201
|
Houles T, Lavoie G, Nourreddine S, Cheung W, Vaillancourt-Jean É, Guérin CM, Bouttier M, Grondin B, Lin S, Saba-El-Leil MK, Angers S, Meloche S, Roux PP. CDK12 is hyperactivated and a synthetic-lethal target in BRAF-mutated melanoma. Nat Commun 2022; 13:6457. [PMID: 36309522 PMCID: PMC9617877 DOI: 10.1038/s41467-022-34179-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer and considered intrinsically resistant to chemotherapy. Nearly all melanomas harbor mutations that activate the RAS/mitogen-activated protein kinase (MAPK) pathway, which contributes to drug resistance via poorly described mechanisms. Herein we show that the RAS/MAPK pathway regulates the activity of cyclin-dependent kinase 12 (CDK12), which is a transcriptional CDK required for genomic stability. We find that melanoma cells harbor constitutively high CDK12 activity, and that its inhibition decreases the expression of long genes containing multiple exons, including many genes involved in DNA repair. Conversely, our results show that CDK12 inhibition promotes the expression of short genes with few exons, including many growth-promoting genes regulated by the AP-1 and NF-κB transcription factors. Inhibition of these pathways strongly synergize with CDK12 inhibitors to suppress melanoma growth, suggesting promising drug combinations for more effective melanoma treatment.
Collapse
Affiliation(s)
- Thibault Houles
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, 2950, Chemin de la Polytechnique, Montréal, QC H3T 1J4 Canada
| | - Geneviève Lavoie
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, 2950, Chemin de la Polytechnique, Montréal, QC H3T 1J4 Canada
| | - Sami Nourreddine
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, 2950, Chemin de la Polytechnique, Montréal, QC H3T 1J4 Canada ,grid.266100.30000 0001 2107 4242Present Address: Department of Bioengineering, University of California, San Diego, San Diego, CA USA
| | - Winnie Cheung
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, 2950, Chemin de la Polytechnique, Montréal, QC H3T 1J4 Canada
| | - Éric Vaillancourt-Jean
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, 2950, Chemin de la Polytechnique, Montréal, QC H3T 1J4 Canada
| | - Célia M. Guérin
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, 2950, Chemin de la Polytechnique, Montréal, QC H3T 1J4 Canada
| | - Mathieu Bouttier
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, 2950, Chemin de la Polytechnique, Montréal, QC H3T 1J4 Canada
| | - Benoit Grondin
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, 2950, Chemin de la Polytechnique, Montréal, QC H3T 1J4 Canada ,grid.38678.320000 0001 2181 0211Present Address: Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC Canada
| | - Sichun Lin
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular & Biomolecular Research, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Marc K. Saba-El-Leil
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, 2950, Chemin de la Polytechnique, Montréal, QC H3T 1J4 Canada
| | - Stephane Angers
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular & Biomolecular Research, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Sylvain Meloche
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, 2950, Chemin de la Polytechnique, Montréal, QC H3T 1J4 Canada ,grid.14848.310000 0001 2292 3357Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC Canada
| | - Philippe P. Roux
- grid.14848.310000 0001 2292 3357Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, 2950, Chemin de la Polytechnique, Montréal, QC H3T 1J4 Canada ,grid.14848.310000 0001 2292 3357Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC Canada
| |
Collapse
|
202
|
Cai X, Chen Z, Huang C, Shen J, Zeng W, Feng S, Liu Y, Li S, Chen M. Development of a novel glycolysis-related genes signature for isocitrate dehydrogenase 1-associated glioblastoma multiforme. Front Immunol 2022; 13:950917. [DOI: 10.3389/fimmu.2022.950917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe significant difference in prognosis between IDH1 wild-type and IDH1 mutant glioblastoma multiforme (GBM) may be attributed to their metabolic discrepancies. Hence, we try to construct a prognostic signature based on glycolysis-related genes (GRGs) for IDH1-associated GBM and further investigate its relationships with immunity.MethodsDifferentially expressed GRGs between IDH1 wild-type and IDH1 mutant GBM were screened based on the TCGA database and the Molecular Signature Database (MSigDB). Consensus Cluster Plus analysis and KEGG pathway analyses were used to establish a new GRGs set. WGCNA, univariate Cox, and LASSO regression analyses were then performed to construct the prognostic signature. Then, we evaluated association of the prognostic signature with patients’ survival, clinical characteristics, tumor immunogenicity, immune infiltration, and validated one hub gene.Results956 differentially expressed genes (DEGs) between IDH1 wild-type and mutant GBM were screened out and six key prognostically related GRGs were rigorously selected to construct a prognostic signature. Further evaluation and validation showed that the signature independently predicted GBM patients’ prognosis with moderate accuracy. In addition, the prognostic signature was also significantly correlated with clinical traits (sex and MGMT promoter status), tumor immunogenicity (mRNAsi, EREG-mRNAsi and HRD-TAI), and immune infiltration (stemness index, immune cells infiltration, immune score, and gene mutation). Among six key prognostically related GRGs, CLEC5A was selected and validated to potentially play oncogenic roles in GBM.ConclusionConstruction of GRGs prognostic signature and identification of close correlation between the signature and immune landscape would suggest its potential applicability in immunotherapy of GBM in the future.
Collapse
|
203
|
Wu Z, Lei K, Li H, He J, Shi E. Transcriptome-based network analysis related to M2-like tumor-associated macrophage infiltration identified VARS1 as a potential target for improving melanoma immunotherapy efficacy. J Transl Med 2022; 20:489. [PMID: 36303162 PMCID: PMC9615154 DOI: 10.1186/s12967-022-03686-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 11/10/2022] Open
Abstract
RATIONALE The M2-like tumor-associated macrophages (TAMs) are independent prognostic factors in melanoma. METHODS We performed weighted gene co-expression network analysis (WGCNA) to identify the module most correlated with M2-like TAMs. The Cancer Genome Atlas (TCGA) patients were classified into two clusters that differed based on prognosis and biological function, with consensus clustering. A prognostic model was established based on the differentially expressed genes (DEGs) of the two clusters. We investigated the difference in immune cell infiltration and immune response-related gene expression between the high and low risk score groups. RESULTS The risk score was defined as an independent prognostic value in melanoma. VARS1 was a hub gene in the M2-like macrophage-associated WGCNA module that the DepMap portal demonstrated was necessary for melanoma growth. Overexpressing VARS1 in vitro increased melanoma cell migration and invasion, while downregulating VARS1 had the opposite result. VARS1 overexpression promoted M2 macrophage polarization and increased TGF-β1 concentrations in tumor cell supernatant in vitro. VARS1 expression was inversely correlated with immune-related signaling pathways and the expression of several immune checkpoint genes. In addition, the VARS1 expression level helped predict the response to anti-PD-1 immunotherapy. Pan-cancer analysis demonstrated that VARS1 expression negatively correlated with CD8 T cell infiltration and the immune response-related pathways in most cancers. CONCLUSION We established an M2-like TAM-related prognostic model for melanoma and explored the role of VARS1 in melanoma progression, M2 macrophage polarization, and the development of immunotherapy resistance.
Collapse
Affiliation(s)
- Zhengquan Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Munich, 81377, Munich, Germany.,Walter Brendel Center for Experimental Medicine, University of Munich, 81377, Munich, Germany
| | - Ke Lei
- Department of Dermatology, The Second People's Hospital of Chengdu, 610021, Chengdu, People's Republic of China
| | - Huaizhi Li
- Department of Endocrinology, Shenzhen University General Hospital, Shenzhen University, 518055, Shenzhen, People's Republic of China
| | - Jiali He
- Shenzhen Healthcare Committee Office, 518020, Shenzhen, People's Republic of China
| | - Enxian Shi
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Munich, 81377, Munich, Germany.
| |
Collapse
|
204
|
Wong TF, Chen YS, Zhang XH, Hu WM, Zhang XS, Lv YC, Huang DC, Deng ML, Chen ZP. Longest survival with primary intracranial malignant melanoma: A case report and literature review. World J Clin Cases 2022; 10:11162-11171. [PMID: 36338197 PMCID: PMC9631140 DOI: 10.12998/wjcc.v10.i30.11162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Primary intracranial malignant melanoma (PIMM) is rare, and its prognosis is very poor. It is not clear what systematic treatment strategy can achieve long-term survival. This case study attempted to identify the optimal strategy for long-term survival outcomes by reviewing the PIMM patient with the longest survival following comprehensive treatment and by reviewing the related literature.
CASE SUMMARY The patient is a 47-year-old Chinese man who suffered from dizziness and gait disturbance. He underwent surgery for right cerebellum melanoma and was subsequently diagnosed by pathology in June 2000. After the surgery, the patient received three cycles of chemotherapy but relapsed locally within 4 mo. Following the second surgery for total tumor resection, the patient received an injection of Newcastle disease virus-modified tumor vaccine, interferon, and β-elemene treatment. The patient was tumor-free with a normal life for 21 years before the onset of the recurrence of melanoma without any symptoms in July 2021. A third gross-total resection with adjuvant radiotherapy and temozolomide therapy was performed. Brain magnetic resonance imaging showed no residual tumor or recurrence 3 mo after the 3rd operation, and the patient recovered well without neurological dysfunction until the last follow-up in June 2022, which was 22 years following the initial treatment.
CONCLUSION It is important for patients with PIMM to receive comprehensive treatment to enable the application of the most appropriate treatment strategies. Long-term survival is not impossible in patients with these malignancies.
Collapse
Affiliation(s)
- Tang-Fai Wong
- Department of Neurosurgery, Macao Kiang Wu Hospital, Macao 999078, Sichuan Province, China
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Yin-Sheng Chen
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Xiang-Heng Zhang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Wan-Ming Hu
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Xiao-Shi Zhang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Yan-Chun Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong Province, China
| | - Dong-Cun Huang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong Province, China
| | - Mei-Ling Deng
- Department of Radiotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
205
|
Satow R, Watanabe T, Nomura M, Inagaki S, Yoneda A, Fukami K. Patulin and
LL‐Z1640
‐2 induce apoptosis of cancer cells by decreasing endogenous protein levels of Zic family member 5. J Cell Mol Med 2022; 26:5680-5689. [PMID: 36282887 PMCID: PMC9667518 DOI: 10.1111/jcmm.17598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 12/03/2022] Open
Abstract
Zic family member 5 (ZIC5) is a transcription factor that promotes the survival of several cancer cell types. As ZIC5 is expressed at minimal levels in normal human adult tissues, it is a potential therapeutic target. In this study, we screened a chemical library containing 3398 compounds that includes pre‐existing drugs and compounds with known effects to identify ZIC5 inhibitors. In the first screening, 18 hit compounds decreased GFP intensity in melanoma A375 cells overexpressing GFP‐tagged ZIC5. In the second screening, five compounds that attenuated ZIC5 protein levels in A375 cells were identified. Among them, LL‐Z1640‐2 and patulin selectively induced apoptosis in melanoma cells expressing ZIC5, while only inducing very low levels of apoptosis in normal human melanocytes, which have no detectable ZIC5 expression. LL‐Z1640‐2 and patulin also induced apoptosis in BRAF inhibitor‐resistant melanoma, pancreatic cancer, cholangiocarcinoma and colorectal cancer cells. LL‐Z1640‐2‐ and patulin‐mediated suppression of melanoma proliferation were rescued by ZIC5 overexpression. These results suggest that LL‐Z1640‐2 and patulin are promising compounds that decrease ZIC5 expression to induce apoptosis in cancer cells.
Collapse
Affiliation(s)
- Reiko Satow
- Laboratory of Genome and Biosignals Tokyo University of Pharmacy and Life Sciences Hachioji, Tokyo Japan
| | - Takeru Watanabe
- Laboratory of Genome and Biosignals Tokyo University of Pharmacy and Life Sciences Hachioji, Tokyo Japan
| | - Moeka Nomura
- Laboratory of Genome and Biosignals Tokyo University of Pharmacy and Life Sciences Hachioji, Tokyo Japan
| | - Shota Inagaki
- Laboratory of Genome and Biosignals Tokyo University of Pharmacy and Life Sciences Hachioji, Tokyo Japan
| | - Atsuko Yoneda
- Laboratory of Genome and Biosignals Tokyo University of Pharmacy and Life Sciences Hachioji, Tokyo Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals Tokyo University of Pharmacy and Life Sciences Hachioji, Tokyo Japan
| |
Collapse
|
206
|
Evaluating the Diagnostic Potentials of Circulating Tumor DNA against Melanoma: A Systematic Review and Meta-Analysis. JOURNAL OF ONCOLOGY 2022; 2022:6233904. [DOI: 10.1155/2022/6233904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022]
Abstract
Background. The accurate detection of circulating tumor (ct) DNA is affected by multiple factors, and several controversies still persists regarding clinical applications. In order to assess the consistency of ctDNA gene mutation detection findings in matched melanoma tissue samples and peripheral blood, a meta-analysis was performed and provided evidence-based analysis for its clinical applications. Method. As of May 20, 2019, the database has been searched using the Embase, PubMed, and Cochrane Library search engines. The ctDNA investigations mentioned in this review may be used to directly or indirectly get the true positive (TP), true negative (TN), false positive (FP), and false negative (FN) values of melanoma patients. To be excluded from the study are duplicate publications, research that do not offer a full text, inadequate material or an inability to extract data, and animal trials. Results. Overall, the pooled specificity, sensitivity, NLR, PLR, and DOR were 0.94 (95% CI: 0.91-0.96), 0.73 (95% CI: 0.70-0.75), 0.32 (95% CI: 0.22-0.45), 8.21 (95% CI: 4.67-14.43), and 32.72 (95% CI: 14.81-72.30), respectively. Additionally, we calculated AUC by drawing the SROC curve, and the value of AUC is 0.9287, which indicates that the accuracy of ctDNA in diagnosing melanoma is 92.87% of the gold standard. Furthermore, we conducted a subgroup analysis for different countries, sample sources, and ctDNA detection methods. The pooled results showed that different countries, sample sources, and ctDNA detection methods showed significantly large differences in terms of sensitivity of ctDNA in diagnosing melanoma, while the specificity basically remained the same. Conclusion. We discovered that the diagnostic outcomes between matched tumor samples and ctDNA remained more reliable in melanoma patients. ctDNA has the advantages of low trauma, convenient dynamic monitoring, and simple operation. ctDNA is expected to become an auxiliary method for the diagnosis of melanoma gene mutations.
