous disease and through advances in whole-genome sequencing, different subtypes of disease based on underlying driver mutations are now being recognized. Recent evidence also demonstrates intra-tumor heterogeneity in terms of invasiveness and implies that highly infiltrative tumor subclones can enhance the migratory behavior of neighboring cells. This might partially be mediated by “tumor microtubes,” long membranous extensions through which tumor cells connect and communicate, as well as through the secretion of extracellular vesicles. Some of the described processes involved in invasion are already being targeted in clinical trials. However, more research into the mechanisms of DIPG invasion is urgently needed and might result in the development of an effective therapy for children suffering from this devastating disease. We discuss the implications of newly discovered invasive mechanisms for therapeutic targeting and the challenges therapy development face in light of disease in the developing brain.
Collapse
Affiliation(s)
- T A Kluiver
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - M Alieva
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - D G van Vuurden
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| |
Collapse
|
236
|
Abstract
PURPOSE OF REVIEW H3K27M is a frequent histone mutation within diffuse midline gliomas and is associated with a dismal prognosis, so much so that the 2016 CNS WHO classification system created a specific category of "Diffuse Midline Glioma, H3K27M-mutant". Here we outline the latest pre-clinical data and ongoing current clinical trials that target H3K27M, as well as explore diagnosis and treatment monitoring by serial liquid biopsy. RECENT FINDINGS Multiple epigenetic compounds have demonstrated efficacy and on-target effects in pre-clinical models. The imipridone ONC201 and the IDO1 inhibitor indoximod have demonstrated early clinical activity against H3K27M-mutant gliomas. Liquid biopsy of cerebrospinal fluid has shown promise for clinical use in H3K27M-mutant tumors for diagnosis and monitoring treatment response. While H3K27M has elicited a widespread platform of pre-clinical therapies with promise, much progress still needs to be made to improve outcomes for diffuse midline glioma patients. We present current treatment and monitoring techniques as well as novel approaches in identifying and targeting H3K27M-mutant gliomas.
Collapse
|
237
|
Maeda S, Ohka F, Okuno Y, Aoki K, Motomura K, Takeuchi K, Kusakari H, Yanagisawa N, Sato S, Yamaguchi J, Tanahashi K, Hirano M, Kato A, Shimizu H, Kitano Y, Yamazaki S, Yamashita S, Takeshima H, Shinjo K, Kondo Y, Wakabayashi T, Natsume A. H3F3A mutant allele specific imbalance in an aggressive subtype of diffuse midline glioma, H3 K27M-mutant. Acta Neuropathol Commun 2020; 8:8. [PMID: 32019606 PMCID: PMC7001313 DOI: 10.1186/s40478-020-0882-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/18/2020] [Indexed: 11/12/2022] Open
Abstract
Diffuse midline glioma, H3 K27M-mutant is a lethal brain tumor located in the thalamus, brain stem, or spinal cord. H3 K27M encoded by the mutation of a histone H3 gene such as H3F3A plays a pivotal role in the tumorigenesis of this type of glioma. Although several studies have revealed comprehensive genetic and epigenetic profiling, the prognostic factors of these tumors have not been identified to date. In various cancers, oncogenic driver genes have been found to exhibit characteristic copy number alterations termed mutant allele specific imbalance (MASI). Here, we showed that several diffuse midline glioma, H3 K27M-mutant exhibited high variant allele frequency (VAF) of the mutated H3F3A gene using droplet digital polymerase chain reaction (ddPCR) assays. Whole-genome sequencing (WGS) revealed that these cases had various copy number alterations that affected the mutant and/or wild-type alleles of the H3F3A gene. We also found that these MASI cases showed a significantly higher Ki-67 index and poorer survival compared with those in the lower VAF cases (P < 0.05). Our results indicated that the MASI of the H3F3A K27M mutation was associated with the aggressive phenotype of the diffuse midline glioma, H3 K27M-mutant via upregulation of the H3 K27M mutant protein, resulting in downregulation of H3K27me3 modification.
