201
|
Fu J, Hashem Y, Wower J, Frank J. tmRNA on its way through the ribosome: two steps of resume, and what next? RNA Biol 2011; 8:586-90. [PMID: 21593606 DOI: 10.4161/rna.8.4.15585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Trans-translation is a universal quality-control process eubacteria use to degrade incompletely synthesized proteins and rescue ribosome stalled on defective mRNAs. This process is facilitated by a ribonucleoprotein complex composed of transfer-messenger RNA (tmRNA)-a chimera made of a tRNA-like molecule and a short open reading frame (ORF) -and small protein B (SmpB). Determination of the structure of tmRNA and SmpB in complex with the ribosome, at the stage when translation has resumed on tmRNA, has provided an increased understanding of the structure of tmRNA as it transits the ribosome, and unique insights into the complex mechanism of template switching on the ribosome and SmpB-driven selection of the correct reading frame on tmRNA's ORF.
Collapse
Affiliation(s)
- Jie Fu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
202
|
Núñez-Ramírez R, Klinge S, Sauguet L, Melero R, Recuero-Checa MA, Kilkenny M, Perera RL, García-Alvarez B, Hall RJ, Nogales E, Pellegrini L, Llorca O. Flexible tethering of primase and DNA Pol α in the eukaryotic primosome. Nucleic Acids Res 2011; 39:8187-99. [PMID: 21715379 PMCID: PMC3185431 DOI: 10.1093/nar/gkr534] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Pol α/primase complex or primosome is the primase/polymerase complex that initiates nucleic acid synthesis during eukaryotic replication. Within the primosome, the primase synthesizes short RNA primers that undergo limited extension by Pol α. The resulting RNA–DNA primers are utilized by Pol δ and Pol ε for processive elongation on the lagging and leading strands, respectively. Despite its importance, the mechanism of RNA–DNA primer synthesis remains poorly understood. Here, we describe a structural model of the yeast primosome based on electron microscopy and functional studies. The 3D architecture of the primosome reveals an asymmetric, dumbbell-shaped particle. The catalytic centers of primase and Pol α reside in separate lobes of high relative mobility. The flexible tethering of the primosome lobes increases the efficiency of primer transfer between primase and Pol α. The physical organization of the primosome suggests that a concerted mechanism of primer hand-off between primase and Pol α would involve coordinated movements of the primosome lobes. The first three-dimensional map of the eukaryotic primosome at 25 Å resolution provides an essential structural template for understanding initiation of eukaryotic replication.
Collapse
Affiliation(s)
- Rafael Núñez-Ramírez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK and University of California, 742 Stanley Hall, MS 3220, Berkeley, CA 94720-3220, USA
| | - Sebastian Klinge
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK and University of California, 742 Stanley Hall, MS 3220, Berkeley, CA 94720-3220, USA
| | - Ludovic Sauguet
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK and University of California, 742 Stanley Hall, MS 3220, Berkeley, CA 94720-3220, USA
| | - Roberto Melero
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK and University of California, 742 Stanley Hall, MS 3220, Berkeley, CA 94720-3220, USA
| | - María A. Recuero-Checa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK and University of California, 742 Stanley Hall, MS 3220, Berkeley, CA 94720-3220, USA
| | - Mairi Kilkenny
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK and University of California, 742 Stanley Hall, MS 3220, Berkeley, CA 94720-3220, USA
| | - Rajika L. Perera
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK and University of California, 742 Stanley Hall, MS 3220, Berkeley, CA 94720-3220, USA
| | - Begoña García-Alvarez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK and University of California, 742 Stanley Hall, MS 3220, Berkeley, CA 94720-3220, USA
| | - Richard J. Hall
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK and University of California, 742 Stanley Hall, MS 3220, Berkeley, CA 94720-3220, USA
| | - Eva Nogales
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK and University of California, 742 Stanley Hall, MS 3220, Berkeley, CA 94720-3220, USA
| | - Luca Pellegrini
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK and University of California, 742 Stanley Hall, MS 3220, Berkeley, CA 94720-3220, USA
- *To whom correspondence should be addressed. Tel: +34 918373112 (Ext. 4446); Fax: +34 915360432;
| | - Oscar Llorca
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK and University of California, 742 Stanley Hall, MS 3220, Berkeley, CA 94720-3220, USA
- *To whom correspondence should be addressed. Tel: +34 918373112 (Ext. 4446); Fax: +34 915360432;
| |
Collapse
|
203
|
Insights into the structure of the CCR4-NOT complex by electron microscopy. FEBS Lett 2011; 585:2182-6. [PMID: 21669201 PMCID: PMC3171648 DOI: 10.1016/j.febslet.2011.05.071] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 12/23/2022]
Abstract
The CCR4-NOT complex is a deadenylation complex, which plays a major role for mRNA stability. The complex is conserved from yeast to human and consists of nine proteins NOT1–NOT5, CCR4, CAF1, CAF40 and CAF130. We have successfully isolated the complex using a Protein A tag on NOT1, followed by cross-linking on a glycerol gradient. All components of the complex were identified by mass spectrometry. Electron microscopy of negatively stained particles followed by image reconstruction revealed an L-shaped complex with two arms of similar length. The arms form an accessible cavity, which we think could provide an extensive interface for RNA-deadenylation. Structured summary of protein interactions CAF1 physically interacts with CCR4 and NOT1 by tandem affinity purification (View interaction)
Collapse
|
204
|
Hall RJ, Nogales E, Glaeser RM. Accurate modeling of single-particle cryo-EM images quantitates the benefits expected from using Zernike phase contrast. J Struct Biol 2011; 174:468-75. [PMID: 21463690 PMCID: PMC3138492 DOI: 10.1016/j.jsb.2011.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 11/26/2022]
Abstract
The use of a Zernike-type phase plate in biologic cryo-electron microscopy allows the imaging, without using defocus, of what are predominantly phase objects. It is thought that such phase-plate implementations might result in higher quality images, free from the problems of CTF correction that occur when images must be recorded at extremely high values of defocus. In single-particle cryo-electron microscopy it is hoped that these improvements in image quality will facilitate work on structures that have proved difficult to study, either because of their relatively small size or because the structures are not completely homogeneous. There is still a need, however, to quantitate how much improvement can be gained by using a phase plate for single-particle cryo-electron microscopy. We present a method for quantitatively modeling the images recorded with 200keV electrons, for single particles embedded in vitreous ice. We then investigate what difference the use of a phase-plate device could have on the processing of single-particle data. We confirm that using a phase plate results in single-particle datasets in which smaller molecules can be detected, particles can be more accurately aligned and problems of heterogeneity can be more easily addressed.
Collapse
Affiliation(s)
- R. J. Hall
- QB3 institute, University of California Berkeley, CA 94720, USA
| | - E. Nogales
- QB3 institute, University of California Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
- Life Science Division, Lawrence Berkeley National Laboratory, CA 94720, USA
| | - R. M. Glaeser
- QB3 institute, University of California Berkeley, CA 94720, USA
- Life Science Division, Lawrence Berkeley National Laboratory, CA 94720, USA
| |
Collapse
|
205
|
Wang K, Fu CY, Khayat R, Doerschuk PC, Johnson JE. In vivo virus structures: simultaneous classification, resolution enhancement, and noise reduction in whole-cell electron tomography. J Struct Biol 2011; 174:425-33. [PMID: 21396453 PMCID: PMC3091986 DOI: 10.1016/j.jsb.2011.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 02/20/2011] [Accepted: 03/01/2011] [Indexed: 11/19/2022]
Abstract
Sulfolobus Turreted Icosahedral Virus (STIV) experiences an extra-cellular environment of near boiling acid (80°C, pH 3) and particles purified under these conditions were previously analyzed by cryo electron microscopy and image reconstruction. Here we describe cryo-tomograms of Solfolobus cells infected with STIV and the maximum likelihood algorithm employed to compute reconstructions of virions within the cell. Virions in four different tomograms were independently reconstructed with an average of 91 particles per tomogram and their structures compared with each other and with the higher resolution single-particle reconstruction from purified virions. The algorithm described here automatically classified and oriented two different particle types within each cell and generated reconstructions of full and empty particles. Because the particles are randomly oriented within the cell, the reconstructions do not suffer from the missing wedge of data absent from the reciprocal-space tomogram. The fact that the particles have icosahedral symmetry is used to dramatically improve the signal to noise ratio in the reconstructions. The reconstructions have approximately 60Å resolution (based on Fourier Shell Correlation analysis among reconstructions computed by the algorithm described here from four different tomograms).
