201
|
Awad RM, Meeus F, Ceuppens H, Ertveldt T, Hanssens H, Lecocq Q, Mateusiak L, Zeven K, Valenta H, De Groof TWM, De Vlaeminck Y, Krasniqi A, De Veirman K, Goyvaerts C, D'Huyvetter M, Hernot S, Devoogdt N, Breckpot K. Emerging applications of nanobodies in cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:143-199. [PMID: 35777863 DOI: 10.1016/bs.ircmb.2022.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer is a heterogeneous disease, requiring treatment tailored to the unique phenotype of the patient's tumor. Monoclonal antibodies (mAbs) and variants thereof have enabled targeted therapies to selectively target cancer cells. Cancer cell-specific mAbs have been used for image-guided surgery and targeted delivery of radionuclides or toxic agents, improving classical treatment strategies. Cancer cell-specific mAbs can further inhibit tumor cell growth or can stimulate immune-mediated destruction of cancer cells, a feature that has also been achieved through mAb-mediated manipulation of immune cells and pathways. Drawbacks of mAbs and their variants, together with the discovery of camelid heavy chain-only antibodies and the many advantageous features of their variable domains, referred to as VHHs, single domain antibodies or nanobodies (Nbs), resulted in the exploration of Nbs as an alternative targeting moiety. We therefore review the state-of-the-art as well as novel exploitation strategies of Nbs for targeted cancer therapy.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fien Meeus
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannelore Ceuppens
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heleen Hanssens
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lukasz Mateusiak
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katty Zeven
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hana Valenta
- Lab for Nanobiology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias D'Huyvetter
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
202
|
Compte M, Sanz L, Álvarez-Vallina L. Applications of trimerbodies in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:71-87. [PMID: 35777865 DOI: 10.1016/bs.ircmb.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Trimerbodies, with their unique structural and functional properties, are the basis of a new generation of therapeutic antibodies, which due to their small size and plasticity are ideal for the generation of novel biological protein drugs with multiple competitive advantages over conventional full-length monoclonal antibodies. Since their emergence, trimerbodies have been used in preclinical cancer diagnosis and therapy. Trimerbodies are highly adaptable molecules, as they allow target-specific modulation of T cell-mediated anti-tumor immunity to enhance preexisting responses or to generate de novo immune responses. In fact, a tumor-specific humanized 4-1BB-agonistic trimerbody has shown a rather impressive safety and efficacy profile in preclinical studies making it a realistic option for clinical development. Moreover, thanks to the avidity effect they are endowed with considerable therapeutic potential as carriers to deliver cytotoxic payloads to tumors. In addition, molecular imaging studies could benefit from some intermediate-sized trivalent trimerbodies as promising candidates for targeted therapy and tumor imaging.
Collapse
Affiliation(s)
- Marta Compte
- Department of Antibody Engineering, Leadartis S.L., Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
203
|
Aramini B, Masciale V, Arienti C, Dominici M, Stella F, Martinelli G, Fabbri F. Cancer Stem Cells (CSCs), Circulating Tumor Cells (CTCs) and Their Interplay with Cancer Associated Fibroblasts (CAFs): A New World of Targets and Treatments. Cancers (Basel) 2022; 14:cancers14102408. [PMID: 35626011 PMCID: PMC9139858 DOI: 10.3390/cancers14102408] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The world of small molecules in solid tumors as cancer stem cells (CSCs), circulating tumor cells (CTCs) and cancer-associated fibroblasts (CAFs) continues to be under-debated, but not of minor interest in recent decades. One of the main problems in regard to cancer is the development of tumor recurrence, even in the early stages, in addition to drug resistance and, consequently, ineffective or an incomplete response against the tumor. The findings behind this resistance are probably justified by the presence of small molecules such as CSCs, CTCs and CAFs connected with the tumor microenvironment, which may influence the aggressiveness and the metastatic process. The mechanisms, connections, and molecular pathways behind them are still unknown. Our review would like to represent an important step forward to highlight the roles of these molecules and the possible connections among them. Abstract The importance of defining new molecules to fight cancer is of significant interest to the scientific community. In particular, it has been shown that cancer stem cells (CSCs) are a small subpopulation of cells within tumors with capabilities of self-renewal, differentiation, and tumorigenicity; on the other side, circulating tumor cells (CTCs) seem to split away from the primary tumor and appear in the circulatory system as singular units or clusters. It is becoming more and more important to discover new biomarkers related to these populations of cells in combination to define the network among them and the tumor microenvironment. In particular, cancer-associated fibroblasts (CAFs) are a key component of the tumor microenvironment with different functions, including matrix deposition and remodeling, extensive reciprocal signaling interactions with cancer cells and crosstalk with immunity. The settings of new markers and the definition of the molecular connections may present new avenues, not only for fighting cancer but also for the definition of more tailored therapies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, 47121 Forlì, Italy;
- Correspondence:
| | - Valentina Masciale
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41122 Modena, Italy; (V.M.); (M.D.)
| | - Chiara Arienti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.A.); (G.M.); (F.F.)
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41122 Modena, Italy; (V.M.); (M.D.)
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, 47121 Forlì, Italy;
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.A.); (G.M.); (F.F.)
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.A.); (G.M.); (F.F.)
| |
Collapse
|
204
|
Recyclable cell-surface chemical tags for repetitive cancer targeting. J Control Release 2022; 347:164-174. [PMID: 35537537 DOI: 10.1016/j.jconrel.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/18/2022] [Accepted: 05/03/2022] [Indexed: 12/31/2022]
Abstract
Metabolic glycan labeling provides a facile yet powerful tool to install chemical tags to the cell membrane via metabolic glycoengineering processes of unnatural sugars. These cell-surface chemical tags can then mediate targeted conjugation of therapeutic agents via efficient chemistries, which has been extensively explored for cancer-targeted treatment. However, the commonly used in vivo chemistries such as azide-cyclooctyne and tetrazine-cyclooctene chemistries only allow for one-time use of cell-surface chemical tags, posing a challenge for long-term, continuous cell targeting. Here we show that cell-surface ketone groups can be recycled back to the cell membrane after covalent conjugation with hydrazide-bearing molecules, enabling repetitive targeting of hydrazide-bearing agents. Upon conjugation to ketone-labeled cancer cells via a pH-responsive hydrazone linkage, Alexa Fluor 488-hydrazide became internalized and entered endosomes/lysosomes where ketone-sugars can be released and recycled. The recycled ketone groups could then mediate targeted conjugation of Alexa Fluor 647-hydrazide. We also showed that doxorubicin-hydrazide can be targeted to ketone-labeled cancer cells for enhanced cancer cell killing. This study validates the recyclability of cell-surface chemical tags for repetitive targeting of cancer cells with the use of a reversible chemistry, which will greatly facilitate future development of potent cancer-targeted therapies based on metabolic glycan labeling.
Collapse
|
205
|
Scott JI, Mendive-Tapia L, Gordon D, Barth ND, Thompson EJ, Cheng Z, Taggart D, Kitamura T, Bravo-Blas A, Roberts EW, Juarez-Jimenez J, Michel J, Piet B, de Vries IJ, Verdoes M, Dawson J, Carragher NO, Connor RAO, Akram AR, Frame M, Serrels A, Vendrell M. A fluorogenic probe for granzyme B enables in-biopsy evaluation and screening of response to anticancer immunotherapies. Nat Commun 2022; 13:2366. [PMID: 35501326 PMCID: PMC9061857 DOI: 10.1038/s41467-022-29691-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy promotes the attack of cancer cells by the immune system; however, it is difficult to detect early responses before changes in tumor size occur. Here, we report the rational design of a fluorogenic peptide able to detect picomolar concentrations of active granzyme B as a biomarker of immune-mediated anticancer action. Through a series of chemical iterations and molecular dynamics simulations, we synthesize a library of FRET peptides and identify probe H5 with an optimal fit into granzyme B. We demonstrate that probe H5 enables the real-time detection of T cell-mediated anticancer activity in mouse tumors and in tumors from lung cancer patients. Furthermore, we show image-based phenotypic screens, which reveal that the AKT kinase inhibitor AZD5363 shows immune-mediated anticancer activity. The reactivity of probe H5 may enable the monitoring of early responses to anticancer treatments using tissue biopsies.
Collapse
Affiliation(s)
- Jamie I Scott
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Doireann Gordon
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Nicole D Barth
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Emily J Thompson
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Zhiming Cheng
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - David Taggart
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Takanori Kitamura
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | | | | | - Jordi Juarez-Jimenez
- EaStChem School of Chemistry, Joseph Black Building, The University of Edinburgh, Edinburgh, UK
| | - Julien Michel
- EaStChem School of Chemistry, Joseph Black Building, The University of Edinburgh, Edinburgh, UK
| | - Berber Piet
- Department of Pulmonary Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - I Jolanda de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - John Dawson
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Richard A O' Connor
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Ahsan R Akram
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Margaret Frame
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Alan Serrels
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Marc Vendrell
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
206
|
Vicente FA, Castro LS, Mondal D, Coutinho JA, Tavares AP, Ventura SP, Freire MG. Purification of immunoglobulin Y from egg yolk using thermoresponsive aqueous micellar two-phase systems comprising ionic liquids. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
207
|
Shete MB, Patil TS, Deshpande AS, Saraogi G, Vasdev N, Deshpande M, Rajpoot K, Tekade RK. Current trends in theranostic nanomedicines. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
208
|
Kalmuk J, Rinder D, Heltzel C, Lockhart AC. An overview of the preclinical discovery and development of trastuzumab deruxtecan: a novel gastric cancer therapeutic. Expert Opin Drug Discov 2022; 17:427-436. [DOI: 10.1080/17460441.2022.2050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- James Kalmuk
- Department of Hematology/Oncology, Medical University of South Carolina, Walton Research Building, Charleston, SC, USA
| | | | | | - Albert Craig Lockhart
- Department of Hematology/Oncology, Medical University of South Carolina, Walton Research Building, Charleston, SC, USA
| |
Collapse
|
209
|
Abstract
Alphaviruses have been engineered as expression vectors for different strategies of cancer therapy including immunotherapy and cancer vaccine development. Administration of recombinant virus particles, RNA replicons and plasmid DNA-based replicons provide great flexibility for alphavirus applications. Immunization and delivery studies have demonstrated therapeutic efficacy in the form of reduced tumor growth, tumor regression and eradication of established tumors in different animal models for cancers such as brain, breast, colon, cervical, lung, ovarian, pancreas, prostate cancers, and melanoma. Furthermore, vaccinated animals have showed protection against challenges with tumor cells. A limited number of clinical trials in the area of brain, breast, cervical, colon prostate cancers and melanoma vaccines has been conducted. Particularly, immunization of cervical cancer patients elicited immune responses and therapeutic activity in all patients included in a phase I clinical trial. Moreover, stable disease and partial responses were observed in breast cancer patients and prolonged survival was achieved in colon cancer patients.
