201
|
Ahn R, Cui Y, White FM. Antigen discovery for the development of cancer immunotherapy. Semin Immunol 2023; 66:101733. [PMID: 36841147 DOI: 10.1016/j.smim.2023.101733] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Central to successful cancer immunotherapy is effective T cell antitumor immunity. Multiple targeted immunotherapies engineered to invigorate T cell-driven antitumor immunity rely on identifying the repertoire of T cell antigens expressed on the tumor cell surface. Mass spectrometry-based survey of such antigens ("immunopeptidomics") combined with other omics platforms and computational algorithms has been instrumental in identifying and quantifying tumor-derived T cell antigens. In this review, we discuss the types of tumor antigens that have emerged for targeted cancer immunotherapy and the immunopeptidomics methods that are central in MHC peptide identification and quantification. We provide an overview of the strength and limitations of mass spectrometry-driven approaches and how they have been integrated with other technologies to discover targetable T cell antigens for cancer immunotherapy. We highlight some of the emerging cancer immunotherapies that successfully capitalized on immunopeptidomics, their challenges, and mass spectrometry-based strategies that can support their development.
Collapse
Affiliation(s)
- Ryuhjin Ahn
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yufei Cui
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Forest M White
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
202
|
Cheema AK, Li Y, Ventimiglia M, Kowalczyk K, Hankins R, Bandi G, Janowski EM, Grindrod S, Villagra A, Dritschilo A. Radiotherapy Induces Innate Immune Responses in Patients Treated for Prostate Cancers. Clin Cancer Res 2023; 29:921-929. [PMID: 36508164 PMCID: PMC9975665 DOI: 10.1158/1078-0432.ccr-22-2340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Radiotherapy is a curative therapeutic modality used to treat cancers as a single agent or in combination with surgery and chemotherapy. Advanced radiotherapy technologies enable treatment with large fractions and highly conformal radiation doses to effect free-radical damage to cellular DNA leading to cell-cycle arrest, cell death, and innate immune response (IIR) stimulation. EXPERIMENTAL DESIGN To understand systemic clinical responses after radiation exposure, proteomic and metabolomic analyses were performed on plasma obtained from patients with cancer at intervals after prostate stereotactic body radiotherapy. Pathway and multivariate analyses were used to delineate molecular alterations following radiotherapy and its correlation with clinical outcomes. RESULTS DNA damage response increased within the first hour after treatment and returned to baseline by 1 month. IIR signaling also increased within 1 hour of treatment but persisted for up to 3 months thereafter. Furthermore, robust IIR and metabolite elevations, consistent with an early proinflammatory M1-mediated innate immune activation, were observed in patients in remission, whereas patients experiencing prostate serum antigen-determined disease progression demonstrated less robust immune responses and M2-mediated metabolite elevations. CONCLUSIONS To our knowledge, these data are the first report of longitudinal proteomic and metabolomic molecular responses in patients after radiotherapy for cancers. The data supports innate immune activation as a critical clinical response of patients receiving radiotherapy for prostate cancer. Furthermore, we propose that the observed IIR may be generalized to the treatment of other cancer types, potentially informing multidisciplinary therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Amrita K. Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington DC
- Corresponding Author: Amrita K. Cheema, GC2, Pre-clinical Science Building, 3900 Reservoir Road NW, Washington DC 20007. Phone: 202-687-2756; E-mail:
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
| | - Mary Ventimiglia
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
| | - Keith Kowalczyk
- Department of Radiation Medicine, LL Bles, MedStar-Georgetown University Hospital, Washington DC
| | - Ryan Hankins
- Department of Radiation Medicine, LL Bles, MedStar-Georgetown University Hospital, Washington DC
| | - Gaurav Bandi
- Department of Radiation Medicine, LL Bles, MedStar-Georgetown University Hospital, Washington DC
| | - Einsley-Marie Janowski
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia
| | | | - Alejandro Villagra
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
| | - Anatoly Dritschilo
- Department of Radiation Medicine, LL Bles, MedStar-Georgetown University Hospital, Washington DC
| |
Collapse
|
203
|
Cao D, Chen L, Zhang Z, Luo Y, Zhao L, Yuan C, Lu J, Liu X, Li J. Biodegradable nanomaterials for diagnosis and therapy of tumors. J Mater Chem B 2023; 11:1829-1848. [PMID: 36786439 DOI: 10.1039/d2tb02591d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although degradable nanomaterials have been widely designed and applied for cancer bioimaging and various cancer treatments, few reviews of biodegradable nanomaterials have been reported. Herein, we have summarized the representative research advances of biodegradable nanomaterials with respect to the mechanism of degradation and their application in tumor imaging and therapy. First, four kinds of tumor microenvironment (TME) responsive degradation are presented, including pH, glutathione (GSH), hypoxia and matrix metalloproteinase (MMP) responsive degradation. Second, external stimulation degradation is summarized briefly. Next, we have outlined the applications of nanomaterials in bioimaging. Finally, we have focused on some typical examples of biodegradable nanomaterials in radiotherapy (RT), photothermal therapy (PTT), starvation therapy, photodynamic therapy (PDT), chemotherapy, chemodynamic therapy (CDT), sonodynamic therapy (SDT), gene therapy, immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Dongmiao Cao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Linjing Zhao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Chunping Yuan
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
204
|
Nelson BE, Adashek JJ, Lin SH, Subbiah V. On target methods to induce abscopal phenomenon for Off-Target effects: From happenstance to happenings. Cancer Med 2023; 12:6451-6465. [PMID: 36411943 PMCID: PMC10067075 DOI: 10.1002/cam4.5454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Although the "abscopal phenomenon" has been described several decades ago, this phenomenon lately has been obtaining momentous traction with the dawn of immune-based therapies. There has been increased cross talk among radiation oncologists, oncologists and immunologists and consequently a surge in the number of prospective clinical trials. This must be coupled with translation work from these clinical trials to aid in eventual identification of patients who may benefit. Abscopal effects may be induced by local and systemic methods, conventional radiotherapy, particle radiation, radionucleotide methods, cryoablation and brachytherapy. These approaches have all been reported to be stimulate abscopal effect. Immune induction by immune checkpoint therapy, immune adjuvants, cellular therapy including CAR and NK cell therapies may generate systemic abscopal response. With increasing recognition of this effect, there remains a lot of work to explore the modalities of inducing abscopal responses and ultimate prediction or prognostication on stratifying who may benefit. Ultimately, there is an urgent need for prospective studies and data to tease apart which one of these modalities can be applied to the appropriate candidate, to the appropriate cancer at the appropriate setting. This review seeks to elucidate readers on the different modalities of radiation, systemic therapies and other techniques rarely explored to potentiate the abscopal effect from a mere coincidence to a finite occurrence.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jacob J. Adashek
- Department of OncologyThe Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins HospitalBaltimoreMarylandUSA
| | - Steven H. Lin
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Vivek Subbiah
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
205
|
Khaitan PG. Incidence of bronchopleural fistula after pneumonectomy in an era of revolution. J Thorac Dis 2023; 15:226-228. [PMID: 36910054 PMCID: PMC9992607 DOI: 10.21037/jtd-22-1545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/30/2022] [Indexed: 02/21/2023]
Affiliation(s)
- Puja Gaur Khaitan
- Department of General Surgery, Division of Thoracic Surgery, Georgetown University School of Medicine, Medstar Washington Hospital Center, Washington, DC, USA
| |
Collapse
|
206
|
Liu Q, Huang W, Liang W, Ye Q. Current Strategies for Modulating Tumor-Associated Macrophages with Biomaterials in Hepatocellular Carcinoma. Molecules 2023; 28:2211. [PMID: 36903458 PMCID: PMC10004660 DOI: 10.3390/molecules28052211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related deaths in the world. However, there are currently few clinical diagnosis and treatment options available, and there is an urgent need for novel effective approaches. More research is being undertaken on immune-associated cells in the microenvironment because they play a critical role in the initiation and development of HCC. Macrophages are specialized phagocytes and antigen-presenting cells (APCs) that not only directly phagocytose and eliminate tumor cells, but also present tumor-specific antigens to T cells and initiate anticancer adaptive immunity. However, the more abundant M2-phenotype tumor-associated macrophages (TAMs) at tumor sites promote tumor evasion of immune surveillance, accelerate tumor progression, and suppress tumor-specific T-cell immune responses. Despite the great success in modulating macrophages, there are still many challenges and obstacles. Biomaterials not only target macrophages, but also modulate macrophages to enhance tumor treatment. This review systematically summarizes the regulation of tumor-associated macrophages by biomaterials, which has implications for the immunotherapy of HCC.
Collapse
Affiliation(s)
- Qiaoyun Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan 430071, China
| | - Wei Huang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan 430071, China
| | - Wenjin Liang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan 430071, China
- The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha 410013, China
| |
Collapse
|
207
|
Sun S, Yu M, Yu L, Huang W, Zhu M, Fu Y, Yan L, Wang Q, Ji X, Zhao J, Wu M. Nrf2 silencing amplifies DNA photooxidative damage to activate the STING pathway for synergistic tumor immunotherapy. Biomaterials 2023; 296:122068. [PMID: 36868032 DOI: 10.1016/j.biomaterials.2023.122068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
Photodynamic therapy (PDT)-mediated antitumor immune response depends on oxidative stress intensity and subsequent immunogenic cell death (ICD) in tumor cells, yet the inherent antioxidant system restricts reactive oxygen species (ROS)-associated oxidative damage, which is highly correlated with the upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and the downstream products, such as glutathione (GSH). Herein, to overcome this dilemma, we designed a versatile nanoadjuvant (RI@Z-P) to enhance the sensitivity of tumor cells to oxidative stress via Nrf2-specific small interfering RNA (siNrf2). The constructed RI@Z-P could significantly amplify photooxidative stress and achieve robust DNA oxidative damage, activating the stimulator of interferon genes (STING)-dependent immune-sensing to produce interferon-β (IFN-β). Additionally, RI@Z-P together with laser irradiation reinforced tumor immunogenicity by exposing or releasing damage-associated molecular patterns (DAMPs), showing the prominent adjuvant effect for promoting dendritic cell (DC) maturation and T-lymphocyte activation and even alleviating the immunosuppressive microenvironment to some extent.