Collapse
Affiliation(s)
- Kang Wang
- Department of Biomedical Engineering, Cornell University
| | - Chi-yu Fu
- Department of Molecular Biology, The Scripps Research Institute
| | - Reza Khayat
- Department of Molecular Biology, The Scripps Research Institute
| | - Peter C. Doerschuk
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, Cornell University, 135 Weill Hall, Ithaca, NY 14853-6007, 607-255-2152
| | - John E. Johnson
- Department of Molecular Biology, The Scripps Research Institute
| |
Collapse
|
206
|
Kumar V, Butcher SJ, Öörni K, Engelhardt P, Heikkonen J, Kaski K, Ala-Korpela M, Kovanen PT. Three-dimensional cryoEM reconstruction of native LDL particles to 16Å resolution at physiological body temperature. PLoS One 2011; 6:e18841. [PMID: 21573056 PMCID: PMC3090388 DOI: 10.1371/journal.pone.0018841] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 03/21/2011] [Indexed: 11/20/2022] Open
Abstract
Background Low-density lipoprotein (LDL) particles, the major carriers of cholesterol in the human circulation, have a key role in cholesterol physiology and in the development of atherosclerosis. The most prominent structural components in LDL are the core-forming cholesteryl esters (CE) and the particle-encircling single copy of a huge, non-exchangeable protein, the apolipoprotein B-100 (apoB-100). The shape of native LDL particles and the conformation of native apoB-100 on the particles remain incompletely characterized at the physiological human body temperature (37°C). Methodology/Principal Findings To study native LDL particles, we applied cryo-electron microscopy to calculate 3D reconstructions of LDL particles in their hydrated state. Images of the particles vitrified at 6°C and 37°C resulted in reconstructions at ∼16 Å resolution at both temperatures. 3D variance map analysis revealed rigid and flexible domains of lipids and apoB-100 at both temperatures. The reconstructions showed less variability at 6°C than at 37°C, which reflected increased order of the core CE molecules, rather than decreased mobility of the apoB-100. Compact molecular packing of the core and order in a lipid-binding domain of apoB-100 were observed at 6°C, but not at 37°C. At 37°C we were able to highlight features in the LDL particles that are not clearly separable in 3D maps at 6°C. Segmentation of apoB-100 density, fitting of lipovitellin X-ray structure, and antibody mapping, jointly revealed the approximate locations of the individual domains of apoB-100 on the surface of native LDL particles. Conclusions/Significance Our study provides molecular background for further understanding of the link between structure and function of native LDL particles at physiological body temperature.
Collapse
Affiliation(s)
- Vibhor Kumar
- Department of Biomedical Engineering and Computational Science, School of Science and Technology, Centre of Excellence in Computational Complex Systems Research, Aalto University Aalto, Finland
- Computational and Mathematical Biology, Genome Institute of Singapore, A*STAR, Singapore
| | - Sarah J. Butcher
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Wihuri Research Institute, Kalliolinnantie 4, Helsinki, Finland
| | - Peter Engelhardt
- Department of Biomedical Engineering and Computational Science, School of Science and Technology, Centre of Excellence in Computational Complex Systems Research, Aalto University Aalto, Finland
- Department of Pathology, Haartman Institute, Haartmaninkatu 3, University of Helsinki, Helsinki, Finland
- Department of Applied Physics, Nanomicroscopy Center, School of Science and Technology, Puumiehenkuja 2, Aalto University, Espoo, Finland
| | - Jukka Heikkonen
- Department of Biomedical Engineering and Computational Science, School of Science and Technology, Centre of Excellence in Computational Complex Systems Research, Aalto University Aalto, Finland
- Department of Information Technology, University of Turku, Turku, Finland
| | - Kimmo Kaski
- Department of Biomedical Engineering and Computational Science, School of Science and Technology, Centre of Excellence in Computational Complex Systems Research, Aalto University Aalto, Finland
| | - Mika Ala-Korpela
- Computational Medicine Research Group, Institute of Clinical Medicine, Faculty of Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Internal Medicine and Biocenter Oulu, Clinical Research Center, University of Oulu, Oulu, Finland
| | - Petri T. Kovanen
- Wihuri Research Institute, Kalliolinnantie 4, Helsinki, Finland
- * E-mail:
| |
Collapse
|
207
|
Understanding ribosome assembly: the structure of in vivo assembled immature 30S subunits revealed by cryo-electron microscopy. RNA 2011; 17:697-709. [PMID: 21303937 PMCID: PMC3062180 DOI: 10.1261/rna.2509811] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Four decades after early in vitro assembly studies demonstrated that ribosome assembly is a controlled process, our understanding of ribosome assembly is still incomplete. Just as structure determination has been so important to understanding ribosome function, so too will it be critical to sorting out the assembly process. Here, we used a viable deletion in the yjeQ gene, a recognized ribosome assembly factor, to isolate and structurally characterize immature 30S subunits assembled in vivo. These small ribosome subunits contained unprocessed 17S rRNA and lacked some late ribosomal proteins. Cryo-electron microscopy reconstructions revealed that the presence of precursor sequences in the rRNA induces a severe distortion in the 3′ minor domain of the subunit involved in the decoding of mRNA and interaction with the large ribosome subunit. These findings suggest that rRNA processing events induce key local conformational changes directing the structure toward the mature assembly. We concluded that rRNA processing, folding, and the entry of tertiary r-proteins are interdependent events in the late stages of 30S subunit assembly. In addition, we demonstrate how studies of emerging assembly factors in ribosome biogenesis can help to elucidate the path of subunit assembly in vivo.
Collapse
|
208
|
Cryoelectron microscopy structures of the ribosome complex in intermediate states during tRNA translocation. Proc Natl Acad Sci U S A 2011; 108:4817-21. [PMID: 21383139 DOI: 10.1073/pnas.1101503108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
mRNA-tRNA translocation is a central and highly regulated process during translational elongation. Along with the mRNA, tRNA moves through the ribosome in a stepwise fashion. Using cryoelectron microscopy on ribosomes with a P-loop mutation, we have identified novel structural intermediates likely to exist transiently during translocation. Our observations suggest a mechanism by which the rate of translocation can be regulated.
Collapse
|
209
|
Valle M. Almost lost in translation. Cryo-EM of a dynamic macromolecular complex: the ribosome. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:589-97. [DOI: 10.1007/s00249-011-0683-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/31/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
|
210
|
Altuntop ME, Ly CT, Wang Y. Single-molecule study of ribosome hierarchic dynamics at the peptidyl transferase center. Biophys J 2011; 99:3002-9. [PMID: 21044598 DOI: 10.1016/j.bpj.2010.08.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 12/01/2022] Open
Abstract
During protein biosynthesis the ribosome moves along mRNA in steps of precisely three nucleotides. The mechanism for this ribosome motion remains elusive. Using a classification algorithm to sort single-molecule fluorescence resonance energy transfer data into subpopulations, we found that the ribosome dynamics detected at the peptidyl transferase center are highly inhomogeneous. The pretranslocation complex has at least four subpopulations that sample two hybrid states, whereas the posttranslocation complex is mainly static. We observed transitions among the ribosome subpopulations under various conditions, including 1), in the presence of EF-G; 2), spontaneously; 3), in different buffers, and 4), bound to antibiotics. Therefore, these subpopulations represent biologically active ribosomes. One key observation indicates that the Hy2 hybrid state only exists in a fluctuating ribosome subpopulation, which prompts us to propose that ribosome dynamics are hierarchically arranged. This proposal may have important implications for the regulation of cellular translation rates.