Collapse
|
207
|
Adams R, Osborn G, Mukhia B, Laddach R, Willsmore Z, Chenoweth A, Geh JLC, MacKenzie Ross AD, Healy C, Barber L, Tsoka S, Sanz-Moreno V, Lacy KE, Karagiannis SN. Influencing tumor-associated macrophages in malignant melanoma with monoclonal antibodies. Oncoimmunology 2022; 11:2127284. [PMID: 36211808 PMCID: PMC9543025 DOI: 10.1080/2162402x.2022.2127284] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The application of monoclonal antibodies (mAbs) for the treatment of melanoma has significantly improved the clinical management of this malignancy over the last decade. Currently approved mAbs for melanoma enhance T cell effector immune responses by blocking immune checkpoint molecules PD-L1/PD-1 and CTLA-4. However, more than half of patients do not benefit from treatment. Targeting the prominent myeloid compartment within the tumor microenvironment, and in particular the ever-abundant tumor-associated macrophages (TAMs), may be a promising strategy to complement existing therapies and enhance treatment success. TAMs are a highly diverse and plastic subset of cells whose pro-tumor properties can support melanoma growth, angiogenesis and invasion. Understanding of their diversity, plasticity and multifaceted roles in cancer forms the basis for new promising TAM-centered treatment strategies. There are multiple mechanisms by which macrophages can be targeted with antibodies in a therapeutic setting, including by depletion, inhibition of specific pro-tumor properties, differential polarization to pro-inflammatory states and enhancement of antitumor immune functions. Here, we discuss TAMs in melanoma, their interactions with checkpoint inhibitor antibodies and emerging mAbs targeting different aspects of TAM biology and their potential to be translated to the clinic.
Collapse
Affiliation(s)
- Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Gabriel Osborn
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Bipashna Mukhia
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Roman Laddach
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Department of Informatics, Faculty of Natural, Mathematical & Engineering Sciences, King’s College London, Bush House, London, UK
| | - Zena Willsmore
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Alicia Chenoweth
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK
| | - Jenny L C Geh
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Department of Plastic Surgery at Guy’s, King’s, and St. Thomas’ Hospitals, London, UK
| | | | - Ciaran Healy
- Department of Plastic Surgery at Guy’s, King’s, and St. Thomas’ Hospitals, London, UK
| | - Linda Barber
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical & Engineering Sciences, King’s College London, Bush House, London, UK
| | | | - Katie E Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Sophia N Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK,CONTACT Sophia N Karagiannis St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, Tower Wing, 9th Floor, London, SE1 9RT, UK
| |
Collapse
|
208
|
Zhang Q, Rui W, Jiang Y, Yuan F, Chen Y, Guo X, Zhou Y, Wu Z, Wang C, Ding X. Tumor-infiltrating OX40 + lymphocytes is an independent positive prognostic factor for patients with pancreatic ductal adenocarcinoma. Clin Transl Oncol 2022; 24:2029-2038. [PMID: 35731350 DOI: 10.1007/s12094-022-02864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/19/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OX40 signaling pathway occupies a vital place in anti-tumor immunity; however, the role of tumor-infiltrating OX40+ lymphocytes in pancreatic ductal adenocarcinoma (PDAC) remains to be identified. METHODS A total of 325 sequential PDAC patients who received curative tumor resection between January 2014 and December 2016 were enrolled. Tissues of these patients were immunohistochemically assessed for tumor infiltration of CD4+ T cells, CD8+ cytotoxic T cells (CTLs), and OX40+ lymphocytes. The frequency of OX40+ tumor-infiltrating lymphocytes (TILs) was then analyzed to various clinicopathological features, densities of tumor infiltration of CD4+ T cells and CTLs, and survival analysis was conducted using Kaplan-Meier (KM) curves. The risk scores of associated markers were calculated by the Cox proportional-hazards model. RESULTS Our results showed that higher OX40+ lymphocytes infiltration was significantly correlated with superior median overall survival (OS) (25.8 vs 13.4 months, P < 0.001). Additionally, using univariate and multivariate Cox proportional hazards analyses, this study revealed that together with tumor differentiation, tumor size, serum CA199 levels, serum CA125 levels, and the infiltration of intratumoral CD8+ T cells. The abundance of OX40+ lymphocytes within the tumor was continued to be an independent predictor for OS (P = 0.023, HR = 0.713, 95% CI: 0.532-0.954). CONCLUSIONS This study demonstrated that intratumoral infiltration by a high number of OX40+ lymphocytes is a novel biomarker for favorable prognosis in resected PDAC patients, which implies that OX40-agonist-based immunotherapy might be a potential target in PDAC patients.
Collapse
Affiliation(s)
- Qiwei Zhang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Weiwei Rui
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Yongsheng Jiang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoxia Guo
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Yu Zhou
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Zhiyuan Wu
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China.
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China.
| | - Xiaoyi Ding
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
209
|
Samlowski W, Silver MA, Hohlbauch A, Zhang S, Scherrer E, Fukunaga-Kalabis M, Krepler C, Jiang R. Real-world clinical outcomes of patients with stage IIB or IIC cutaneous melanoma treated at US community oncology clinics. Future Oncol 2022; 18:3755-3767. [PMID: 36346064 DOI: 10.2217/fon-2022-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Aim: To describe clinical outcomes after complete surgical resection of stage IIB and IIC melanoma. Methods: Adult patients (n = 567) with stage IIB or IIC cutaneous melanoma initially diagnosed and completely resected from 2008-2017 were identified using data from a US community-based oncology network. Results: Median patient follow-up was 38.8 months from melanoma resection to death, last visit or data cut-off (31 December 2020). For stage IIB (n = 375; 66%), Kaplan-Meier median real-world recurrence-free survival (rwRFS) was 58.6 months (95% CI, 48.6-69.5). For stage IIC (n = 192; 34%), median rwRFS was 29.9 months (24.9-45.5). Overall, 44% of patients had melanoma recurrence or died; 30% developed distant metastases. Conclusion: Melanoma recurrence was common, highlighting the need for effective adjuvant therapy for stage IIB and IIC melanoma.
Collapse
Affiliation(s)
- Wolfram Samlowski
- Comprehensive Cancer Centers of Nevada, Las Vegas, NV 89148 USA/The US Oncology Network.,University of Nevada School of Medicine, Reno, NV 89557 USA.,University of Nevada Las Vegas, Las Vegas, NV 89102, USA
| | | | | | - Shujing Zhang
- Biostatistics & Research Decision Sciences, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Emilie Scherrer
- Center for Observational & Real-World Evidence (CORE), Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | | | - Ruixuan Jiang
- Center for Observational & Real-World Evidence (CORE), Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
210
|
Guo S, Chen J, Yi X, Lu Z, Guo W. Identification and validation of ferroptosis-related lncRNA signature as a prognostic model for skin cutaneous melanoma. Front Immunol 2022; 13:985051. [PMID: 36248853 PMCID: PMC9556814 DOI: 10.3389/fimmu.2022.985051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Melanoma is a type of skin cancer, which originates from the malignant transformation of epidermal melanocytes, with extremely high lethality. Ferroptosis has been documented to be highly related to cancer pathogenesis and the effect of immunotherapy. In addition, the dysregulation of lncRNAs is greatly implicated in melanoma progression and ferroptosis regulation. However, the significance of ferroptosis-related lncRNA in melanoma treatment and the prognosis of melanoma patients remains elusive. Methods Via Least Absolute Shrinkage Selection Operator (LASSO) regression analysis in the TCGA SKCM database, a cutaneous melanoma risk model was established based on differentially-expressed ferroptosis-related lncRNAs (DEfrlncRNAs). The nomogram, receiver operating characteristic (ROC) curves, and calibration plots were conducted to examine the predictive performance of this model. Sequentially, we continued to analyze the differences between the high- and low-risk groups, in terms of clinical characteristics, immune cell infiltration, immune-related functions, and chemotherapy drug sensitivity. Moreover, the expressions of DEfrlncRNAs, PD-L1, and CD8 were also examined by qRT-PCR and immunohistochemical staining in melanoma tissues to further confirm the potential clinical implication of DEfrlncRNAs in melanoma immunotherapy. Results 16 DEfrlncRNAs were identified, and a representative risk score for patient survival was constructed based on these 16 genes. The risk score was found to be an independent prognostic factor for the survival of melanoma patients. In addition, the low-risk group of patients had higher immune cell infiltration in the melanoma lesions, higher sensitivity to chemotherapeutic agents, and a better survival prognosis. Besides, the high expression of the identified 5 DEfrlncRNA in the low-risk group might suggest a higher possibility to benefit from immune checkpoint blockade therapy in the treatment of melanoma. Conclusion The DEfrlncRNA risk prediction model related to ferroptosis genes can independently predict the prognosis of patients with melanoma and provide a basis for evaluating the response of clinical treatment in melanoma.
Collapse
Affiliation(s)
- Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zifan Lu
- Department of Biopharmaceuticals, School of Pharmacy, Fourth Military Medical University, Xi’an, China
- *Correspondence: Weinan Guo, ; Zifan Lu,
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Weinan Guo, ; Zifan Lu,
| |
Collapse
|
211
|
Rangel-Pozzo A, Wechsler J, Groult J, Da Meda L, Lebbe C, Mai S. Telomere-Associated Changes in Nuclear Architecture of Cancer-Associated Macrophage-like Cells in Liquid Biopsies from Melanoma Patients. Biomedicines 2022; 10:biomedicines10102391. [PMID: 36289653 PMCID: PMC9598704 DOI: 10.3390/biomedicines10102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
During phagocytosis, tumor-associated macrophages (TAMs) can incorporate genetic material from tumor cells. The incorporation of extra genetic material may be responsible for advanced malignant behavior observed in some TAMs, making TAMs potentially important players in cancer progression. More recently, similar cells were described in the blood as cancer-associated macrophage-like cells (CAMLs). CAMLs may be equivalent to TAMs cells in the blood, and they express macrophage markers. However, their origin is still unclear. In a previous study, we showed for the first time the distinct telomere 3D structure of circulating tumor cells (CTCs) in melanoma and other cancers. In the present pilot study, we investigated, comparatively, the 3D telomere structure of CAMLs, CTCs and leucocytes from nine melanoma patients with metastatic cutaneous melanoma stage IV. CTC capture was performed by size-based filtration followed by cytological and immunocytological evaluation. Three-dimensional Quantitative Fluorescent in situ Hybridization was performed to measure differences in five 3D telomere parameters. Telomere parameters, such as number, length, telomere aggregates, nuclear volume, and a/c ratio, were compared among different cellular types (CTCs, CAMLs, and normal leucocytes). Three telomere parameters were significantly different between CAMLs and leucocytes. The combination of two telomere parameters (telomere length against the number of telomeres) resulted in the identification of two CAMLs subpopulations with different levels of genomic instability. Those populations were classified as profile 1 and 2. Profile 2, characterized by a high number of short telomeres, was observed in four of the nine melanoma patients. To our knowledge, this is the first pilot study to investigate 3D telomere parameters as hallmarks of nuclear architecture in CAMLs’ population in comparison to leucocytes from the same patient. Further studies involving a larger patient sample size are necessary to validate these findings and explore their potential prognostic value.