Collapse
Affiliation(s)
- Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Liu Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenxin Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Meishu Zhu
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yanan Fu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lingchen Yan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qiang Wang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China.
| | - Jing Zhao
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
208
|
Chakravarti AR, Groer CE, Gong H, Yudistyra V, Forrest ML, Berkland CJ. Design of a Tumor Binding GMCSF as Intratumoral Immunotherapy of Solid Tumors. Mol Pharm 2023; 20:1975-1989. [PMID: 36825806 DOI: 10.1021/acs.molpharmaceut.2c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Next-generation cancer immunotherapies may utilize immunostimulants to selectively activate the host immune system against tumor cells. Checkpoint inhibitors (CPIs) like anti-PD1/PDL-1 that inhibit immunosuppression have shown unprecedented success but are only effective in the 20-30% of patients that possess an already "hot" (immunogenic) tumor. In this regard, intratumoral (IT) injection of immunostimulants is a promising approach since they can work synergistically with CPIs to overcome the resistance to immunotherapies by inducing immune stimulation in the tumor. One such immunostimulant is granulocyte macrophage-colony-stimulating factor (GMCSF) that functions by recruiting and activating antigen-presenting cells (dendritic cells) in the tumor, thereby initiating anti-tumor immune responses. However, key problems with GMCSF are lack of efficacy and the risk of systemic toxicity caused by the leakage of GMCSF from the tumor tissue. We have designed tumor-retentive versions of GMCSF that are safe yet potent immunostimulants for the local treatment of solid tumors. The engineered GMCSFs (eGMCSF) were synthesized by recombinantly fusing tumor-ECM (extracellular matrix) binding peptides to GMCSF. The eGMCSFs exhibited enhanced tumor binding and potent immunological activity in vitro and in vivo. Upon IT administration, the tumor-retentive eGMCSFs persisted in the tumor, thereby alleviating systemic toxicity, and elicited localized immune activation to effectively turn an unresponsive immunologically "cold" tumor "hot".
Collapse
Affiliation(s)
| | - Chad E Groer
- HylaPharm, LLC, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Huan Gong
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Vivian Yudistyra
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Marcus Laird Forrest
- HylaPharm, LLC, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States.,Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
209
|
Miyashita M, Balogun OB, Olopade OI, Huo D. The optimization of postoperative radiotherapy in de novo stage IV breast cancer: evidence from real-world data to personalize treatment decisions. Sci Rep 2023; 13:2880. [PMID: 36804591 PMCID: PMC9938892 DOI: 10.1038/s41598-023-29888-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/11/2023] [Indexed: 02/20/2023] Open
Abstract
Prolonged survival of patients with stage IV breast cancer could change the role of radiotherapy for local control of breast primary, but its survival benefit remains unclear. Our aim is to investigate the survival benefit of radiotherapy in de novo stage IV breast cancer. Stage IV breast cancer patients who received breast surgery and have survived 12 months after diagnosis (landmark analysis) were included in the study from 2010 to 2015 of the National Cancer DataBase. Multivariable Cox models and a propensity score matching were used to control for confounding effects. Of 11,850 patients, 3629 (30.6%) underwent postoperative radiotherapy to breast or chest wall and 8221 (69.4%) did not. In multivariable analysis adjusting for multiple prognostic variables, postoperative radiotherapy was significantly associated with better survival (hazard ratio [HR] 0.74, 95% confidence interval [95%CI] 0.69-0.80; P < 0.001). Radiotherapy was associated with improved survival in patients with bone (P < 0.001) or lung metastasis (P = 0.014), but not in patients with liver (P = 0.549) or brain metastasis (P = 0.407). Radiotherapy was also associated with improved survival in patients with one (P < 0.001) or two metastatic sites (P = 0.028), but not in patients with three or more metastatic sites (P = 0.916). The survival impact of radiotherapy did not differ among subtypes. The results of survival analysis in the propensity score-matched sub-cohort were precisely consistent with those of multivariable analysis. These real-world data show that postoperative radiotherapy might improve overall survival for de novo Stage IV breast cancer with bone or lung metastasis, regardless of subtypes.
Collapse
Affiliation(s)
- Minoru Miyashita
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, 5841 S. Maryland Ave., MC2000, Chicago, IL, 60637, USA.,Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Onyinye B Balogun
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Olufunmilayo I Olopade
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, 5841 S. Maryland Ave., MC2000, Chicago, IL, 60637, USA
| | - Dezheng Huo
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, 5841 S. Maryland Ave., MC2000, Chicago, IL, 60637, USA. .,Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
210
|
Wang Z, Ren X, Wang D, Guan L, Li X, Zhao Y, Liu A, He L, Wang T, Zvyagin AV, Yang B, Lin Q. Novel strategies for tumor radiosensitization mediated by multifunctional gold-based nanomaterials. Biomater Sci 2023; 11:1116-1136. [PMID: 36601661 DOI: 10.1039/d2bm01496c] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiotherapy (RT) is one of the most effective and commonly used cancer treatments for malignant tumors. However, the existing radiosensitizers have a lot of side effects and poor efficacy, which limits the curative effect and further application of radiotherapy. In recent years, emerging nanomaterials have shown unique advantages in enhancing radiosensitization. In particular, gold-based nanomaterials, with high X-ray attenuation capacity, good biocompatibility, and promising chemical, electronic and optical properties, have become a new type of radiotherapy sensitizer. In addition, gold-based nanomaterials can be used as a carrier to load a variety of drugs and immunosuppressants; in particular, its photothermal therapy, photodynamic therapy and multi-mode imaging functions aid in providing excellent therapeutic effect in coordination with RT. Recently, many novel strategies of radiosensitization mediated by multifunctional gold-based nanomaterials have been reported, which provides a new idea for improving the efficacy and reducing the side effects of RT. In this review, we systematically summarize the recent progress of various new gold-based nanomaterials that mediate radiosensitization and describe the mechanism. We further discuss the challenges and prospects in the field. It is hoped that this review will help researchers understand the latest progress of gold-based nanomaterials for radiosensitization, and encourage people to optimize the existing methods or explore novel approaches for radiotherapy.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xiaojun Ren
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Dongzhou Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Yue Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Liang He
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia.,Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, 603105, Nizhny Novgorod, Russia
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
211
|
Miyahira AK, Hawley JE, Adelaiye-Ogala R, Calais J, Nappi L, Parikh R, Seibert TM, Wasmuth EV, Wei XX, Pienta KJ, Soule HR. Exploring new frontiers in prostate cancer research: Report from the 2022 Coffey-Holden prostate cancer academy meeting. Prostate 2023; 83:207-226. [PMID: 36443902 DOI: 10.1002/pros.24461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION The 2022 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Exploring New Frontiers in Prostate Cancer Research," was held from June 23 to 26, 2022, at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA. METHODS The CHPCA Meeting is an annual discussion-oriented scientific conference organized by the Prostate Cancer Foundation, that focuses on emerging and next-step topics deemed critical for making the next major advances in prostate cancer research and clinical care. The 2022 CHPCA Meeting included 35 talks over 10 sessions and was attended by 73 academic investigators. RESULTS Major topic areas discussed at the meeting included: prostate cancer diversity and disparities, the impact of social determinants on research and patient outcomes, leveraging real-world and retrospective data, development of artificial intelligence biomarkers, androgen receptor (AR) signaling biology and new strategies for targeting AR, features of homologous recombination deficient prostate cancer, and future directions in immunotherapy and nuclear theranostics. DISCUSSION This article summarizes the scientific presentations from the 2022 CHPCA Meeting, with the goal that dissemination of this knowledge will contribute to furthering global prostate cancer research efforts.
Collapse
Affiliation(s)
| | - Jessica E Hawley
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Remi Adelaiye-Ogala
- Department of Medicine, Division of Hematology and Oncology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jeremie Calais
- Department of Molecular and Medical Pharmacology, Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, California, USA
| | - Lucia Nappi
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, British Columbia, Canada
| | - Ravi Parikh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medical Ethics and Health Policy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Xiao X Wei
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Howard R Soule
- Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
212
|
Guilbaud E, Yamazaki T, Galluzzi L. T cell-independent abscopal responses to radiotherapy. Trends Cancer 2023; 9:93-95. [PMID: 36543690 DOI: 10.1016/j.trecan.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
When used according to specific dose/fractionation schedules, focal radiotherapy can elicit a systemic anticancer immune response that limits the growth of distant, non-irradiated tumors. Recent data suggest that, at least in some settings, intratumoral macrophages can be educated by CD47 blockage to promote such an 'abscopal' response independent of CD8+ T cells.
Collapse
Affiliation(s)
- Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
213
|
Luo R, Onyshchenko K, Wang L, Gaedicke S, Grosu AL, Firat E, Niedermann G. Necroptosis-dependent Immunogenicity of Cisplatin: Implications for Enhancing the Radiation-induced Abscopal Effect. Clin Cancer Res 2023; 29:667-683. [PMID: 36449659 DOI: 10.1158/1078-0432.ccr-22-1591] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/04/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE Cisplatin is increasingly used in chemoimmunotherapy and may enhance the T cell-dependent radiation-induced abscopal effect, but how it promotes antitumor immunity is poorly understood. We investigated whether and why cisplatin is immunogenic, and the implications for the cisplatin-enhanced abscopal effect. EXPERIMENTAL DESIGN Cisplatin, carboplatin, and the well-known immunogenic cell death (ICD) inducer oxaliplatin were compared for their potency to enhance the abscopal effect and induce type I IFN (IFN-I) and extracellular ATP, danger signals of ICD. The hypothetical role of necroptosis and associated damage-associated molecular patterns for cisplatin-induced ICD was investigated by inhibitors and knockout cells in vitro and in two tumor models in mice. A novel necroptosis signature for tumor immune cell infiltration and therapy response was developed. RESULTS Cisplatin enhanced the abscopal effect more strongly than oxaliplatin or carboplatin. This correlated with higher induction of IFN-I and extracellular ATP by cisplatin, in a necroptosis-dependent manner. Cisplatin triggered receptor-interacting protein kinase 3 (RIPK3)-dependent tumor cell necroptosis causing cytosolic mitochondrial DNA (mtDNA) release, initiating the cyclic GMP-AMP synthase-stimulator of interferon genes pathway and IFN-I secretion promoting T-cell cross-priming by dendritic cells (DC). Accordingly, tumor cell RIPK3 or mtDNA deficiency and loss of IFN-I or ATP signaling diminished the cisplatin-enhanced abscopal effect. Cisplatin-treated tumor cells were immunogenic in vaccination experiments, depending on RIPK3 and mtDNA. In human tumor transcriptome analysis, necroptotic features correlated with abundant CD8+ T cells/DCs, sparse immunosuppressive cells, and immunotherapy response. CONCLUSIONS Cisplatin induces antitumor immunity through necroptosis-mediated ICD. Our findings may help explain the benefits of cisplatin in chemo(radio)immunotherapies and develop clinical trials to investigate whether cisplatin enhances the abscopal effect in patients.