Collapse
|
238
|
Zheng Y, Ma Y, Yue H, Liu G, Han S. EGFRvIII epigenetically regulates ARHI to promote glioma cell proliferation and migration. Exp Mol Pathol 2020; 112:104344. [DOI: 10.1016/j.yexmp.2019.104344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/22/2019] [Accepted: 11/17/2019] [Indexed: 01/12/2023]
|
239
|
Salinas RD, Connolly DR, Song H. Invited Review: Epigenetics in neurodevelopment. Neuropathol Appl Neurobiol 2020; 46:6-27. [PMID: 32056273 PMCID: PMC7174139 DOI: 10.1111/nan.12608] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/21/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022]
Abstract
Neural development requires the orchestration of dynamic changes in gene expression to regulate cell fate decisions. This regulation is heavily influenced by epigenetics, heritable changes in gene expression not directly explained by genomic information alone. An understanding of the complexity of epigenetic regulation is rapidly emerging through the development of novel technologies that can assay various features of epigenetics and gene regulation. Here, we provide a broad overview of several commonly investigated modes of epigenetic regulation, including DNA methylation, histone modifications, noncoding RNAs, as well as epitranscriptomics that describe modifications of RNA, in neurodevelopment and diseases. Rather than functioning in isolation, it is being increasingly appreciated that these various modes of gene regulation are dynamically interactive and coordinate the complex nature of neurodevelopment along multiple axes. Future work investigating these interactions will likely utilize 'multi-omic' strategies that assay cell fate dynamics in a high-dimensional and high-throughput fashion. Novel human neurodevelopmental models including iPSC and cerebral organoid systems may provide further insight into human-specific features of neurodevelopment and diseases.
Collapse
Affiliation(s)
- Ryan D. Salinas
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel R. Connolly
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
240
|
Abstract
PURPOSE OF REVIEW Altered epigenetics is central to oncogenesis in many pediatric cancers. Aberrant epigenetic states are induced by mutations in histones or epigenetic regulatory genes, aberrant expression of genes regulating chromatin complexes, altered DNA methylation patterns, or dysregulated expression of noncoding RNAs. Developmental contexts of dysregulated epigenetic states are equally important for initiation and progression of many childhood cancers. As an improved understanding of disease-specific roles and molecular consequences of epigenetic alterations in oncogenesis is emerging, targeting these mechanisms of disease in childhood cancers is increasingly becoming important. RECENT FINDINGS In addition to disease-causing epigenetic events, DNA methylation patterns and specific oncohistone mutations are being utilized for the diagnosis of pediatric central nervous system (CNS) and solid tumors. These discoveries have improved the classification of poorly differentiated tumors and laid the foundation for future improved clinical management. On the therapeutic side, the first therapies targeting epigenetic alterations have recently entered clinical trials. Current clinical trials include pharmacological inhibition of histone and DNA modifiers in aggressive types of pediatric cancer. SUMMARY Targeting novel epigenetic vulnerabilities, either by themselves, or coupled with targeting altered transcriptional states, developmental cell states or immunomodulation will result in innovative approaches for treating deadly pediatric cancers.
Collapse
Affiliation(s)
- Eshini Panditharatna
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Broad Institute of Harvard and MIT, Cambridge, MA.,Boston Children's Cancer and Blood Disorder Center, Boston, Massachusetts, USA
| |
Collapse
|
241
|
Ricci B, Millner TO, Pomella N, Zhang X, Guglielmi L, Badodi S, Ceric D, Gemma C, Cognolato E, Zhang Y, Brandner S, Barnes MR, Marino S. Polycomb-mediated repression of EphrinA5 promotes growth and invasion of glioblastoma. Oncogene 2020; 39:2523-2538. [PMID: 31988455 PMCID: PMC7082224 DOI: 10.1038/s41388-020-1161-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/04/2019] [Accepted: 01/15/2020] [Indexed: 11/22/2022]
Abstract
Glioblastoma (GBM) is the most common and most aggressive intrinsic brain tumour in adults. Integrated transcriptomic and epigenomic analyses of glioblastoma initiating cells (GIC) in a mouse model uncovered a novel epigenetic regulation of EfnA5. In this model, Bmi1 enhances H3K27me3 at the EfnA5 locus and reinforces repression of selected target genes in a cellular context-dependent fashion. EfnA5 mediates Bmi1-dependent proliferation and invasion in vitro and tumour formation in an allograft model. Importantly, we show that this novel Polycomb feed-forward loop is also active in human GIC and we provide pre-clinical evidence of druggability of the EFNA5 signalling pathway in GBM xenografts overexpressing Bmi1.