Collapse
Affiliation(s)
- Aline Rangel-Pozzo
- CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3C 2B1, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)-787-2135 (S.M.)
| | - Janine Wechsler
- Screencell Company, 62 rue de Wattignies, F-75012 Paris, France
| | - Jessica Groult
- Screencell Company, 62 rue de Wattignies, F-75012 Paris, France
| | - Laetitia Da Meda
- INSERM U976, Team 1, HIPI, Université de Paris, F-75010 Paris, France
- Service de Dermatologie, AP-HP Hôpital Saint Louis, F-75010 Paris, France
| | - Celeste Lebbe
- INSERM U976, Team 1, HIPI, Université de Paris, F-75010 Paris, France
- Service de Dermatologie, AP-HP Hôpital Saint Louis, F-75010 Paris, France
| | - Sabine Mai
- CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3C 2B1, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)-787-2135 (S.M.)
| |
Collapse
|
212
|
Carrier A, Desjobert C, Ponger L, Lamant L, Bustos M, Torres-Ferreira J, Henrique R, Jeronimo C, Lanfrancone L, Delmas A, Favre G, Delaunay A, Busato F, Hoon DSB, Tost J, Etievant C, Riond J, Arimondo PB. DNA methylome combined with chromosome cluster-oriented analysis provides an early signature for cutaneous melanoma aggressiveness. eLife 2022; 11:78587. [PMID: 36125262 PMCID: PMC9525058 DOI: 10.7554/elife.78587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022] Open
Abstract
Aberrant DNA methylation is a well-known feature of tumours and has been associated with metastatic melanoma. However, since melanoma cells are highly heterogeneous, it has been challenging to use affected genes to predict tumour aggressiveness, metastatic evolution, and patients’ outcomes. We hypothesized that common aggressive hypermethylation signatures should emerge early in tumorigenesis and should be shared in aggressive cells, independent of the physiological context under which this trait arises. We compared paired melanoma cell lines with the following properties: (i) each pair comprises one aggressive counterpart and its parental cell line and (ii) the aggressive cell lines were each obtained from different host and their environment (human, rat, and mouse), though starting from the same parent cell line. Next, we developed a multi-step genomic pipeline that combines the DNA methylome profile with a chromosome cluster-oriented analysis. A total of 229 differentially hypermethylated genes was commonly found in the aggressive cell lines. Genome localization analysis revealed hypermethylation peaks and clusters, identifying eight hypermethylated gene promoters for validation in tissues from melanoma patients. Five Cytosine-phosphate-Guanine (CpGs) identified in primary melanoma tissues were transformed into a DNA methylation score that can predict survival (log-rank test, p=0.0008). This strategy is potentially universally applicable to other diseases involving DNA methylation alterations.
Collapse
Affiliation(s)
- Arnaud Carrier
- Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
| | - Cécile Desjobert
- Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
| | | | - Laurence Lamant
- Cancer Research Center of Toulouse, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Matias Bustos
- Department of Translational Molecular Medicine, Providence Saint John's Health Center, Santa Monica, United States
| | - Jorge Torres-Ferreira
- Cancer Biology and Epigenetics Group, Portuguese Oncology Institute, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Portuguese Oncology Institute, Porto, Portugal
| | - Carmen Jeronimo
- Cancer Biology and Epigenetics Group, Portuguese Oncology Institute, Porto, Portugal
| | - Luisa Lanfrancone
- Department of Experimental Oncology, Instituto Europeo di Oncologia, Milan, Italy
| | - Audrey Delmas
- Cancer Research Center of Toulouse, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Antoine Delaunay
- Laboratory for Functional Genomics, Fondation Jean Dausset-CEPH, Paris, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, CNRS, CEA-Institut de Biologie François Jacob, Evry, France
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Providence Saint John's Health Center, Santa Monica, United States
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, CNRS, CEA-Institut de Biologie François Jacob, Evry, France
| | - Chantal Etievant
- Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
| | - Joëlle Riond
- Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
| | - Paola B Arimondo
- Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3523, Paris, France
| |
Collapse
|
213
|
Zhang RS, Li ZK, Liu J, Deng YT, Jiang Y. WZB117 enhanced the anti-tumor effect of apatinib against melanoma via blocking STAT3/PKM2 axis. Front Pharmacol 2022; 13:976117. [PMID: 36188586 PMCID: PMC9524253 DOI: 10.3389/fphar.2022.976117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Melanoma is the most lethal skin malignant tumor with a short survival once stepping into the metastatic status and poses a therapeutic challenge. Apatinib (a tyrosine kinase inhibitor) is a promising antiangiogenic agent for the treatment of metastatic melanoma. However, antiangiogenic monotherapy is prone to acquired drug resistance and has a limited therapeutic effect. The persistence dependence of glycolytic metabolism in antiangiogenic therapy-resistant cells provides evidence that glycolysis inhibitors may enhance the effect of antiangiogenic therapy. So, this study aimed to investigate whether WZB117 (a specific GLUT1 inhibitor) could enhance the anti-tumor effect of apatinib against melanoma and its potential mechanisms. Methods: We investigated the anti-tumor effects of apatinib alone or in combination with WZB117 on human melanoma cell lines (A375 and SK-MEL-28). The MTT assay determined cell viability and the half-maximal inhibitory concentration (IC50). Multiple drug effect/combination indexes (CI) analysis was conducted to assess interactions between apatinib and WZB117. Signal transducer and activator of transcription 3 (STAT3) pathway measured by western blotting and immunofluorescence staining. RNA expression analyses were performed using the reverse transcription-quantitative PCR method. Results: Apatinib and WZB117 showed dose and time-dependent growth inhibitory effects in both melanoma cells. The IC50 of apatinib at 48 h in A375 and SK-MEL-28 cells was 62.58 and 59.61 μM, respectively, while the IC50 of WZB117 was 116.85 and 113.91 μM, respectively. The CI values of the two drugs were 0.538 and 0.544, respectively, indicating a synergistic effect of apatinib combined with WZB117. We also found that glucose consumption and lactate production were suppressed by apatinib plus WZB117 in a dose-dependent manner, paralleled by reducing glycolytic enzyme pyruvate kinase M2 (PKM2). The potential mechanism of the combination was to suppress the phosphorylation of STAT3. Knockdown of STAT3 by siRNA inhibited the expression of PKM2, while the activation of STAT3 by IL-6 increased the expression of PKM2. The effects of IL-6 were attenuated by apatinib combined with WZB117 treatment. Conclusion: WZB117 enhanced the anti-tumor effect of apatinib against melanoma via modulating glycolysis by blocking the STAT3/PKM2 axis, which suggested the combination of apatinib with WZB117 could be a potential therapeutic candidate for melanoma.
Collapse
Affiliation(s)
- Ren-Shu Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Ke Li
- Department of Oncology, The First Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Jie Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yao-Tiao Deng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
214
|
De Mey W, Esprit A, Thielemans K, Breckpot K, Franceschini L. RNA in Cancer Immunotherapy: Unlocking the Potential of the Immune System. Clin Cancer Res 2022; 28:3929-3939. [PMID: 35583609 PMCID: PMC9475240 DOI: 10.1158/1078-0432.ccr-21-3304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 05/03/2022] [Indexed: 01/07/2023]
Abstract
Recent advances in the manufacturing, modification, purification, and cellular delivery of ribonucleic acid (RNA) have enabled the development of RNA-based therapeutics for a broad array of applications. The approval of two SARS-CoV-2-targeting mRNA-based vaccines has highlighted the advances of this technology. Offering rapid and straightforward manufacturing, clinical safety, and versatility, this paves the way for RNA therapeutics to expand into cancer immunotherapy. Together with ongoing trials on RNA cancer vaccination and cellular therapy, RNA therapeutics could be introduced into clinical practice, possibly stewarding future personalized approaches. In the present review, we discuss recent advances in RNA-based immuno-oncology together with an update on ongoing clinical applications and their current challenges.
Collapse
Affiliation(s)
- Wout De Mey
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Arthur Esprit
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kris Thielemans
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Corresponding Author: Karine Breckpot, Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium. Phone: 32-2-477-45-66; E-mail:
| | - Lorenzo Franceschini
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
215
|
Sudha T, Salaheldin TA, Darwish NHE, Mousa SA. Antitumor/anti-angiogenesis efficacy of epigallocatechin gallate nanoformulated with antioxidant in melanoma. Nanomedicine (Lond) 2022; 17:1039-1053. [DOI: 10.2217/nnm-2021-0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Epigallocatechin gallate (EGCG) derived from green tea has poor stability; therefore, to enhance its bioavailability and anticancer efficiency, we synthesized three different nanoformulations. We hypothesized that these three nanoformulations of EGCG (nano-EGCG) would enhance EGCG’s stability and improve its anticancer and antiangiogenic activity against melanoma compared with free EGCG. Methods: We prepared nano-EGCG using a copolymerization method with the UV blocker ZnO and the antioxidants lycopene and olive oil. Results: The different nano-EGCG formulation exhibited improved EGCG stability and greater suppression of melanoma growth than free EGCG. Nanoformulation preparation methods efficiently prevented the loss of EGCG activity and are a favorable approach for the treatment of melanoma. Conclusion: Nano-EGCG formulations had enhanced stability and produced greater suppression of melanoma tumor growth and angiogenesis compared with free EGCG.
Collapse
Affiliation(s)
- Thangirala Sudha
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Taher A Salaheldin
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Noureldien HE Darwish
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
216
|
Ter Maat LS, van Duin IAJ, Elias SG, van Diest PJ, Pluim JPW, Verhoeff JJC, de Jong PA, Leiner T, Veta M, Suijkerbuijk KPM. Imaging to predict checkpoint inhibitor outcomes in cancer. A systematic review. Eur J Cancer 2022; 175:60-76. [PMID: 36096039 DOI: 10.1016/j.ejca.2022.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Checkpoint inhibition has radically improved the perspective for patients with metastatic cancer, but predicting who will not respond with high certainty remains difficult. Imaging-derived biomarkers may be able to provide additional insights into the heterogeneity in tumour response between patients. In this systematic review, we aimed to summarise and qualitatively assess the current evidence on imaging biomarkers that predict response and survival in patients treated with checkpoint inhibitors in all cancer types. METHODS PubMed and Embase were searched from database inception to 29th November 2021. Articles eligible for inclusion described baseline imaging predictive factors, radiomics and/or imaging machine learning models for predicting response and survival in patients with any kind of malignancy treated with checkpoint inhibitors. Risk of bias was assessed using the QUIPS and PROBAST tools and data was extracted. RESULTS In total, 119 studies including 15,580 patients were selected. Of these studies, 73 investigated simple imaging factors. 45 studies investigated radiomic features or deep learning models. Predictors of worse survival were (i) higher tumour burden, (ii) presence of liver metastases, (iii) less subcutaneous adipose tissue, (iv) less dense muscle and (v) presence of symptomatic brain metastases. Hazard rate ratios did not exceed 2.00 for any predictor in the larger and higher quality studies. The added value of baseline fluorodeoxyglucose positron emission tomography parameters in predicting response to treatment was limited. Pilot studies of radioactive drug tracer imaging showed promising results. Reports on radiomics were almost unanimously positive, but numerous methodological concerns exist. CONCLUSIONS There is well-supported evidence for several imaging biomarkers that can be used in clinical decision making. Further research, however, is needed into biomarkers that can more accurately identify which patients who will not benefit from checkpoint inhibition. Radiomics and radioactive drug labelling appear to be promising approaches for this purpose.
Collapse
Affiliation(s)
- Laurens S Ter Maat
- Image Science Institute, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Isabella A J van Duin
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Sjoerd G Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Josien P W Pluim
- Image Science Institute, University Medical Center Utrecht, Utrecht, the Netherlands; Medical Image Analysis, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Tim Leiner
- Utrecht University, Utrecht, the Netherlands; Department of Radiology, Mayo Clinical, Rochester, MN, USA
| | - Mitko Veta
- Medical Image Analysis, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
217
|
Gan Y, Yang Y, Wu Y, Li T, Liu L, Liang F, Qi J, Liang P, Pan D. Comprehensive transcriptomic analysis of immune-related eRNAs associated with prognosis and immune microenvironment in melanoma. Front Surg 2022; 9:917061. [PMID: 36338651 PMCID: PMC9632973 DOI: 10.3389/fsurg.2022.917061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background Recent evidence suggests that enhancer RNAs (eRNAs) play key roles in cancers. Identification of immune-related eRNAs (ireRNAs) in melanoma can provide novel insights into the mechanisms underlying its genesis and progression, along with potential therapeutic targets. Aim To establish an ireRNA-related prognostic signature for melanoma and identify potential drug candidates. Methods The ireRNAs associated with the overall survival (OS-ireRNAs) of melanoma patients were screened using data from The Cancer Genome Atlas (TCGA) via WGCNA and univariate Cox analysis. A prognostic signature based on these OS-ireRNAs was then constructed by performing the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. The immune landscape associated with the prognostic model was evaluated by the ESTIMATE algorithm and CIBERSORT method. Finally, the potential drug candidates for melanoma were screened through the cMap database. Results A total of 24 OS-ireRNAs were obtained, of which 7 ireRNAs were used to construct a prognostic signature. The ireRNAs-related signature performed well in predicting the overall survival (OS) of melanoma patients. The risk score of the established signature was further verified as an independent risk factor, and was associated with the unique tumor microenvironment in melanoma. We also identified several potential anti-cancer drugs for melanoma, of which corticosterone ranked first. Conclusions The ireRNA-related signature is an effective prognostic predictor and provides reliable information to better understand the mechanism of ireRNAs in the progression of melanoma.