Collapse
|
210
|
Huang C, Chen L, Franzen L, Anderski J, Qian F. Spray-Dried Monoclonal Antibody Suspension for High-Concentration and Low-Viscosity Subcutaneous Injection. Mol Pharm 2022; 19:1505-1514. [PMID: 35417176 DOI: 10.1021/acs.molpharmaceut.2c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Administration of highly concentrated monoclonal antibodies (mAbs) through injection is often not possible as the viscosity can be readily above 50 mPa·s when the concentration exceeds 150 mg/mL. Besides, highly concentrated mAb solutions always exhibit increased aggregation propensity and lower stability, which raise the difficulty for the successful development of highly concentrated mAb formulations. We hereby explored the possibility of suspension as another formulation form for high-concentration proteins to reduce viscosity and maintain stability. Specifically, we demonstrated that spray drying can serve as a process to prepare particles for suspension. Particles prepared from formulations with different mAb/trehalose mass ratios displayed good physical stability and antibody binding affinity, as indicated by circular dichroism, fluorescence spectroscopy, and surface plasmon resonance (SPR)-based bioassay analyses. During spray drying, a surface tension-dominated enrichment of mAb on the particle surface was observed, but this did not show a significant negative impact on mAb stability. Spray-dried particles were subsequently suspended into benzyl benzoate, and the resulting suspension showed good stability and a lower viscosity when compared to its counterpart solution. Furthermore, mAbs recovered from the suspension maintained their conformational structure. Our study demonstrated that the suspension displayed low viscosity and good physical stability, so it may offer novel opportunities for the preparation of highly concentrated protein formulations.
Collapse
Affiliation(s)
- Chengnan Huang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Linc Chen
- Bayer Healthcare Co. Ltd., Beijing, 100020, P. R. China
| | - Lutz Franzen
- Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, 42096, Germany
| | - Juliane Anderski
- Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, 42096, Germany
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
211
|
Calatayud DG, Neophytou S, Nicodemou E, Giuffrida SG, Ge H, Pascu SI. Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers. Front Chem 2022; 10:830133. [PMID: 35494646 PMCID: PMC9039169 DOI: 10.3389/fchem.2022.830133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/16/2022] [Indexed: 01/28/2023] Open
Abstract
We highlight hereby recent developments in the emerging field of theranostics, which encompasses the combination of therapeutics and diagnostics in a single entity aimed for an early-stage diagnosis, image-guided therapy as well as evaluation of therapeutic outcomes of relevance to prostate cancer (PCa). Prostate cancer is one of the most common malignancies in men and a frequent cause of male cancer death. As such, this overview is concerned with recent developments in imaging and sensing of relevance to prostate cancer diagnosis and therapeutic monitoring. A major advantage for the effective treatment of PCa is an early diagnosis that would provide information for an appropriate treatment. Several imaging techniques are being developed to diagnose and monitor different stages of cancer in general, and patient stratification is particularly relevant for PCa. Hybrid imaging techniques applicable for diagnosis combine complementary structural and morphological information to enhance resolution and sensitivity of imaging. The focus of this review is to sum up some of the most recent advances in the nanotechnological approaches to the sensing and treatment of prostate cancer (PCa). Targeted imaging using nanoparticles, radiotracers and biomarkers could result to a more specialised and personalised diagnosis and treatment of PCa. A myriad of reports has been published literature proposing methods to detect and treat PCa using nanoparticles but the number of techniques approved for clinical use is relatively small. Another facet of this report is on reviewing aspects of the role of functional nanoparticles in multimodality imaging therapy considering recent developments in simultaneous PET-MRI (Positron Emission Tomography-Magnetic Resonance Imaging) coupled with optical imaging in vitro and in vivo, whilst highlighting feasible case studies that hold promise for the next generation of dual modality medical imaging of PCa. It is envisaged that progress in the field of imaging and sensing domains, taken together, could benefit from the biomedical implementation of new synthetic platforms such as metal complexes and functional materials supported on organic molecular species, which can be conjugated to targeting biomolecules and encompass adaptable and versatile molecular architectures. Furthermore, we include hereby an overview of aspects of biosensing methods aimed to tackle PCa: prostate biomarkers such as Prostate Specific Antigen (PSA) have been incorporated into synthetic platforms and explored in the context of sensing and imaging applications in preclinical investigations for the early detection of PCa. Finally, some of the societal concerns around nanotechnology being used for the detection of PCa are considered and addressed together with the concerns about the toxicity of nanoparticles–these were aspects of recent lively debates that currently hamper the clinical advancements of nano-theranostics. The publications survey conducted for this review includes, to the best of our knowledge, some of the most recent relevant literature examples from the state-of-the-art. Highlighting these advances would be of interest to the biomedical research community aiming to advance the application of theranostics particularly in PCa diagnosis and treatment, but also to those interested in the development of new probes and methodologies for the simultaneous imaging and therapy monitoring employed for PCa targeting.
Collapse
Affiliation(s)
- David G. Calatayud
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Department of Electroceramics, Instituto de Ceramica y Vidrio - CSIC, Madrid, Spain
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| | - Sotia Neophytou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Eleni Nicodemou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | | | - Haobo Ge
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Sofia I. Pascu
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Centre of Therapeutic Innovations, University of Bath, Bath, United Kingdom
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| |
Collapse
|
212
|
Gao Y, Li L, Zheng Y, Zhang W, Niu B, Li Y. Monoclonal antibody Daratumumab promotes macrophage-mediated anti-myeloma phagocytic activity via engaging FC gamma receptor and activation of macrophages. Mol Cell Biochem 2022; 477:2015-2024. [DOI: 10.1007/s11010-022-04390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
|
213
|
Postupalenko V, Marx L, Viertl D, Gsponer N, Gasilova N, Denoel T, Schaefer N, Prior JO, Hagens G, Lévy F, Garrouste P, Segura JM, Nyanguile O. Template directed synthesis of antibody Fc conjugates with concomitant ligand release. Chem Sci 2022; 13:3965-3976. [PMID: 35440989 PMCID: PMC8985508 DOI: 10.1039/d1sc06182h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Antibodies are an attractive therapeutic modality for cancer treatment as they allow the increase of the treatment response rate and avoid the severe side effects of chemotherapy. Notwithstanding the strong benefit of antibodies, the efficacy of anti-cancer antibodies can dramatically vary among patients and ultimately result in no response to the treatment. Here, we have developed a novel means to regioselectively label the Fc domain of any therapeutic antibody with a radionuclide chelator in a single step chemistry, with the aim to study by SPECT/CT imaging if the radiolabeled antibody is capable of targeting cancer cells in vivo. A Fc-III peptide was used as bait to bring a carbonate electrophilic site linked to a metal chelator and to a carboxyphenyl leaving group in close proximity with an antibody Fc nucleophile amino acid (K317), thereby triggering the covalent linkage of the chelator to the antibody lysine, with the concomitant release of the carboxyphenyl Fc-III ligand. Using CHX-A''-DTPA, we radiolabeled trastuzumab with indium-111 and showed in biodistribution and imaging experiments that the antibody accumulated successfully in the SK-OV-3 xenograft tumour implanted in mice. We found that our methodology leads to homogeneous conjugation of CHX-A''-DTPA to the antibody, and confirmed that the Fc domain can be selectively labeled at K317, with a minor level of unspecific labeling on the Fab domain. The present method can be developed as a clinical diagnostic tool to predict the success of the therapy. Furthermore, our Fc-III one step chemistry concept paves the way to a broad array of other applications in antibody bioengineering.
Collapse
Affiliation(s)
- Viktoriia Postupalenko
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Léo Marx
- Debiopharm Research & Manufacturing SA, Campus "après-demain" Rue du Levant 146 1920 Martigny Switzerland
| | - David Viertl
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital CH-1011 Lausanne Switzerland
- In Vivo Imaging Facility, Department of Research and Training, University of Lausanne CH-1011 Lausanne Switzerland
| | - Nadège Gsponer
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Natalia Gasilova
- EPFL Valais Wallis, MSEAP, ISIC-GE-VS rue de l'Industrie 17 1951 Sion Switzerland
| | - Thibaut Denoel
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital CH-1011 Lausanne Switzerland
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital CH-1011 Lausanne Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital CH-1011 Lausanne Switzerland
| | - Gerrit Hagens
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Frédéric Lévy
- Debiopharm International SA, Forum "après-demain" Chemin Messidor 5-7 Case postale 5911 1002 Lausanne Switzerland
| | - Patrick Garrouste
- Debiopharm Research & Manufacturing SA, Campus "après-demain" Rue du Levant 146 1920 Martigny Switzerland
| | - Jean-Manuel Segura
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Origène Nyanguile
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| |
Collapse
|
214
|
Fu J, Lv Y, Jia Q, Wang C, Wang S, Liang P, Han S, He L. Purification and Determination of Antibody Drugs in Bio-Samples by EGFR/Cell Membrane Chromatography Method. J Pharm Biomed Anal 2022; 217:114808. [DOI: 10.1016/j.jpba.2022.114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
|
215
|
Liu T, Tao Y, Xia X, Zhang Y, Deng R, Wang Y. Analytical tools for antibody–drug conjugates: from in vitro to in vivo. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
216
|
Tian Z, Yu C, Zhang W, Wu KL, Wang C, Gupta R, Xu Z, Wu L, Chen Y, Zhang XHF, Xiao H. Bone-Specific Enhancement of Antibody Therapy for Breast Cancer Metastasis to Bone. ACS CENTRAL SCIENCE 2022; 8:312-321. [PMID: 35355817 PMCID: PMC8961797 DOI: 10.1021/acscentsci.1c01024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 05/04/2023]
Abstract
Despite the rapid evolution of therapeutic antibodies, their clinical efficacy in the treatment of bone tumors is hampered due to the inadequate pharmacokinetics and poor bone tissue accessibility of these large macromolecules. Here, we show that engineering therapeutic antibodies with bone-homing peptide sequences dramatically enhances their concentrations in the bone metastatic niche, resulting in significantly reduced survival and progression of breast cancer bone metastases. To enhance the bone tumor-targeting ability of engineered antibodies, we introduced varying numbers of bone-homing peptides into permissive sites of the anti-HER2 antibody, trastuzumab. Compared to the unmodified antibody, the engineered antibodies have similar pharmacokinetics and in vitro cytotoxic activity, but exhibit improved bone tumor distribution in vivo. Accordingly, in xenograft models of breast cancer metastasis to bone sites, engineered antibodies with enhanced bone specificity exhibit increased inhibition of both initial bone metastases and secondary multiorgan metastases. Furthermore, this engineering strategy is also applied to prepare bone-targeting antibody-drug conjugates with enhanced therapeutic efficacy. These results demonstrate that adding bone-specific targeting to antibody therapy results in robust bone tumor delivery efficacy. This provides a powerful strategy to overcome the poor accessibility of antibodies to the bone tumors and the consequential resistance to the therapy.
