201
|
Malzahn A, Lowder L, Qi Y. Plant genome editing with TALEN and CRISPR. Cell Biosci 2017; 7:21. [PMID: 28451378 PMCID: PMC5404292 DOI: 10.1186/s13578-017-0148-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/19/2017] [Indexed: 11/10/2022] Open
Abstract
Genome editing promises giant leaps forward in advancing biotechnology, agriculture, and basic research. The process relies on the use of sequence specific nucleases (SSNs) to make DNA double stranded breaks at user defined genomic loci, which are subsequently repaired by two main DNA repair pathways: non-homologous end joining (NHEJ) and homology directed repair (HDR). NHEJ can result in frameshift mutations that often create genetic knockouts. These knockout lines are useful for functional and reverse genetic studies but also have applications in agriculture. HDR has a variety of applications as it can be used for gene replacement, gene stacking, and for creating various fusion proteins. In recent years, transcription activator-like effector nucleases and clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR associated protein 9 or CRISPR from Prevotella and Francisella 1 have emerged as the preferred SSNs for research purposes. Here, we review their applications in plant research, discuss current limitations, and predict future research directions in plant genome editing.
Collapse
Affiliation(s)
- Aimee Malzahn
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742 USA
| | - Levi Lowder
- Department of Biology, East Carolina University, Greenville, NC 27858 USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742 USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850 USA
| |
Collapse
|
202
|
Dhariwal GK, Laroche A. The future of genetically engineered plants to stabilize yield and improve feed. Anim Front 2017. [DOI: 10.2527/af.2017.0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gaganpreet Kaur Dhariwal
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5401 1st Avenue S., Lethbridge, AB CANADA T1J 4B1
| | - André Laroche
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5401 1st Avenue S., Lethbridge, AB CANADA T1J 4B1
| |
Collapse
|
203
|
Puchta H. Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:1-8. [PMID: 27914284 DOI: 10.1016/j.pbi.2016.11.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/13/2016] [Indexed: 05/18/2023]
Abstract
Less than 5 years ago the CRISPR/Cas nuclease was first introduced into eukaryotes, shortly becoming the most efficient and widely used tool for genome engineering. For plants, efforts were centred on obtaining heritable changes in most transformable crop species by inducing mutations into open reading frames of interest, via non-homologous end joining. Now it is important to take the next steps and further develop the technology to reach its full potential. For breeding, besides using DNA-free editing and avoiding off target effects, it will be desirable to apply the system for the mutation of regulatory elements and for more complex genome rearrangements. Targeting enzymatic activities, like transcriptional regulators or DNA modifying enzymes, will be important for plant biology in the future.
Collapse
Affiliation(s)
- Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany.
| |
Collapse
|
204
|
Li J, Sun Y, Du J, Zhao Y, Xia L. Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. MOLECULAR PLANT 2017; 10:526-529. [PMID: 27940306 DOI: 10.1016/j.molp.2016.12.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 05/20/2023]
Affiliation(s)
- Jingying Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yongwei Sun
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jinlu Du
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yunde Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA.
| | - Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| |
Collapse
|
205
|
Tian S, Jiang L, Gao Q, Zhang J, Zong M, Zhang H, Ren Y, Guo S, Gong G, Liu F, Xu Y. Efficient CRISPR/Cas9-based gene knockout in watermelon. PLANT CELL REPORTS 2017; 36:399-406. [PMID: 27995308 DOI: 10.1007/s00299-016-2089-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/29/2016] [Indexed: 05/18/2023]
Abstract
CRISPR/Cas9 system can precisely edit genomic sequence and effectively create knockout mutations in T0 generation watermelon plants. Genome editing offers great advantage to reveal gene function and generate agronomically important mutations to crops. Recently, RNA-guided genome editing system using the type II clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) has been applied to several plant species, achieving successful targeted mutagenesis. Here, we report the genome of watermelon, an important fruit crop, can also be precisely edited by CRISPR/Cas9 system. ClPDS, phytoene desaturase in watermelon, was selected as the target gene because its mutant bears evident albino phenotype. CRISPR/Cas9 system performed genome editing, such as insertions or deletions at the expected position, in transfected watermelon protoplast cells. More importantly, all transgenic watermelon plants harbored ClPDS mutations and showed clear or mosaic albino phenotype, indicating that CRISPR/Cas9 system has technically 100% of genome editing efficiency in transgenic watermelon lines. Furthermore, there were very likely no off-target mutations, indicated by examining regions that were highly homologous to sgRNA sequences. Our results show that CRISPR/Cas9 system is a powerful tool to effectively create knockout mutations in watermelon.
Collapse
Affiliation(s)
- Shouwei Tian
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Linjian Jiang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Qiang Gao
- Beijing University of Agriculture, Beijing, 102206, China
| | - Jie Zhang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Mei Zong
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Haiying Zhang
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yi Ren
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shaogui Guo
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Guoyi Gong
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Fan Liu
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yong Xu
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|
206
|
Kumar APK, McKeown PC, Boualem A, Ryder P, Brychkova G, Bendahmane A, Sarkar A, Chatterjee M, Spillane C. TILLING by Sequencing (TbyS) for targeted genome mutagenesis in crops. MOLECULAR BREEDING 2017; 37:14. [PMID: 0 DOI: 10.1007/s11032-017-0620-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|