Collapse
Affiliation(s)
- Ren Luo
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kateryna Onyshchenko
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Liqun Wang
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, P.R. China
| | - Simone Gaedicke
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Firat
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
214
|
Labiano S, Serrano-Mendioroz I, Rodriguez-Ruiz ME. Flow cytometry-assisted quantification of immune cells infiltrating irradiated tumors in mice. Methods Cell Biol 2023; 174:1-16. [PMID: 36710044 DOI: 10.1016/bs.mcb.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023]
Abstract
The immunomodulatory properties of local hypofractionated radiotherapy are known to promote the generation of anti-tumor immune responses. Such responses are largely due to the infiltration of cytotoxic lymphocytes (TILs) into the tumors that are able to destroy malignant lesions. In this context, characterizing the tumor immune microenvironment following radiotherapy is crucial for the study of its mechanism of action. Flow cytometry-based analyses are frequently used to elucidate changes in the tumor immune microenvironment. The use of a fluorochrome-conjugated antibody panel is currently a standard technique to assess the number and phenotype of immune cell populations infiltrating the tumors. Here, we describe a method to isolate and quantify TILs based on flow-cytometry in mammary carcinoma-bearing mice that undergo a local hypofractionated radiotherapy regimen consisting of 3 consecutive doses of 8 Gy. With some adaptations, this protocol can be successfully applied to a diverse range of transplantable and inducible solid mouse tumors of different origins.
Collapse
Affiliation(s)
- Sara Labiano
- Department of Pediatrics, University Clinic of Navarra, Pamplona, Spain
| | - Irantzu Serrano-Mendioroz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - María Esperanza Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Departments of Radiation Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
215
|
Colciago RR, Fischetti I, Giandini C, La Rocca E, Rancati T T, Rejas Mateo A, Colombo MP, Lozza L, Chiodoni C, Jachetti E, De Santis MC. Overview of the synergistic use of radiotherapy and immunotherapy in cancer treatment: current challenges and scopes of improvement. Expert Rev Anticancer Ther 2023; 23:135-145. [PMID: 36803369 DOI: 10.1080/14737140.2023.2173175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION Oncological treatments are changing rapidly due to the advent of several targeted anticancer drugs and regimens. The primary new area of research in oncological medicine is the implementation of a combination of novel therapies and standard care. In this scenario, radioimmunotherapy is one of the most promising fields, as proven by the exponential growth of publications in this context during the last decade. AREAS COVERED This review provides an overview of the synergistic use of radiotherapy and immunotherapy and addresses questions like the importance of this subject, aspects clinicians look for in patients to administer this combined therapy, individuals who would benefit the most from this treatment, how to achieve abscopal effect and when does radio-immunotherapy become standard clinical practice. EXPERT OPINION Answers to these queries generate further issues that need to be addressed and solved. The abscopal and bystander effects are not utopia, rather physiological phenomena that occur in our bodies. Nevertheless, substantial evidence regarding the combination of radioimmunotherapy is lacking. In conclusion, joining forces and finding answers to all these open questions is of paramount importance.
Collapse
Affiliation(s)
- Riccardo Ray Colciago
- Department of Radiation Oncology, School of Medicine and Surgery - University of Milan Bicocca, Milan Italy.,Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Irene Fischetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Carlotta Giandini
- Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eliana La Rocca
- Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Tiziana Rancati T
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alicia Rejas Mateo
- Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Laura Lozza
- Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan Italy
| | | |
Collapse
|
216
|
Ni JJ, Zhang ZZ, Ge MJ, Chen JY, Zhuo W. Immune-based combination therapy to convert immunologically cold tumors into hot tumors: an update and new insights. Acta Pharmacol Sin 2023; 44:288-307. [PMID: 35927312 PMCID: PMC9889774 DOI: 10.1038/s41401-022-00953-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
As a breakthrough strategy for cancer treatment, immunotherapy mainly consists of immune checkpoint inhibitors (ICIs) and other immunomodulatory drugs that provide a durable protective antitumor response by stimulating the immune system to fight cancer. However, due to the low response rate and unique toxicity profiles of immunotherapy, the strategies of combining immunotherapy with other therapies have attracted enormous attention. These combinations are designed to exert potent antitumor effects by regulating different processes in the cancer-immunity cycle. To date, immune-based combination therapy has achieved encouraging results in numerous clinical trials and has received Food and Drug Administration (FDA) approval for certain cancers with more studies underway. This review summarizes the emerging strategies of immune-based combination therapy, including combinations with another immunotherapeutic strategy, radiotherapy, chemotherapy, anti-angiogenic therapy, targeted therapy, bacterial therapy, and stroma-targeted therapy. Here, we highlight the rationale of immune-based combination therapy, the biomarkers and the clinical progress for these immune-based combination therapies.
Collapse
Affiliation(s)
- Jiao-Jiao Ni
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zi-Zhen Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Jie Ge
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Hangzhou, 310006, China
| | - Jing-Yu Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
217
|
Bertho A, Iturri L, Brisebard E, Juchaux M, Gilbert C, Ortiz R, Sebrie C, Jourdain L, Lamirault C, Ramasamy G, Pouzoulet F, Prezado Y. Evaluation of the Role of the Immune System Response After Minibeam Radiation Therapy. Int J Radiat Oncol Biol Phys 2023; 115:426-439. [PMID: 35985455 DOI: 10.1016/j.ijrobp.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Minibeam radiation therapy (MBRT) is an innovative technique that uses a spatial dose modulation. The dose distribution consists of high doses (peaks) in the path of the minibeam and low doses (valleys). The underlying biological mechanism associated with MBRT efficacy remains currently unclear and thus we investigated the potential role of the immune system after treatment with MBRT. METHODS AND MATERIALS Rats bearing an orthotopic glioblastoma cell line were treated with 1 fraction of high dose conventional radiation therapy (30 Gy) or 1 fraction of the same mean dose in MBRT. Both immunocompetent (F344) and immunodeficient (Nude) rats were analyzed in survival studies. Systemic and intratumoral immune cell population changes were studied with flow cytometry and immunohistochemistry (IHC) 2 and 7 days after the irradiation. RESULTS The absence of response of Nude rats after MBRT suggested that T cells were key in the mode of action of MBRT. An inflammatory phenotype was observed in the blood 1 week after irradiation compared with conventional irradiation. Tumor immune cell analysis by flow cytometry showed a substantial infiltration of lymphocytes, specifically of CD8 T cells and B cells in both conventional and MBRT-treated animals. IHC revealed that MBRT induced a faster recruitment of CD8 and CD4 T cells. Animals that were cured by radiation therapy did not suffer tumor growth after reimplantation of tumoral cells, proving the long-term immunity response generated after a high dose of radiation. CONCLUSIONS Our findings show that MBRT can elicit a robust antitumor immune response in glioblastoma while avoiding the high toxicity of a high dose of conventional radiation therapy.
Collapse
Affiliation(s)
- Annaig Bertho
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France.
| | - Lorea Iturri
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | | | - Marjorie Juchaux
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | - Cristèle Gilbert
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | - Ramon Ortiz
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | - Catherine Sebrie
- Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Laurene Jourdain
- Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Charlotte Lamirault
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, Paris, France
| | - Gabriel Ramasamy
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, Paris, France
| | - Frédéric Pouzoulet
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, Paris, France; Inserm U1288, Laboratoire de Recherche Translationnelle en Oncologie, Institut Curie, PSL University, Université Paris-Saclay, Orsay, France
| | - Yolanda Prezado
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| |
Collapse
|
218
|
Ziogas DC, Theocharopoulos C, Koutouratsas T, Haanen J, Gogas H. Mechanisms of resistance to immune checkpoint inhibitors in melanoma: What we have to overcome? Cancer Treat Rev 2023; 113:102499. [PMID: 36542945 DOI: 10.1016/j.ctrv.2022.102499] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Marching into the second decade after the approval of ipilimumab, it is clear that immune checkpoint inhibitors (ICIs) have dramatically improved the prognosis of melanoma. Although the current edge is already high, with a 4-year OS% of 77.9% for adjuvant nivolumab and a 6.5-year OS% of 49% for nivolumab/ipilimumab combination in the metastatic setting, a high proportion of patients with advanced melanoma have no benefit from immunotherapy, or experience an early disease relapse/progression in the first few months of treatment, surviving much less. Reasonably, the primary and acquired resistance to ICIs has entered into the focus of clinical research with positive (e.g., nivolumab and relatlimab combination) and negative feedbacks (e.g., nivolumab with pegylated-IL2, pembrolizumab with T-VEC, nivolumab with epacadostat, and combinatorial triplets of BRAF/MEK inhibitors with immunotherapy). Many intrinsic (intracellular or intra-tumoral) but also extrinsic (systematic) events are considered to be involved in the development of this resistance to ICIs: i) melanoma cell immunogenicity (e.g., tumor mutational burden, antigen-processing machinery and immunogenic cell death, neoantigen affinity and heterogeneity, genomic instability, melanoma dedifferentiation and phenotypic plasticity), ii) immune cell trafficking, T-cell priming, and cell death evasion, iii) melanoma neovascularization, cellular TME components(e.g., Tregs, CAFs) and extracellular matrix modulation, iv) metabolic antagonism in the TME(highly glycolytic status, upregulated CD39/CD73/adenosine pathway, iDO-dependent tryptophan catabolism), v) T-cell exhaustion and negative immune checkpoints, and vi) gut microbiota. In the present overview, we discuss how these parameters compromise the efficacy of ICIs, with an emphasis on the lessons learned by the latest melanoma studies; and in parallel, we describe the main ongoing approaches to overcome the resistance to immunotherapy. Summarizing this information will improve the understanding of how these complicated dynamics contribute to immune escape and will help to develop more effective strategies on how anti-tumor immunity can surpass existing barriers of ICI-refractory melanoma.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Charalampos Theocharopoulos
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Tilemachos Koutouratsas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - John Haanen
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| |
Collapse
|
219
|
Predicting tumour radiosensitivity to deliver precision radiotherapy. Nat Rev Clin Oncol 2023; 20:83-98. [PMID: 36477705 DOI: 10.1038/s41571-022-00709-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
Owing to advances in radiotherapy, the physical properties of radiation can be optimized to enable individualized treatment; however, optimization is rarely based on biological properties and, therefore, treatments are generally planned with the assumption that all tumours respond similarly to radiation. Radiation affects multiple cellular pathways, including DNA damage, hypoxia, proliferation, stem cell phenotype and immune response. In this Review, we summarize the effect of these pathways on tumour responses to radiotherapy and the current state of research on genomic classifiers designed to exploit these variations to inform treatment decisions. We also discuss whether advances in genomics have generated evidence that could be practice changing and whether advances in genomics are now ready to be used to guide the delivery of radiotherapy alone or in combination.