Collapse
Affiliation(s)
- Zeru Tian
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Chenfei Yu
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Weijie Zhang
- Lester
and Sue Smith Breast Center, Baylor College
of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United
States
| | - Kuan-Lin Wu
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Chenhang Wang
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Ruchi Gupta
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zhan Xu
- Lester
and Sue Smith Breast Center, Baylor College
of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United
States
| | - Ling Wu
- Lester
and Sue Smith Breast Center, Baylor College
of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United
States
| | - Yuda Chen
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Xiang H.-F. Zhang
- Lester
and Sue Smith Breast Center, Baylor College
of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United
States
| | - Han Xiao
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
217
|
Cao X, Chen J, Li B, Dang J, Zhang W, Zhong X, Wang C, Raoof M, Sun Z, Yu J, Fakih MG, Feng M. Promoting antibody-dependent cellular phagocytosis for effective macrophage-based cancer immunotherapy. SCIENCE ADVANCES 2022; 8:eabl9171. [PMID: 35302839 PMCID: PMC8932662 DOI: 10.1126/sciadv.abl9171] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/26/2022] [Indexed: 05/16/2023]
Abstract
Macrophages are essential in eliciting antibody-dependent cellular phagocytosis (ADCP) of cancer cells. However, a satisfactory anticancer efficacy of ADCP is contingent on early antibody administration, and resistance develops along with cancer progression. Here, we investigate the mechanisms underlying ADCP and demonstrate an effective combinatorial strategy to potentiate its efficacy. We identified paclitaxel as a universal adjuvant that efficiently potentiated ADCP by a variety of anticancer antibodies in multiple cancers. Rather than eliciting cytotoxicity on cancer cells, paclitaxel polarized macrophages toward a state with enhanced phagocytic ability. Paclitaxel-treated macrophages down-regulated cell surface CSF1R whose expression was negatively correlated with patient survival in multiple malignancies. The suppression of CSF1R in macrophages enhanced ADCP of cancer cells, suggesting a role of CSF1R in regulating macrophage phagocytic ability. Together, these findings define a potent strategy for using conventional anticancer drugs to stimulate macrophage phagocytosis and promote the therapeutic efficacy of clinical anticancer antibodies.
Collapse
Affiliation(s)
- Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jing Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Bolei Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jessica Dang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Wencan Zhang
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiancai Zhong
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Chongkai Wang
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA
| | - Mustafa Raoof
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Zuoming Sun
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jianhua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope, Duarte, CA 91010, USA
| | - Marwan G. Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
218
|
Nie W, Yao Y, Luo B, Zhu J, Li S, Yang X, Luo T, Liu W, Yan S. Systematic Analysis of the Expression and Prognosis of Fcγ Receptors in Clear Cell Renal Cell Carcinoma. Front Oncol 2022; 12:755936. [PMID: 35372055 PMCID: PMC8969749 DOI: 10.3389/fonc.2022.755936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/17/2022] [Indexed: 01/08/2023] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) remains a common malignancy in the urinary system. Although dramatic progress was made in multimodal therapies, the improvement of its prognosis continues to be unsatisfactory. The antibody-binding crystallizable fragment (Fc) γ receptors (FcγRs) are expressed on the surface of leukocytes, to mediate antibody-induced cell-mediated anti-tumor responses when tumor-reactive antibodies are present. FcγRs have been studied extensively in immune cells, but rarely in cancer cells. Methods ONCOMINE, UALCAN, GEPIA, TIMER, TISIDB, Kaplan–Meier Plotter, SurvivalMeth, and STRING databases were utilized in this study. Results Transcriptional levels of FcγRs were upregulated in patients with ccRCC. There was a noticeable correlation between the over expressions of FCGR1A/B/C, FCGR2A, and clinical cancer stages/tumor grade in ccRCC patients. Besides, higher transcription levels of FcγRs were found to be associated with poor overall survival (OS) in ccRCC patients. Further, high DNA methylation levels of FcγRs were also observed in ccRCC patients, and higher DNA methylation levels of FcγRs were associated with shorter OS. Moreover, we also found that the expression of FcγRs was significantly correlated with immune infiltrates, namely, immune cells (NK, macrophages, Treg, cells) and immunoinhibitor (IL-10, TGFB1, and CTLA-4). Conclusions Our study demonstrated that high DNA methylation levels of FcγRs lead to their low mRNA, protein levels, and poor prognosis in ccRCC patients, which may provide new insights into the choice of immunotherapy targets and prognostic biomarkers.
Collapse
|
219
|
Tan X, Yang J, Jiang J, Wang W, Ren J, Li Q, Xie Z, Chen X, Zhang L, Li W. Significant Growth Inhibition by a Bispecific Affibody Targeting Oncoprotein E7 in both HPV16 and 18 Positive Cervical Cancer in vitro and in vivo. Eur J Pharm Sci 2022; 172:106156. [PMID: 35245683 DOI: 10.1016/j.ejps.2022.106156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/11/2021] [Accepted: 12/30/2021] [Indexed: 12/01/2022]
Abstract
The infection with HPV 16 and 18 high-risk types account for more than 80 % of cervical cancer incidence, but there is still no targeted agent against HPV for cervical cancer therapy. Our previous study constructed a bispecific affibody Z16-18 targeting HPV16 and 18 early antigen 7 (E7, responsible for the infected cell malignant transformation). In the present study, we prepared Z16-18 in prokaryotic expression system and confirmed its significant growth inhibition both on SiHa (HPV16 positive) and HeLa (HPV18 positive) cervical cancer cells by arresting cell cycle at G0/G1 phase. The IC50 of Z16-18 on SiHa and HeLa were close in value. Z16-18 could specifically target E7 in both SiHa and HeLa, and exhibited prominent targeted enrichment on tumor tissues derived from SiHa or HeLa, resulting in the inhibition of tumourigenesis and tumour growth in vivo. Furthermore, Z16-18 could inhibit the interaction between E7 and pRb to block the E7-pRb carcinogenic pathway, resulting in the decreased release of E2F and the cell growth inhibition characterized by the decrease of CDK6 and Cyclin D1. This study provides a new strategy for targeted therapy based on affibody, and Z16-18 has great potential for utilisation and development as an agent targeting HPV16 and HPV18 related cervical cancer.
Collapse
Affiliation(s)
- Xiaochun Tan
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiani Yang
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Jiang
- Ningbo No.9 Hospital, Ningbo, Zhejiang, China
| | - Wenhuan Wang
- Department of Reproductive Genetics, Wenzhou Key Laboratory of Gynecology and Obstetrics, the Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), Wenzhou, Zhejiang, China
| | - Jiahuan Ren
- Department of General Surgery, the First Affliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qijia Li
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zixin Xie
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinan Chen
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wenshu Li
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
220
|
Zhang S, Yan C, Millar DG, Yang Q, Heather JM, Langenbucher A, Morton LT, Sepulveda S, Alpert E, Whelton LR, Zarrella DT, Guo M, Minogue E, Lawrence MS, Rueda BR, Spriggs DR, Lu W, Langenau DM, Cobbold M. Antibody-Peptide Epitope Conjugates for Personalized Cancer Therapy. Cancer Res 2022; 82:773-784. [PMID: 34965933 DOI: 10.1158/0008-5472.can-21-2200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/11/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Antibody-peptide epitope conjugates (APEC) are a new class of modified antibody-drug conjugates that redirect T-cell viral immunity against tumor cells. APECs contain a tumor-specific protease cleavage site linked to a patient-specific viral epitope, resulting in presentation of viral epitopes on cancer cells and subsequent recruitment and killing by CD8+ T cells. Here we developed an experimental pipeline to create patient-specific APECs and identified new preclinical therapies for ovarian carcinoma. Using functional assessment of viral peptide antigen responses to common viruses like cytomegalovirus (CMV) in patients with ovarian cancer, a library of 192 APECs with distinct protease cleavage sequences was created using the anti-epithelial cell adhesion molecule (EpCAM) antibody. Each APEC was tested for in vitro cancer cell killing, and top candidates were screened for killing xenograft tumors grown in zebrafish and mice. These preclinical modeling studies identified EpCAM-MMP7-CMV APEC (EpCAM-MC) as a potential new immunotherapy for ovarian carcinoma. Importantly, EpCAM-MC also demonstrated robust T-cell responses in primary ovarian carcinoma patient ascites samples. This work highlights a robust, customizable platform to rapidly develop patient-specific APECs. SIGNIFICANCE This study develops a high-throughput preclinical platform to identify patient-specific antibody-peptide epitope conjugates that target cancer cells and demonstrates the potential of this immunotherapy approach for treating ovarian carcinoma.