Collapse
Affiliation(s)
- Mediha Esra Altuntop
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | | |
Collapse
|
211
|
Melero R, Rajagopalan S, Lázaro M, Joerger AC, Brandt T, Veprintsev DB, Lasso G, Gil D, Scheres SHW, Carazo JM, Fersht AR, Valle M. Electron microscopy studies on the quaternary structure of p53 reveal different binding modes for p53 tetramers in complex with DNA. Proc Natl Acad Sci U S A 2011; 108:557-62. [PMID: 21178074 PMCID: PMC3021029 DOI: 10.1073/pnas.1015520107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The multidomain homotetrameric tumor suppressor p53 has two modes of binding dsDNA that are thought to be responsible for scanning and recognizing specific response elements (REs). The C termini bind nonspecifically to dsDNA. The four DNA-binding domains (DBDs) bind REs that have two symmetric 10 base-pair sequences. p53 bound to a 20-bp RE has the DBDs enveloping the DNA, which is in the center of the molecule surrounded by linker sequences to the tetramerization domain (Tet). We investigated by electron microscopy structures of p53 bound to DNA sequences consisting of a 20-bp RE with either 12 or 20 bp nonspecific extensions on either end. We found a variety of structures that give clues to recognition and scanning mechanisms. The 44- and 60-bp sequences gave rise to three and four classes of structures, respectively. One was similar to the known 20-bp structure, but the DBDs in the other classes were loosely arranged and incompatible with specific DNA recognition. Some of the complexes had density consistent with the C termini extending from Tet to the DNA, adjacent to the DBDs. Single-molecule fluorescence resonance energy transfer experiments detected the approach of the C termini towards the DBDs on addition of DNA. The structural data are consistent with p53 sliding along DNA via its C termini and the DNA-binding domains hopping on and off during searches for REs. The loose structures and posttranslational modifications account for the affinity of nonspecific DNA for p53 and point to a mechanism of enhancement of specificity by its binding to effector proteins.
Collapse
Affiliation(s)
- Roberto Melero
- Centro Nacional de Biotecnología, Darwin 3, 28049 Madrid, Spain
| | - Sridharan Rajagopalan
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Melisa Lázaro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, 48160 Derio, Spain; and
| | - Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Tobias Brandt
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Dmitry B. Veprintsev
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Gorka Lasso
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, 48160 Derio, Spain; and
| | - David Gil
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, 48160 Derio, Spain; and
| | - Sjors H. W. Scheres
- Centro Nacional de Biotecnología, Darwin 3, 28049 Madrid, Spain
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | | | - Alan R. Fersht
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Mikel Valle
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, 48160 Derio, Spain; and
- Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, P. O. Box 644, E-48080 Bilbao, Spain
| |
Collapse
|
212
|
Sander B, Golas MM. Visualization of bionanostructures using transmission electron microscopical techniques. Microsc Res Tech 2010; 74:642-63. [DOI: 10.1002/jemt.20963] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 10/01/2010] [Indexed: 11/10/2022]
|
213
|
Ratje AH, Loerke J, Mikolajka A, Brünner M, Hildebrand PW, Starosta AL, Dönhöfer A, Connell SR, Fucini P, Mielke T, Whitford PC, Onuchic JN, Yu Y, Sanbonmatsu KY, Hartmann RK, Penczek PA, Wilson DN, Spahn CM. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 2010; 468:713-6. [PMID: 21124459 PMCID: PMC3272701 DOI: 10.1038/nature09547] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 09/30/2010] [Indexed: 11/09/2022]
Abstract
The elongation cycle of protein synthesis involves the delivery of aminoacyl-transfer RNAs to the aminoacyl-tRNA-binding site (A site) of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A site. The translocation reaction is catalysed by elongation factor G (EF-G) in a GTP-dependent manner. Despite the availability of structures of various EF-G-ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryoelectron microscopy analysis to resolve two previously unseen subpopulations within Thermus thermophilus EF-G-ribosome complexes at subnanometre resolution, one of them with a partly translocated tRNA. Comparison of these substates reveals that translocation of tRNA on the 30S subunit parallels the swivelling of the 30S head and is coupled to unratcheting of the 30S body. Because the tRNA maintains contact with the peptidyl-tRNA-binding site (P site) on the 30S head and simultaneously establishes interaction with the exit site (E site) on the 30S platform, a novel intra-subunit 'pe/E' hybrid state is formed. This state is stabilized by domain IV of EF-G, which interacts with the swivelled 30S-head conformation. These findings provide direct structural and mechanistic insight into the 'missing link' in terms of tRNA intermediates involved in the universally conserved translocation process.
Collapse
MESH Headings
- Binding Sites
- Cryoelectron Microscopy
- Crystallography, X-Ray
- Guanosine Diphosphate/chemistry
- Guanosine Diphosphate/metabolism
- Models, Molecular
- Movement
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/metabolism
- Protein Biosynthesis
- Protein Conformation
- Protein Subunits/chemistry
- Protein Subunits/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer/ultrastructure
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/ultrastructure
- Thermus thermophilus/chemistry
Collapse
Affiliation(s)
- Andreas H. Ratje
- Institut für Medizinische Physik und Biophysik, Charite – Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charite – Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
| | - Aleksandra Mikolajka
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Feodor-Lynenstr. 25, 81377 München, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Germany
| | - Matthias Brünner
- Institut für Medizinische Physik und Biophysik, Charite – Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
| | - Peter W. Hildebrand
- Institut für Medizinische Physik und Biophysik, Charite – Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
| | - Agata L. Starosta
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Feodor-Lynenstr. 25, 81377 München, Germany
| | - Alexandra Dönhöfer
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Feodor-Lynenstr. 25, 81377 München, Germany
| | - Sean R. Connell
- Frankfurt Institute for Molecular Life Sciences, Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Paola Fucini
- Frankfurt Institute for Molecular Life Sciences, Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Thorsten Mielke
- Institut für Medizinische Physik und Biophysik, Charite – Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Paul C. Whitford
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, USA
| | - Jose’ N Onuchic
- Center for Theoretical Biological Physics and Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - Yanan Yu
- Florida State University, Dept. Computer Science, Tallahasse, Florida 32306
| | - Karissa Y. Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, USA
| | - Roland K. Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Germany
| | - Pawel A. Penczek
- The University of Texas – Houston Medical School, 6431 Fannin, Houston, TX 77030, USA
| | - Daniel N. Wilson
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Feodor-Lynenstr. 25, 81377 München, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Germany
| | - Christian M.T. Spahn
- Institut für Medizinische Physik und Biophysik, Charite – Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
| |
Collapse
|
214
|
Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution. Proc Natl Acad Sci U S A 2010; 107:20992-7. [PMID: 21098295 DOI: 10.1073/pnas.1015530107] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The structure of the 26S proteasome from Schizosaccharomyces pombe has been determined to a resolution of 9.1 Å by cryoelectron microscopy and single particle analysis. In addition, chemical cross-linking in conjunction with mass spectrometry has been used to identify numerous residue pairs in close proximity to each other, providing an array of spatial restraints. Taken together these data clarify the topology of the AAA-ATPase module in the 19S regulatory particle and its spatial relationship to the α-ring of the 20S core particle. Image classification and variance analysis reveal a belt of high "activity" surrounding the AAA-ATPase module which is tentatively assigned to the reversible association of proteasome interacting proteins and the conformational heterogeneity among the particles. An integrated model is presented which sheds light on the early steps of protein degradation by the 26S complex.