Collapse
|
220
|
Huynh MA, Tang C, Siva S, Berlin A, Hannan R, Warner A, Koontz B, De Meeleer G, Palma D, Ost P, Tran PT. Review of Prospective Trials Assessing the Role of Stereotactic Body Radiation Therapy for Metastasis-directed Treatment in Oligometastatic Genitourinary Cancers. Eur Urol Oncol 2023; 6:28-38. [PMID: 36283936 DOI: 10.1016/j.euo.2022.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/05/2022] [Accepted: 09/30/2022] [Indexed: 11/27/2022]
Abstract
CONTEXT Emerging evidence supports the use of stereotactic body radiation therapy (SBRT) as metastatic-directed therapy (MDT) for oligometastatic genitourinary cancers; however, the prospective data to guide its application as an alternative standard of care remain limited. OBJECTIVE To review prospective trials that assess the role of SBRT for patients with genitourinary cancers within a modern framework of oligometastatic disease (OMD) and to highlight clinical scenarios where SBRT may offer a benefit to patients with metastatic cancer. EVIDENCE ACQUISITION We performed a critical review of PubMed and clinicaltrials.gov in April 2022 according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement, combined with expert input to identify prospective studies investigating the role of SBRT for oligometastatic prostate, renal, or bladder cancer. EVIDENCE SYNTHESIS The most commonly studied application of SBRT has been for metachronous oligorecurrent hormone-sensitive prostate cancer (HSPC). Further prospective study is needed to define the role of SBRT in delaying time to next therapy or inducing synergy with other systemic therapies. CONCLUSIONS SBRT has been associated with high rates of local control and minimal risk of toxicity with multiple trials assessing an MDT-alone approach for oligorecurrent HSPC. From a tumor-agnostic perspective, the clinical benefit of SBRT for OMD has been associated with the ability to extend overall survival. As methods of cancer detection and treatment evolve, expansion of studies that prospectively evaluate SBRT MDT, stratifying by tumor histology and oligometastatic state, is needed to inform optimal patient selection and treatment strategy. PATIENT SUMMARY We review outcomes from prospective trials assessing the role of stereotactic body radiation therapy (SBRT) for oligometastatic genitourinary cancers, which have predominantly investigated SBRT for oligorecurrent prostate cancer. Much work remains to define how SBRT alone compares with other standard of care treatments for prostate cancer or the role of SBRT in tumor control or delaying time to next therapy in oligometastatic renal and bladder cancer.
Collapse
Affiliation(s)
- Mai Anh Huynh
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA.
| | - Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shankar Siva
- Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre Building, Melbourne, Australia
| | - Alejandro Berlin
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Raquibul Hannan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Gert De Meeleer
- Department of Radiotherapy and Oncology, University Hospitals Leuven, Leuven, Belgium
| | - David Palma
- London Health Sciences Centre, London, ON, Canada
| | - Piet Ost
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Phuoc T Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
221
|
Leading Edge: Intratumor Delivery of Monoclonal Antibodies for the Treatment of Solid Tumors. Int J Mol Sci 2023; 24:ijms24032676. [PMID: 36768997 PMCID: PMC9917067 DOI: 10.3390/ijms24032676] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/02/2023] Open
Abstract
Immunotherapies based on immune checkpoint blockade have shown remarkable clinical outcomes and durable responses in patients with many tumor types. Nevertheless, these therapies lack efficacy in most cancer patients, even causing severe adverse events in a small subset of patients, such as inflammatory disorders and hyper-progressive disease. To diminish the risk of developing serious toxicities, intratumor delivery of monoclonal antibodies could be a solution. Encouraging results have been shown in both preclinical and clinical studies. Thus, intratumor immunotherapy as a new strategy may retain efficacy while increasing safety. This approach is still an exploratory frontier in cancer research and opens up new possibilities for next-generation personalized medicine. Local intratumor delivery can be achieved through many means, but an attractive approach is the use of gene therapy vectors expressing mAbs inside the tumor mass. Here, we summarize basic, translational, and clinical results of intratumor mAb delivery, together with descriptions of non-viral and viral strategies for mAb delivery in preclinical and clinical development. Currently, this is an expanding research subject that will surely play a key role in the future of oncology.
Collapse
|
222
|
Wu C, Shao Y, Gu W. Immunotherapy combined with radiotherapy to reverse immunosuppression in microsatellite stable colorectal cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03091-y. [PMID: 36717514 DOI: 10.1007/s12094-023-03091-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
In recent years, the exploration of immune checkpoint inhibitors (ICIs) has resulted in substantial progress and has changed the pattern of cancer treatment. ICIs have revolutionized the treatment landscape of microsatellite instable colorectal cancer while the efficacy is very limited in patients with microsatellite stable colorectal cancer. Therefore, sensitizing MSS CRC to immunotherapy is a major challenge in the field of CRC immunotherapy. Immunotherapy-based combination therapy is an effective strategy. This review of radiotherapy (RT) as a local treatment has dramatically changed in recent years, and it is now widely accepted that RT can deeply reshape the tumor environment by modulating the immune response. Such evidence gives a strong rationale for the synergism of radiotherapy and immunotherapy, introducing the era of 'immunoradiotherapy'. How to give full play to the synergistic effect of radiotherapy and immunotherapy to improve the therapeutic effect of MSS CRC and bring good prognosis is a hot problem to be solved in the field of cancer treatment.This article reviews the development of CRC immunotherapy, the immune resistance mechanism of MSS CRC, and the impact and potential value of immunotherapy combined with radiotherapy on the immune environment of CRC.
Collapse
Affiliation(s)
- Chenxi Wu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
223
|
Kimura Y, Fujimori M, Rajagopalan NR, Poudel K, Kim K, Nagar K, Vroomen LGPH, Reis H, Al-Ahmadie H, Coleman JA, Srimathveeravalli G. Macrophage activity at the site of tumor ablation can promote murine urothelial cancer via transforming growth factor-β1. Front Immunol 2023; 14:1070196. [PMID: 36761730 PMCID: PMC9902765 DOI: 10.3389/fimmu.2023.1070196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
Cell death and injury at the site of tumor ablation attracts macrophages. We sought to understand the status and activity of these cells while focusing on transforming growth factor-β1 (TGF-β1), a potent immunosuppressive and tumorigenic cytokine. Patients with urothelial cancer who underwent ablation using electrocautery or laser demonstrated increased infiltration and numbers of CD8+ T cells, along with FoxP3+ regulatory T cells, CD68+ macrophages and elevated levels of TGF-β1 in recurrent tumors. Similar findings were reproduced in a mouse model of urothelial cancer (MB49) by partial tumor ablation with irreversible electroporation (IRE). Stimulation of bone marrow derived macrophages with MB49 cell debris produced using IRE elicited strong M2 polarization, with exuberant secretion of TGF-β1. The motility, phenotypic markers and cytokine secretion by macrophages could be muted by treatment with Pirfenidone (PFD), a clinically approved drug targeting TGF-β1 signaling. MB49 cancer cells exposed to TGF-β1 exhibited increased migration, invasiveness and upregulation of epithelial-mesenchymal transition markers α-Smooth Muscle Actin and Vimentin. Such changes in MB49 cells were reduced by treatment with PFD even during stimulation with TGF-β1. IRE alone yielded better local tumor control when compared with control or PFD alone, while also reducing the overall number of lung metastases. Adjuvant PFD treatment did not provide additional benefit under in vivo conditions.
Collapse
Affiliation(s)
- Yasushi Kimura
- Department of Diagnosis and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Dept. of Mechanical and Industrial Engineering, University of Massachusetts Amherst,
Amherst, MA, United States
| | | | | | - Krish Poudel
- Dept. of Mechanical and Industrial Engineering, University of Massachusetts Amherst,
Amherst, MA, United States
| | - Kwanghee Kim
- Division of Urology, Department of Surgery, Memorial Sloan Kettering Cancer Center,
New York, NY, United States
| | - Karan Nagar
- Division of Urology, Department of Surgery, Memorial Sloan Kettering Cancer Center,
New York, NY, United States
| | - Laurien GPH. Vroomen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Henning Reis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jonathan A. Coleman
- Division of Urology, Department of Surgery, Memorial Sloan Kettering Cancer Center,
New York, NY, United States
| | - Govindarajan Srimathveeravalli
- Dept. of Mechanical and Industrial Engineering, University of Massachusetts Amherst,
Amherst, MA, United States
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
224
|
Rao YJ, Goodman JF, Haroun F, Bauman JE. Integrating Immunotherapy into Multimodal Treatment of Head and Neck Cancer. Cancers (Basel) 2023; 15:cancers15030672. [PMID: 36765627 PMCID: PMC9913370 DOI: 10.3390/cancers15030672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Patients with locally advanced head and neck squamous cell carcinoma (HNSCC) have a poor prognosis, with a significant risk of progression or death despite multimodal treatment with surgery, chemotherapy, and radiotherapy. Immune checkpoint inhibitors targeting the programmed death receptor-1 (PD1) have dramatically changed the treatment landscape for recurrent/metastatic disease, improving overall survival in both the first- and second-line palliative settings. This success has driven the investigation of treatment strategies incorporating immunotherapy earlier into the multimodal curative-intent or salvage treatment of both locally advanced and recurrent/metastatic HNSCC. This review encompassed the following three subjects, with a focus on recently reported and ongoing clinical trials: (1) the use of neoadjuvant immunotherapy prior to surgery for locally advanced HNSCC, (2) the use of immunochemoradiotherapy for locally advanced head and neck cancers, and (3) novel uses of immunotherapy in the salvage of recurrent/metastatic HNSCC via a combined modality, including reirradiation paradigms. The results of these studies are eagerly awaited to improve patient outcomes in this challenging disease.
Collapse
Affiliation(s)
- Yuan James Rao
- Division of Radiation Oncology, The George Washington University School of Medicine, Washington, DC 20037, USA
| | - Joseph F. Goodman
- Division of Head and Neck Surgery, The George Washington University School of Medicine, Washington, DC 20037, USA
| | - Faysal Haroun
- Division of Hematology/Oncology, The George Washington University School of Medicine, Washington, DC 20037, USA
| | - Julie E. Bauman
- Division of Hematology/Oncology, The George Washington University School of Medicine, Washington, DC 20037, USA
- Correspondence:
| |
Collapse
|
225
|
Real-Life Study of the Benefit of Concomitant Radiotherapy with Cemiplimab in Advanced Cutaneous Squamous Cell Carcinoma (cSCC): A Retrospective Cohort Study. Cancers (Basel) 2023; 15:cancers15020495. [PMID: 36672444 PMCID: PMC9856754 DOI: 10.3390/cancers15020495] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Cemiplimab is a monoclonal antibody targeting the PD-1, and phase II trials have shown its efficacy in the treatment of advanced cutaneous squamous cell carcinoma in patients who are not candidates for curative surgery or radiation therapy as a first- or later-line treatment. A synergistic antitumoral response has been demonstrated with concurrent radiotherapy and PD1-immunotherapy. However, no real-life study has demonstrated this effect in advanced cutaneous squamous cell carcinoma. METHODS We conducted a real-life retrospective cohort study to investigate the benefit of concomitant therapy in 33 patients treated with cemiplimab at the University Hospital of Caen, alone (C group) or concomitant to radiotherapy (C/RT group). Our primary objectives were to evaluate the best overall response and objective response rate. Our secondary objectives were the disease control rate, median time to response, progression-free survival, overall survival, clinical benefit of radiotherapy, and safety data. After stopping cemiplimab administration, we performed a follow-up of our patients and performed a descriptive study. RESULTS We reported an objective response rate of 45.5%, including 47.6% in the cemiplimab group versus 41.6% in the concomitant group. The addition of radiotherapy to cemiplimab enables an earlier clinico-radiological response, with a median duration of 5.5 months in the cemiplimab group versus 3 months in the concomitant therapy group. The response to treatment was prolonged despite discontinuation of cemiplimab, with 91.6% (n = 11/12) and 83.3% (n = 10/12) patients in complete or partial remission at 6 months and 1 year after cessation of cemiplimab and no switch to another oncological treatment, respectively. Radiation therapy also provided a therapeutic effect in 83.3% of the patients in the concomitant group, without increasing the occurrence of adverse events. CONCLUSIONS Our study confirms the efficacy of cemiplimab and radiotherapy in the management of advanced cutaneous squamous cell carcinoma. Concomitant therapy permitted to obtain an earlier radiological response, a beneficial local therapeutic effect of radiotherapy, without any safety alert.