Collapse
Affiliation(s)
- Yuling Gan
- The 1st Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Yuan Yang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yajiao Wu
- Department of Ophthalmology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tingdong Li
- The 1st Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Libing Liu
- The 1st Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Fudong Liang
- The 1st Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Jianghua Qi
- The 1st Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Peng Liang
- The 1st Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
- Correspondence: Dongsheng Pan Peng Liang
| | - Dongsheng Pan
- The 1st Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, China
- Correspondence: Dongsheng Pan Peng Liang
| |
Collapse
|
218
|
Paganelli A, Rossi E, Magnoni C. The dark side of adipose-derived mesenchymal stromal cells in cutaneous oncology: roles, expectations, and potential pitfalls. Stem Cells Dev 2022; 31:593-603. [PMID: 36066334 DOI: 10.1089/scd.2022.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adipose-derived stromal cells (ADSCs) have well-established regenerative and immunomodulatory properties. For such reasons, ADSCs are currently under investigation for their use in the setting of both regenerative medicine and autoimmune diseases. As per dermatological disorders, MSC-based strategies represent potential therapeutic tools not only for chronic ulcers and wound healing, but also for immune-mediated dermatoses. However, a growing body of research has been focusing on the role of MSCs in human cancers, due to the potential oncological risk of using MSC-based strategies linked to their anti-apoptotic, pro-angiogenic and immunosuppressive properties. In the dermatological setting, ADSCs have shown not only to promote melanoma growth and invasiveness, but also to induce drug-resistance. On the other hand, genetically modified ADSCs have been demonstrated to efficiently target therapies at tumor sites, due to their migratory properties and their peculiar tropism for cancer microenvironment. The present review briefly summarizes the findings published so far on the use of ADSCs in the dermato-oncological setting, with the majority of data being available for melanoma.
Collapse
Affiliation(s)
- Alessia Paganelli
- Universita degli Studi di Modena e Reggio Emilia, Dermatology, Modena, Italy, 41124;
| | - Elena Rossi
- Universita degli Studi di Modena e Reggio Emilia, Dermatology, Modena, Italy;
| | - Cristina Magnoni
- Universita degli Studi di Modena e Reggio Emilia, Dermatology, Modena, Italy;
| |
Collapse
|
219
|
Gao Z, Wang L, Song Z, Ren M, Yang Y, Li J, Shen K, Li Y, Ding Y, Yang Y, Zhou Y, Wei C, Gu J. Intratumoral CD73: An immune checkpoint shaping an inhibitory tumor microenvironment and implicating poor prognosis in Chinese melanoma cohorts. Front Immunol 2022; 13:954039. [PMID: 36131912 PMCID: PMC9483101 DOI: 10.3389/fimmu.2022.954039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAs a novel immune checkpoint, CD73 has been reported to play prominent roles in several malignancies. However, the significance of CD73 in melanoma remains ambiguous. This study sought to reveal the impact of CD73 on the tumor microenvironment (TME) and patients’ prognosis, and to investigate whether CD73 could be a therapeutic target in Chinese melanomas, which were dominated by acral and mucosal subtypes.MethodsTwo independent Chinese cohorts of 194 patients with melanoma were enrolled. CD73 and PD-L1 expression as well as CD8+ and CD56+ cell infiltrations were evaluated by immunohistochemistry in 194 resected melanoma samples. Clinical outcomes of patients were assessed utilizing the Kaplan-Meier plotter and Cox proportional hazard analysis. RNA-seq data was obtained from TCGA database. Gene set functional annotations were performed based on GO, KEGG and GSEA analysis. CIBERSORT, ssGSEA and TIMER were used to explore the association between CD73 and immune infiltration. These findings were validated by establishing tumor xenograft model, and functions of tumor-infiltrating immune cells were examined by flow cytometry and immunofluorescence.ResultsHigh CD73 expression showed poorer clinical outcomes and was identified as an independent prognostic indicator for survival in two cohorts. Expression of CD73 was more prevalent than PD-L1 in Chinese melanoma cohorts (54.6% vs 23.2%). Co-expression of both immune checkpoints was infrequent (12.9%) in melanoma, and 54.4% of PD-L1 negative cases showed elevated expression of CD73. CD73high tumors showed a microenvironment with fewer CD8+ T cells and CD56+ NK cells infiltration, which displayed a dysfunctional phenotype. With the treatment of CD73 inhibitor APCP, the amount of CD8+ T cells and CD56+ NK cells infiltrated in tumors was elevated and the immunosuppressive effect of CD73 was eliminated.ConclusionsHigh CD73 expression was associated with an inhibitory TME and adverse clinical outcomes of melanoma. In comparison to PD-L1, CD73 was more prevalent and possessed more definite prognostic significance. Therefore, it may serve as a prognostic indicator and immunotherapeutic target next to PD-L1 in melanoma for Chinese population.
Collapse
Affiliation(s)
- Zixu Gao
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengqing Song
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Ren
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianrui Li
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kangjie Shen
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yinlam Li
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiteng Ding
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanwen Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanyuan Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Jianying Gu, ; Chuanyuan Wei,
| | - Jianying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Jianying Gu, ; Chuanyuan Wei,
| |
Collapse
|
220
|
Zhang H, Xu X, Xu R, Ye T. Drug repurposing of ivermectin abrogates neutrophil extracellular traps and prevents melanoma metastasis. Front Oncol 2022; 12:989167. [PMID: 36132145 PMCID: PMC9484526 DOI: 10.3389/fonc.2022.989167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophil extracellular traps (NETs) have recently been identified to play a crucial role in cancer metastasis. However, the therapeutic target in NETs of melanoma cancer metastasis is still unknown. In this work, we screened a collection of 231 small molecule compounds. We identified ivermectin (IVM), a widely used antiparasitic drug, significantly inhibits neutrophil extracellular traps (NETs) formation after cathepsin B (CTSB) treatment. In vivo, IVM treatment showed no effects of melanoma tumor growth, while the orthotopic melanoma to lung metastasis was significantly suppressed by IVM. Serum level of myeloperoxidase-DNA and neutrophil elastase-DNA were suppressed after IVM treatment. Tumor infiltrated myeloid-derived suppressor cells (MDSCs) were significantly suppressed while tumor infiltrated CD8+T cells in lung was increased after IVM treatment in mouse melanoma model. Mechanistically, IVM targeted a pyroptotic driving factor gasdermin D (GSDMD), and exhibited a Kd of 267.96 nM by microscale thermophoresis (MST) assay. Furthermore, the direct interaction of IVM and GSDMD significantly suppressed GSDMD oligomerization, which are essential for GSDMD-dependent NETs formation. In vitro, treatment with CTSB in bone marrow neutrophils significantly promotes NETs formation, and the release of extracellular DNA was significantly suppressed by IVM pretreatment. Collectively, our results reveal that with the regulation role of IVM in neutrophils and NETs, IVM may potentially be used as a viable therapeutic approach for the treatment of melanoma cancer metastasis.
Collapse
Affiliation(s)
- Hongjun Zhang
- Department of Ophthalmology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - XiaoZhu Xu
- Department of Quality Arbitration, Shanghai Institute of Biological Products, Shanghai, China
| | - Rui Xu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Rui Xu, ; Tao Ye,
| | - Tao Ye
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
- *Correspondence: Rui Xu, ; Tao Ye,
| |
Collapse
|
221
|
Kim CG, Kim M, Hwang J, Kim ST, Jung M, Kim KH, Kim KH, Chang JS, Koom WS, Roh MR, Chung KY, Kim TM, Kim SK, Lee J, Shin SJ. First-line pembrolizumab versus dabrafenib/trametinib treatment for BRAF V600-mutant advanced melanoma. J Am Acad Dermatol 2022; 87:989-996. [PMID: 36068115 DOI: 10.1016/j.jaad.2022.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Limited data are available to assist the selection between immune checkpoint inhibitors and BRAF/mitogen-activated protein kinase kinase inhibitors as first-line treatment for patients with BRAF-mutant advanced malignant melanoma. OBJECTIVE To investigate the outcomes associated with first-line pembrolizumab or dabrafenib/trametinib treatment for advanced melanoma with activating BRAF V600 mutation. METHODS Data of patients with BRAF V600-mutant melanoma who were treated with first-line pembrolizumab (n = 40) or dabrafenib/trametinib (n = 32) were analyzed. Tumor response, progression-free survival, and overall survival were evaluated. Immune evasion accompanied with emerging resistance to BRAF/mitogen-activated protein kinase kinase inhibitors was assessed. RESULTS A longer overall survival was observed after first-line pembrolizumab treatment than after first-line dabrafenib/trametinib treatment (hazard ratio = 2.910, 95% CI: 1.552-5.459), although there were no significant differences in progression-free survival (P = .375) and response rate (P = .123). Emergence of resistance to dabrafenib/trametinib co-occurred with immune evasion, enabling melanoma cells to escape recognition and killing by Melan-A-specific CD8+ T cells. LIMITATIONS Analysis was conducted in a retrospective manner. CONCLUSION Pembrolizumab may be recommended over BRAF/mitogen-activated protein kinase kinase inhibitors as the first-line treatment in patients with advanced BRAF V600-mutant melanoma.
Collapse
Affiliation(s)
- Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jieon Hwang
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Tae Kim
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Minkyu Jung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoo Hyun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Suk Chang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Ryung Roh
- Department of Dermatology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kee Yang Chung
- Department of Dermatology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jeeyun Lee
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Sang Joon Shin
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
222
|
Popovic A, Tartare-Deckert S. Role of extracellular matrix architecture and signaling in melanoma therapeutic resistance. Front Oncol 2022; 12:924553. [PMID: 36119516 PMCID: PMC9479148 DOI: 10.3389/fonc.2022.924553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
The extracellular matrix (ECM) is critical for maintaining tissue homeostasis therefore its production, assembly and mechanical stiffness are highly regulated in normal tissues. However, in solid tumors, increased stiffness resulting from abnormal ECM structural changes is associated with disease progression, an increased risk of metastasis and poor survival. As a dynamic and key component of the tumor microenvironment, the ECM is becoming increasingly recognized as an important feature of tumors, as it has been shown to promote several hallmarks of cancer via biochemical and biomechanical signaling. In this regard, melanoma cells are highly sensitive to ECM composition, stiffness and fiber alignment because they interact directly with the ECM in the tumor microenvironment via cell surface receptors, secreted factors or enzymes. Importantly, seeing as the ECM is predominantly deposited and remodeled by myofibroblastic stromal fibroblasts, it is a key avenue facilitating their paracrine interactions with melanoma cells. This review gives an overview of melanoma and further describes the critical roles that ECM properties such as ECM remodeling, ECM-related proteins and stiffness play in cutaneous melanoma progression, tumor cell plasticity and therapeutic resistance. Finally, given the emerging importance of ECM dynamics in melanoma, future perspectives on therapeutic strategies to normalize the ECM in tumors are discussed.
Collapse
Affiliation(s)
- Ana Popovic
- Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- Team Microenvironnement, Signaling and Cancer, Equipe Labellisée Ligue Contre le Cancer, Nice, France
| | - Sophie Tartare-Deckert
- Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- Team Microenvironnement, Signaling and Cancer, Equipe Labellisée Ligue Contre le Cancer, Nice, France
| |
Collapse
|
223
|
NAD/NAMPT and mTOR Pathways in Melanoma: Drivers of Drug Resistance and Prospective Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23179985. [PMID: 36077374 PMCID: PMC9456568 DOI: 10.3390/ijms23179985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive behavior and high metastatic potential. The introduction of BRAF/MEK inhibitors and immune-checkpoint inhibitors (ICIs) in the clinic has dramatically improved patient survival over the last decade. However, many patients either display primary (i.e., innate) or develop secondary (i.e., acquired) resistance to systemic treatments. Therapeutic resistance relies on the rewiring of multiple processes, including cancer metabolism, epigenetics, gene expression, and interactions with the tumor microenvironment that are only partially understood. Therefore, reliable biomarkers of resistance or response, capable of facilitating the choice of the best treatment option for each patient, are currently missing. Recently, activation of nicotinamide adenine dinucleotide (NAD) metabolism and, in particular, of its rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT) have been identified as key drivers of targeted therapy resistance and melanoma progression. Another major player in this context is the mammalian target of rapamycin (mTOR) pathway, which plays key roles in the regulation of melanoma cell anabolic functions and energy metabolism at the switch between sensitivity and resistance to targeted therapy. In this review, we summarize known resistance mechanisms to ICIs and targeted therapy, focusing on metabolic adaptation as one main mechanism of drug resistance. In particular, we highlight the roles of NAD/NAMPT and mTOR signaling axes in this context and overview data in support of their inhibition as a promising strategy to overcome treatment resistance.