Collapse
|
215
|
Fu J, Hashem Y, Wower I, Lei J, Liao HY, Zwieb C, Wower J, Frank J. Visualizing the transfer-messenger RNA as the ribosome resumes translation. EMBO J 2010; 29:3819-25. [PMID: 20940705 PMCID: PMC2989109 DOI: 10.1038/emboj.2010.255] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/22/2010] [Indexed: 11/08/2022] Open
Abstract
Bacterial ribosomes stalled by truncated mRNAs are rescued by transfer-messenger RNA (tmRNA), a dual-function molecule that contains a tRNA-like domain (TLD) and an internal open reading frame (ORF). Occupying the empty A site with its TLD, the tmRNA enters the ribosome with the help of elongation factor Tu and a protein factor called small protein B (SmpB), and switches the translation to its own ORF. In this study, using cryo-electron microscopy, we obtained the first structure of an in vivo-formed complex containing ribosome and the tmRNA at the point where the TLD is accommodated into the ribosomal P site. We show that tmRNA maintains a stable 'arc and fork' structure on the ribosome when its TLD moves to the ribosomal P site and translation resumes on its ORF. Based on the density map, we built an atomic model, which suggests that SmpB interacts with the five nucleotides immediately upstream of the resume codon, thereby determining the correct selection of the reading frame on the ORF of tmRNA.
Collapse
Affiliation(s)
- Jie Fu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Yaser Hashem
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Iwona Wower
- Department of Animal Sciences, Auburn University, Auburn, AL, USA
| | - Jianlin Lei
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Hstau Y Liao
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Christian Zwieb
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Jacek Wower
- Department of Animal Sciences, Auburn University, Auburn, AL, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
216
|
Benesch JLP, Ruotolo BT, Simmons DA, Barrera NP, Morgner N, Wang L, Saibil HR, Robinson CV. Separating and visualising protein assemblies by means of preparative mass spectrometry and microscopy. J Struct Biol 2010; 172:161-8. [PMID: 20227505 DOI: 10.1016/j.jsb.2010.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
Abstract
Many multi-protein assemblies exhibit characteristics which hamper their structural and dynamical characterization. These impediments include low copy number, heterogeneity, polydispersity, hydrophobicity, and intrinsic disorder. It is becoming increasingly apparent that both novel and hybrid structural biology approaches need to be developed to tackle the most challenging targets. Nanoelectrospray mass spectrometry has matured over the last decade to enable the elucidation of connectivity and composition of large protein assemblies. Moreover, comparing mass spectrometry data with transmission electron microscopy images has enabled the mapping of subunits within topological models. Here we describe a preparative form of mass spectrometry designed to isolate specific protein complexes from within a heterogeneous ensemble, and to 'soft-land' these target complexes for ex situ imaging. By building a retractable probe incorporating a versatile target holder, and modifying the ion optics of a commercial mass spectrometer, we show that we can steer the macromolecular ion beam onto a target for imaging by means of transmission electron microscopy and atomic force microscopy. Our data for the tetradecameric chaperonin GroEL show that not only are the molecular volumes of the landed particles consistent with the overall dimensions of the complex, but also that their gross topological features can be maintained.
Collapse
Affiliation(s)
- Justin L P Benesch
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Single-particle electron microscopy of animal fatty acid synthase describing macromolecular rearrangements that enable catalysis. Methods Enzymol 2010. [PMID: 20888475 DOI: 10.1016/s0076-6879(10)83009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
We have used macromolecular electron microscopy (EM) to characterize the conformational flexibility of the animal fatty acid synthase (FAS). Here we describe in detail methods employed for image collection and analysis. We also provide an account of how EM results were interpreted by considering a high-resolution static FAS X-ray structure and functional data to arrive at a molecular understanding of the way in which conformational pliability enables fatty acid synthesis.
Collapse
|
218
|
An approach for de novo structure determination of dynamic molecular assemblies by electron cryomicroscopy. Structure 2010; 18:667-76. [PMID: 20541504 DOI: 10.1016/j.str.2010.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 04/08/2010] [Accepted: 05/04/2010] [Indexed: 11/26/2022]
Abstract
Single-particle electron cryomicroscopy is a powerful method for three-dimensional (3D) structure determination of macromolecular assemblies. Here we address the challenge of determining a 3D structure in the absence of reference models. The 3D structures are determined by alignment and weighted averaging of densities obtained by native cryo random conical tilt (RCT) reconstructions including consideration of missing data. Our weighted averaging scheme (wRCT) offers advantages for potentially heterogeneous 3D densities of low signal-to-noise ratios. Sets of aligned RCT structures can also be analyzed by multivariate statistical analysis (MSA) to provide insights into snapshots of the assemblies. The approach is used to compute 3D structures of the Escherichia coli 70S ribosome and the human U4/U6.U5 tri-snRNP under vitrified unstained cryo conditions, and to visualize by 3D MSA the L7/L12 stalk of the 70S ribosome and states of tri-snRNP. The approach thus combines de novo 3D structure determination with an analysis of compositional and conformational heterogeneity.
Collapse
|
219
|
Tagare HD, Barthel A, Sigworth FJ. An adaptive Expectation-Maximization algorithm with GPU implementation for electron cryomicroscopy. J Struct Biol 2010; 171:256-65. [PMID: 20538058 PMCID: PMC2967204 DOI: 10.1016/j.jsb.2010.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/30/2010] [Accepted: 06/02/2010] [Indexed: 11/27/2022]
Abstract
Maximum-likelihood (ML) estimation has very desirable properties for reconstructing 3D volumes from noisy cryo-EM images of single macromolecular particles. Current implementations of ML estimation make use of the Expectation-Maximization (EM) algorithm or its variants. However, the EM algorithm is notoriously computation-intensive, as it involves integrals over all orientations and positions for each particle image. We present a strategy to speedup the EM algorithm using domain reduction. Domain reduction uses a coarse grid to evaluate regions in the integration domain that contribute most to the integral. The integral is evaluated with a fine grid in these regions. In the simulations reported in this paper, domain reduction gives speedups which exceed a factor of 10 in early iterations and which exceed a factor of 60 in terminal iterations.
Collapse
Affiliation(s)
- Hemant D Tagare
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
220
|
Jaitly N, Brubaker MA, Rubinstein JL, Lilien RH. A Bayesian method for 3D macromolecular structure inference using class average images from single particle electron microscopy. Bioinformatics 2010; 26:2406-15. [DOI: 10.1093/bioinformatics/btq456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
221
|
Structural and functional characterization of an influenza virus RNA polymerase-genomic RNA complex. J Virol 2010; 84:10477-87. [PMID: 20702645 DOI: 10.1128/jvi.01115-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The replication and transcription of influenza A virus are carried out by ribonucleoproteins (RNPs) containing each genomic RNA segment associated with nucleoprotein monomers and the heterotrimeric polymerase complex. These RNPs are responsible for virus transcription and replication in the infected cell nucleus. Here we have expressed, purified, and analyzed, structurally and functionally, for the first time, polymerase-RNA template complexes obtained after replication in vivo. These complexes were generated by the cotransfection of plasmids expressing the polymerase subunits and a genomic plasmid expressing a minimal template of positive or negative polarity. Their generation in vivo was strictly dependent on the polymerase activity; they contained mainly negative-polarity viral RNA (vRNA) and could transcribe and replicate in vitro. The three-dimensional structure of the monomeric polymerase-vRNA complexes was similar to that of the RNP-associated polymerase and distinct from that of the polymerase devoid of template. These results suggest that the interaction with the template is sufficient to induce a significant conformation switch in the polymerase complex.