Collapse
Affiliation(s)
- Songfa Zhang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases & Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Chuan Yan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, Massachusetts
| | - David G Millar
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Qiqi Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, Massachusetts
| | - James M Heather
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Adam Langenbucher
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | | | - Sean Sepulveda
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Eric Alpert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, Massachusetts
| | - Lauren R Whelton
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, Massachusetts
| | - Dominique T Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
| | - Mei Guo
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Eleanor Minogue
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
| | - David R Spriggs
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Weiguo Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases & Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - David M Langenau
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, Massachusetts
| | - Mark Cobbold
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- AstraZeneca, Gaithersburg, Maryland
| |
Collapse
|
221
|
Xie X, Ji J, Chen X, Xu W, Chen H, Zhu S, Wu J, Wu Y, Sun Y, Sai W, Liu Z, Xiao M, Bao B. Human umbilical cord mesenchymal stem cell-derived exosomes carrying hsa-miRNA-128-3p suppress pancreatic ductal cell carcinoma by inhibiting Galectin-3. Clin Transl Oncol 2022; 24:517-531. [PMID: 34811696 DOI: 10.1007/s12094-021-02705-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignant tumors of the digestive system. Many patients are diagnosed at an advanced stage and lose eligibility for surgery. Moreover, there are few effective methods for treating pancreatic ductal cell carcinoma. Increasing attention has been given to microRNAs (miRNAs) and their regulatory roles in tumor progression. In this study, we investigated the effects of exosomes extracted from human umbilical cord mesenchymal stem cells (HUCMSCs) carrying hsa-miRNA-128-3p on pancreatic cancer cells. METHODS Based on existing experimental and database information, we selected Galectin-3, which is associated with pancreatic cancer, and the corresponding upstream hsa-miRNA-128-3p. We extracted HUCMSCs from a fresh umbilical cord, hsa-miRNA-128-3p was transfected into HUCMSCs, and exosomes containing hsa-miRNA-128-3p were extracted and collected. The effect of exosomes rich in hsa-miRNA-128-3p on pancreatic cancer cells was analyzed. RESULTS The expression of Galectin-3 in normal pancreatic duct epithelial cells was significantly lower than that in PDAC cell lines. We successfully extracted HUCMSCs from the umbilical cord and transfected hsa-miRNA-128-3p into HUCMSCs. Then we demonstrated that HUCMSC-derived exosomes with hsa-miRNA-128-3p could suppress the proliferation, invasion, and migration of PANC-1 cells in vitro by targeting Galectin-3. CONCLUSION Hsa-miRNA-128-3p could be considered as a potential therapy for pancreatic cancer. We provided a new idea for targeted therapy of PDAC.
Collapse
Affiliation(s)
- X Xie
- Department of Gastroenterology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - J Ji
- Department of Gastroenterology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - X Chen
- Office of Infection Management, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - W Xu
- Department of Gastroenterology, Second People's Hospital of Nantong, Nantong, 226001, China
| | - H Chen
- Office of Infection Management, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - S Zhu
- Medical School of Nantong University Oral Medicine, Nantong, 226001, Jiangsu, China
| | - J Wu
- Department of Gastroenterology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Y Wu
- Department of Gastroenterology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Y Sun
- Blood Center of Jiangsu Province, Nanjing, 210000, Jiangsu, China
| | - W Sai
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Z Liu
- Department of Gastroenterology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - M Xiao
- Department of Gastroenterology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - B Bao
- Department of Gastroenterology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
222
|
Dyugay IA, Lukyanov DK, Turchaninova MA, Serebrovskaya EO, Bryushkova EA, Zaretsky AR, Khalmurzaev O, Matveev VB, Shugay M, Shelyakin PV, Chudakov DM. Accounting for B-cell Behavior and Sampling Bias Predicts Anti-PD-L1 Response in Bladder Cancer. Cancer Immunol Res 2022; 10:343-353. [PMID: 35013004 PMCID: PMC9381118 DOI: 10.1158/2326-6066.cir-21-0489] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023]
Abstract
Cancer immunotherapy is predominantly based on T cell-centric approaches. At the same time, the adaptive immune response in the tumor environment also includes clonally produced immunoglobulins and clonal effector/memory B cells that participate in antigen-specific decisions through their interactions with T cells. Here, we investigated the role of infiltrating B cells in bladder cancer via patient dataset analysis of intratumoral immunoglobulin repertoires. We showed that the IgG1/IgA ratio is a prognostic indicator for several subtypes of bladder cancer and for the whole IMVigor210 anti-PD-L1 immunotherapy study cohort. A high IgG1/IgA ratio associated with the prominence of a cytotoxic gene signature, T-cell receptor signaling, and IL21-mediated signaling. Immunoglobulin repertoire analysis indicated that effector B-cell function, rather than clonally produced antibodies, was involved in antitumor responses. From the T-cell side, we normalized a cytotoxic signature against the extent of immune cell infiltration to neutralize the artificial sampling-based variability in immune gene expression. Resulting metrics reflected proportion of cytotoxic cells among tumor-infiltrating immune cells and improved prediction of anti-PD-L1 responses. At the same time, the IgG1/IgA ratio remained an independent prognostic factor. Integration of the B-cell, natural killer cell, and T-cell signatures allowed for the most accurate prediction of anti-PD-L1 therapy responses. On the basis of these findings, we developed a predictor called PRedIctive MolecUlar Signature (PRIMUS), which outperformed PD-L1 expression scores and known gene signatures. Overall, PRIMUS allows for reliable identification of responders among patients with muscle-invasive urothelial carcinoma, including the subcohort with the low-infiltrated "desert" tumor phenotype.
Collapse
Affiliation(s)
- Ilya A. Dyugay
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Daniil K. Lukyanov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria A. Turchaninova
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina O. Serebrovskaya
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina A. Bryushkova
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Molecular Biology Department, Lomonosov Moscow State University, Moscow, Russia
| | - Andrew R. Zaretsky
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Oybek Khalmurzaev
- Department of Urology, Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vsevolod B. Matveev
- Department of Urology, Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mikhail Shugay
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Pavel V. Shelyakin
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy M. Chudakov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Corresponding Author: Dmitriy M. Chudakov, Genomics of Adaptive Immunity, IBCH RAS, Miklukho-Maklaya, 16/10, Moscow 117997, Russia. Phone: 7 (495) 335-01-00; E-mail:
| |
Collapse
|
223
|
Immune- and Non-Immune-Mediated Adverse Effects of Monoclonal Antibody Therapy: A Survey of 110 Approved Antibodies. Antibodies (Basel) 2022; 11:antib11010017. [PMID: 35323191 PMCID: PMC8944650 DOI: 10.3390/antib11010017] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Identification of new disease-associated biomarkers; specific targeting of such markers by monoclonal antibodies (mAbs); and application of advances in recombinant technology, including the production of humanized and fully human antibodies, has enabled many improved treatment outcomes and successful new biological treatments of some diseases previously neglected or with poor prognoses. Of the 110 mAbs preparations currently approved by the FDA and/or EMA, 46 (including 13 antibody–drug conjugates) recognizing 29 different targets are indicated for the treatment of cancers, and 66, recognizing 48 different targets, are indicated for non-cancer disorders. Despite their specific targeting with the expected accompanying reduced collateral damage for normal healthy non-involved cells, mAbs, may cause types I (anaphylaxis, urticaria), II (e.g., hemolytic anemia, possibly early-onset neutropenia), III (serum sickness, pneumonitis), and IV (Stevens–Johnson syndrome, toxic epidermal necrolysis) hypersensitivities as well as other cutaneous, pulmonary, cardiac, and liver adverse events. MAbs can provoke severe infusion reactions that resemble anaphylaxis and induce a number of systemic, potentially life-threatening syndromes with low frequency. A common feature of most of these syndromes is the release of a cascade of cytokines associated with inflammatory and immunological processes. Epidermal growth factor receptor-targeted antibodies may provoke papulopustular and mucocutaneous eruptions that are not immune-mediated.
Collapse
|
224
|
Raven N, Klaassen M, Madsen T, Thomas F, Hamede R, Ujvari B. Transmissible cancer influences immune gene expression in an endangered marsupial, the Tasmanian devil (Sarcophilus harrisii). Mol Ecol 2022; 31:2293-2311. [PMID: 35202488 PMCID: PMC9310804 DOI: 10.1111/mec.16408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Understanding the effects of wildlife diseases on populations requires insight into local environmental conditions, host defence mechanisms, host life‐history trade‐offs, pathogen population dynamics, and their interactions. The survival of Tasmanian devils (Sarcophilus harrisii) is challenged by a novel, fitness limiting pathogen, Tasmanian devil facial tumour disease (DFTD), a clonally transmissible, contagious cancer. In order to understand the devils’ capacity to respond to DFTD, it is crucial to gain information on factors influencing the devils’ immune system. By using RT‐qPCR, we investigated how DFTD infection in association with intrinsic (sex and age) and environmental (season) factors influences the expression of 10 immune genes in Tasmanian devil blood. Our study showed that the expression of immune genes (both innate and adaptive) differed across seasons, a pattern that was altered when infected with DFTD. The expression of immunogbulins IgE and IgM:IgG showed downregulation in colder months in DFTD infected animals. We also observed strong positive association between the expression of an innate immune gene, CD16, and DFTD infection. Our results demonstrate that sampling across seasons, age groups and environmental conditions are beneficial when deciphering the complex ecoevolutionary interactions of not only conventional host‐parasite systems, but also of host and diseases with high mortality rates, such as transmissible cancers.