Collapse
|
226
|
Ji X, Jiang W, Wang J, Zhou B, Ding W, Liu S, Huang H, Chen G, Sun X. Application of individualized multimodal radiotherapy combined with immunotherapy in metastatic tumors. Front Immunol 2023; 13:1106644. [PMID: 36713375 PMCID: PMC9877461 DOI: 10.3389/fimmu.2022.1106644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Radiotherapy is one of the mainstays of cancer treatment. More than half of cancer patients receive radiation therapy. In addition to the well-known direct tumoricidal effect, radiotherapy has immunomodulatory properties. When combined with immunotherapy, radiotherapy, especially high-dose radiotherapy (HDRT), exert superior systemic effects on distal and unirradiated tumors, which is called abscopal effect. However, these effects are not always effective for cancer patients. Therefore, many studies have focused on exploring the optimized radiotherapy regimens to further enhance the antitumor immunity of HDRT and reduce its immunosuppressive effect. Several studies have shown that low-dose radiotherapy (LDRT) can effectively reprogram the tumor microenvironment, thereby potentially overcoming the immunosuppressive stroma induced by HDRT. However, bridging the gap between preclinical commitment and effective clinical delivery is challenging. In this review, we summarized the existing studies supporting the combined use of HDRT and LDRT to synergistically enhance antitumor immunity, and provided ideas for the individualized clinical application of multimodal radiotherapy (HDRT+LDRT) combined with immunotherapy.
Collapse
|
227
|
Li H, Luo Q, Zhang H, Ma X, Gu Z, Gong Q, Luo K. Nanomedicine embraces cancer radio-immunotherapy: mechanism, design, recent advances, and clinical translation. Chem Soc Rev 2023; 52:47-96. [PMID: 36427082 DOI: 10.1039/d2cs00437b] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cancer radio-immunotherapy, integrating external/internal radiation therapy with immuno-oncology treatments, emerges in the current management of cancer. A growing number of pre-clinical studies and clinical trials have recently validated the synergistic antitumor effect of radio-immunotherapy, far beyond the "abscopal effect", but it suffers from a low response rate and toxicity issues. To this end, nanomedicines with an optimized design have been introduced to improve cancer radio-immunotherapy. Specifically, these nanomedicines are elegantly prepared by incorporating tumor antigens, immuno- or radio-regulators, or biomarker-specific imaging agents into the corresponding optimized nanoformulations. Moreover, they contribute to inducing various biological effects, such as generating in situ vaccination, promoting immunogenic cell death, overcoming radiation resistance, reversing immunosuppression, as well as pre-stratifying patients and assessing therapeutic response or therapy-induced toxicity. Overall, this review aims to provide a comprehensive landscape of nanomedicine-assisted radio-immunotherapy. The underlying working principles and the corresponding design strategies for these nanomedicines are elaborated by following the concept of "from bench to clinic". Their state-of-the-art applications, concerns over their clinical translation, along with perspectives are covered.
Collapse
Affiliation(s)
- Haonan Li
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiang Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Xuelei Ma
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Zhongwei Gu
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiyong Gong
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Kui Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
228
|
Yang H, Hu Y, Kong D, Chen P, Yang L. Intralesional Bacillus Calmette-Guérin injections and hypo-fractionated radiation synergistically induce systemic antitumor immune responses. Int Immunopharmacol 2023; 114:109542. [PMID: 36521291 DOI: 10.1016/j.intimp.2022.109542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Radiotherapy, an important treatment for multiple malignancies, produces systemic anti-tumor effects in combination with immunotherapies, especially immune checkpoint inhibitors (ICBs). However, for some patients who do not respond to ICB treatment or show ICB-induced autoimmune symptoms, new alternatives need to be explored. Innovative immunomodulatory strategies, including the administration of immunostimulants, could be used to improve the immunogenicity induced by radiotherapy. In this study, we explored the synergistic effect of Bacillus Calmette-Guérin (BCG) combined with hypo-fractionated radiotherapy (H-RT) in inducing anti-tumor immune responses. We observed the systemic and abscopal effects of this combination in mice with 4 T1 breast cancer. H-RT combined with BCG could remodel the immune microenvironment and alleviate leukocyte-like responses by increasing the infiltration of CD8 + T cells, promoting the maturation of dendritic cells (DCs), decreasing the infiltration of immunosuppressive cells, and downregulating the expression of immunosuppressive cytokines. Therefore, this combination could enhance the systemic anti-tumor response, leading to the regression of untreated synchronous tumors and a decrease in the systemic metastatic burden. These results highlight the potential of BCG in assisting antitumor therapy and the therapeutic potential of this combination treatment.
Collapse
Affiliation(s)
- Hanshan Yang
- Medical Center of Hematology, the Second Affiliated Hospital, Army Medical University, Chongqing 400000, China; Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuru Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Deyi Kong
- Department of Encephalopathy, Jiang 'an Hospital of Traditional Chinese Medicine, Yibin 644000, China
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Linglin Yang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
229
|
Zhao K, Jiang L, Si Y, Zhou S, Huang Z, Meng X. TIGIT blockade enhances tumor response to radiotherapy via a CD103 + dendritic cell-dependent mechanism. Cancer Immunol Immunother 2023; 72:193-209. [PMID: 35794399 DOI: 10.1007/s00262-022-03227-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/17/2022] [Indexed: 01/07/2023]
Abstract
Blockade of the T cell immunoreceptor with the immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) can enhance innate and adaptive tumor immunity and radiotherapy (RT) can enhance anti-tumor immunity. However, our data suggest that TIGIT-mediated immune suppression may be an impediment to such goals. Herein, we report on the synergistic effects of RT combined with anti-TIGIT therapy and the mechanism of their interaction. Treatment efficacy was assessed by measuring primary and secondary tumor growth, survival, and immune memory capacity. The function of CD103 + dendritic cells (DCs) under the combined treatment was assessed in wild-type and BATF3-deficient (BATF3-/-) mice. FMS-like tyrosine kinase 3 ligand (Flt3L) was used to confirm the role of CD103 + DCs in RT combined with anti-TIGIT therapy. TIGIT was upregulated in immune cells following RT in both esophageal squamous cell carcinoma patients and mouse models. Administration of the anti-TIGIT antibody enhanced the efficacy of RT through a CD8 + T cell-dependent mechanism. It was observed that RT and the anti-TIGIT antibody synergistically enhanced the accumulation of tumor-infiltrating DCs, which activated CD8 + T cells. The efficacy of the combination therapy was negated in the BATF3-/- mouse model. CD103 + DCs were required to promote the anti-tumor effects of combination therapy. Additionally, Flt3L therapy enhanced tumor response to RT combined with TIGIT blockade. Our study demonstrated TIGIT blockade can synergistically enhance anti-tumor T cell responses to RT via CD8 + T cells (dependent on CD103 + DCs), suggesting the clinical potential of targeting the TIGIT pathway and expanding CD103 + DCs in RT.
Collapse
Affiliation(s)
- Kaikai Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Liyang Jiang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Youjiao Si
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shujie Zhou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaoqin Huang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
230
|
Sato A, Kraynak J, Marciscano AE, Galluzzi L. Radiation therapy: An old dog learning new tricks. Methods Cell Biol 2023; 174:xv-xxv. [PMID: 37039770 DOI: 10.1016/s0091-679x(23)00036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
231
|
Che J, Yu S. Ecological niches for colorectal cancer stem cell survival and thrival. Front Oncol 2023; 13:1135364. [PMID: 37124519 PMCID: PMC10134776 DOI: 10.3389/fonc.2023.1135364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
To date, colorectal cancer is still ranking top three cancer types severely threatening lives. According to cancer stem cell hypothesis, malignant colorectal lumps are cultivated by a set of abnormal epithelial cells with stem cell-like characteristics. These vicious stem cells are derived from intestinal epithelial stem cells or transformed by terminally differentiated epithelial cells when they accumulate an array of transforming genomic alterations. Colorectal cancer stem cells, whatever cell-of-origin, give rise to all morphologically and functionally heterogenous tumor daughter cells, conferring them with overwhelming resilience to intrinsic and extrinsic stresses. On the other hand, colorectal cancer stem cells and their daughter cells continuously participate in constructing ecological niches for their survival and thrival by communicating with adjacent stromal cells and circulating immune guardians. In this review, we first provide an overview of the normal cell-of-origin populations contributing to colorectal cancer stem cell reservoirs and the niche architecture which cancer stem cells depend on at early stage. Then we survey recent advances on how these aberrant niches are fostered by cancer stem cells and their neighbors. We also discuss recent research on how niche microenvironment affects colorectal cancer stem cell behaviors such as plasticity, metabolism, escape of immune surveillance as well as resistance to clinical therapies, therefore endowing them with competitive advantages compared to their normal partners. In the end, we explore therapeutic strategies available to target malignant stem cells.
Collapse
Affiliation(s)
- Jiayun Che
- Shanghai Institute of Precision Medicine, 9 Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyan Yu
- Shanghai Institute of Precision Medicine, 9 Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, 9 Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Shiyan Yu,
| |
Collapse
|
232
|
Mirjolet C, Baude J, Galluzzi L. Dual impact of radiation therapy on tumor-targeting immune responses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:xiii-xxiv. [PMID: 37438022 DOI: 10.1016/s1937-6448(23)00114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Affiliation(s)
- Céline Mirjolet
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, GF Leclerc Centre, Unicancer, Dijon, France; TIReCS Team, UMR INSERM 1231, Dijon, France.
| | - Jérémy Baude
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, GF Leclerc Centre, Unicancer, Dijon, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States.
| |
Collapse
|
233
|
Yu L, Xie H, Wang L, Cheng M, Liu J, Xu J, Wei Z, Ye X, Xie Q, Liang J. Microwave ablation induces abscopal effect via enhanced systemic antitumor immunity in colorectal cancer. Front Oncol 2023; 13:1174713. [PMID: 37182153 PMCID: PMC10174442 DOI: 10.3389/fonc.2023.1174713] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Background Thermal ablation is the primary procedure for the local treatment of lung metastases. It is known that radiotherapy and cryoablation can stimulate an abscopal effect, while the occurrence of abscopal effect induced by microwave ablation is less; the cellular and molecular mechanisms involved in the abscopal effect after microwave ablation should be further elucidated. Methods CT26 tumor-bearing Balb/c mice were treated with microwave ablation with several combinations of ablation power and time duration. The growth of primary or abscopal tumors and the survival of mice were both monitored; moreover, immune profiles in abscopal tumors, spleens, and lymph nodes were examined by flow cytometry. Results Microwave ablation suppressed tumor growth in both primary and abscopal tumors. Both local and systemic T-cell responses were induced by microwave ablation. Furthermore, the mice exhibiting significant abscopal effect after microwave ablation markedly elevated Th1 cell proportion both in the abscopal tumors and spleens. Conclusions Microwave ablation at 3 w-3 min not only suppressed tumor growth in the primary tumors but also stimulated an abscopal effect in the CT26-bearing mice via the improvement of systemic and intratumoral antitumor immunity.