Collapse
|
222
|
Anthrax toxin-neutralizing antibody reconfigures the protective antigen heptamer into a supercomplex. Proc Natl Acad Sci U S A 2010; 107:14070-4. [PMID: 20660775 DOI: 10.1073/pnas.1006473107] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tripartite protein exotoxin secreted by Bacillus anthracis, a major contributor to its virulence and anthrax pathogenesis, consists of binary complexes of the protective antigen (PA) heptamer (PA63h), produced by proteolytic cleavage of PA, together with either lethal factor or edema factor. The mouse monoclonal anti-PA antibody 1G3 was previously shown to be a potent antidote that shares F(C) domain dependency with the human monoclonal antibody MDX-1303 currently under clinical development. Here we demonstrate that 1G3 instigates severe perturbation of the PA63h structure and creates a PA supercomplex as visualized by electron microscopy. This phenotype, produced by the unconventional mode of antibody action, highlights the feasibility for optimization of vaccines based on analogous structural modification of PA63h as an additional strategy for future remedies against anthrax.
Collapse
|
223
|
Elmlund D, Davis R, Elmlund H. Ab Initio Structure Determination from Electron Microscopic Images of Single Molecules Coexisting in Different Functional States. Structure 2010; 18:777-86. [DOI: 10.1016/j.str.2010.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/06/2010] [Accepted: 06/07/2010] [Indexed: 11/27/2022]
|
224
|
Abstract
This essay is a reflection on the ways the X-ray structures of the ribosome are helping in the interpretation of cryogenic electron microscopy (cryo-EM) density maps showing the translating ribosome in motion. Through advances in classification methods, cryo-EM and single-particle reconstruction methods have recently evolved to the point where they can yield an array of structures from a single sample ("story in a sample"), providing snapshots of an entire subprocess of translation, such as translocation or decoding.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA and Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave., New York, NY 10027, USA, phone: +1 (0)212 305 9510, fax: +1 (0)212 305 9500
| |
Collapse
|
225
|
Clare DK, Orlova EV. 4.6A Cryo-EM reconstruction of tobacco mosaic virus from images recorded at 300 keV on a 4k x 4k CCD camera. J Struct Biol 2010; 171:303-8. [PMID: 20558300 PMCID: PMC2939825 DOI: 10.1016/j.jsb.2010.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/14/2010] [Accepted: 06/08/2010] [Indexed: 11/19/2022]
Abstract
Tobacco mosaic virus (TMV) is a plant virus with a highly ordered organisation and has been described in three different structural states: As stacked disks without RNA (X-ray crystallography), as a helical form with RNA (X-ray fibre diffraction) and as a second distinct helical form with RNA (cryo-EM). Here we present a structural analysis of TMV as a test object to assess the quality of cryo-EM images recorded at 300 keV on a CCD camera. The 4.6 Å TMV structure obtained is consistent with the previous cryo-EM structure and confirms that there is a second helical form of TMV. The structure here also shows that with a similar number of TMV segments an equivalent resolution can be achieved with a 4k CCD camera at 300 keV.
Collapse
|
226
|
Zernike phase plate cryoelectron microscopy facilitates single particle analysis of unstained asymmetric protein complexes. Structure 2010; 18:17-27. [PMID: 20152149 DOI: 10.1016/j.str.2009.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 11/25/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
Abstract
Single particle reconstruction from cryoelectron microscopy images, though emerging as a powerful means in structural biology, is faced with challenges as applied to asymmetric proteins smaller than megadaltons due to low contrast. Zernike phase plate can improve the contrast by restoring the microscope contrast transfer function. Here, by exploiting simulated Zernike and conventional defocused cryoelectron microscope images with noise characteristics comparable to those of experimental data, we quantified the efficiencies of the steps in single particle analysis of ice-embedded RNA polymerase II (500 kDa), transferrin receptor complex (290 kDa), and T7 RNA polymerase lysozyme (100 kDa). Our results show Zernike phase plate imaging is more effective as to particle identification and also sorting of orientations, conformations, and compositions. Moreover, our analysis on image alignment indicates that Zernike phase plate can, in principle, reduce the number of particles required to attain near atomic resolution by 10-100 fold for proteins between 100 kDa and 500 kDa.
Collapse
|
227
|
Cuesta I, Núñez-Ramírez R, Scheres SHW, Gai D, Chen XS, Fanning E, Carazo JM. Conformational rearrangements of SV40 large T antigen during early replication events. J Mol Biol 2010; 397:1276-86. [PMID: 20219473 PMCID: PMC2862297 DOI: 10.1016/j.jmb.2010.02.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 11/25/2022]
Abstract
The Simian virus 40 (SV40) large tumor antigen (LTag) functions as the replicative helicase and initiator for viral DNA replication. For SV40 replication, the first essential step is the assembly of an LTag double hexamer at the origin DNA that will subsequently melt the origin DNA to initiate fork unwinding. In this study, we used three-dimensional cryo-electron microscopy to visualize early events in the activation of DNA replication in the SV40 model system. We obtained structures of wild-type double-hexamer complexes of LTag bound to SV40 origin DNA, to which atomic structures have been fitted. Wild-type LTag was observed in two distinct conformations: In one conformation, the central module containing the J-domains and the origin binding domains of both hexamers is a compact closed ring. In the other conformation, the central module is an open ring with a gap formed by rearrangement of the N-terminal regions of the two hexamers, potentially allowing for the passage of single-stranded DNA generated from the melted origin DNA. Double-hexamer complexes containing mutant LTag that lacks the N-terminal J-domain show the central module predominantly in the closed-ring state. Analyses of the LTag C-terminal regions reveal that the LTag hexamers bound to the A/T-rich tract origin of replication and early palindrome origin of replication elements are structurally distinct. Lastly, visualization of DNA density protruding from the LTag C-terminal domains suggests that oligomerization of the LTag complex takes place on double-stranded DNA.
Collapse
Affiliation(s)
- Isabel Cuesta
- Unidad de Biocomputación, Centro Nacional de Biotecnología-CSIC, C/Darwin 3, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
228
|
Wendler P, Saibil HR. Cryo electron microscopy structures of Hsp100 proteins: crowbars in or out? Biochem Cell Biol 2010; 88:89-96. [PMID: 20130682 DOI: 10.1139/o09-164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Independent cryo electron microscopy (cryo-EM) studies of the closely related protein disaggregases ClpB and Hsp104 have resulted in two different models of subunit arrangement in the active hexamer. We compare the EM maps and resulting atomic structure fits, discuss their differences, and relate them to published experimental information in an attempt to discriminate between models. In addition, we present some general assessment criteria for low-resolution cryo-EM maps to offer non-structural biologists tools to evaluate these structures.
Collapse
Affiliation(s)
- Petra Wendler
- Department of Crystallography, Birkbeck College, Malet St., London WC1E 7HX, UK
| | | |
Collapse
|
229
|
Liao HY, Frank J. CLASSIFICATION BY BOOTSTRAPPING IN SINGLE PARTICLE METHODS. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2010; 2010:169-172. [PMID: 20729994 PMCID: PMC2924593 DOI: 10.1109/isbi.2010.5490386] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In single-particle reconstruction methods, projections of macromolecules at random orientations are collected. Often, several classes of conformations or binding states coexist in a biological sample, which requires classification, so that each conformation can be reconstructed separately. In this work, we examine bootstrap techniques for classifying the projection data. When these techniques are applied to variance estimation, the projection images (particles) are randomly sampled with replacement from the data set and a bootstrap volume is reconstructed from each sample. In a recent extension of the bootstrap technique to classification, each particle is assigned to a volume in the space spanned by the bootstrap volumes, such that the projection of the assigned volume best matches the particle. In this work we explain the rationale of these techniques by discussing the nature of the bootstrap volumes and provide some statistical analyses.