Collapse
Affiliation(s)
- N Raven
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - M Klaassen
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - T Madsen
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - F Thomas
- CREEC/CANECEV (CREES), Montpellier, France.,MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - R Hamede
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia.,School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - B Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| |
Collapse
|
225
|
Hasegawa K, Ikeda S, Yaga M, Watanabe K, Urakawa R, Iehara A, Iwai M, Hashiguchi S, Morimoto S, Fujiki F, Nakajima H, Nakata J, Nishida S, Tsuboi A, Oka Y, Yoshihara S, Manabe M, Ichihara H, Mugitani A, Aoyama Y, Nakao T, Hirose A, Hino M, Ueda S, Takenaka K, Masuko T, Akashi K, Maruno T, Uchiyama S, Takamatsu S, Wada N, Morii E, Nagamori S, Motooka D, Kanai Y, Oji Y, Nakagawa T, Kijima N, Kishima H, Ikeda A, Ogino T, Shintani Y, Kubo T, Mihara E, Yusa K, Sugiyama H, Takagi J, Miyoshi E, Kumanogoh A, Hosen N. Selective targeting of multiple myeloma cells with a monoclonal antibody recognizing the ubiquitous protein CD98 heavy chain. Sci Transl Med 2022; 14:eaax7706. [PMID: 35171652 DOI: 10.1126/scitranslmed.aax7706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer-specific cell surface antigens are ideal therapeutic targets for monoclonal antibody (mAb)-based therapy. Here, we report that multiple myeloma (MM), an incurable hematological malignancy, can be specifically targeted by an mAb that recognizes a ubiquitously present protein, CD98 heavy chain (hc) (also known as SLC3A2). We screened more than 10,000 mAb clones raised against MM cells and identified R8H283, an mAb that bound MM cells but not normal hematopoietic or nonhematopoietic cells. R8H283 specifically recognized CD98hc. R8H283 did not react with monomers of CD98hc; instead, it bound CD98hc in heterodimers with a CD98 light chain (CD98lc), a complex that functions as an amino acid transporter. CD98 heterodimers were abundant on MM cells and took up amino acids for constitutive production of immunoglobulin. Although CD98 heterodimers were also present on normal leukocytes, R8H283 did not react with them. The glycoforms of CD98hc present on normal leukocytes were distinct from those present on MM cells, which may explain the lack of R8H283 reactivity to normal leukocytes. R8H283 exerted anti-MM effects without damaging normal hematopoietic cells. These findings suggested that R8H283 is a candidate for mAb-based therapies for MM. In addition, our findings showed that a cancer-specific conformational epitope in a ubiquitous protein, which cannot be identified by transcriptome or proteome analyses, can be found by extensive screening of primary human tumor samples.
Collapse
Affiliation(s)
- Kana Hasegawa
- Laboratory of Cellular Immunotherapy, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Shunya Ikeda
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Moto Yaga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kouki Watanabe
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Rika Urakawa
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Akie Iehara
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Mai Iwai
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Seishin Hashiguchi
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Soyoko Morimoto
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Jun Nakata
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yoshihiro Oka
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Satoshi Yoshihara
- Department of Hematology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Masahiro Manabe
- Department of Hematology, Osaka General Hospital of West Japan Railway Company, Osaka 545-0053, Japan
| | | | - Atsuko Mugitani
- Department of Hematology, Fuchu Hospital, Osaka 594-0076, Japan
| | - Yasutaka Aoyama
- Department of Hematology, Fuchu Hospital, Osaka 594-0076, Japan
| | - Takafumi Nakao
- Department of Hematology, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Asao Hirose
- Department of Hematology and Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8586, Japan
| | - Masayuki Hino
- Department of Hematology and Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8586, Japan
| | - Shiho Ueda
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Katsuto Takenaka
- Department of Hematology, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| | - Takashi Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Naoki Wada
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yusuke Oji
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tomoyoshi Nakagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Atsuyo Ikeda
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tateki Kubo
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Emiko Mihara
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.,Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Naoki Hosen
- Laboratory of Cellular Immunotherapy, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
226
|
Puthenveetil R, Christenson ET, Vinogradova O. New Horizons in Structural Biology of Membrane Proteins: Experimental Evaluation of the Role of Conformational Dynamics and Intrinsic Flexibility. MEMBRANES 2022; 12:227. [PMID: 35207148 PMCID: PMC8877495 DOI: 10.3390/membranes12020227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
A plethora of membrane proteins are found along the cell surface and on the convoluted labyrinth of membranes surrounding organelles. Since the advent of various structural biology techniques, a sub-population of these proteins has become accessible to investigation at near-atomic resolutions. The predominant bona fide methods for structure solution, X-ray crystallography and cryo-EM, provide high resolution in three-dimensional space at the cost of neglecting protein motions through time. Though structures provide various rigid snapshots, only an amorphous mechanistic understanding can be inferred from interpolations between these different static states. In this review, we discuss various techniques that have been utilized in observing dynamic conformational intermediaries that remain elusive from rigid structures. More specifically we discuss the application of structural techniques such as NMR, cryo-EM and X-ray crystallography in studying protein dynamics along with complementation by conformational trapping by specific binders such as antibodies. We finally showcase the strength of various biophysical techniques including FRET, EPR and computational approaches using a multitude of succinct examples from GPCRs, transporters and ion channels.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Section on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35A Convent Dr., Bethesda, MD 20892, USA
| | | | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
227
|
Diniz F, Coelho P, Duarte HO, Sarmento B, Reis CA, Gomes J. Glycans as Targets for Drug Delivery in Cancer. Cancers (Basel) 2022; 14:cancers14040911. [PMID: 35205658 PMCID: PMC8870586 DOI: 10.3390/cancers14040911] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Alterations in glycosylation are frequently observed in cancer cells. Different strategies have been proposed to increase drug delivery to the tumor site in order to improve the therapeutic efficacy of anti-cancer drugs and avoid collateral cytotoxicity. The exploitation of drug delivery approaches directed to cancer-associated glycans has the potential to pave the way for better and more efficient personalized treatment practices. Such strategies taking advantage of aberrant cell surface glycosylation patterns enhance the targeting efficiency and optimize the delivery of clinically used drugs to cancer cells, with major potential for the clinical applications. Abstract Innovative strategies have been proposed to increase drug delivery to the tumor site and avoid cytotoxicity, improving the therapeutic efficacy of well-established anti-cancer drugs. Alterations in normal glycosylation processes are frequently observed in cancer cells and the resulting cell surface aberrant glycans can be used as direct molecular targets for drug delivery. In the present review, we address the development of strategies, such as monoclonal antibodies, antibody–drug conjugates and nanoparticles that specific and selectively target cancer-associated glycans in tumor cells. The use of nanoparticles for drug delivery encompasses novel applications in cancer therapy, including vaccines encapsulated in synthetic nanoparticles and specific nanoparticles that target glycoproteins or glycan-binding proteins. Here, we highlight their potential to enhance targeting approaches and to optimize the delivery of clinically approved drugs to the tumor microenvironment, paving the way for improved personalized treatment approaches with major potential importance for the pharmaceutical and clinical sectors.
Collapse
Affiliation(s)
- Francisca Diniz
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Pedro Coelho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Henrique O. Duarte
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- CESPU—Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal
| | - Celso A. Reis
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (C.A.R.); (J.G.); Tel.: +351-220-408-800 (C.A.R. & J.G.)
| | - Joana Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Correspondence: (C.A.R.); (J.G.); Tel.: +351-220-408-800 (C.A.R. & J.G.)
| |
Collapse
|
228
|
Liu H, Pietersz G, Peter K, Wang X. Nanobiotechnology approaches for cardiovascular diseases: site-specific targeting of drugs and nanoparticles for atherothrombosis. J Nanobiotechnology 2022; 20:75. [PMID: 35135581 PMCID: PMC8822797 DOI: 10.1186/s12951-022-01279-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/21/2022] [Indexed: 02/18/2023] Open
Abstract
Atherosclerosis and atherothrombosis, the major contributors to cardiovascular diseases (CVDs), represent the leading cause of death worldwide. Current pharmacological therapies have been associated with side effects or are insufficient at halting atherosclerotic progression effectively. Pioneering work harnessing the passive diffusion or endocytosis properties of nanoparticles and advanced biotechnologies in creating recombinant proteins for site-specific delivery have been utilized to overcome these limitations. Since CVDs are complex diseases, the most challenging aspect of developing site-specific therapies is the identification of an individual and unique antigenic epitope that is only expressed in lesions or diseased areas. This review focuses on the pathological mechanism of atherothrombosis and discusses the unique targets that are important during disease progression. We review recent advances in site-specific therapy using novel targeted drug-delivery and nanoparticle-carrier systems. Furthermore, we explore the limitations and future perspectives of site-specific therapy for CVDs.