Collapse
|
224
|
Ping S, Wang S, Zhao Y, He J, Li G, Li D, Wei Z, Chen J. Identification and validation of a ferroptosis-related gene signature for predicting survival in skin cutaneous melanoma. Cancer Med 2022; 11:3529-3541. [PMID: 35373463 PMCID: PMC9487883 DOI: 10.1002/cam4.4706] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Ferroptosis plays a crucial role in the initiation and progression of melanoma. This study developed a robust signature with ferroptosis-related genes (FRGs) and assessed the ability of this signature to predict OS in patients with skin cutaneous melanoma (SKCM). METHODS RNA-sequencing data and clinical information of melanoma patients were extracted from TCGA, GEO, and GTEx. Univariate, multivariate, and LASSO regression analyses were conducted to identify the gene signature. A 10 FRG signature was an independent and strong predictor of survival. The predictive performance was assessed using ROC curve. The functions of this gene signature were assessed by GO and KEGG analysis. The statuses of low-risk and high-risk groups according to the gene signature were compared by GSEA. In addition, we investigated the possible relationship of FRGs with immunotherapy efficacy. RESULTS A prognostic signature with 10 FRGs (CYBB, IFNG, FBXW7, ARNTL, PROM2, GPX2, JDP2, SLC7A5, TUBE1, and HAMP) was identified by Cox regression analysis. This signature had a higher prediction efficiency than clinicopathological features (AUC = 0.70). The enrichment analyses of DEGs indicated that ferroptosis-related immune pathways were largely enriched. Furthermore, GSEA showed that ferroptosis was associated with immunosuppression in the high-risk group. Finally, immune checkpoints such as PDCD-1 (PD-1), CTLA4, CD274 (PD-L1), and LAG3 were also differential expression in two risk groups. CONCLUSIONS The 10 FRGs signature were a strong predictor of OS in SKCM and could be used to predict therapeutic targets for melanoma.
Collapse
Affiliation(s)
- Shuai Ping
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Siyuan Wang
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yingsong Zhao
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jinbing He
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guanglei Li
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dinglin Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan HospitalTongji Medical College of Huazhong University of Science and TechnologyWuhanChina
| | - Zhuo Wei
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jianghai Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
225
|
Ding L, Gosh A, Lee DJ, Emri G, Huss WJ, Bogner PN, Paragh G. Prognostic biomarkers of cutaneous melanoma. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:418-434. [PMID: 34981569 DOI: 10.1111/phpp.12770] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND/PURPOSE Melanomas account for only approximately 4% of diagnosed skin cancers in the United States but are responsible for the majority of deaths caused by skin cancer. Both genetic factors and ultraviolet (UV) radiation exposure play a role in the development of melanoma. Although melanomas have a strong propensity to metastasize when diagnosed late, melanomas that are diagnosed and treated early pose a low mortality risk. In particular, the identification of patients with increased metastatic risk, who may benefit from early adjuvant therapies, is crucial, especially given the advent of new melanoma treatments. However, the accuracy of classic clinical and histological variables, including the Breslow thickness, presence of ulceration, and lymph node status, might not be sufficient to identify such individuals. Thus, there is a need for the development of additional prognostic melanoma biomarkers that can improve early attempts to stratify melanoma patients and reliably identify high-risk subgroups with the aim of providing effective personalized therapies. METHODS In our current work, we discuss and assess emerging primary melanoma tumor biomarkers and prognostic circulating biomarkers. RESULTS Several promising biomarkers show prognostic value (eg, exosomal MIA (ie, melanoma inhibitory activity), serum S100B, AMLo signatures, and mRNA signatures); however, the scarcity of reliable data precludes the use of these biomarkers in current clinical applications. CONCLUSION Further research is needed on several promising biomarkers for melanoma. Large-scale studies are warranted to facilitate the clinical translation of prognostic biomarker applications for melanoma in personalized medicine.
Collapse
Affiliation(s)
- Liang Ding
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Buffalo General Medical Center, State University of New York, Buffalo, New York, USA
| | - Alexandra Gosh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Delphine J Lee
- Division of Dermatology, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Dermatology, Department of Medicine, The Lundquist Institute, Torrance, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Paul N Bogner
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
226
|
Loras A, Gil-Barrachina M, Marqués-Torrejón MÁ, Perez-Pastor G, Martinez-Cadenas C. UV-Induced Somatic Mutations Driving Clonal Evolution in Healthy Skin, Nevus, and Cutaneous Melanoma. Life (Basel) 2022; 12:life12091339. [PMID: 36143375 PMCID: PMC9503451 DOI: 10.3390/life12091339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction: Due to its aggressiveness, cutaneous melanoma (CM) is responsible for most skin cancer-related deaths worldwide. The origin of CM is closely linked to the appearance of UV-induced somatic mutations in melanocytes present in normal skin or in CM precursor lesions (nevi or dysplastic nevi). In recent years, new NGS studies performed on CM tissue have increased the understanding of the genetic somatic changes underlying melanomagenesis and CM tumor progression. Methods: We reviewed the literature using all important scientific databases. All articles related to genomic mutations in CM as well as normal skin and nevi were included, in particular those related to somatic mutations produced by UV radiation. Conclusions: CM development and progression are strongly associated with exposure to UV radiation, although each melanoma subtype has different characteristic genetic alterations and evolutionary trajectories. While BRAF and NRAS mutations are common in the early stages of tumor development for most CM subtypes, changes in CDKN2A, TP53 and PTEN, together with TERT promoter mutations, are especially common in advanced stages. Additionally, large genome duplications, loss of heterozygosity, and copy number variations are hallmarks of metastatic disease. Finally, the mutations driving melanoma targeted-therapy drug resistance are also summarized. The complete sequential stages of clonal evolution leading to CM onset from normal skin or nevi are still unknown, so further studies are needed in this field to shed light on the molecular pathways involved in CM malignant transformation and in melanoma acquired drug resistance.
Collapse
Affiliation(s)
- Alba Loras
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain
| | | | | | - Gemma Perez-Pastor
- Department of Dermatology, Valencia General University Hospital, 46014 Valencia, Spain
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain
- Correspondence: ; Tel.: +34-964387607
| |
Collapse
|
227
|
Saiag P, Molinier R, Roger A, Boru B, Otmezguine Y, Otz J, Valery CA, Blom A, Longvert C, Beauchet A, Funck-Brentano E. Efficacy of Large Use of Combined Hypofractionated Radiotherapy in a Cohort of Anti-PD-1 Monotherapy-Treated Melanoma Patients. Cancers (Basel) 2022; 14:cancers14174069. [PMID: 36077606 PMCID: PMC9454723 DOI: 10.3390/cancers14174069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
To assess the role of radiotherapy in anti-PD-1-treated melanoma patients, we studied retrospectively a cohort of 206 consecutive anti-PD-1 monotherapy-treated advanced melanoma patients (59% M1c/d, 50% ≥ 3 metastasis sites, 33% ECOG PS ≥ 1, 33% > 1st line, 32% elevated serum LDH) having widely (49%) received concurrent radiotherapy, with RECIST 1.1 evaluation of radiated and non-radiated lesions. Overall (OS) and progression-free (PFS) survivals were calculated using Kaplan−Meier. Radiotherapy was performed early (39 patients) or after 3 months (61 patients with confirmed anti-PD-1 failure). The first radiotherapy was hypofractionated extracranial radiotherapy to 1−2 targets (26 Gy-4 weekly sessions, 68 patients), intracranial radiosurgery (25 patients), or palliative. Globally, 67 (32.5% [95% CI: 26.1−38.9]) patients achieved complete response (CR), with 25 CR patients having been radiated. In patients failing anti-PD-1, PFS and OS from anti-PD-1 initiation were 16.8 [13.4−26.6] and 37.0 months [24.6−NA], respectively, in radiated patients, and 2.2 [1.5−2.6] and 4.3 months [2.6−7.1], respectively, in non-radiated patients (p < 0.001). Abscopal response was observed in 31.5% of evaluable patients who radiated late. No factors associated with response in radiated patients were found. No unusual adverse event was seen. High-dose radiotherapy may enhance CR rate above the 6−25% reported in anti-PD-1 monotherapy or ipilimumab + nivolumab combo studies in melanoma patients.
Collapse
Affiliation(s)
- Philippe Saiag
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, APHP, & EA 4340 “Biomarkers in Cancerology and Hemato-Oncology”, UVSQ, Université Paris-Saclay, 92104 Boulogne-Billancourt, France
- Correspondence: ; Tel.: +33-(0)1-49-09-56-73; Fax: +33-(0)1-49-09-56-85
| | - Rafaele Molinier
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, APHP, & EA 4340 “Biomarkers in Cancerology and Hemato-Oncology”, UVSQ, Université Paris-Saclay, 92104 Boulogne-Billancourt, France
| | - Anissa Roger
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, APHP, & EA 4340 “Biomarkers in Cancerology and Hemato-Oncology”, UVSQ, Université Paris-Saclay, 92104 Boulogne-Billancourt, France
| | - Blandine Boru
- Department of Radiology, Ambroise Paré Hospital, APHP, 92104 Boulogne-Billancourt, France
| | - Yves Otmezguine
- Oncology Centre, Porte de Saint-Cloud Clinic, 92100 Boulogne-Billancourt, France
| | - Joelle Otz
- Department of Radiotherapy, Curie Hospital, 92210 Saint-Cloud, France
| | | | - Astrid Blom
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, APHP, & EA 4340 “Biomarkers in Cancerology and Hemato-Oncology”, UVSQ, Université Paris-Saclay, 92104 Boulogne-Billancourt, France
| | - Christine Longvert
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, APHP, & EA 4340 “Biomarkers in Cancerology and Hemato-Oncology”, UVSQ, Université Paris-Saclay, 92104 Boulogne-Billancourt, France
| | - Alain Beauchet
- Department of Public Health, Ambroise Paré Hospital, APHP & UVSQ, Université Paris-Saclay, 92104 Boulogne-Billancourt, France
| | - Elisa Funck-Brentano
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, APHP, & EA 4340 “Biomarkers in Cancerology and Hemato-Oncology”, UVSQ, Université Paris-Saclay, 92104 Boulogne-Billancourt, France
| |
Collapse
|
228
|
Lv W, Zhan Y, Tan Y, Wu Y, Chen H. A combined aging and immune prognostic signature predict prognosis and responsiveness to immunotherapy in melanoma. Front Pharmacol 2022; 13:943944. [PMID: 36034849 PMCID: PMC9402914 DOI: 10.3389/fphar.2022.943944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/13/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Melanoma is the most lethal, and one of the most aggressive forms of cutaneous malignancies, which poor response to treatment has always puzzled clinicians. As is known to all, aging and immune microenvironment are two crucial factors impacting melanoma biological progress through the tumor microenvironment (TME). However, reliable biomarkers for predicting melanoma prognosis based on aging and immune microenvironment and therapeutic efficacy of immune checkpoints remain to be determined. Methods: The aging-related genes (ARGs) were obtained from the Human Ageing Genomic Resources and immune-related genes (IRGs) were downloaded from the Immunology database as well as Analysis Portal (ImmPort) database. Next, we initially performed LASSO regression and multivariate Cox regression to identify prognostic ARGs and IRGs in the TCGA and GSE65904 datasets, and firstly constructed a novel comprehensive index of aging and immune (CIAI) signature. Finally, in vitro molecular biology experiments were performed to assess the regulatory role of CNTFR in melanoma cell lines proliferation and migration, macrophage recruitment, and M2 polarization. Results: This novel CIAI signature consisted of 7 genes, including FOXM1, TP63, ARNTL, KIR2DL4, CCL8, SEMA6A, and CNTFR, in which melanoma patients in the high-CIAI group had shorter OS, DSS, and PFI, indicating CIAI model served as an independent prognostic index. Moreover, we found the CIAI score was potentially correlated with immune scores, estimate score, immune cell infiltration level, tumor microenvironment, immunotherapy effect, and drug sensitivity. Finally, CNTFR might function as oncogenes in melanoma cell lines and the silencing of CNTFR reduced macrophage recruitment and M2 polarization. Conclusion: In this study, we have first presented a novel prognostic CIAI model applied to assess immune checkpoint therapy and the efficacy of conventional chemotherapy agents in melanoma patients. Thus providing a new insight for combating melanoma.