Collapse
Affiliation(s)
- Hstau Y Liao
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | | |
Collapse
|
230
|
Averaging of electron subtomograms and random conical tilt reconstructions through likelihood optimization. Structure 2010; 17:1563-1572. [PMID: 20004160 DOI: 10.1016/j.str.2009.10.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/02/2009] [Accepted: 10/22/2009] [Indexed: 01/05/2023]
Abstract
The reference-free averaging of three-dimensional electron microscopy (3D-EM) reconstructions with empty regions in Fourier space represents a pressing problem in electron tomography and single-particle analysis. We present a maximum likelihood algorithm for the simultaneous alignment and classification of subtomograms or random conical tilt (RCT) reconstructions, where the Fourier components in the missing data regions are treated as hidden variables. The behavior of this algorithm was explored using tests on simulated data, while application to experimental data was shown to yield unsupervised class averages for subtomograms of groEL/groES complexes and RCT reconstructions of p53. The latter application served to obtain a reliable de novo structure for p53 that may resolve uncertainties about its quaternary structure.
Collapse
|
231
|
Recuero-Checa MA, Doré AS, Arias-Palomo E, Rivera-Calzada A, Scheres SHW, Maman JD, Pearl LH, Llorca O. Electron microscopy of Xrcc4 and the DNA ligase IV-Xrcc4 DNA repair complex. DNA Repair (Amst) 2010; 8:1380-9. [PMID: 19837014 DOI: 10.1016/j.dnarep.2009.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
The DNA ligase IV-Xrcc4 complex is responsible for the ligation of broken DNA ends in the non-homologous end-joining (NHEJ) pathway of DNA double strand break repair in mammals. Mutations in DNA ligase IV (Lig4) lead to immunodeficiency and radiosensitivity in humans. Only partial structural information for Lig4 and Xrcc4 is available, while the structure of the full-length proteins and their arrangement within the Lig4-Xrcc4 complex is unknown. The C-terminal domain of Xrcc4, whose structure has not been solved, contains phosphorylation sites for DNA-PKcs and is phylogenetically conserved, indicative of a regulatory role in NHEJ. Here, we have purified full length Xrcc4 and the Lig4-Xrcc4 complex, and analysed their structure by single-particle electron microscopy. The three-dimensional structure of Xrcc4 at a resolution of approximately 37A reveals that the C-terminus of Xrcc4 forms a dimeric globular domain connected to the N-terminus by a coiled-coil. The N- and C-terminal domains of Xrcc4 locate at opposite ends of an elongated molecule. The electron microscopy images of the Lig4-Xrcc4 complex were examined by two-dimensional image processing and a double-labelling strategy, identifying the site of the C-terminus of Xrcc4 and the catalytic core of Lig4 within the complex. The catalytic domains of Lig4 were found to be in the vicinity of the N-terminus of Xrcc4. We provide a first sight of the structural organization of the Lig4-Xrcc4 complex, which suggests that the BRCT domains could provide the link of the ligase to Xrcc4 while permitting some movements of the catalytic domains of Lig4. This arrangement may facilitate the ligation of diverse configurations of damaged DNA.
Collapse
Affiliation(s)
- María A Recuero-Checa
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Shatsky M, Hall RJ, Nogales E, Malik J, Brenner SE. Automated multi-model reconstruction from single-particle electron microscopy data. J Struct Biol 2010; 170:98-108. [PMID: 20085819 DOI: 10.1016/j.jsb.2010.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/10/2010] [Accepted: 01/14/2010] [Indexed: 10/20/2022]
Abstract
Biological macromolecules can adopt multiple conformational and compositional states due to structural flexibility and alternative subunit assemblies. This structural heterogeneity poses a major challenge in the study of macromolecular structure using single-particle electron microscopy. We propose a fully automated, unsupervised method for the three-dimensional reconstruction of multiple structural models from heterogeneous data. As a starting reference, our method employs an initial structure that does not account for any heterogeneity. Then, a multi-stage clustering is used to create multiple models representative of the heterogeneity within the sample. The multi-stage clustering combines an existing approach based on Multivariate Statistical Analysis to perform clustering within individual Euler angles, and a newly developed approach to sort out class averages from individual Euler angles into homogeneous groups. Structural models are computed from individual clusters. The whole data classification is further refined using an iterative multi-model projection-matching approach. We tested our method on one synthetic and three distinct experimental datasets. The tests include the cases where a macromolecular complex exhibits structural flexibility and cases where a molecule is found in ligand-bound and unbound states. We propose the use of our approach as an efficient way to reconstruct distinct multiple models from heterogeneous data.
Collapse
Affiliation(s)
- Maxim Shatsky
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
233
|
Abstract
The maximum-likelihood method provides a powerful approach to many problems in cryo-electron microscopy (cryo-EM) image processing. This contribution aims to provide an accessible introduction to the underlying theory and reviews existing applications in the field. In addition, current developments to reduce computational costs and to improve the statistical description of cryo-EM images are discussed. Combined with the increasing power of modern computers and yet unexplored possibilities provided by theory, these developments are expected to turn the statistical approach into an essential image-processing tool for the electron microscopist.
Collapse
Affiliation(s)
- Fred J. Sigworth
- Department of Cellular and Molecular Physiology, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Peter C. Doerschuk
- Department of Biomedical Engineering, Cornell University, Weill Hall, Room 135, Ithaca, NY 14853, USA
| | - Jose-Maria Carazo
- Biocomputing Unit, Centro Nacional de Biotecnología - CSIC. Calle Darwin, 3, Cantoblanco, 28049, Madrid, Spain
| | - Sjors H.W. Scheres
- Biocomputing Unit, Centro Nacional de Biotecnología - CSIC. Calle Darwin, 3, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
234
|
Abstract
Electron microscopy (EM) has developed into an important method for determining the three-dimensional (3D) structures of biological complexes, in particular of isolated macromolecular complexes in vitrified solution (cryo-EM of "single particles"). One of the consequences of studying complexes in solution rather than in a crystal lattice is that they are less constrained to adopt a single conformation. It is a common problem in single-particle analysis that samples of purified macromolecules can be structurally heterogeneous, with molecules adopting different conformations, corresponding to different functional states. In the case of multisubunit assemblies, there may also be heterogeneity of assembly or ligand binding. Heterogeneity limits the accuracy and resolution of 3D structures, since different conformations will contribute to a single 3D map and variable parts of the structure will be smeared out. Therefore, a new group of image processing methods has been developed to deal with the problems of detecting and sorting structural heterogeneity. The basic problem is to discriminate the source of image variations, and then to separate the images into homogeneous subsets for separate reconstruction. Variations in image features can arise from different particle orientations, variations in conformation and/or ligand binding, and noise fluctuations in the low signal-to-noise ratio images typical of cryo-EM. Here, we present a review of approaches developed to deal with these problems, along with examples of the application of a method based on multivariate statistical analysis to both model and real data. The methods have been used to discriminate small differences in size, conformation and ligand binding, and to obtain high quality, reliable reconstructions of multiple structures from mixed data sets.
Collapse
Affiliation(s)
- Elena V Orlova
- Crystallography and Institute of Structural Molecular Biology, Birkbeck College, London, United Kingdom
| | | |
Collapse
|
235
|
Crowther RA. From envelopes to atoms: The remarkable progress of biological electron microscopy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 81:1-32. [PMID: 21115171 DOI: 10.1016/b978-0-12-381357-2.00001-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The electron microscope has, in principle, provided a powerful method for investigating biological structures for quite sometime, but only recently is its full potential being realized. Technical advances in the microscopes themselves, in methods of specimen preparation, and in computer processing of the recorded micrographs have all been necessary to underpin progress. It is now possible with suitable unstained specimens of two-dimensional crystals, helical or tubular structures, and icosahedral viruses to achieve resolutions of 4Å or better. For nonsymmetrical particles, sub-nanometer resolution is often possible. Tomography is enabling detailed pictures of subcellular organization to be produced. Thus, electron microscopy is now starting to rival X-ray crystallography in the resolution achievable but with the advantage of being applicable to a far wider range of biological specimens. With further improvements already under way, electron microscopy is set to be a centrally important technique for understanding biological structure and function at all levels-from atomic to cellular.