Collapse
Affiliation(s)
- Barbara Ricci
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Thomas O Millner
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Nicola Pomella
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Xinyu Zhang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Loredana Guglielmi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Sara Badodi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Dario Ceric
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Carolina Gemma
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Erica Cognolato
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Ying Zhang
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
| | - Michael R Barnes
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| |
Collapse
|
242
|
Nikolaev A, Fiveash JB, Yang ES. Combined Targeting of Mutant p53 and Jumonji Family Histone Demethylase Augments Therapeutic Efficacy of Radiation in H3K27M DIPG. Int J Mol Sci 2020; 21:ijms21020490. [PMID: 31940975 PMCID: PMC7014308 DOI: 10.3390/ijms21020490] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/27/2019] [Accepted: 01/08/2020] [Indexed: 01/15/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an aggressive pediatric brainstem tumor with a 5-year survival of <1%. Up to 80% of the DIPG tumors contain a specific K27M mutation in one of the two genes encoding histone H3 (H3K27M). Furthermore, p53 mutations found in >70–80% of H3K27M DIPG, and mutant p53 status is associated with a decreased response to radiation treatment and worse overall prognosis. Recent evidence indicates that H3K27M mutation disrupts tri-methylation at H3K27 leading to aberrant gene expression. Jumonji family histone demethylases collaborates with H3K27 mutation in DIPG by erasing H3K27 trimethylation and thus contributing to derepression of genes involved in tumorigenesis. Since the first line of treatment for pediatric DIPG is fractionated radiation, we investigated the effects of Jumonji demethylase inhibition with GSK-J4, and mutant p53 targeting/oxidative stress induction with APR-246, on radio-sensitization of human H3K27M DIPG cells. Both APR-246 and GSK-J4 displayed growth inhibitory effects as single agents in H3K27M DIPG cells. Furthermore, both of these agents elicited mild radiosensitizing effects in human DIPG cells (sensitizer enhancement ratios (SERs) of 1.12 and 1.35, respectively; p < 0.05). Strikingly, a combination of APR-246 and GSK-J4 displayed a significant enhancement of radiosensitization, with SER of 1.50 (p < 0.05) at sub-micro-molar concentrations of the drugs (0.5 μM). The molecular mechanism of the observed radiosensitization appears to involve DNA damage repair deficiency triggered by APR-246/GSK-J4, leading to the induction of apoptotic cell death. Thus, a therapeutic approach of combined targeting of mutant p53, oxidative stress induction, and Jumonji demethylase inhibition with radiation in DIPG warrants further investigation.
Collapse
|
243
|
Kasper LH, Baker SJ. Invited Review: Emerging functions of histone H3 mutations in paediatric diffuse high-grade gliomas. Neuropathol Appl Neurobiol 2020; 46:73-85. [PMID: 31859390 DOI: 10.1111/nan.12591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022]
Abstract
Paediatric diffuse high-grade gliomas (pHGG) are rare, but deadly tumours. The discovery of recurrent mutations in the tail of histone H3, changing lysine 27 to methionine, or glycine 34 to arginine or valine, has illuminated a critical role for epigenetic dysregulation in the aetiology of childhood gliomas and opened new avenues of exploration that have resulted in numerous advances for the field. In this review, we describe the current models of H3K27M mutant cancer that are available to the research community and the insights they have provided on tumour biology and the epigenetic and transcriptional effects of histone mutations. We also review the current understanding of the H3G34R/V mutation and the therapeutic outlook for the treatment of pHGG.
Collapse
Affiliation(s)
- L H Kasper
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - S J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
244
|
Enomoto T, Aoki M, Hamasaki M, Abe H, Nonaka M, Inoue T, Nabeshima K. Midline Glioma in Adults: Clinicopathological, Genetic, and Epigenetic Analysis. Neurol Med Chir (Tokyo) 2020; 60:136-146. [PMID: 31902873 PMCID: PMC7073699 DOI: 10.2176/nmc.oa.2019-0168] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The histone H3K27M-mutant diffuse midline glioma is often seen in children and has a very poor prognosis regardless of its histological grade. Although it can occur in adults, few studies on adult cases have been reported. We examined adult midline glioma cases for their histological grade, presence of H3K27M mutation, and expression of related factors—enhancer of zeste homolog 2 (EZH2), H3K27me3, p16, and methylthioadenosine phosphorylase. These tumor characteristics were also evaluated for their prognostic value in adult midline glioma. High histological grade, H3K27M-mutant, high EZH2 expression, and high H3K27me3 expression was detected in 12/23 (53%), 11/23 (48%), 9/23 (39%), and 12/23 (52%) cases, respectively. Histological grade and prognosis were significantly correlated (P <0.01). The high expression of EZH2 and the low expression of H3K27me3 correlated with histological malignancy (P = 0.019 and 0.009) and prognosis (P = 0.048 and 0.047). To broaden the scope of our analysis, a review of cases reported in the literature (2014–2019) was performed. In the 171 cases, H3K27M-mutant showed poor prognosis in the young adult group (P = 0.001), whereas H3K27 status had no effect on prognosis in the older age group (P = 0.141). Histological grade was correlated with prognosis in both young adults and older groups (P <0.001, P = 0.003, respectively). We demonstrate differences in prognostic factors for diffuse gliomas in the midline region for children and adults. Importantly, the H3K27M mutation significantly influences prognosis in children, but not necessarily in adults. Contrarily, histological grading and immunostaining are important prognostic tools in adults.