Collapse
|
229
|
Fang Z, Mei W, Qu C, Lu J, Shang L, Cao F, Li F. Role of m6A writers, erasers and readers in cancer. Exp Hematol Oncol 2022; 11:45. [PMID: 35945641 PMCID: PMC9361621 DOI: 10.1186/s40164-022-00298-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023] Open
Abstract
The N(6)-methyladenosine (m6A) modification is the most pervasive modification of human RNAs. In recent years, an increasing number of studies have suggested that m6A likely plays important roles in cancers. Many studies have demonstrated that m6A is involved in the biological functions of cancer cells, such as proliferation, invasion, metastasis, and drug resistance. In addition, m6A is closely related to the prognosis of cancer patients. In this review, we highlight recent advances in understanding the function of m6A in various cancers. We emphasize the importance of m6A to cancer progression and look forward to describe future research directions.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chang Qu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
230
|
Liu Y, Ma S, Ma Q, Zhu H. Silencing LINC00665 inhibits cutaneous melanoma in vitro progression and induces apoptosis via the miR-339-3p/TUBB. J Clin Lab Anal 2022; 36:e24630. [PMID: 35929185 PMCID: PMC9459347 DOI: 10.1002/jcla.24630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 12/22/2022] Open
Abstract
Background LncRNAs are closely related to cutaneous melanoma (CM) tumorigenesis and metastasis, and it can affect the progression of CM by regulating cell proliferation, migration, invasion, apoptosis, and other cellular mechanisms. This study investigated the role of LINC00665 in CM. Methods Expressions of LINC00665, miR‐339‐3p, and tubulin beta chain (TUBB) in CM cells were analyzed by qRT‐PCR and/or Western blot. The LINC00665/miR‐339‐3p/TUBB targeting network was predicted by bioinformatics tools, screened out by Venn diagrams and analyzed by Pearson's correlation coefficients, followed by validation via dual‐luciferase reporter assay and/or pull‐down assay. Transfection of siLINC00665 or miR‐339‐3p inhibitor/mimic was conducted with CM cells whose viability, proliferation, migration, invasion, cell cycle progression, and apoptosis were measured by CCK‐8 assay, colony formation assay, wound healing assay, Transwell assay, and flow cytometry. The associations of TUBB with tumor biological characteristics and other proteins were analyzed by CanserSEA and String, respectively. Results High‐expressed LINC00665 was detected in CM cells. Silencing LINC00665 decreased CM cell viability; inhibited colony formation, cell cycle progression, migration and invasion; enhanced apoptosis; and upregulated miR‐339‐3p. LINC00665 targeted miR‐339‐3p which targeted TUBB. MiR‐339‐3p upregulation induced effects similar to the LINC00665‐silencing‐induced effects and could downregulate TUBB, which was associated with malignant behaviors and related to other five proteins. MiR‐339‐3p downregulation induced the opposite effects of what miR‐339‐3p upregulation induced, and the miR‐339‐3p downregulation‐induced effects could be reversed by LINC00665 silencing. Conclusion Silencing LINC00665 inhibits in vitro CM progression and induces apoptosis via the miR‐339‐3p/TUBB axis.
Collapse
Affiliation(s)
- Yi Liu
- Dermatological Department, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin City, China
| | - Shanshan Ma
- Department of Dermatology & STD, QingDao No.8 People's Hospital, Qingdao, China
| | - Qichao Ma
- Dermatological Department, Ningbo Yinzhou No 2. Hospital, Ningbo City, China
| | - Haigang Zhu
- Dermatological Department, Ningbo Yinzhou No 2. Hospital, Ningbo City, China
| |
Collapse
|
231
|
Treatment of Metastatic Melanoma with a Combination of Immunotherapies and Molecularly Targeted Therapies. Cancers (Basel) 2022; 14:cancers14153779. [PMID: 35954441 PMCID: PMC9367420 DOI: 10.3390/cancers14153779] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immunotherapies and molecularly targeted therapies have drastically changed the therapeutic approach for unresectable advanced or metastatic melanoma. The majority of melanoma patients have benefitted from these therapies; however, some patients acquire resistance to them. Novel combinations of immunotherapies and molecularly targeted therapies may be more efficient in treating these patients. In this review, we discuss various combination therapies under pre-clinical and clinical development which can reduce toxicity, enhance efficacy, and prevent recurrences in patients with metastatic melanoma. Abstract Melanoma possesses invasive metastatic growth patterns and is one of the most aggressive types of skin cancer. In 2021, it is estimated that 7180 deaths were attributed to melanoma in the United States alone. Once melanoma metastasizes, traditional therapies are no longer effective. Instead, immunotherapies, such as ipilimumab, pembrolizumab, and nivolumab, are the treatment options for malignant melanoma. Several biomarkers involved in tumorigenesis have been identified as potential targets for molecularly targeted melanoma therapy, such as tyrosine kinase inhibitors (TKIs). Unfortunately, melanoma quickly acquires resistance to these molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies and single or multiple TKIs have been employed and have been shown to improve the prognosis of melanoma patients compared to monotherapy. This review discusses several combination therapies that target melanoma biomarkers, such as BRAF, MEK, RAS, c-KIT, VEGFR, c-MET and PI3K. Several of these regimens are already FDA-approved for treating metastatic melanoma, while others are still in clinical trials. Continued research into the causes of resistance and factors influencing the efficacy of these combination treatments, such as specific mutations in oncogenic proteins, may further improve the effectiveness of combination therapies, providing a better prognosis for melanoma patients.
Collapse
|
232
|
Zhong J, Wang Z, Hounye AH, Liu J, Zhang J, Qi M, Hou M. A novel pyroptosis-related LncRNA signature predicts prognosis and indicates tumor immune microenvironment in skin cutaneous melanoma. Life Sci 2022; 307:120832. [DOI: 10.1016/j.lfs.2022.120832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022]
|
233
|
Avery TY, Köhler N, Zeiser R, Brummer T, Ruess DA. Onco-immunomodulatory properties of pharmacological interference with RAS-RAF-MEK-ERK pathway hyperactivation. Front Oncol 2022; 12:931774. [PMID: 35965494 PMCID: PMC9363660 DOI: 10.3389/fonc.2022.931774] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
Hyperactivation of the RAS-RAF-MEK-ERK cascade - a mitogen-activated protein kinase pathway – has a well-known association with oncogenesis of leading tumor entities, including non-small cell lung cancer, colorectal carcinoma, pancreatic ductal adenocarcinoma, and malignant melanoma. Increasing evidence shows that genetic alterations leading to RAS-RAF-MEK-ERK pathway hyperactivation mediate contact- and soluble-dependent crosstalk between tumor, tumor microenvironment (TME) and the immune system resulting in immune escape mechanisms and establishment of a tumor-sustaining environment. Consequently, pharmacological interruption of this pathway not only leads to tumor-cell intrinsic disruptive effects but also modification of the TME and anti-tumor immunomodulation. At the same time, the importance of ERK signaling in immune cell physiology and potentiation of anti-tumor immune responses through ERK signaling inhibition within immune cell subsets has received growing appreciation. Specifically, a strong case was made for targeted MEK inhibition due to promising associated immune cell intrinsic modulatory effects. However, the successful transition of therapeutic agents interrupting RAS-RAF-MEK-ERK hyperactivation is still being hampered by significant limitations regarding durable efficacy, therapy resistance and toxicity. We here collate and summarize the multifaceted role of RAS-RAF-MEK-ERK signaling in physiology and oncoimmunology and outline the rationale and concepts for exploitation of immunomodulatory properties of RAS-RAF-MEK-ERK inhibition while accentuating the role of MEK inhibition in combinatorial and intermittent anticancer therapy. Furthermore, we point out the extensive scientific efforts dedicated to overcoming the challenges encountered during the clinical transition of various therapeutic agents in the search for the most effective and safe patient- and tumor-tailored treatment approach.
Collapse
Affiliation(s)
- Thomas Yul Avery
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, Freiburg, Germany
- *Correspondence: Thomas Yul Avery, ; Dietrich Alexander Ruess,
| | - Natalie Köhler
- Department of Medicine I - Medical Center, Medical Center University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I - Medical Center, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium Deutsches Konsortium Translationale Krebsforschung (DKTK), partner site Freiburg, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Tilman Brummer
- German Cancer Consortium Deutsches Konsortium Translationale Krebsforschung (DKTK), partner site Freiburg, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, Medical Center University of Freiburg, Freiburg, Germany
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium Deutsches Konsortium Translationale Krebsforschung (DKTK), partner site Freiburg, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- *Correspondence: Thomas Yul Avery, ; Dietrich Alexander Ruess,
| |
Collapse
|
234
|
Ohanna M, Biber P, Deckert M. Emerging Role of Deubiquitinating Enzymes (DUBs) in Melanoma Pathogenesis. Cancers (Basel) 2022; 14:3371. [PMID: 35884430 PMCID: PMC9322030 DOI: 10.3390/cancers14143371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Metastatic melanoma is the leading cause of death from skin cancer. Therapies targeting the BRAF oncogenic pathway and immunotherapies show remarkable clinical efficacy. However, these treatments are limited to subgroups of patients and relapse is common. Overall, the majority of patients require additional treatments, justifying the development of new therapeutic strategies. Non-genetic and genetic alterations are considered to be important drivers of cellular adaptation mechanisms to current therapies and disease relapse. Importantly, modification of the overall proteome in response to non-genetic and genetic events supports major cellular changes that are required for the survival, proliferation, and migration of melanoma cells. However, the mechanisms underlying these adaptive responses remain to be investigated. The major contributor to proteome remodeling involves the ubiquitin pathway, ubiquitinating enzymes, and ubiquitin-specific proteases also known as DeUBiquitinases (DUBs). In this review, we summarize the current knowledge regarding the nature and roles of the DUBs recently identified in melanoma progression and therapeutic resistance and discuss their potential as novel sources of vulnerability for melanoma therapy.
Collapse
Affiliation(s)
- Mickael Ohanna
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Pierric Biber
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Marcel Deckert
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| |
Collapse
|
235
|
Chen G, Huang J, Lei H, Wu F, Chen C, Song Y, Cao Z, Zhang C, Zhang C, Ma Y, Huang M, Zhou J, Lu Y, Zhao Y, Zhang L. Icariside I - A novel inhibitor of the kynurenine-AhR pathway with potential for cancer therapy by blocking tumor immune escape. Biomed Pharmacother 2022; 153:113387. [PMID: 35834991 DOI: 10.1016/j.biopha.2022.113387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Although therapeutic antibodies against immune checkpoints such as PD-1/PD-L1 have achieved unprecedented success in clinical tumor patients, there are still many patients who are ineffective or have limited responses to immune checkpoint blockade (ICB). Discovery of novel strategies for cancer immunotherapy including natural small molecules is needed. METHODS Owing to its extremely low content in Epimedium genus, we firstly constructed a microbial cell factory to enzymatically biosynthesize icariside I, a natural flavonoid monosaccharide from Herbal Epimedium. Using a combination of targeted MS-based metabolomics, flow cytometric analysis, and biological assays, the therapeutic potentials of icariside I were subsequently investigated in vivo and in vitro. RESULTS We find that icariside I markedly downregulates a series of intermediate metabolites such as kynurenine, kynurenic acid and xanthurenic acid and corresponding key enzymes involved in kynurenine-AhR pathway in both tumor cells and tumor-bearing mice. In vivo, oral administration of icariside I downregulates SLC7A8 and PAT4 transporters and AhR, thus inhibiting nuclear PD-1 in CTLs. Moreover, icariside I significantly upregulates CD8 + T cells in both peripheral blood and tumor tissues of tumor-bearing mice. Consequently, interferon-γ (IFN-γ) secreted by CD8 + T cells suppresses tumor growth through activation of JAK1-STAT1 signaling, thus inducing tumor cell apoptosis. CONCLUSIONS These results suggest that icariside I could be an effective small molecule drug for tumor immunotherapy by blocking kynurenine-AhR pathway and tumor immune escape.
Collapse
Affiliation(s)
- Gui Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajun Huang
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Fang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxi Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
| | - Yujing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
236
|
De Sousa-Coelho AL, Aureliano M, Fraqueza G, Serrão G, Gonçalves J, Sánchez-Lombardo I, Link W, Ferreira BI. Decavanadate and metformin-decavanadate effects in human melanoma cells. J Inorg Biochem 2022; 235:111915. [PMID: 35834898 DOI: 10.1016/j.jinorgbio.2022.111915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Decavanadate is a polyoxometalate (POMs) that has shown extensive biological activities, including antidiabetic and anticancer activity. Importantly, vanadium-based compounds as well as antidiabetic biguanide drugs, such as metformin, have shown to exert therapeutic effects in melanoma. A combination of these agents, the metformin-decavanadate complex, was also recognized for its antidiabetic effects and recently described as a better treatment than the monotherapy with metformin enabling lower dosage in rodent models of diabetes. Herein, we compare the effects of decavanadate and metformin-decavanadate on Ca2+-ATPase activity in sarcoplasmic reticulum vesicles from rabbit skeletal muscles and on cell signaling events and viability in human melanoma cells. We show that unlike the decavanadate-mediated non-competitive mechanism, metformin-decavanadate inhibits Ca2+-ATPase by a mixed-type competitive-non-competitive inhibition with an IC50 value about 6 times higher (87 μM) than the previously described for decavanadate (15 μM). We also found that both decavanadate and metformin-decavanadate exert antiproliferative effects on melanoma cells at 10 times lower concentrations than monomeric vanadate. Western blot analysis revealed that both, decavanadate and metformin-decavanadate increased phosphorylation of extracellular signal-regulated kinase (ERK) and serine/threonine protein kinase AKT signaling proteins upon 24 h drug exposure, suggesting that the anti-proliferative activities of these compounds act independent of growth-factor signaling pathways.