Collapse
Affiliation(s)
- Lu Yu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Hairong Xie
- Department of Oncology, Feicheng People’s Hospital, Feicheng, China
| | - Linping Wang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Min Cheng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jie Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jiamei Xu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Zhigang Wei
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Xin Ye
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
- *Correspondence: Qi Xie, ; Jing Liang,
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
- *Correspondence: Qi Xie, ; Jing Liang,
| |
Collapse
|
234
|
Zhou P, Wang Y, Qin S, Han Y, Yang Y, Zhao L, Zhou Q, Zhuo W. Abscopal effect triggered by radiation sequential mono-immunotherapy resulted in a complete remission of PMMR sigmoid colon cancer. Front Immunol 2023; 14:1139527. [PMID: 37020543 PMCID: PMC10067748 DOI: 10.3389/fimmu.2023.1139527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
Background Radiation therapy combined with immune checkpoint inhibitors (ICIs) has recently turned into an appealing and promising approach to enhance the anti-tumor immunity and efficacy of immunological drugs in many tumors. Abscopal effect induced by radiation is a phenomenon that often leads to an efficient immunity response. In this study, we investigated whether the combination of the immunogenic effects derived from radiotherapy sequential ICIs-based therapy could increase the incidence of abscopal effects, and improve the survival rates. Case presentation We described a clinical case regarding a 35-year-old male patient who was admitted to our hospital with a diagnosis of adenocarcinoma of the sigmoid colon and synchronous multiple liver metastases following a surgical resection. The molecular pathological examination showed immune-desert phenotype and proficient mismatch repair (pMMR). The patient was treated with adjuvant chemotherapy after surgery, however, after 7 months, multiple metastasis in the pelvic lymph nodes were diagnosed. Unfortunately, the tumor progressed despite multiple cycles of chemotherapy combined with cetuximab or bevacizumab. Within the follow-up treatment, the patient was administered with only 50Gy/25F of radiation dose to treat the anastomotic lesions. Subsequently, mono-sindilizumab was used as systemic therapy, leading to a rapid reduction of all pelvic lesions and complete clinical remission. So far, the patient survived for more than 20 months under continuous mono-sindilizumab treatment and is still in complete remission. Conclusion A localized radiotherapy combined with a sindilizumab-based systemic therapy may overcome the immune resistance of pMMR metastatic colorectal cancer (mCRC), thus obtaining greater efficacy of the therapy. Its mechanism may be related to the abscopal effect obtained by the synergistic use of radiation and sindilizumab, which should be further investigated in the future.
Collapse
Affiliation(s)
- Pu Zhou
- Department of Oncology, People’s Hospital of Shapingba District, Chongqing, China
| | - Yan Wang
- Department of Oncology, Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Si Qin
- Department of Oncology, Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Yan Han
- Department of Oncology, People’s Hospital of Chongqing Hechuan, Chongqing, China
| | - Yumeng Yang
- Department of Oncology, People’s Hospital of Shapingba District, Chongqing, China
| | - Liang Zhao
- Department of Oncology, People’s Hospital of Shapingba District, Chongqing, China
| | - Quan Zhou
- Department of Oncology, People’s Hospital of Shapingba District, Chongqing, China
| | - Wenlei Zhuo
- Department of Oncology, People’s Hospital of Shapingba District, Chongqing, China
- *Correspondence: Wenlei Zhuo,
| |
Collapse
|
235
|
Sato A, Kraynak J, Marciscano AE, Galluzzi L. Radiation therapy: An old dog learning new tricks. Methods Cell Biol 2023; 180:xv-xxv. [PMID: 37890936 DOI: 10.1016/s0091-679x(23)00166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Affiliation(s)
- Ai Sato
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Jeffrey Kraynak
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Ariel E Marciscano
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States.
| |
Collapse
|
236
|
Nguyen AT, Liu CTS, Kamrava M. A "scoping" review of prostate brachytherapy and immune responses. Brachytherapy 2023; 22:21-29. [PMID: 36437221 DOI: 10.1016/j.brachy.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Whether prostate brachytherapy (BT) results in opportunistic biological changes that can improve clinical outcomes is not well studied. We sought to investigate the impact of prostate BT on the immune system. MATERIALS AND METHODS A scoping review was performed using PubMed/Scopus for papers published between 2011-2021. Search terms were "brachytherapy" AND "immune" AND "prostate". A total of 81 records were identified and 6 were selected for further review. RESULTS 2 low-dose-rate BT papers (n=68) evaluated changes in the peripheral blood following I-125 monotherapy. Both showed significant increases in peripheral CD3+ and CD4+ T cells post-BT. One also demonstrated significant increases in Treg subsets up to 150 days post-BT. 4 high-dose-rate (HDR) studies (n=37) were identified, and all were done in combination with EBRT. The largest study (n=24) showed a single 10 Gy fraction of HDR converted 80% of "cold" tumors into an "intermediate" or "hot" state, based on a tumor inflammation signature when comparing a pre-BT biopsy to one prior to a second HDR fraction. CONCLUSION Prostate BT can invoke an immune activating phenotype; however, changes in immunosuppressive cells are also seen. Additional data is needed to understand how to promote synergy between BT and the immune system.
Collapse
Affiliation(s)
- Anthony T Nguyen
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Mitchell Kamrava
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA.
| |
Collapse
|
237
|
Carlson PM, Patel RB, Birstler J, Rodriquez M, Sun C, Erbe AK, Bates AM, Marsh I, Grudzinski J, Hernandez R, Pieper AA, Feils AS, Rakhmilevich AL, Weichert JP, Bednarz BP, Sondel PM, Morris ZS. Radiation to all macroscopic sites of tumor permits greater systemic antitumor response to in situ vaccination. J Immunother Cancer 2023; 11:e005463. [PMID: 36639155 PMCID: PMC9843201 DOI: 10.1136/jitc-2022-005463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The antitumor effects of external beam radiation therapy (EBRT) are mediated, in part, by an immune response. We have reported that a single fraction of 12 Gy EBRT combined with intratumoral anti-GD2 hu14.18-IL2 immunocytokine (IC) generates an effective in situ vaccine (ISV) against GD2-positive murine tumors. This ISV is effective in eradicating single tumors with sustained immune memory; however, it does not generate an adequate abscopal response against macroscopic distant tumors. Given the immune-stimulatory capacity of radiation therapy (RT), we hypothesized that delivering RT to all sites of disease would augment systemic antitumor responses to ISV. METHODS We used a syngeneic B78 murine melanoma model consisting of a 'primary' flank tumor and a contralateral smaller 'secondary' flank tumor, treated with 12 Gy EBRT and intratumoral IC immunotherapy to the primary and additional EBRT to the secondary tumor. As a means of delivering RT to all sites of disease, both known and occult, we also used a novel alkylphosphocholine analog, NM600, conjugated to 90Y as a targeted radionuclide therapy (TRT). Tumor growth, overall survival, and cause of death were measured. Flow cytometry was used to evaluate immune population changes in both tumors. RESULTS Abscopal effects of local ISV were amplified by delivering as little as 2-6 Gy of EBRT to the secondary tumor. When the primary tumor ISV regimen was delivered in mice receiving 12 Gy EBRT to the secondary tumor, we observed improved overall survival and more disease-free mice with immune memory compared with either ISV or 12 Gy EBRT alone. Similarly, TRT combined with ISV resulted in improved overall survival and a trend towards reduced tumor growth rates when compared with either treatment alone. Using flow cytometry, we identified an influx of CD8+ T cells with a less exhausted phenotype in both the ISV-targeted primary and the distant secondary tumor following the combination of secondary tumor EBRT or TRT with primary tumor ISV. CONCLUSIONS We report a novel use for low-dose RT, not as a direct antitumor modality but as an immunomodulator capable of driving and expanding antitumor immunity against metastatic tumor sites following ISV.
Collapse
Affiliation(s)
- Peter M Carlson
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ravi B Patel
- Radiation Oncology, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| | - Jen Birstler
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew Rodriquez
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Claire Sun
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy K Erbe
- Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amber M Bates
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ian Marsh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joseph Grudzinski
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Alexander A Pieper
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Arika S Feils
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander L Rakhmilevich
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jamey P Weichert
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bryan P Bednarz
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul M Sondel
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zachary S Morris
- Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
238
|
Pal K, Sheth RA. Engineering the Tumor Immune Microenvironment through Minimally Invasive Interventions. Cancers (Basel) 2022; 15:196. [PMID: 36612192 PMCID: PMC9818918 DOI: 10.3390/cancers15010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
The tumor microenvironment (TME) is a unique landscape that poses several physical, biochemical, and immune barriers to anti-cancer therapies. The rapidly evolving field of immuno-engineering provides new opportunities to dismantle the tumor immune microenvironment by efficient tumor destruction. Systemic delivery of such treatments can often have limited local effects, leading to unwanted offsite effects such as systemic toxicity and tumor resistance. Interventional radiologists use contemporary image-guided techniques to locally deliver these therapies to modulate the immunosuppressive TME, further accelerating tumor death and invoking a better anti-tumor response. These involve local therapies such as intratumoral drug delivery, nanorobots, nanoparticles, and implantable microdevices. Physical therapies such as photodynamic therapy, electroporation, hyperthermia, hypothermia, ultrasound therapy, histotripsy, and radiotherapy are also available for local tumor destruction. While the interventional radiologist can only locally manipulate the TME, there are systemic offsite recruitments of the immune response. This is known as the abscopal effect, which leads to more significant anti-tumoral downstream effects. Local delivery of modern immunoengineering methods such as locoregional CAR-T therapy combined with immune checkpoint inhibitors efficaciously modulates the immunosuppressive TME. This review highlights the various advances and technologies available now to change the TME and revolutionize oncology from a minimally invasive viewpoint.