Collapse
Affiliation(s)
- Toshiyuki Enomoto
- Department of Pathology, Fukuoka University School of Medicine.,Department of Neurosurgery, Fukuoka University School of Medicine
| | - Mikiko Aoki
- Department of Pathology, Fukuoka University School of Medicine
| | - Makoto Hamasaki
- Department of Pathology, Fukuoka University School of Medicine
| | - Hiroshi Abe
- Department of Neurosurgery, Fukuoka University School of Medicine
| | - Masani Nonaka
- Department of Neurosurgery, Fukuoka University School of Medicine
| | - Tooru Inoue
- Department of Neurosurgery, Fukuoka University School of Medicine
| | | |
Collapse
|
245
|
Identification of recurrent FHL2-GLI2 oncogenic fusion in sclerosing stromal tumors of the ovary. Nat Commun 2020; 11:44. [PMID: 31896750 PMCID: PMC6940380 DOI: 10.1038/s41467-019-13806-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/26/2019] [Indexed: 12/29/2022] Open
Abstract
Sclerosing stromal tumor (SST) of the ovary is a rare type of sex cord-stromal tumor (SCST), whose genetic underpinning is currently unknown. Here, using whole-exome, targeted capture and RNA-sequencing, we report recurrent FHL2-GLI2 fusion genes in 65% (17/26) of SSTs and other GLI2 rearrangements in additional 15% (4/26) SSTs, none of which are detected in other types of SCSTs (n = 48) or common cancer types (n = 9,950). The FHL2-GLI2 fusions result in transcriptomic activation of the Sonic Hedgehog (SHH) pathway in SSTs. Expression of the FHL2-GLI2 fusion in vitro leads to the acquisition of phenotypic characteristics of SSTs, increased proliferation, migration and colony formation, and SHH pathway activation. Targeted inhibition of the SHH pathway results in reversal of these oncogenic properties, indicating its role in the pathogenesis of SSTs. Our results demonstrate that the FHL2-GLI2 fusion is likely the oncogenic driver of SSTs, defining a genotypic–phenotypic correlation in ovarian neoplasms. Little is known about the genetics of sclerosing stromal tumor of the ovary, a rare type of sex cord-stromal tumor. Here, the authors use sequencing strategies to show that in a cohort of 26 tumor samples 65% carry a FHL2-GLI2 fusion gene and demonstrate in vitro that the fusion gene has oncogenic properties.
Collapse
|
246
|
|
247
|
Zhang H, Zhu D, Zhang Z, Kaluz S, Yu B, Devi NS, Olson JJ, Van Meir EG. EZH2 targeting reduces medulloblastoma growth through epigenetic reactivation of the BAI1/p53 tumor suppressor pathway. Oncogene 2020; 39:1041-1048. [PMID: 31582835 PMCID: PMC7780546 DOI: 10.1038/s41388-019-1036-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 01/17/2023]
Abstract
Medulloblastoma (MB) is a malignant pediatric brain tumor for which new therapies are urgently needed. We demonstrate that treatment with EPZ-6438 (Tazemetostat), an enhancer of zeste homolog 2 (EZH2) inhibitor approved for clinical trials, blocks MB cell growth in vitro and in vivo, and prolongs survival in orthotopic xenograft models. We show that the therapeutic effect is dependent on epigenetic reactivation of adhesion G-protein-coupled receptor B1 (BAI1/ADGRB1), a tumor suppressor that controls p53 stability by blocking Mdm2. Histone 3 trimethylated on lysine 27 (H3K27me3), a marker of silent chromatin conformation is present at the ADGRB1 promoter, and inhibition of EZH2, the catalytic component of the Polycomb Repressive complex 2 (PRC2) that methylates H3K27, switches the gene into an active chromatin status and reactivates BAI1 expression. Mechanistically, targeting EZH2 promotes transition from H3K27me3 to H3K27ac at the promoter, recruits the C/EBPβ (CREB-binding protein) and CBP transcription factors and activates ADGRB1 gene transcription. Taken together, our results identify key molecular players that regulate ADGRB1 gene expression in MB, demonstrate that reactivation of BAI1 expression underlies EPZ-6438 antitumorigenic action, and provide preclinical proof-of-principle evidence for targeting EZH2 in patients with MB.