Collapse
Affiliation(s)
- Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal; Algarve Biomedical Center (ABC), Faro, Portugal; Escola Superior de Saúde (ESS), Universidade do Algarve, Faro, Portugal.
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, Faro, Portugal; Centro de Ciências do Mar (CCMar), Universidade do Algarve, Faro, Portugal.
| | - Gil Fraqueza
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, Faro, Portugal; Instituto Superior de Engenharia (ISE), Universidade do Algarve, Faro, Portugal
| | - Gisela Serrão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal
| | - João Gonçalves
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Irma Sánchez-Lombardo
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán, Mexico
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Madrid, Spain
| | - Bibiana I Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal; Algarve Biomedical Center (ABC), Faro, Portugal; Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
237
|
Construction of a Novel MYC-Associated ceRNA Regulatory Network to Identify Prognostic Biomarkers in Colon Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3216285. [PMID: 35847359 PMCID: PMC9277212 DOI: 10.1155/2022/3216285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Colorectal cancer (CRC) includes colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ). Competitive endogenous RNA (ceRNA) is crucial for cancer pathogenesis. Abnormal expression of MYC is generally associated with a poor colon adenocarcinoma prognosis. The present study aimed to identify a novel MYC-associated ceRNA regulatory network and identify potential prognostic markers associated with COAD. We obtained the transcriptome sequencing profiles of 462 COAD cases from the TCGA database and analyzed differentially expressed genes (DEGs) in MYC high expression (MYChigh) and MYC low expression (Myclow) tumors. We identified an important lncRNA, LINC00114, which effectively predicts overall survival and plays a protective role in COAD. Moreover, the LINC00114/miR-216a-5p axis was identified as a clinical prognostic model. The predicted target genes of the LINC00114/miR-216a-5p axis include uromodulin Like 1 (UMODL1) and oncoprotein induced transcript 3 (OIT3), which are closely related to the survival and prognosis of COAD patients. In summary, we constructed a novel ceRNA regulatory network and identified potential biomarkers for the targeted therapy and prognosis of COAD.
Collapse
|
238
|
Kumbhar P, Kole K, Yadav T, Bhavar A, Waghmare P, Bhokare R, Manjappa A, Jha NK, Chellappan DK, Shinde S, Singh SK, Dua K, Salawi A, Disouza J, Patravale V. Drug repurposing: An emerging strategy in alleviating skin cancer. Eur J Pharmacol 2022; 926:175031. [PMID: 35580707 DOI: 10.1016/j.ejphar.2022.175031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Skin cancer is one of the most common forms of cancer. Several million people are estimated to have affected with this condition worldwide. Skin cancer generally includes melanoma and non-melanoma with the former being the most dangerous. Chemotherapy has been one of the key therapeutic strategies employed in the treatment of skin cancer, especially in advanced stages of the disease. It could be also used as an adjuvant with other treatment modalities depending on the type of skin cancer. However, there are several shortfalls associated with the use of chemotherapy such as non-selectivity, tumour resistance, life-threatening toxicities, and the exorbitant cost of medicines. Furthermore, new drug discovery is a lengthy and costly process with minimal likelihood of success. Thus, drug repurposing (DR) has emerged as a new avenue where the drug approved formerly for the treatment of one disease can be used for the treatment of another disease like cancer. This approach is greatly beneficial over the de novo approach in terms of time and cost. Moreover, there is minimal risk of failure of repurposed therapeutics in clinical trials. There are a considerable number of studies that have reported on drugs repurposed for the treatment of skin cancer. Thus, the present manuscript offers a comprehensive overview of drugs that have been investigated as repurposing candidates for the efficient treatment of skin cancers mainly melanoma and its oncogenic subtypes, and non-melanoma. The prospects of repurposing phytochemicals against skin cancer are also discussed. Furthermore, repurposed drug delivery via topical route and repurposed drugs in clinical trials are briefed. Based on the findings from the reported studies discussed in this manuscript, drug repurposing emerges to be a promising approach and thus is expected to offer efficient treatment at a reasonable cost in devitalizing skin cancer.
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Kapil Kole
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Tejashree Yadav
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Ashwini Bhavar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Pramod Waghmare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Rajdeep Bhokare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sunita Shinde
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
239
|
Shui IM, Liu XQ, Zhao Q, Kim ST, Sun Y, Yearley JH, Choudhury T, Webber AL, Krepler C, Cristescu R, Lee J. Baseline and post-treatment biomarkers of resistance to anti-PD-1 therapy in acral and mucosal melanoma: an observational study. J Immunother Cancer 2022; 10:jitc-2022-004879. [PMID: 35793874 PMCID: PMC9260847 DOI: 10.1136/jitc-2022-004879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background Immunotherapies targeting programmed cell death-1 (PD-1) and its ligands have improved clinical outcomes for advanced melanoma. However, many tumors exhibit primary resistance or acquire secondary resistance after an initial positive response. The mechanisms of resistance are not well understood, and no validated predictive biomarkers are available. This exploratory study aimed to characterize baseline differences and molecular changes arising during treatment in acral and mucosal melanomas that exhibited primary or secondary resistance to anti-PD-1 monotherapy. Methods This was an observational retrospective study of 124 patients who had been treated for metastatic acral or mucosal melanoma with anti-PD-1 monotherapy. Tumor samples were collected at baseline (all patients) and post-treatment (resistant tumors only) and were assayed by immunohistochemistry, whole-exome sequencing, and RNA sequencing. Results At baseline, more non-progressor than resistant tumors exhibited expression of PD-L1, immune cell infiltration, and high tumor mutational burden (TMB); baseline PD-L1 expression was also more common in secondary-resistant than in primary-resistant tumors as well as in late versus early secondary-resistant tumors. Non-progressor tumors also had higher median baseline expression of an 18-gene T cell-inflamed gene expression profile (TcellinfGEP). Among resistant tumors, the proportion of PD-L1-positive melanomas and the expression of the TcellinfGEP mRNA signature increased during treatment, while the expression of mRNA signatures related to WNT and INFA1 signaling decreased. There was evidence for greater changes from baseline in secondary-resistant versus primary-resistant tumors for some markers, including expression of RAS-related and WNT-related mRNA signatures and density of CD11c+ and FOXP3+ T cells. Greater changes in CD11c+ cell density were observed in early compared with late secondary-resistant tumors. Conclusions Our findings suggest that TcellinfGEP and PD-L1 expression, TMB, immune cell infiltration, and RAS and WNT signaling warrant further investigation as potential mechanisms and/or biomarkers of anti-PD-1 therapy resistance in acral and mucosal melanomas. Confirmation of these findings in larger populations is needed.
Collapse
Affiliation(s)
| | | | - Qing Zhao
- Merck & Co., Inc, Rahway, New Jersey, USA
| | - Seung Tae Kim
- Hematology and Oncology, Samsung Medical Center, Gangnam-gu, South Korea
| | - Yuan Sun
- Merck & Co., Inc, Rahway, New Jersey, USA
| | | | | | | | | | | | - Jeeyun Lee
- Hematology and Oncology, Samsung Medical Center, Gangnam-gu, South Korea
| |
Collapse
|
240
|
Carpi S, Scoditti E, Polini B, Brogi S, Calderone V, Proksch P, Ebada SS, Nieri P. Pro-Apoptotic Activity of the Marine Sponge Dactylospongia elegans Metabolites Pelorol and 5-epi-Ilimaquinone on Human 501Mel Melanoma Cells. Mar Drugs 2022; 20:md20070427. [PMID: 35877720 PMCID: PMC9317990 DOI: 10.3390/md20070427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/24/2022] Open
Abstract
The natural environment represents an important source of drugs that originates from the terrestrial and, in minority, marine organisms. Indeed, the marine environment represents a largely untapped source in the process of drug discovery. Among all marine organisms, sponges with algae represent the richest source of compounds showing anticancer activity. In this study, the two secondary metabolites pelorol (PEL) and 5-epi-ilimaquinone (EPI), purified from Dactylospongia elegans were investigated for their anti-melanoma activity. PEL and EPI induced cell growth repression of 501Mel melanoma cells in a concentration- and time-dependent manner. A cell cycle block in the G1 phase by PEL and EPI was also observed. Furthermore, PEL and EPI induced significant accumulation of DNA histone fragments in the cytoplasmic fraction, indicating a pro-apoptotic effect of both compounds. At the molecular level, PEL and EPI induced apoptosis through the increase in pro-apoptotic BAX expression, confirmed by the decrease in its silencing miR-214-3p and the decrease in the anti-apoptotic BCL-2, MCL1, and BIRC-5 mRNA expression, attested by the increase in their silencing miRNAs, i.e., miR-193a-3p and miR-16-5p. In conclusion, our data indicate that PEL and EPI exert cytotoxicity activity against 501Mel melanoma cells promoting apoptotic signaling and inducing changes in miRNA expression and their downstream effectors. For these reasons could represent promising lead compounds in the anti-melanoma drug research.
Collapse
Affiliation(s)
- Sara Carpi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, 56126 Pisa, Italy
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (S.B.); (V.C.); (P.N.)
- Correspondence:
| | - Egeria Scoditti
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100 Lecce, Italy;
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (S.B.); (V.C.); (P.N.)
- Department of Pathology, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (S.B.); (V.C.); (P.N.)
- Interdepartmental Center of Marine Pharmacology (MArinePHARMA), University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (S.B.); (V.C.); (P.N.)
- Interdepartmental Center of Marine Pharmacology (MArinePHARMA), University of Pisa, 56126 Pisa, Italy
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universtätsstrasse 1, 40225 Düsseldorf, Germany;
| | - Sherif S. Ebada
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (S.B.); (V.C.); (P.N.)
- Interdepartmental Center of Marine Pharmacology (MArinePHARMA), University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
241
|
Wang H, Li Z, Ou S, Song Y, Luo K, Guan Z, Zhao L, Huang R, Yu S. Tumor Microenvironment Heterogeneity-Based Score System Predicts Clinical Prognosis and Response to Immune Checkpoint Blockade in Multiple Colorectal Cancer Cohorts. Front Mol Biosci 2022; 9:884839. [PMID: 35836930 PMCID: PMC9274205 DOI: 10.3389/fmolb.2022.884839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Despite immune checkpoint blockade (ICB) therapy contributed to significant advances in cancer therapy, only a small percentage of patients with colorectal cancer (CRC) respond to it. Identification of these patients will facilitate ICB application in CRC. In this study, we integrated multiple CRC cohorts (2,078 samples) to construct tumor microenvironment (TME) subtypes using TME indices calculated by CIBERSORT and ESTIMATE algorithms. Furthermore, a surrogate quantitative indicator, a tumor microenvironment immune gene (TMEIG) score system, was established using the key immune genes between TME clusters 1 and 2. The subsequent analysis demonstrated that TME subtypes and the TMEIG score system correlated with clinical outcomes of patients in multiple CRC cohorts and exhibited distinct immune statuses. Furthermore, Tumor Immune Dysfunction and Exclusion (TIDE) analysis indicated that patients with low TMEIG scores were more likely to benefit from ICB therapy. A study on two ICB cohorts (GSE78220 and IMvigor210) also validated that patients with low TMEIG scores exhibited higher ICB response rates and better prognoses after ICB treatment. The biomarker evaluation module on the TIDE website revealed that the TMEIG score was a robust predictive biomarker. Moreover, differential expression analysis, immunohistochemistry, qPCR experiments, and gene set prioritization module on the TIDE website demonstrated that the five genes that constitute the TMEIG score system (SERPINE1, FABP4, SCG2, CALB2, and HOXC6) were closely associated with tumorigenesis, immune cells, and ICB response indices. Finally, TMEIG scores could accurately predict the prognosis and ICB response of patients with CRC. SERPINE1, FABP4, SCG2, CALB2, and HOXC6 might be potential targets related to ICB treatment. Furthermore, our study provided new insights into precision ICB therapy in CRC.