Collapse
Affiliation(s)
- Haikun Liu
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Geoffrey Pietersz
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Burnet Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia. .,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. .,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia. .,Department of Medicine, Monash University, Melbourne, VIC, Australia. .,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
229
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
230
|
Suzuki H, Kaneko MK, Kato Y. Roles of Podoplanin in Malignant Progression of Tumor. Cells 2022; 11:575. [PMID: 35159384 PMCID: PMC8834262 DOI: 10.3390/cells11030575] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Podoplanin (PDPN) is a cell-surface mucin-like glycoprotein that plays a critical role in tumor development and normal development of the lung, kidney, and lymphatic vascular systems. PDPN is overexpressed in several tumors and is involved in their malignancy. PDPN induces platelet aggregation through binding to platelet receptor C-type lectin-like receptor 2. Furthermore, PDPN modulates signal transductions that regulate cell proliferation, differentiation, migration, invasion, epithelial-to-mesenchymal transition, and stemness, all of which are crucial for the malignant progression of tumor. In the tumor microenvironment (TME), PDPN expression is upregulated in the tumor stroma, including cancer-associated fibroblasts (CAFs) and immune cells. CAFs play significant roles in the extracellular matrix remodeling and the development of immunosuppressive TME. Additionally, PDPN functions as a co-inhibitory molecule on T cells, indicating its involvement with immune evasion. In this review, we describe the mechanistic basis and diverse roles of PDPN in the malignant progression of tumors and discuss the possibility of the clinical application of PDPN-targeted cancer therapy, including cancer-specific monoclonal antibodies, and chimeric antigen receptor T technologies.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| |
Collapse
|
231
|
Yu S, Wang Y, He P, Shao B, Liu F, Xiang Z, Yang T, Zeng Y, He T, Ma J, Wang X, Liu L. Effective Combinations of Immunotherapy and Radiotherapy for Cancer Treatment. Front Oncol 2022; 12:809304. [PMID: 35198442 PMCID: PMC8858950 DOI: 10.3389/fonc.2022.809304] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Though single tumor immunotherapy and radiotherapy have significantly improved the survival rate of tumor patients, there are certain limitations in overcoming tumor metastasis, recurrence, and reducing side effects. Therefore, it is urgent to explore new tumor treatment methods. The new combination of radiotherapy and immunotherapy shows promise in improving therapeutic efficacy and reducing recurrence by enhancing the ability of the immune system to recognize and eradicate tumor cells, to overcome tumor immune tolerance mechanisms. Nanomaterials, as new drug-delivery-system materials of the 21st century, can maintain the activity of drugs, improve drug targeting, and reduce side effects in tumor immunotherapy. Additionally, nanomaterials, as radiosensitizers, have shown great potential in tumor radiotherapy due to their unique properties, such as light, heat, electromagnetic effects. Here, we review the mechanisms of tumor immunotherapy and radiotherapy and the synergy of radiotherapy with multiple types of immunotherapies, including immune checkpoint inhibitors (ICIs), tumor vaccines, adoptive cell therapy, and cytokine therapy. Finally, we propose the potential for nanomaterials in tumor radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Siting Yu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ping He
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Bianfei Shao
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongzheng Xiang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Yang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Zeng
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao He
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiachun Ma
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiran Wang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Liu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lei Liu,
| |
Collapse
|
232
|
Yuan P, Yang F, Liew SS, Yan J, Dong X, Wang J, Du S, Mao X, Gao L, Yao SQ. Intracellular Co-delivery of native antibody and siRNA for combination therapy by using biodegradable silica nanocapsules. Biomaterials 2022; 281:121376. [DOI: 10.1016/j.biomaterials.2022.121376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022]
|
233
|
Liu D, Hu Z, Jiang J, Zhang J, Hu C, Huang J, Wei Q. Five hypoxia and immunity related genes as potential biomarkers for the prognosis of osteosarcoma. Sci Rep 2022; 12:1617. [PMID: 35102149 PMCID: PMC8804019 DOI: 10.1038/s41598-022-05103-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma accounts for a frequently occurring cancer of the primary skeletal system. In osteosarcoma cells, a hypoxic microenvironment is commonly observed that drives tumor growth, progression, and heterogeneity. Hypoxia and tumor-infiltrating immune cells might be closely related to the prognosis of osteosarcoma. In this study, we aimed to determine the biomarkers and therapeutic targets related to hypoxia and immunity through bioinformatics methods to improve the clinical prognosis of patients. We downloaded the gene expression data of osteosarcoma samples and normal samples in the UCSC Xena database and GTEx database, respectively, and downloaded the validation dataset (GSE21257) in the GEO database. Subsequently, we performed GO enrichment analysis and KEGG pathway enrichment analysis on the data of the extracted osteosarcoma hypoxia-related genes. Through univariate COX regression analysis, lasso regression analysis, multivariate COX regression analysis, etc., we established a predictive model for the prognosis of osteosarcoma. Five genes, including ST3GAL4, TRIM8, STC2, TRPS1, and FAM207A, were found by screening. In particular, we analyzed the immune cell composition of each gene based on the five genes through the CIBERSORT algorithm and verified each gene at the cell and tissue level. Our findings are valuable for the clinical diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Dachang Liu
- Department of Orthopedics Trauma and Hand Surgery, Guangxi Medical University First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Ziwei Hu
- Guangxi Medical University, Nanning, 530021, China
| | - Jie Jiang
- Department of Spine and Osteopathic Surgery, Guangxi Medical University First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Junlei Zhang
- Department of Orthopedics Trauma and Hand Surgery, Guangxi Medical University First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Chunlong Hu
- Department of Orthopedics Trauma and Hand Surgery, Guangxi Medical University First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Jian Huang
- Guangxi Medical University, Nanning, 530021, China
| | - Qingjun Wei
- Department of Orthopedics Trauma and Hand Surgery, Guangxi Medical University First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
234
|
Zhao P, Liu S, Koriath AT, Gao X. Partial Magneto-Endosomalysis for Cytosolic Delivery of Antibodies. Bioconjug Chem 2022; 33:363-368. [PMID: 35098715 DOI: 10.1021/acs.bioconjchem.1c00598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modulation of protein functions and interactions is the most direct and effective means to intervene in cellular processes and pathogenesis. The majority of the critical intracellular signaling pathways, however, are considered undruggable using small molecules. In this regard, antibodies are superior in structural and functional diversity and are significantly easier to raise compared to the screening of small molecules. Despite these advantages, the uses of antibodies in live cells (either as an imaging agent or as a therapeutic compound) are substantially undermined, only acting on extracellular targets. The inability of targeting intracellular proteins is because of a fundamental issue: antibodies enter cells through endocytosis where the vast majority are trapped in endosomes for degradation. Here, we report a nanoparticle self-assembly strategy enabling antibody endosomal escape. We demonstrate the intracellular bioavailability of antibodies and the preserved binding specificity to their cytosolic targets. This technology is simple and opens exciting opportunities for live-cell imaging, therapeutics development, and cell engineering.
Collapse
Affiliation(s)
- Pengfei Zhao
- Department of Bioengineering, University of Washington, 3720 15th Avenue Northeast, Seattle, Washington 98195, United States
| | - Sangmo Liu
- Department of Bioengineering, University of Washington, 3720 15th Avenue Northeast, Seattle, Washington 98195, United States
| | - Alexandra True Koriath
- Department of Bioengineering, University of Washington, 3720 15th Avenue Northeast, Seattle, Washington 98195, United States
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, 3720 15th Avenue Northeast, Seattle, Washington 98195, United States
| |
Collapse
|
235
|
Macagno M, Bandini S, Bolli E, Bello A, Riccardo F, Barutello G, Merighi IF, Forni G, Lamolinara A, Del Pizzo F, Iezzi M, Cavallo F, Conti L, Quaglino E. Role of ADCC, CDC, and CDCC in Vaccine-Mediated Protection against Her2 Mammary Carcinogenesis. Biomedicines 2022; 10:biomedicines10020230. [PMID: 35203439 PMCID: PMC8869482 DOI: 10.3390/biomedicines10020230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Amplification or mutation of the Her2 oncoantigen in human mammary glands leads to the development of an aggressive breast carcinoma. Several features of this breast carcinoma are reproduced in mammary carcinomas that spontaneously arise in female transgenic mice bearing the activated rat Her2 oncogene under transcriptional control of the mouse mammary tumor virus promoter-BALB-neuT (neuT) mice. We previously demonstrated that carcinoma progression in neuT mice can be prevented by DNA vaccination with RHuT, a plasmid coding for a chimeric rat/human Her2 protein. RHuT vaccination exerts an antitumor effect, mostly mediated by the induction of a strong anti-rat Her2 antibody response. IgG induced by RHuT vaccine mainly acts by blocking Her2 signaling, thus impairing cell cycle progression and inducing apoptosis of cancer cells, but other indirect effector mechanisms could be involved in the antibody-mediated protection. The recruitment of cells with perforin-dependent cytotoxic activity, able to perform antibody-dependent cellular cytotoxicity, has already been investigated. Less is known about the role of the complement system in sustaining antitumor response through complement-dependent cytotoxicity and cellular cytotoxicity in vaccinated mice. This work highlights that the weight of such mechanisms in RHuT-induced cancer protection is different in transplantable versus autochthonous Her2+ tumor models. These results may shed new light on the effector mechanisms involved in antibody-dependent anti-cancer responses, which might be exploited to ameliorate the therapy of Her2+ breast cancer.
Collapse
Affiliation(s)
- Marco Macagno
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Silvio Bandini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Elisabetta Bolli
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Amanda Bello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Federica Riccardo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Giuseppina Barutello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Irene Fiore Merighi
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Guido Forni
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Alessia Lamolinara
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Francesco Del Pizzo
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Manuela Iezzi
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Federica Cavallo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| | - Laura Conti
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| | - Elena Quaglino
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| |
Collapse
|
236
|
Epidermal Growth Factor Receptor as Target for Perioperative Elimination of Circulating Colorectal Cancer Cells. JOURNAL OF ONCOLOGY 2022; 2022:3577928. [PMID: 35035479 PMCID: PMC8759909 DOI: 10.1155/2022/3577928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
Surgical resection of the tumor is the primary treatment of colorectal cancer patients. However, we previously demonstrated that abdominal surgery promotes the adherence of circulating tumor cells (CTC) in the liver and subsequent liver metastasis development. Importantly, preoperative treatment with specific tumor-targeting monoclonal antibodies (mAb) prevented surgery-induced liver metastasis development in rats. This study investigated whether the epidermal growth factor receptor (EGFR) represents a suitable target for preoperative antibody treatment of colorectal cancer patients undergoing surgery. The majority of patients with resectable colorectal liver metastases were shown to have EGFR + CTCs. Three different anti-EGFR mAbs (cetuximab, zalutumumab, and panitumumab) were equally efficient in the opsonization of tumor cell lines. Additionally, all three mAbs induced antibody-dependent cellular phagocytosis (ADCP) of tumor cells by macrophages at low antibody concentrations in vitro, independent of mutations in EGFR signaling pathways. The plasma of cetuximab-treated patients efficiently opsonized tumor cells ex vivo and induced phagocytosis. Furthermore, neither proliferation nor migration of epithelial cells was affected in vitro, supporting that wound healing will not be hampered by treatment with low anti-EGFR mAb concentrations. These data support the use of a low dose of anti-EGFR mAbs prior to resection of the tumor to eliminate CTCs without interfering with the healing of the anastomosis. Ultimately, this may reduce the risk of metastasis development, consequently improving long-term patient outcome significantly.
Collapse
|
237
|
Nettersheim FS, Picard FSR, Hoyer FF, Winkels H. Immunotherapeutic Strategies in Cancer and Atherosclerosis-Two Sides of the Same Coin. Front Cardiovasc Med 2022; 8:812702. [PMID: 35097027 PMCID: PMC8792753 DOI: 10.3389/fcvm.2021.812702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
The development and clinical approval of immunotherapies has revolutionized cancer therapy. Although the role of adaptive immunity in atherogenesis is now well-established and several immunomodulatory strategies have proven beneficial in preclinical studies, anti-atherosclerotic immunotherapies available for clinical application are not available. Considering that adaptive immune responses are critically involved in both carcinogenesis and atherogenesis, immunotherapeutic approaches for the treatment of cancer and atherosclerosis may exert undesirable but also desirable side effects on the other condition, respectively. For example, the high antineoplastic efficacy of immune checkpoint inhibitors, which enhance effector immune responses against tumor cells by blocking co-inhibitory molecules, was recently shown to be constrained by substantial proatherogenic properties. In this review, we outline the specific role of immune responses in the development of cancer and atherosclerosis. Furthermore, we delineate how current cancer immunotherapies affect atherogenesis and discuss whether anti-atherosclerotic immunotherapies may similarly have an impact on carcinogenesis.