Collapse
Affiliation(s)
- Hanwen Zhang
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
- Department of Neurosurgery, Xiangya Hospital and School of Medicine, Central South University, 410013, Changsha, Hunan, P.R. China
| | - Dan Zhu
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Zhaobin Zhang
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Stefan Kaluz
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Bing Yu
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Narra S Devi
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jeffrey J Olson
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Erwin G Van Meir
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
- Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
- Department of Neurosurgery and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), WTI 520E, 1720 2nd Ave., South Birmingham, AL, 35294, USA.
| |
Collapse
|
248
|
Oncohistone Mutations in Diffuse Intrinsic Pontine Glioma. Trends Cancer 2019; 5:799-808. [PMID: 31813457 DOI: 10.1016/j.trecan.2019.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/08/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a lethal pediatric tumor with no currently available treatment options. More than 60-70% DIPG tumors harbor heterozygous mutations at genes encoding histone H3 proteins that replace lysine 27 with methionine (K27M). In this review, we discuss how K27M mutation reprograms the cancer epigenome to lead to tumorigenesis, and highlight potential drug targets and therapeutic agents for DIPG.
Collapse
|
249
|
Mahmud I, Liao D. DAXX in cancer: phenomena, processes, mechanisms and regulation. Nucleic Acids Res 2019; 47:7734-7752. [PMID: 31350900 PMCID: PMC6735914 DOI: 10.1093/nar/gkz634] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
DAXX displays complex biological functions. Remarkably, DAXX overexpression is a common feature in diverse cancers, which correlates with tumorigenesis, disease progression and treatment resistance. Structurally, DAXX is modular with an N-terminal helical bundle, a docking site for many DAXX interactors (e.g. p53 and ATRX). DAXX's central region folds with the H3.3/H4 dimer, providing a H3.3-specific chaperoning function. DAXX has two functionally critical SUMO-interacting motifs. These modules are connected by disordered regions. DAXX's structural features provide a framework for deciphering how DAXX mechanistically imparts its functions and how its activity is regulated. DAXX modulates transcription through binding to transcription factors, epigenetic modifiers, and chromatin remodelers. DAXX's localization in the PML nuclear bodies also plays roles in transcriptional regulation. DAXX-regulated genes are likely important effectors of its biological functions. Deposition of H3.3 and its interactions with epigenetic modifiers are likely key events for DAXX to regulate transcription, DNA repair, and viral infection. Interactions between DAXX and its partners directly impact apoptosis and cell signaling. DAXX's activity is regulated by posttranslational modifications and ubiquitin-dependent degradation. Notably, the tumor suppressor SPOP promotes DAXX degradation in phase-separated droplets. We summarize here our current understanding of DAXX's complex functions with a focus on how it promotes oncogenesis.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| |
Collapse
|
250
|
Pan Y, Long W, Liu Q. Current Advances and Future Perspectives of Cerebrospinal Fluid Biopsy in Midline Brain Malignancies. Curr Treat Options Oncol 2019; 20:88. [PMID: 31784837 DOI: 10.1007/s11864-019-0689-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OPINION STATEMENT Malignancies arising in midline brain structures, including lymphomas, teratomas, germinomas, diffuse midline gliomas, and medulloblastomas typically respond to systemic therapies, and excessive surgical excision can result in serious complications, so that total surgical removal is not routinely performed. Identifying tumor specific biomarkers that can facilitate diagnosis at early stage and allow for dynamic surveillance of the tumor is of great clinical importance. However, existing standard methods for biopsy of these brain neoplasms are high risk, time consuming, and costly. Thus, less invasive and more rapid diagnosis tests are urgently needed to detect midline brain malignancies. Currently, tools for cerebrospinal biopsy of midline brain malignancies mainly include circulating tumor DNA, circulating tumor cells, and extracellular vesicles. Circulating tumor DNA achieved minimally invasive biopsy in several brain malignancies and has advantages in detecting tumor-specific mutations. In the field of tumor heterogeneity, circulating tumor cells better reflect the genome of tumors than surgical biopsy specimens. They can be applied for the diagnosis of leptomeningeal metastasis. Extracellular vesicles contain lots of genetic information about cancer cells, so they have potential in finding therapeutic targets and studying tumor invasion and metastasis.
Collapse
Affiliation(s)
- Yimin Pan
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenyong Long
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|