Collapse
Affiliation(s)
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
239
|
Abstract
The hypothesis that ablative therapies (such as surgery or radiation) can be used to cure patients with a limited number of metastases was influential in changing practice. Early assertions of efficacy were based on observational studies, often without control groups, showing better-than-expected outcomes. However, in the past decade, new evidence from randomized trials has emerged, which in some cases have affirmed old hypotheses, but in other cases have raised new questions. In this review, we discuss the challenges in defining oligometastatic disease, summarize the randomized evidence evaluating metastasis-directed therapy in patients with oligometastatic disease, provide context for the difficulty in generating randomized evidence, and examine ongoing phase III studies.
Collapse
Affiliation(s)
- Wei Liu
- Division of Radiation Oncology, BC Cancer Vancouver, Vancouver, BC, Canada
| | - Houda Bahig
- Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - David A Palma
- Department of Oncology, Division of Radiation Oncology, London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
240
|
Najibi AJ, Larkin K, Feng Z, Jeffreys N, Dacus MT, Rustagi Y, Hodi FS, Mooney DJ. Chemotherapy Dose Shapes the Expression of Immune-Interacting Markers on Cancer Cells. Cell Mol Bioeng 2022; 15:535-551. [PMID: 36531864 PMCID: PMC9751245 DOI: 10.1007/s12195-022-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Tumor and immune cells interact through a variety of cell-surface proteins that can either restrain or promote tumor progression. The impacts of cytotoxic chemotherapy dose and delivery route on this interaction profile remain incompletely understood, and could support the development of more effective combination therapies for cancer treatment. Methods and Results Here, we found that exposure to the anthracycline doxorubicin altered the expression of numerous immune-interacting markers (MHC-I, PD-L1, PD-L2, CD47, Fas, and calreticulin) on live melanoma, breast cancer, and leukemia cells in a dose-dependent manner in vitro. Notably, an intermediate dose best induced immunogenic cell death and the expression of immune-activating markers without maximizing expression of markers associated with immune suppression. Bone marrow-derived dendritic cells exposed to ovalbumin-expressing melanoma treated with intermediate doxorubicin dose became activated and best presented tumor antigen. In a murine melanoma model, both the doxorubicin dose and delivery location (systemic infusion versus local administration) affected the expression of these markers on live tumor cells. Particularly, local release of doxorubicin from a hydrogel increased calreticulin expression on tumor cells without inducing immune-suppressive markers, in a manner dependent on the loaded dose. Doxorubicin exposure also altered the expression of immune-interacting markers in patient-derived melanoma cells. Conclusions Together, these results illustrate how standard-of-care chemotherapy, when administered in various manners, can lead to distinct expression of immunogenic markers on cancer cells. These findings may inform development of chemo-immunotherapy combinations for cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00742-y.
Collapse
Affiliation(s)
- Alexander J. Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115 USA
| | - Kerry Larkin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115 USA
| | - Zhaoqianqi Feng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115 USA
| | - Nicholas Jeffreys
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115 USA
| | - Mason T. Dacus
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115 USA
| | - Yashika Rustagi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115 USA
| |
Collapse
|
241
|
Gubbi S, Vijayvergia N, Yu JQ, Klubo-Gwiezdzinska J, Koch CA. Immune Checkpoint Inhibitor Therapy in Neuroendocrine Tumors. Horm Metab Res 2022; 54:795-812. [PMID: 35878617 PMCID: PMC9731788 DOI: 10.1055/a-1908-7790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuroendocrine tumors (NETs) occur in various regions of the body and present with complex clinical and biochemical phenotypes. The molecular underpinnings that give rise to such varied manifestations have not been completely deciphered. The management of neuroendocrine tumors (NETs) involves surgery, locoregional therapy, and/or systemic therapy. Several forms of systemic therapy, including platinum-based chemotherapy, temozolomide/capecitabine, tyrosine kinase inhibitors, mTOR inhibitors, and peptide receptor radionuclide therapy have been extensively studied and implemented in the treatment of NETs. However, the potential of immune checkpoint inhibitor (ICI) therapy as an option in the management of NETs has only recently garnered attention. Till date, it is not clear whether ICI therapy holds any distinctive advantage in terms of efficacy or safety when compared to other available systemic therapies for NETs. Identifying the characteristics of NETs that would make them (better) respond to ICIs has been challenging. This review provides a summary of the current evidence on the value of ICI therapy in the management of ICIs and discusses the potential areas for future research.
Collapse
Affiliation(s)
- Sriram Gubbi
- Endocrinology, National Institutes of Health Clinical Center, Bethesda,
United States
| | | | - Jian Q Yu
- Nuclear Medicine, Fox Chase Cancer Center, Philadelphia, United
States
| | - Joanna Klubo-Gwiezdzinska
- National Institute of Diabetes and Digestive and Kidney Diseases,
National Institutes of Health, Bethesda, United States
| | - Christian A. Koch
- Medicine/Endocrinology, The University of Tennessee Health
Science Center, Memphis, United States
- Medicine, Fox Chase Cancer Center, Philadelphia, United
States
- Correspondence Prof. Christian A. Koch, FACP,
MACE Fox Chase Cancer
CenterMedicine, 333 Cottman
AvePhiladelphia19111-2497United
States215 728 2713
| |
Collapse
|
242
|
Zhang Y, Li Z, Chen Y, Yang P, Hu Y, Zeng Z, Du S. Higher serum sPD-L1 levels after radiotherapy indicate poor outcome in hepatocellular carcinoma patients. Transl Oncol 2022; 26:101537. [PMID: 36115075 PMCID: PMC9483785 DOI: 10.1016/j.tranon.2022.101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Our preclinical research reveals that radiotherapy (RT) promoted PD-L1 upregulation in tumor tissues and that higher PD-L1 after RT worsened the prognosis through immunosuppression. We sought to validate our experimental results in clinical cohorts and promote clinical application. PATIENTS AND METHODS In cohort 1, formalin-fixed paraffin-embedded samples were obtained from 46 HCC patients, 23 of whom received preoperative RT and the other 23 received direct surgery. A prospectively collected database contained 122 HCC patients treated with liver RT were enrolled in cohort 2. Blood samples were taken a day before and two weeks after RT. Patients in cohort 2 were further divided into two groups, exploration (73 patients) and validation (49 patients) groups. RESULTS In cohort 1, RT increased the expression of PD-L1 in tumor tissues (p = 0.001), and PD-L1 levels were associated with decreased cytotoxic T-cell infiltration and a trend toward poor prognosis (p = 0.14). Moreover, PD-L1 expression in tumor tissue positively correlated with soluble (s) PD-L1 in serum (R = 0.421, p = 0.046). Then, in cohort 2, we revealed RT increased sPD-L1 in serum (p < 0.001), which was associated with the number of circulating CD8+ T cells (R = -0.24, p = 0.036), indicating poor survival. Furthermore, patients with higher rate of sPD-L1 increase after RT have better treatment response (p < 0.001), PFS (p = 0.032) and OS (p = 0.045). CONCLUSION Higher post-RT serum sPD-L1, which may potentiate immune suppression effects, indicates a poor prognosis for HCC patients treated with RT.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zongjuan Li
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yixing Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, China
| | - Ping Yang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yong Hu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, China.
| | - Shisuo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, China.
| |
Collapse
|
243
|
Shen W, Liu T, Pei P, Li J, Yang S, Zhang Y, Zhou H, Hu L, Yang K. Metabolic Homeostasis-Regulated Nanoparticles for Antibody-Independent Cancer Radio-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207343. [PMID: 36222379 DOI: 10.1002/adma.202207343] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The special metabolic traits of cancer cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) are promising targets for developing novel cancer therapy strategies, especially the glycolysis and mitochondrial energy metabolism. However, therapies targeting a singular metabolic pathway are always counteracted by the metabolic reprogramming of cancer, resulting in unsatisfactory therapeutic effect. Herein, this work employs poly(ethylene glycol)-coated (PEGylated) liposomes as the drug delivery system for both mannose and levamisole hydrochloride to simultaneously inhibit glycolysis and restrain mitochondrial energy metabolism and thus inhibit tumor growth. In combination with radiotherapy, the liposomes can not only modulate the immunosuppressive TME by cellular metabolism regulation to achieve potent therapeutic effect for local tumors, but also suppress the M2 macrophage proliferation triggered by X-ray irradiation and thus enhance the immune response to inhibit metastatic lesions. In brief, this work provides a new therapeutic strategy targeting the special metabolic traits of cancer cells and immunosuppressive TAMs to enhance the abscopal effect of radiotherapy for cancer.
Collapse
Affiliation(s)
- Wenhao Shen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Junmei Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Sai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hailin Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
244
|
Yu Q, Zhang X, Wang N, Li C, Zhang Y, Zhou J, Wang G, Cao Y. Radiation prior to chimeric antigen receptor T-cell therapy is an optimizing bridging strategy in relapsed/refractory aggressive B-cell lymphoma. Radiother Oncol 2022; 177:53-60. [PMID: 36309153 DOI: 10.1016/j.radonc.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE We aimed to analyze the safety and efficacy of a radiation bridging regimen with or without chemotherapy compared with chemotherapy alone prior to CAR T-cell treatment for relapsed/refractory aggressive B-cell lymphoma (r/r ABL). METHODS AND MATERIALS In this study, 45 out of 105 patients enrolled in CD19/22 CAR T-cell "cocktail" clinical trial were excluded, including 34 patients without bridging treatment. Total 60 patients receiving CAR T-cell therapies with bridging regimens as chemotherapy alone (C-CAR-T group, n = 31), and radiotherapy with or without chemotherapy (R-CAR-T group, n = 29) between February 2017 and October 2020 were retrospectively analyzed. RESULTS No significant toxicities were identified in the R-CAR-T group, and no patients in either group experienced CAR-T-related deaths. However, the R-CAR-T group showed a lower incidence of cytokine release syndrome (CRS) of grade ≥ 3 relative to the C-CAR-T group (0% vs 19.4%, P = 0.036). The incidence of neurological toxicity was 9.9% and 6.9% in the C-CAR-T group and R-CAR-T group, respectively (P = 0.697). The R-CAR-T group achieved a higher overall response rate (ORR) at the day 30 assessment (82.8% vs 45.2%, P = 0.0025). Further analyzing the outcomes, the R-CAR-T group presented a better 1-year progression-free survival (PFS) rate than the C-CAR-T group (46.9% vs 22.6%, P = 0.0356). Intriguingly, the bridging radiation regimen extremely improved the 6-month PFS (50.8% vs 16. 7%, P = 0.0369) and 1-year overall survival (OS) (56.3% vs 33.3%, P = 0.0236) rates in patients with bulky disease. The study also found that conducting radiotherapy as a bridging regimen was an independent factor that predicted better PFS (HR: 0.534, 95% CI: 0.289-0.987, P = 0.045). CONCLUSIONS Our results provide and strengthen novel insights that the use of radiotherapy as a bridging strategy was demonstrated to reduce the incidence of severe CRS and improve the PFS of patients. In subgroup analysis, it was confirmed that radiotherapy can improve PFS and OS in patients with bulky disease. These findings open new avenues to improve the efficacy and safety of CAR T-cell therapy.