Collapse
Affiliation(s)
- Felix Sebastian Nettersheim
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Simon Ruben Picard
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Friedrich Felix Hoyer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
238
|
Das R, Langou S, Le TT, Prasad P, Lin F, Nguyen TD. Electrical Stimulation for Immune Modulation in Cancer Treatments. Front Bioeng Biotechnol 2022; 9:795300. [PMID: 35087799 PMCID: PMC8788921 DOI: 10.3389/fbioe.2021.795300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy is becoming a very common treatment for cancer, using approaches like checkpoint inhibition, T cell transfer therapy, monoclonal antibodies and cancer vaccination. However, these approaches involve high doses of immune therapeutics with problematic side effects. A promising approach to reducing the dose of immunotherapeutic agents given to a cancer patient is to combine it with electrical stimulation, which can act in two ways; it can either modulate the immune system to produce the immune cytokines and agents in the patient's body or it can increase the cellular uptake of these immune agents via electroporation. Electrical stimulation in form of direct current has been shown to reduce tumor sizes in immune-competent mice while having no effect on tumor sizes in immune-deficient mice. Several studies have used nano-pulsed electrical stimulations to activate the immune system and drive it against tumor cells. This approach has been utilized for different types of cancers, like fibrosarcoma, hepatocellular carcinoma, human papillomavirus etc. Another common approach is to combine electrochemotherapy with immune modulation, either by inducing immunogenic cell death or injecting immunostimulants that increase the effectiveness of the treatments. Several therapies utilize electroporation to deliver immunostimulants (like genes encoded with cytokine producing sequences, cancer specific antigens or fragments of anti-tumor toxins) more effectively. Lastly, electrical stimulation of the vagus nerve can trigger production and activation of anti-tumor immune cells and immune reactions. Hence, the use of electrical stimulation to modulate the immune system in different ways can be a promising approach to treat cancer.
Collapse
Affiliation(s)
- Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Sofia Langou
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States
| | - Thinh T. Le
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Pooja Prasad
- Department of Cell and Molecular Biology, University of Connecticut, Mansfield, CT, United States
| | - Feng Lin
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Thanh D. Nguyen
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
- Institute of Materials Science, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
239
|
Corma A, Botella P, Rivero-Buceta E. Silica-Based Stimuli-Responsive Systems for Antitumor Drug Delivery and Controlled Release. Pharmaceutics 2022; 14:pharmaceutics14010110. [PMID: 35057006 PMCID: PMC8779356 DOI: 10.3390/pharmaceutics14010110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
The administration of cytotoxic drugs in classical chemotherapy is frequently limited by water solubility, low plasmatic stability, and a myriad of secondary effects associated with their diffusion to healthy tissue. In this sense, novel pharmaceutical forms able to deliver selectively these drugs to the malign cells, and imposing a space-time precise control of their discharge, are needed. In the last two decades, silica nanoparticles have been proposed as safe vehicles for antitumor molecules due to their stability in physiological medium, high surface area and easy functionalization, and good biocompatibility. In this review, we focus on silica-based nanomedicines provided with specific mechanisms for intracellular drug release. According to silica nature (amorphous, mesostructured, and hybrids) nanocarriers responding to a variety of stimuli endogenously (e.g., pH, redox potential, and enzyme activity) or exogenously (e.g., magnetic field, light, temperature, and ultrasound) are proposed. Furthermore, the incorporation of targeting molecules (e.g., monoclonal antibodies) that interact with specific cell membrane receptors allows a selective delivery to cancer cells to be carried out. Eventually, we present some remarks on the most important formulations in the pipeline for clinical approval, and we discuss the most difficult tasks to tackle in the near future, in order to extend the use of these nanomedicines to real patients.
Collapse
|
240
|
Stephen B, Hajjar J. Immune System in Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:1-43. [PMID: 34972961 DOI: 10.1007/978-3-030-79308-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tumor exists as a complex network of structures with an ability to evolve and evade the host immune surveillance mechanism. The immune milieu which includes macrophages, dendritic cells, natural killer cells, neutrophils, mast cells, B cells, and T cells is found in the core, the invasive margin, or the adjacent stromal or lymphoid component of the tumor. The immune infiltrate is heterogeneous and varies within a patient and between patients of the same tumor histology. The location, density, functionality, and the crosstalk between the immune cells in the tumor microenvironment influence the nature of immune response, prognosis, and treatment outcomes in cancer patients. Therefore, an understanding of the characteristics of the immune cells and their role in tumor immune surveillance is of paramount importance to identify immune targets and to develop novel immune therapeutics in the war against cancer. In this chapter, we provide an overview of the individual components of the human immune system and the translational relevance of predictive biomarkers.
Collapse
Affiliation(s)
- Bettzy Stephen
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Joud Hajjar
- Assistant Professor, Service Chief of Adult Allergy & Immunology, Division of Immunology, Allergy & Retrovirology, Baylor College of Medicine and Texas Children' Hospital, Houston, TX, USA
| |
Collapse
|
241
|
Proskurina AS, Ruzanova VS, Ritter GS, Efremov YR, Mustafin ZS, Lashin SA, Burakova EA, Fokina AA, Zatsepin TS, Stetsenko DA, Leplina OY, Ostanin AA, Chernykh ER, Bogachev SS. Antitumor efficacy of multi-target <i>in situ</i> vaccinations with CpG oligodeoxynucleotides, anti-OX40, anti-PD1 antibodies, and aptamers. J Biomed Res 2022; 37:194-212. [PMID: 37161885 DOI: 10.7555/jbr.36.20220052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To overcome immune tolerance to cancer, the immune system needs to be exposed to a multi-target action intervention. Here, we investigated the activating effect of CpG oligodeoxynucleotides (ODNs), mesyl phosphoramidate CpG ODNs, anti-OX40 antibodies, and OX40 RNA aptamers on major populations of immunocompetent cells ex vivo. Comparative analysis of the antitumor effects of in situ vaccination with CpG ODNs and anti-OX40 antibodies, as well as several other combinations, such as mesyl phosphoramidate CpG ODNs and OX40 RNA aptamers, was conducted. Antibodies against programmed death 1 (PD1) checkpoint inhibitors or their corresponding PD1 DNA aptamers were also added to vaccination regimens for analytical purposes. Four scenarios were considered: a weakly immunogenic Krebs-2 carcinoma grafted in CBA mice; a moderately immunogenic Lewis carcinoma grafted in C57Black/6 mice; and an immunogenic A20 B cell lymphoma or an Ehrlich carcinoma grafted in BALB/c mice. Adding anti-PD1 antibodies (CpG+αOX40+αPD1) to in situ vaccinations boosts the antitumor effect. When to be used instead of antibodies, aptamers also possess antitumor activity, although this effect was less pronounced. The strongest effect across all the tumors was observed in highly immunogenic A20 B cell lymphoma and Ehrlich carcinoma.
Collapse
|
242
|
Standing D, Dandawate P, Anant S. Prolactin receptor signaling: A novel target for cancer treatment - Exploring anti-PRLR signaling strategies. Front Endocrinol (Lausanne) 2022; 13:1112987. [PMID: 36714582 PMCID: PMC9880166 DOI: 10.3389/fendo.2022.1112987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Prolactin (PRL) is a peptide hormone mainly secreted from the anterior pituitary gland. PRL is reported to play a role in pregnancy, mammary gland development, immune modulation, reproduction, and differentiation of islet cells. PRL binds to its receptor PRLR, which belongs to a superfamily of the class I cytokine receptor that has no intrinsic kinase activity. In canonical signaling, PRL binding to PRLR induces downstream signaling including JAK-STAT, AKT and MAPK pathways. This leads to increased cell proliferation, stemness, migration, apoptosis inhibition, and resistance to chemotherapy. PRL-signaling is upregulated in numerous hormone-dependent cancers including breast, prostate, ovarian, and endometrial cancer. However, more recently, the pathway has been reported to play a tumor-promoting role in other cancer types such as colon, pancreas, and hepatocellular cancers. Hence, the signaling pathway is an attractive target for drug development with blockade of the receptor being a potential therapeutic approach. Different strategies have been developed to target this receptor including modification of PRL peptides (Del1-9-G129R-hPRL, G129R-Prl), growth hormone receptor/prolactin receptor bispecific antibody antagonist, neutralizing antibody LFA102, an antibody-drug conjugate (ABBV-176) of the humanized antibody h16f (PR-1594804) and pyrrolobenzodiazepine dimer, a bispecific antibody targeting both PRLR and CD3, an in vivo half-life extended fusion protein containing PRLR antagonist PrlRA and albumin binding domain. There have also been attempts to discover and develop small molecular inhibitors targeting PRLR. Recently, using structure-based virtual screening, we identified a few antipsychotic drugs including penfluridol as a molecule that inhibits PRL-signaling to inhibit PDAC tumor progression. In this review, we will summarize the recent advances in the biology of this receptor in cancer and give an account of PRLR antagonist development for the treatment of cancer.
Collapse
|
243
|
Zhang X, Wang DY, Wu X, Zhao Y, Li X, Ma R, Huang F, Shi L. “Spear and Shield in One” Nanochaperone Enables Protein to Navigate Multiple Biological Barriers for Enhanced Tumor Synergistic Therapy. Biomater Sci 2022; 10:3575-3584. [DOI: 10.1039/d2bm00409g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein therapeutics have been viewed as powerful candidates for cancer treatment by virtue of highly specific bioactivity and minimized adverse effects. However, the intracellular delivery of protein drugs remains enormously...