Collapse
Affiliation(s)
- R Anthony Crowther
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
236
|
Visualizing molecular machines in action: Single-particle analysis with structural variability. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 81:89-119. [PMID: 21115174 DOI: 10.1016/b978-0-12-381357-2.00004-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Many of the electron microscopy (EM) samples that are analyzed by single-particle reconstruction are flexible macromolecular assemblies that adopt multiple structural states in their functioning. Consequently, EM samples often contain a mixture of different structural states. This structural variability has long been regarded as a severe hindrance for single-particle analysis because the combination of projections from different structures into a single reconstruction may cause severe artifacts. This chapter reviews recent developments in image processing that may turn structural variability from an obstacle into an advantage. Modern algorithms now allow classifying projection images according to their underlying three-dimensional (3D) structures, so that multiple reconstructions may be obtained from a single data set. This places 3D-EM in a unique position to study the intricate dynamics of functioning molecular assemblies.
Collapse
|
237
|
Abstract
As the resolution of cryo-EM reconstructions has improved to the subnanometer range, conformational and compositional heterogeneity have become increasing problems in cryo-EM, limiting the resolution of reconstructions. Since further purification is not feasible, the presence of several conformational states of ribosomal complexes in thermodynamic equilibrium requires methods for separating these states in silico. We describe a procedure for generating subnanometer resolution cryo-EM structures from large sets of projection images of ribosomal complexes. The incremental K-means-like method of unsupervised 3D sorting discussed here allows separation of classes in the dataset by exploiting intrinsic divisions in the data. The classification procedure is described in detail and its effectiveness is illustrated using current examples from our work. Through a good separation of conformational modes, higher resolution reconstructions can be calculated. This increases information gained from single states, while exploiting the coexistence of multiple states to gather comprehensive mechanistic insight into biological processes like ribosomal translocation.
Collapse
Affiliation(s)
- Justus Loerke
- Institut für medizinische Physik und Biophysik, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
238
|
Abstract
With the advent of computationally feasible approaches to maximum-likelihood (ML) image processing for cryo-electron microscopy, these methods have proven particularly useful in the classification of structurally heterogeneous single-particle data. A growing number of experimental studies have applied these algorithms to study macromolecular complexes with a wide range of structural variability, including nonstoichiometric complex formation, large conformational changes, and combinations of both. This chapter aims to share the practical experience that has been gained from the application of these novel approaches. Current insights on how to prepare the data and how to perform two- or three-dimensional classifications are discussed together with the aspects related to high-performance computing. Thereby, this chapter will hopefully be of practical use for those microscopists wishing to apply ML methods in their own investigations.
Collapse
Affiliation(s)
- Sjors H.W. Scheres
- Centro Nacional de Biotecnología - CSIC, Calle Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
239
|
Abstract
There is mounting evidence indicating that protein synthesis is driven and regulated by mechanisms that direct stochastic, large-scale conformational fluctuations of the translational apparatus. This mechanistic paradigm implies that a free-energy landscape governs the conformational states that are accessible to and sampled by the translating ribosome. This scenario presents interdependent opportunities and challenges for structural and dynamic studies of protein synthesis. Indeed, the synergism between cryogenic electron microscopic and X-ray crystallographic structural studies, on the one hand, and single-molecule fluorescence resonance energy transfer (smFRET) dynamic studies, on the other, is emerging as a powerful means for investigating the complex free-energy landscape of the translating ribosome and uncovering the mechanisms that direct the stochastic conformational fluctuations of the translational machinery. In this review, we highlight the principal insights obtained from cryogenic electron microscopic, X-ray crystallographic, and smFRET studies of the elongation stage of protein synthesis and outline the emerging themes, questions, and challenges that lie ahead in mechanistic studies of translation.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, New York 10032
- Department of Biological Sciences, Columbia University, New York City, New York 10027
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York City, New York 10027
| |
Collapse
|
240
|
Stark H. GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM. Methods Enzymol 2010; 481:109-26. [PMID: 20887855 DOI: 10.1016/s0076-6879(10)81005-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Here, we review the GraFix (Gradient Fixation) method to purify and stabilize macromolecular complexes for single particle cryo-electron microscopy (cryo-EM). During GraFix, macromolecules undergo a weak, intramolecular chemical cross-linking while being purified by density gradient ultracentrifugation. GraFix-stabilized particles can be used directly for negative-stain cryo-EM or, after a brief buffer-exchange step, for unstained cryo-EM. This highly reproducible method has proved to dramatically reduce problems in heterogeneity due to particle dissociation during EM grid preparation. Additionally, there is often an appreciable increase in particles binding to the carbon support film. This and the fact that binding times can be drastically increased, with no apparent disruption of the native structures of the macromolecules, makes GraFix a method of choice when preparing low-abundance complexes for cryo-EM. The higher sample quality following GraFix purification is evident when examining raw images, which usually present a low background of fragmented particles, good particle dispersion, and high-contrast, well-defined particles. Setting up the GraFix method is straightforward, and the resulting improvement in sample homogeneity has been beneficial in successfully obtaining the 3D structures of numerous macromolecular complexes by cryo-EM in the past few years.
Collapse
Affiliation(s)
- Holger Stark
- MPI for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
241
|
Abstract
Electron cryomicroscopy (cryo-EM) and single particle analysis is emerging as a powerful technique for determining the 3D structure of large biomolecules and biomolecular assemblies in close to their native solution environment. Over the last decade, this technology has improved, first to sub-nanometer resolution, and more recently beyond 0.5 nm resolution. Achieving sub-nanometer resolution is now readily approachable on mid-range microscopes with straightforward data processing, so long as the target specimen meets some basic requirements. Achieving resolutions beyond 0.5 nm currently requires a high-end microscope and careful data acquisition and processing, with much more stringent specimen requirements. This chapter will review and discuss the methodologies for determining high-resolution cryo-EM structures of nonvirus particles to sub-nanometer resolution and beyond, with a particular focus on the reconstruction strategy implemented in the EMAN software suite.
Collapse
Affiliation(s)
- Yao Cong
- National Center for Macromolecular Imaging, The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
242
|
Structural insights into RNA processing by the human RISC-loading complex. Nat Struct Mol Biol 2009; 16:1148-53. [PMID: 19820710 PMCID: PMC2845538 DOI: 10.1038/nsmb.1673] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 08/19/2009] [Indexed: 12/17/2022]
Abstract
Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (siRNA or miRNA) into an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (Ago2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC) necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to Ago2. Here we show, using single-particle electron microscopy analysis, that human Dicer exhibits an L-shaped structure. Withn the RLC Dicer's N-terminal DExH/D domain, located at the short base branch, interacts with TRBP, while its C-terminal catalytic domains in the main body are proximal to Ago2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to Ago2.
Collapse
|
243
|
Spahn CMT, Penczek PA. Exploring conformational modes of macromolecular assemblies by multiparticle cryo-EM. Curr Opin Struct Biol 2009; 19:623-31. [PMID: 19767196 DOI: 10.1016/j.sbi.2009.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 11/16/2022]
Abstract
Single particle cryo-electron microscopy (cryo-EM) is a technique aimed at structure determination of large macromolecular complexes in their unconstrained, physiological conditions. The power of the method has been demonstrated in selected studies where for highly symmetric molecules the resolution attained permitted backbone tracing. However, most molecular complexes appear to exhibit intrinsic conformational variability necessary to perform their functions. Therefore, it is now increasingly recognized that sample heterogeneity constitutes a major methodological challenge for cryo-EM. To overcome it dedicated experimental and particularly computational multiparticle approaches have been developed. Their applications point to the future of cryo-EM as an experimental method uniquely suited to visualize the conformational modes of large macromolecular complexes and machines.