Collapse
Affiliation(s)
- Qiuxia Yu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiaoying Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Chunrui Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Gaoxiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
245
|
Someya M, Tokita S, Kanaseki T, Kitagawa M, Hasegawa T, Tsuchiya T, Fukushima Y, Gocho T, Kozuka Y, Mafune S, Ikeuchi Y, Takahashi M, Moniwa K, Matsuo K, Hasegawa T, Torigoe T, Sakata KI. Combined chemoradiotherapy and programmed cell death-ligand 1 blockade leads to changes in the circulating T-cell receptor repertoire of patients with non-small-cell lung cancer. Cancer Sci 2022; 113:4394-4400. [PMID: 36069051 DOI: 10.1111/cas.15566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 12/15/2022] Open
Abstract
Combined chemoradiotherapy (CRT) and programmed cell death-ligand 1 (PD-L1) blockade is a new care standard for unresectable stage III non-small-cell lung cancer (NSCLC). Although this consolidation therapy has improved the overall survival of patients with NSCLC, the synergistic action mechanisms of CRT and immunotherapy on T cells remain unclear. In addition, there is a paucity of reliable biomarkers to predict clinical responses to therapy. In this study, we analyzed T-cell receptor (TCR) sequences in the peripheral blood of five patients with NSCLC. T-cell receptor analysis was undertaken before treatment, after CRT, and after PD-L1 blockade. Notably, we observed the expansion and alteration of the dominant T-cell clonotypes in all cases with a complete response. In contrast, neither expansion nor alteration of the TCR repertoire was observed in cases with progressive disease. T cell expansion was initiated after CRT and was further enhanced after PD-L1 blockade. Our findings suggest the systemic effect of CRT on circulating T cells in addition to the curative effect on limited tumor sites. Dynamic changes in circulating T-cell clonotypes could have a prognostic significance for combined CRT and PD-L1 blockade.
Collapse
Affiliation(s)
- Masanori Someya
- Department of Radiology, Sapporo Medical University, Sapporo, Japan
| | - Serina Tokita
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | | | - Mio Kitagawa
- Department of Radiology, Sapporo Medical University, Sapporo, Japan
| | | | - Takaaki Tsuchiya
- Department of Radiology, Sapporo Medical University, Sapporo, Japan
| | - Yuki Fukushima
- Department of Radiology, Sapporo Medical University, Sapporo, Japan
| | - Toshio Gocho
- Department of Radiology, Sapporo Medical University, Sapporo, Japan
| | - Yoh Kozuka
- Department of Radiology, Sapporo Medical University, Sapporo, Japan
| | - Shoh Mafune
- Department of Radiology, Sapporo Medical University, Sapporo, Japan
| | - Yutaro Ikeuchi
- Department of Radiology, Sapporo Medical University, Sapporo, Japan
| | - Mamoru Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University, Sapporo, Japan
| | - Keigo Moniwa
- Department of Pathology, Sapporo Medical University, Sapporo, Japan.,Department of Respiratory Medicine and Allergology, Sapporo Medical University, Sapporo, Japan
| | | | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University, Sapporo, Japan
| | | | - Koh-Ichi Sakata
- Department of Radiology, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
246
|
Zheng D, Li Y, Song L, Xu T, Jiang X, Yin X, He Y, Xu J, Ma X, Chai L, Xu J, Hu J, Mi P, Jing J, Shi H. Improvement of radiotherapy with an ozone-carried liposome nano-system for synergizing cancer immune checkpoint blockade. NANO TODAY 2022; 47:101675. [DOI: 10.1016/j.nantod.2022.101675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
|
247
|
Zhu S, Wang Y, Tang J, Cao M. Radiotherapy induced immunogenic cell death by remodeling tumor immune microenvironment. Front Immunol 2022; 13:1074477. [PMID: 36532071 PMCID: PMC9753984 DOI: 10.3389/fimmu.2022.1074477] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Emerging evidence indicates that the induction of radiotherapy(RT) on the immunogenic cell death (ICD) is not only dependent on its direct cytotoxic effect, changes in the tumor immune microenvironment also play an important role in it. Tumor immune microenvironment (TIME) refers to the immune microenvironment that tumor cells exist, including tumor cells, inflammatory cells, immune cells, various signaling molecules and extracellular matrix. TIME has a barrier effect on the anti-tumor function of immune cells, which can inhibit all stages of anti-tumor immune response. The remodeling of TIME caused by RT may affect the degree of immunogenicity, and make it change from immunosuppressive phenotype to immunostimulatory phenotype. It is of great significance to reveal the causes of immune escape of tumor cells, especially for the treatment of drug-resistant tumor. In this review, we focus on the effect of RT on the TIME, the mechanism of RT in reversing the TIME to suppress intrinsic immunity, and the sensitization effect of the remodeling of TIME caused by RT on the effectiveness of immunotherapy.
Collapse
|
248
|
Fabian KP, Kowalczyk JT, Reynolds ST, Hodge JW. Dying of Stress: Chemotherapy, Radiotherapy, and Small-Molecule Inhibitors in Immunogenic Cell Death and Immunogenic Modulation. Cells 2022; 11:cells11233826. [PMID: 36497086 PMCID: PMC9737874 DOI: 10.3390/cells11233826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/11/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Innovative strategies to re-establish the immune-mediated destruction of malignant cells is paramount to the success of anti-cancer therapy. Accumulating evidence suggests that radiotherapy and select chemotherapeutic drugs and small molecule inhibitors induce immunogenic cell stress on tumors that results in improved immune recognition and targeting of the malignant cells. Through immunogenic cell death, which entails the release of antigens and danger signals, and immunogenic modulation, wherein the phenotype of stressed cells is altered to become more susceptible to immune attack, radiotherapies, chemotherapies, and small-molecule inhibitors exert immune-mediated anti-tumor responses. In this review, we discuss the mechanisms of immunogenic cell death and immunogenic modulation and their relevance in the anti-tumor activity of radiotherapies, chemotherapies, and small-molecule inhibitors. Our aim is to feature the immunological aspects of conventional and targeted cancer therapies and highlight how these therapies may be compatible with emerging immunotherapy approaches.
Collapse
|
249
|
Zhang L, Zhang Q, Hinojosa DT, Jiang K, Pham QK, Xiao Z, Colvin VL, Bao G. Multifunctional Magnetic Nanoclusters Can Induce Immunogenic Cell Death and Suppress Tumor Recurrence and Metastasis. ACS NANO 2022; 16:18538-18554. [PMID: 36306738 DOI: 10.1021/acsnano.2c06776] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metastasis is the predominant cause of cancer deaths due to solid organ malignancies; however, anticancer drugs are not effective in treating metastatic cancer. Here we report a nanotherapeutic approach that combines magnetic nanocluster-based hyperthermia and free radical generation with an immune checkpoint blockade (ICB) for effective suppression of both primary and secondary tumors. We attached 2,2'-azobis(2-midinopropane) dihydrochloride (AAPH) molecules to magnetic iron oxide nanoclusters (IONCs) to form an IONC-AAPH nanoplatform. The IONC can generate a high level of localized heat under an alternating magnetic field (AMF), which decomposes the AAPH on the cluster surface and produces a large number of carbon-centered free radicals. A combination of localized heating and free radicals can effectively kill tumor cells under both normoxic and hypoxic conditions. The tumor cell death caused by the combination of magnetic heating and free radicals led to the release or exposure of various damage-associated molecule patterns, which promoted the maturation of dendritic cells. Treating the tumor-bearing mice with IONC-AAPH under AMF not only eradicated the tumors but also generated systemic antitumor immune responses. The combination of IONC-AAPH under AMF with anti-PD-1 ICB dramatically suppressed the growth of untreated distant tumors and induced long-term immune memory. This IONC-AAPH based magneto-immunotherapy has the potential to effectively combat metastasis and control cancer recurrence.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Qingbo Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Daniel T Hinojosa
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Quoc-Khanh Pham
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Zhen Xiao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Vicki L Colvin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
250
|
Bai J, Wu B, Zhao S, Wang G, Su S, Lu B, Hu Y, Geng Y, Guo Z, Wan J, OuYang W, Hu C, Liu J. The Effect of PD-1 Inhibitor Combined with Irradiation on HMGB1-Associated Inflammatory Cytokines and Myocardial Injury. J Inflamm Res 2022; 15:6357-6371. [PMID: 36424918 PMCID: PMC9680686 DOI: 10.2147/jir.s384279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/08/2022] [Indexed: 10/17/2023] Open
Abstract
PURPOSE To explore the effect of PD-1 inhibitors combined with irradiation on myocardial injury and the changes of HMGB1-associated inflammatory markers. METHODS Four groups of five mice were used, each groupformed by randomly dividing 20 mice (group A control; group B PD-1 inhibitors; group C Irradiation; group D PD-1 inhibitors+irradiation; n = 5 for each). The mice were treated with either PD-1 inhibitors or a 15 Gy dose of single heart irradiation, or both. Hematoxylin-eosin staining assessed the morphology and pathology of heart tissue; Masson staining assessed heart fibrosis; Tunel staining evaluated heart apoptosis; flow cytometry detected CD3+, CD4+, and CD8+ T lymphocytes in heart tissues; enzyme linked immunosorbent assay evaluated IL-1β, IL-6, and TNF-ɑ of heart tissue; Western blot and quantitative real-time PCR (qPCR) detected the expression of protein and mRNA of HMGB1, TLR-4, and NF-κB p65 respectively. RESULTS The degree of heart injury, collagen volume fraction (CVF) and apoptotic index (AI) in groups B, C, and D were higher than group A, but the differences between the CVF and AI of group A and group B were not statistical significance (P>0.05). Similarly, the absolute counts and relative percentage of CD3+ and CD8+ T lymphocytes and the concentrations of IL-1β, IL-6, and TNF-α in heart tissue with group D were significantly higher than the other groups (P<0.05). In addition, compared with group A, the expression of protein and mRNA of HMGB1 and NF-κB p65 in other groups were higher, and the differences between each group were statistically significant while TLR4 was not. In addition, interaction by PD-1 inhibitors and irradiation was found in inflammatory indicators, especially in the expression of the HMGB1 and CD8+ T lymphocytes. CONCLUSION PD-1 inhibitors can increase the expression of HMGB1-associated inflammatory cytokines and aggravate radiation-induced myocardial injury.
Collapse
Affiliation(s)
- Jie Bai
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Bibo Wu
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Shasha Zhao
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Gang Wang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Shengfa Su
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Bing Lu
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Yinxiang Hu
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Yichao Geng
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Zhengneng Guo
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Jun Wan
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Weiwei OuYang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Cheng Hu
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Jie Liu
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| |
Collapse
|