Collapse
|
244
|
Yang L, Ma H, Lin S, Zhu Y, Chen H, Zhang N, Feng X. Nucleus-selective codelivery of proteins and drugs for synergistic antitumor therapy. Chem Sci 2022; 13:10342-10348. [PMID: 36277647 PMCID: PMC9473504 DOI: 10.1039/d2sc03861g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Subcellular organelle targeted transport is of great significance for accurately delivering drugs to active sites for better pharmacological effects, but there are still a lot of challenges due to transport problems. In addition, the killing effect of one kind of drug on cells is limited. Therefore, it is necessary to develop a multifunctional nanoplatform that can co-deliver synergistic therapeutic agents. Here, we prepare a simple amphiphilic nanocarrier (LC) with rapid endosomal escape ability for nucleus-selective delivery of hydrophilic active protein deoxyribonuclease I (DNase I) and hydrophobic anticancer drug doxorubicin (DOX). LC has been applied to effectively encapsulate DNase I just by simply mixing their aqueous solutions together. In addition, DOX modified with adamantane groups via a redox-responsive linker is incorporated into the architecture of DNase I nanoformulations through host–guest interaction. This multi-component nanoplatform can quickly escape from the endolysosomes into the cytoplasm and make DNase I and DOX highly accumulate in the nucleus and consequently induce strong synergistic anticancer efficacy both in vitro and in vivo. This work illustrates a new platform for codelivery of proteins and drugs that target subcellular compartments for functions. An efficient nucleus-targeted co-delivery nanoplatform with high endosomal escape ability to transport proteins and drugs into nucleus was prepared for synergistically enhanced cancer therapy.![]()
Collapse
Affiliation(s)
- Lan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Huijie Ma
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Shan Lin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yupeng Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ning Zhang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong 523710, P. R. China
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
245
|
Chen H, Wan J, Chen D. A Novel Targeted Delivery of Valeric Acid Using Liposomal Nanoparticles in Treatment of Lung Cell Carcinoma. J Biomed Nanotechnol 2022; 18:211-217. [PMID: 35180914 DOI: 10.1166/jbn.2022.3235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With a high mortality rate, non-small cell lung cancer (NSCLC) is a major challenge for patients and clinicians. The high cost and side effects of chemo-drugs severely influence disease outcome. With advantages of action prolongation and solitary target for embedded drugs, liposomal nanoparticle-based modification was investigated in this study with valeric acid, aimed at exploring its impacts and value on NSCLC. The efficacy comparisons of chemo-drugs (cisplatin, paclitaxel and liposomal nanoparticle-modified valeric acid) were conducted utilizing human NSCLC cell lines, normal lung fibroblasts, pulmonary epithelial cell line, and mouse tumor models. Additionally, the underlying therapeutic mechanisms for this novel liposomal nanoparticle in NSCLC were also explored via analysis of protein changes in tumor tissues. Results showed that, in comparison with conventional chemotherapeutics (cisplatin and paclitaxel), novel liposomal nanoparticle-modified valeric acid effectively retarded the growth of human NSCLC cell lines to a greater extent, and even successfully restrained further progression of tumor tissues in vivo. Furthermore, this novel liposomal nanoparticle-modified valeric acid exhibited lower cytotoxicity towards normal lung cell lines. Additionally, the anti-cancer function of this novel liposomal nanoparticle-modified valeric acid was found to be related to STAT3/Cyclin D1 pathway. The current study confirmed that, compared with cisplatin and paclitaxel, this novel liposomal nanoparticle-modified valeric acid displayed significant therapeutic effect on NSCLC, with lower cytotoxicity to normal cells. It has therefore further promoted research progress and significance on NSCLC research in the clinical management of NSCLC.
Collapse
Affiliation(s)
- Hongdou Chen
- Department of Pharmacy, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, Jiangsu, China
| | - Jinxiang Wan
- Department of Functional Section, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223001, Jiangsu, China
| | - Douren Chen
- Department of Pharmacy, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223001, Jiangsu, China
| |
Collapse
|
246
|
Fotiou D, Theodorakakou F, Kastritis E. Monoclonal antibody-based therapies for Waldenström's macroglobulinemia. Leuk Res Rep 2022; 17:100324. [PMID: 35572915 PMCID: PMC9098391 DOI: 10.1016/j.lrr.2022.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Despina Fotiou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Foteini Theodorakakou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
- Corresponding author.
| |
Collapse
|
247
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
248
|
Moradinasab S, Pourbagheri-Sigaroodi A, Ghaffari SH, Bashash D. Targeting macrophage-mediated tumor cell phagocytosis: An overview of phagocytosis checkpoints blockade, nanomedicine intervention, and engineered CAR-macrophage therapy. Int Immunopharmacol 2021; 103:108499. [PMID: 34972068 DOI: 10.1016/j.intimp.2021.108499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/05/2022]
Abstract
Immunotherapy has been developing at an unprecedented speed with promising therapeutic outcomes in the wide spectrum of cancers. Up until now, most immunotherapies have focused on adaptive immunity; however, investigating the potential of macrophage phagocytosis and consequent adaptive immune cross-priming has led to a growing interest in exploiting macrophages in cancer therapy. In light of the positive evidence from preclinical studies and early clinical data, targeting macrophage phagocytosis has become a promising therapeutic strategy. Here, we review therapies based on harnessing and amplifying macrophage phagocytosis, such as blocking phagocytosis checkpoints and exploiting nanoparticles as efficient approaches in elevating macrophages-mediated phagocytosis. The present study introduces CAR-macrophage as the state-of-the-art modality serving as the bridge between the innate and adaptive immune system to mount a superior anti-tumor response in the treatment of cancer. We also take a look at the recent reports of therapies based on CAR-engineered macrophages with the hope of providing a future research direction for expanding the application of CAR-macrophage therapy.
Collapse
Affiliation(s)
- Susan Moradinasab
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
249
|
A Comprehensive Review of Recent Advancements in Cancer Immunotherapy and Generation of CAR T Cell by CRISPR-Cas9. Processes (Basel) 2021. [DOI: 10.3390/pr10010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms involved in immune responses to cancer have been extensively studied for several decades, and considerable attention has been paid to harnessing the immune system’s therapeutic potential. Cancer immunotherapy has established itself as a promising new treatment option for a variety of cancer types. Various strategies including cancer vaccines, monoclonal antibodies (mAbs), adoptive T-cell cancer therapy and CAR T-cell therapy have gained prominence through immunotherapy. However, the full potential of cancer immunotherapy remains to be accomplished. In spite of having startling aspects, cancer immunotherapies have some difficulties including the inability to effectively target cancer antigens and the abnormalities in patients’ responses. With the advancement in technology, this system has changed the genome-based immunotherapy process in the human body including the generation of engineered T cells. Due to its high specificity, CRISPR-Cas9 has become a simple and flexible genome editing tool to target nearly any genomic locus. Recently, the CD19-mediated CAR T-cell (chimeric antigen receptor T cell) therapy has opened a new avenue for the treatment of human cancer, though low efficiency is a major drawback of this process. Thus, increasing the efficiency of the CAR T cell (engineered T cells that induce the chimeric antigen receptor) by using CRISPR-Cas9 technology could be a better weapon to fight against cancer. In this review, we have broadly focused on recent immunotherapeutic techniques against cancer and the use of CRISPR-Cas9 technology for the modification of the T cell, which can specifically recognize cancer cells and be used as immune-therapeutics against cancer.
Collapse
|
250
|
钟 慧, 邹 庆, 刘 海, 王 晓, 杜 少, 梁 海, 吴 志, 叶 俊, 邹 清. [Construction and evaluation of dual-effect cord blood natural killer cells expressing highaffinity PD-1 and chimeric antigen CD19 receptor]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1877-1884. [PMID: 35012922 PMCID: PMC8752428 DOI: 10.12122/j.issn.1673-4254.2021.12.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To obtain novel dual-effect cord blood natural killer cells (CBNKCs) expressing high-affinity PD-1 (HAPD1) and chimeric antigen CD19 receptor (CAR) to improve the effect of CAR-based immunotherapy. METHODS A dual-effect lentiviral vector expressing both HAPD1 and CAR targeting CD19 was constructed. CBNKCs were infected with the vector to obtain HAPD1 CAR19 CBNKCs. The surface markers of the cells including CD3-/CD16+CD56+, CD3+/CD16+CD56+, CD3+/CD4+, and CD3+/CD8+ were tested during cell proliferation. The cytotoxicity of CBNKCs, CAR19 CBNKCs and HAPD1 CAR19 CBNKCs incubated with CD19-positive target cells at the effector-target ratios of 5∶1, 10∶1 and 20∶1 was tested on days 7, 9, 12, and 15 of cell culture. The cytotoxicity of the cells against the target cells was also tested in NPG mice. RESULTS CBNKCs were successfully transduced with T-cell designed CAR19 and HAPD1 CAR19 with an efficiency of (18.63±1.88)%. Infection with the lentiviral vector significantly reduced the cell expansion efficiency of the CBNKCs (10.97±2.77 vs 24.84±3.17, P < 0.05) but did not significantly affect the expressions of the surface markers (P>0.05). HAPD1 CAR CBNKCs showed stronger anti-tumor effect than CAR19 CBNKCs [(68.38±8.08)% vs (49.65±13.60)% at the effector-target ratios of 5∶1 and (79.11±7.42)% vs (59.78 ± 9.32)% at 10∶1; P < 0.05]. The infected CBNKCs showed the strongest cytotoxicity at 9 and 12 days after lentivirus infection. In the mouse models, transplantation of the dual-effect cells resulted in a significantly lower percentage of tumor cells in white blood cells than transplantation CAR-CBNKCs [(19.21 ± 3.07%) vs (29.08 ± 3.15)%, P < 0.05]. CONCLUSION We obtained a novel dual-effect CBNKC co-expressing HAPD1 and CAR. The cells show strong cytotoxicity against the target tumor cells both in vitro and in vivo, which sheds light on a new strategy of immunotherapy against tumor cells.
Collapse
Affiliation(s)
- 慧霖 钟
- 广州熙帝生物科技有限公司,广东 广州 510633Guangzhou Cedicine Biotech Co.Ltd, Guangzhou 510633, China
| | - 庆剑 邹
- 五邑大学生物科技与大健康学院,广东 江门 529020School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - 海霞 刘
- 广州熙帝生物科技有限公司,广东 广州 510633Guangzhou Cedicine Biotech Co.Ltd, Guangzhou 510633, China
| | - 晓民 王
- 西湖大学生命科学学院,浙江 杭州 310024School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - 少茵 杜
- 广州熙帝生物科技有限公司,广东 广州 510633Guangzhou Cedicine Biotech Co.Ltd, Guangzhou 510633, China
| | - 海燕 梁
- 广州熙帝生物科技有限公司,广东 广州 510633Guangzhou Cedicine Biotech Co.Ltd, Guangzhou 510633, China
| | - 志君 吴
- 广州熙帝生物科技有限公司,广东 广州 510633Guangzhou Cedicine Biotech Co.Ltd, Guangzhou 510633, China
| | - 俊杰 叶
- 广州熙帝生物科技有限公司,广东 广州 510633Guangzhou Cedicine Biotech Co.Ltd, Guangzhou 510633, China
| | - 清雁 邹
- 广州熙帝生物科技有限公司,广东 广州 510633Guangzhou Cedicine Biotech Co.Ltd, Guangzhou 510633, China
| |
Collapse
|