Collapse
Affiliation(s)
- Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charite - Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany.
| | | |
Collapse
|
244
|
Prust CJ, Doerschuk PC, Lander GC, Johnson JE. Ab initio maximum likelihood reconstruction from cryo electron microscopy images of an infectious virion of the tailed bacteriophage P22 and maximum likelihood versions of Fourier Shell Correlation appropriate for measuring resolution of spherical or cylindrical objects. J Struct Biol 2009; 167:185-99. [PMID: 19457456 PMCID: PMC2803348 DOI: 10.1016/j.jsb.2009.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 03/04/2009] [Accepted: 04/28/2009] [Indexed: 11/25/2022]
Abstract
A maximum likelihood reconstruction method for an asymmetric reconstruction of the infectious P22 bacteriophage virion is described and demonstrated on a subset of the images used in [Lander, G.C., Tang, L., Casjens, S.R., Gilcrease, E.B., Prevelige, P., Poliakov, A., Potter, C.S., Carragher, B., Johnson, J.E., 2006. The structure of an infectious P22 virion shows the signal for headful DNA packaging. Science 312(5781), 1791-1795]. The method makes no assumptions at any stage regarding the structure of the phage tail or the relative rotational orientation of the phage tail and capsid but rather the structure and the rotation angle are determined as a part of the analysis. A statistical method for determining resolution consistent with maximum likelihood principles based on ideas for cylinders analogous to the ideas for spheres that are embedded in the Fourier Shell Correlation method is described and demonstrated on the P22 reconstruction. With a correlation threshold of .95, the resolution in the tail measured radially is greater than 0.0301A(-1) (33.3A) and measured axially is greater than 0.0142A(-1) (70.6A) both with probability p=0.02.
Collapse
Affiliation(s)
- Cory J. Prust
- Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, 1025 N. Broadway, Milwaukee, WI 53202-3109, USA
| | - Peter C. Doerschuk
- Department of Biomedical Engineering and School of Electrical and Computer Engineering, Cornell University, 305 Phillips Hall, Ithaca, NY 14853-5401, USA
| | - Gabriel C. Lander
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - John E. Johnson
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
245
|
Frank J. Single-particle reconstruction of biological macromolecules in electron microscopy--30 years. Q Rev Biophys 2009; 42:139-58. [PMID: 20025794 PMCID: PMC2844734 DOI: 10.1017/s0033583509990059] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This essay gives the autho's personal account on the development of concepts underlying single-particle reconstruction, a technique in electron microscopy of macromolecular assemblies with a remarkable record of achievements as of late. The ribosome proved to be an ideal testing ground for the development of specimen preparation methods, cryo-EM techniques, and algorithms, with discoveries along the way as a rich reward. Increasingly, cryo-EM and single-particle reconstruction, in combination with classification techniques, is revealing dynamic information on functional molecular machines uninhibited by molecular contacts.
Collapse
Affiliation(s)
- Joachim Frank
- The Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
246
|
Loh NTD, Elser V. Reconstruction algorithm for single-particle diffraction imaging experiments. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:026705. [PMID: 19792279 DOI: 10.1103/physreve.80.026705] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Indexed: 05/09/2023]
Abstract
We introduce the EMC algorithm for reconstructing a particle's three-dimensional (3D) diffraction intensity from very many photon shot-noise limited two-dimensional measurements, when the particle orientation in each measurement is unknown. The algorithm combines a maximization step (M) of the intensity's likelihood function, with expansion (E) and compression (C) steps that map the 3D intensity model to a redundant tomographic representation and back again. After a few iterations of the EMC update rule, the reconstructed intensity is given to the difference-map algorithm for reconstruction of the particle contrast. We demonstrate reconstructions with simulated data and investigate the effects of particle complexity, number of measurements, and the number of photons per measurement. The relatively transparent scaling behavior of our algorithm provides an estimate of the data processing resources required for future single-particle imaging experiments.
Collapse
Affiliation(s)
- Ne-Te Duane Loh
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, USA
| | | |
Collapse
|
247
|
Bartesaghi A, Subramaniam S. Membrane protein structure determination using cryo-electron tomography and 3D image averaging. Curr Opin Struct Biol 2009; 19:402-7. [PMID: 19646859 PMCID: PMC2752674 DOI: 10.1016/j.sbi.2009.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
Abstract
The vast majority of membrane protein complexes of biological interest cannot be purified to homogeneity, or removed from a physiologically relevant context without loss of function. It is therefore not possible to easily determine the 3D structures of these protein complexes using X-ray crystallography or conventional cryo-electron microscopy. Newly emerging methods that combine cryo-electron tomography with 3D image classification and averaging are, however, beginning to provide unique opportunities for in situ determination of the structures of membrane protein assemblies in intact cells and nonsymmetric viruses. Here we review recent progress in this field and assess the potential of these methods to describe the conformation of membrane proteins in their native environment.
Collapse
Affiliation(s)
- Alberto Bartesaghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
248
|
Klinge S, Núñez-Ramírez R, Llorca O, Pellegrini L. 3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases. EMBO J 2009; 28:1978-87. [PMID: 19494830 PMCID: PMC2693882 DOI: 10.1038/emboj.2009.150] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/11/2009] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic DNA replication requires the coordinated activity of the multi-subunit DNA polymerases: Pol alpha, Pol delta and Pol epsilon. The conserved catalytic and regulatory B subunits associate in a constitutive heterodimer that represents the functional core of all three replicative polymerases. Here, we combine X-ray crystallography and electron microscopy (EM) to describe subunit interaction and 3D architecture of heterodimeric yeast Pol alpha. The crystal structure of the C-terminal domain (CTD) of the catalytic subunit bound to the B subunit illustrates a conserved mechanism of accessory factor recruitment by replicative polymerases. The EM reconstructions of Pol alpha reveal a bilobal shape with separate catalytic and regulatory modules. Docking of the B-CTD complex in the EM reconstruction shows that the B subunit is tethered to the polymerase domain through a structured but flexible linker. Our combined findings provide a structural template for the common functional architecture of the three major replicative DNA polymerases.
Collapse
Affiliation(s)
- Sebastian Klinge
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Rafael Núñez-Ramírez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Oscar Llorca
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
249
|
Abstract
Cryo-electron microscopy in conjunction with advanced image analysis was used to analyze the structure of the 26S proteasome and to elucidate its variable features. We have been able to outline the boundaries of the ATPase module in the "base" part of the regulatory complex that can vary in its position and orientation relative to the 20S core particle. This variation is consistent with the "wobbling" model that was previously proposed to explain the role of the regulatory complex in opening the gate in the alpha-rings of the core particle. In addition, a variable mass near the mouth of the ATPase ring has been identified as Rpn10, a multiubiquitin receptor, by correlating the electron microscopy data with quantitative mass spectrometry.
Collapse
|
250
|
Scheres SHW, Carazo JM. Introducing robustness to maximum-likelihood refinement of electron-microscopy data. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:672-8. [PMID: 19564687 PMCID: PMC2703573 DOI: 10.1107/s0907444909012049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 03/31/2009] [Indexed: 11/21/2022]
Abstract
An expectation-maximization algorithm for maximum-likelihood refinement of electron-microscopy images is presented that is based on fitting mixtures of multivariate t-distributions. The novel algorithm has intrinsic characteristics for providing robustness against atypical observations in the data, which is illustrated using an experimental test set with artificially generated outliers. Tests on experimental data revealed only minor differences in two-dimensional classifications, while three-dimensional classification with the new algorithm gave stronger elongation factor G density in the corresponding class of a structurally heterogeneous ribosome data set than the conventional algorithm for Gaussian mixtures.
Collapse
Affiliation(s)
- Sjors H W Scheres
- Centro Nacional de Biotecnología-CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|