Collapse
Affiliation(s)
- Hufei Wang
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhi Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Suwen Ou
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanni Song
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kangjia Luo
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zilong Guan
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lei Zhao, ; Rui Huang, ; Shan Yu,
| | - Rui Huang
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lei Zhao, ; Rui Huang, ; Shan Yu,
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lei Zhao, ; Rui Huang, ; Shan Yu,
| |
Collapse
|
242
|
Liao G, Fu Y, Arooj S, Khan M, Li X, Yan M, Li Z, Yang H, Zheng T, Xu R. Impact of Previous Local Treatment for Brain Metastases on Response to Molecular Targeted Therapy in BRAF-Mutant Melanoma Brain Metastasis: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:704890. [PMID: 35814449 PMCID: PMC9263360 DOI: 10.3389/fonc.2022.704890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Background Melanoma brain metastases (BMs) are associated with poor prognosis and are the main cause of mortality in melanoma patients. BRAF inhibitors have shown intracranial activity in both treatment-naïve and previously treated BM patients. We aimed to investigate if there was any difference in response of BRAF inhibitors in these two cohorts. Materials and Methods Electronic database search included PubMed, Medline, and Cochrane library until March 2021 for studies with desired comparative outcomes. Outcomes of interest that were obtained for meta-analysis included intracranial response rate as the primary outcome and survival and safety outcomes as the secondary outcomes. Review Manager version 5.4 was used for data analysis. Results Three studies comprising 410 BRAF-mutated melanoma patients with BMs were included according to eligibility criteria. The comparative cohort included patients with treatment-naïve BMs (TN cohort; n = 255) and those who had progressive disease after receiving local brain treatment for BMs (PT cohort; n = 155). Meta-analysis revealed that BRAF inhibitors (vemurafenib and dabrafenib) and BRAF/MEK inhibitor combination (dabrafenib and trametinib) induced significantly higher intracranial disease control (OR 0.58 [95% CI: 0.34, 0.97], p = 0.04) and a trend toward improved progression-free survival (PFS) (HR 1.22 [95% CI: 0.98, 1.52], p = 0.08) in the PT cohort as compared to the TN cohort. Overall survival was not significantly different between the cohorts (HR 1.16 [95% CI: 0.89, 1.51], p = 0.28). Subgroup analysis revealed that PFS was significantly improved (HR 1.67 [95% CI: 1.06, 2.62], p = 0.03), and a trend toward improved OS (HR 1.62 [95% CI: 0.95, 2.75], p = 0.08) was achieved in patients receiving BRAF/MEK inhibitor combination and patients with BRAFv600K mutation receiving dabrafenib alone. No increase in overall adverse events (AEs), grade 3/4 AEs, and severe adverse events (SAEs) was observed between the cohorts. Conclusions BRAF inhibitors (plus MEK inhibitor) may achieve better intracranial disease stability in BRAF-mutant melanoma patients who have received previous local treatment for BMs. Systematic Review Registration https://www.crd.york.ac.uk/prospero/), identifier CRD42020185984.
Collapse
Affiliation(s)
- Guixiang Liao
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yuxiang Fu
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Sumbal Arooj
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Biochemistry and Molecular Biology, University of Sialkot, Sialkot, Pakistan
| | - Muhammad Khan
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ruilian Xu, ; Muhammad Khan,
| | - Xianming Li
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Maosheng Yan
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zihuang Li
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Hongli Yang
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Tao Zheng
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ruilian Xu
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Ruilian Xu, ; Muhammad Khan,
| |
Collapse
|
243
|
Zhang W, Tang Y, Guo Y, Kong Y, Shi F, Sheng C, Wang S, Wang Q. Favorable immune checkpoint inhibitor outcome of patients with melanoma and NSCLC harboring FAT1 mutations. NPJ Precis Oncol 2022; 6:46. [PMID: 35739249 PMCID: PMC9226130 DOI: 10.1038/s41698-022-00292-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are most commonly used for melanoma and non-small cell lung cancer (NSCLC) patients. FAT atypical cadherin 1 (FAT1), which frequently mutates in melanoma and NSCLC. In this study, we aim to investigate the association of FAT1 mutations with ICI response and outcome. We collected somatic mutation profiles and clinical information from ICI-treated 631 melanoma and 109 NSCLC samples, respectively. For validation, a pan-cancer cohort with 1661 patients in an immunotherapy setting was also used. Melanoma and NSCLC samples from the Cancer Genome Atlas were used to evaluate the potential immunologic mechanisms of FAT1 mutations. In melanoma, patients with FAT1 mutations had a significantly improved survival outcome than those wild-type patients (HR: 0.67, 95% CI: 0.46–0.97, P = 0.033). An elevated ICI response rate also appeared in FAT1-mutated patients (43.2% vs. 29.2%, P = 0.032). Associations of FAT1 mutations with improved prognosis and ICI response were confirmed in NSCLC patients. In the pan-cancer cohort, the association between FAT1 mutations and favorable ICI outcome was further validated (HR: 0.74, 95% CI: 0.58–0.96, P = 0.022). Genomic and immunologic analysis showed that a high mutational burden, increased infiltration of immune-response cells, decreased infiltration of immune-suppressive cells, interferon and cell cycle-related pathways were enriched in patients with FAT1 mutations. Our study revealed that FAT1 mutations were associated with better immunogenicity and ICI efficacy, which may be considered as a biomarker for selecting patients to receive immunotherapy.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Yunfeng Tang
- School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Yuxian Guo
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Yujia Kong
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Fuyan Shi
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Chao Sheng
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Suzhen Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China
| | - Qinghua Wang
- Department of Health Statistics, Key Laboratory of Medicine and Health of Shandong Province, School of Public Health, Weifang Medical University, 261053, Weifang, Shandong, China.
| |
Collapse
|
244
|
Loria R, Vici P, Di Lisa FS, Soddu S, Maugeri-Saccà M, Bon G. Cross-Resistance Among Sequential Cancer Therapeutics: An Emerging Issue. Front Oncol 2022; 12:877380. [PMID: 35814399 PMCID: PMC9259985 DOI: 10.3389/fonc.2022.877380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past two decades, cancer treatment has benefited from having a significant increase in the number of targeted drugs approved by the United States Food and Drug Administration. With the introduction of targeted therapy, a great shift towards a new era has taken place that is characterized by reduced cytotoxicity and improved clinical outcomes compared to traditional chemotherapeutic drugs. At present, targeted therapies and other systemic anti-cancer therapies available (immunotherapy, cytotoxic, endocrine therapies and others) are used alone or in combination in different settings (neoadjuvant, adjuvant, and metastatic). As a result, it is not uncommon for patients affected by an advanced malignancy to receive subsequent anti-cancer therapies. In this challenging complexity of cancer treatment, the clinical pathways of real-life patients are often not as direct as predicted by standard guidelines and clinical trials, and cross-resistance among sequential anti-cancer therapies represents an emerging issue. In this review, we summarize the main cross-resistance events described in the diverse tumor types and provide insight into the molecular mechanisms involved in this process. We also discuss the current challenges and provide perspectives for the research and development of strategies to overcome cross-resistance and proceed towards a personalized approach.
Collapse
Affiliation(s)
- Rossella Loria
- Cellular Network and Molecular Therapeutic Target Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Patrizia Vici
- Unit of Phase IV Trials, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Sofia Di Lisa
- Unit of Phase IV Trials, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Medical Oncology A, Department of Radiological, Oncological, and Anatomo-Pathological Sciences, Umberto I University Hospital, University Sapienza, Rome, Italy
| | - Silvia Soddu
- Cellular Network and Molecular Therapeutic Target Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marcello Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Bon
- Cellular Network and Molecular Therapeutic Target Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- *Correspondence: Giulia Bon,
| |
Collapse
|
245
|
Hou Y, Zhang R, Zong J, Wang W, Zhou M, Yan Z, Li T, Gan W, Lv S, Zeng Z, Yang M. Comprehensive Analysis of a Cancer-Immunity Cycle-Based Signature for Predicting Prognosis and Immunotherapy Response in Patients With Colorectal Cancer. Front Immunol 2022; 13:892512. [PMID: 35711437 PMCID: PMC9193226 DOI: 10.3389/fimmu.2022.892512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/02/2022] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoint blockade (ICB) has been recognized as a promising immunotherapy for colorectal cancer (CRC); however, most patients have little or no clinical benefit. This study aimed to develop a novel cancer-immunity cycle–based signature to stratify prognosis of patients with CRC and predict efficacy of immunotherapy. CRC samples from The Cancer Genome Atlas (TCGA) were used as the training set, while the RNA data from Gene Expression Omnibus (GEO) data sets and real-time quantitative PCR (RT-qPCR) data from paired frozen tissues were used for validation. We built a least absolute shrinkage and selection operator (LASSO)-Cox regression model of the cancer-immunity cycle–related gene signature in CRC. Patients who scored low on the risk scale had a better prognosis than those who scored high. Notably, the signature was an independent prognostic factor in multivariate analyses, and to improve prognostic classification and forecast accuracy for individual patients, a scoring nomogram was created. The comprehensive results revealed that the low-risk patients exhibited a higher degree of immune infiltration, a higher immunoreactivity phenotype, stronger expression of immune checkpoint–associated genes, and a superior response to ICB therapy. Furthermore, the risk model was closely related to the response to multiple chemotherapeutic drugs. Overall, we developed a reliable cancer-immunity cycle–based risk model to predict the prognosis, the molecular and immune status, and the immune benefit from ICB therapy, which may contribute greatly to accurate stratification and precise immunotherapy for patients with CRC.
Collapse
Affiliation(s)
- Yufang Hou
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rixin Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinbao Zong
- Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Hospital of Traditional Chinese Medicine, The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Weiqi Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingxuan Zhou
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Yan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiegang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenqiang Gan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Silin Lv
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zifan Zeng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
246
|
Zhou S, Li P, Qin L, Huang S, Dang N. Transcription factor YY1 contributes to human melanoma cell growth through modulating the p53 signaling pathway. Exp Dermatol 2022; 31:1563-1578. [PMID: 35730240 DOI: 10.1111/exd.14628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Melanoma has a higher mortality rate than any other skin cancer, and its cases are increasing. The transcription factor YY1 has been proven to be involved in tumor progression; however, the role of YY1 in melanoma is not well understood. METHODS This study investigates how YY1 functions in melanoma progression, and it also elucidates the underlying mechanisms involved. RESULTS We have found that in clinical human melanoma tissues, YY1 is overexpressed compared to YY1 expression in normal melanocytes and skin tissues. Cellular immunofluorescence shows that YY1 is mainly located in the nucleus. YY1 knockdown reduces proliferation, migration, and invasion of melanoma cell lines. Moreover, the apoptosis rate of cells is significantly increased in low-YY1 environments. The overexpression of YY1 resulted in decreased apoptotic rates in melanoma cells. YY1 also affects the expression of EMT-related proteins. Additional experiments reveal that YY1 knockdown disrupts the interaction of MDM2-p53, and that it both stabilizes and increases p53 activity. The upregulation of p53 expression in turn stimulates p21 expression just as it suppresses CDK4 expression, which then induces cells that were arrested in the G1 phase. The effect then is to constrain cell proliferation in melanoma cells. Upon activation of the p53 pathway, Bax, a pro-apoptotic protein, is upregulated, and Bcl-2, an anti-apoptotic protein, was downregulated in A375 cells. CONCLUSIONS The findings of this study provide novel insights into the pathology of melanoma as well as the role that YY1 plays in tumor progression. The findings also suggest that targeting YY1 has the potential to improve the diagnosis and treatment of melanoma.
Collapse
Affiliation(s)
- Shumin Zhou
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Linyi people's Hospital, Linyi, Shandong, China
| | - Pin Li
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Li Qin
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuhong Huang
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China.,Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
247
|
Yu ZL, Liu JY, Chen G. Small extracellular vesicle PD-L1 in cancer: the knowns and unknowns. NPJ Precis Oncol 2022; 6:42. [PMID: 35729210 PMCID: PMC9213536 DOI: 10.1038/s41698-022-00287-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
According to the conventional wisdom, programmed death protein 1 ligand (PD-L1)-mediated immunosuppression was based on the physical contact between tumor cells and T cells in the tumor microenvironment. Recent studies demonstrated that PD-L1 was also highly expressed on the surface of tumor cell-derived small extracellular vesicles (sEVs). PD-L1 on sEVs, which could also directly bind to PD-1 on T cells, has a vital function in immunosuppression and immunotherapy resistance. Due to the heterogeneity and dynamic changes of PD-L1 expression on tumor cells, developing sEV PD-L1 as a predictive biomarker for the clinical responses to immunotherapy could be an attractive option. In this review, we summarized and discussed the latest researches and advancements on sEV PD-L1, including the biogenesis and secretion mechanisms, isolation and detection strategies, as well as the biological functions of sEV PD-L1. In the meantime, we highlighted the application potential of sEV PD-L1 as diagnostic and prognostic markers in tumor, especially for predicting the clinical responses to anti-PD-1/PD-L1 immunotherapies. In particular, with the gradual deepening of the studies, challenges and problems regarding the further understanding and application of sEV PD-L1 have begun to emerge. Based on the current research status, we summarized the potential challenges and possible solutions, and prospected several key directions for future studies of sEV PD-L1. Collectively, by highlighting the important knowns and unknowns of sEV PD-L1, our present review would help to light the way forward for the field of sEV PD-L1 and to avoid unnecessary blindness and detours.
Collapse
Affiliation(s)
- Zi-Li Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jin-Yuan Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China. .,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China. .,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
248
|
Rozeman EA, Versluis JM, Moritz R, Wilgenhof S, van Thienen JV, Haanen JBAG, van de Heuvel MM, Blank CU, van Rossum HH. Diagnostic performance of early increase in S100B or LDH as outcome predictor for non-responsiveness to anti-PD-1 monotherapy in advanced melanoma. Clin Chim Acta 2022; 533:71-78. [PMID: 35709988 DOI: 10.1016/j.cca.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
As a subset of advanced melanoma patients derive long-term benefit from anti-PD-1 therapy, early identification of non-responsiveness would enable an early switch to next line therapies. This study assessed if an early increase in S100B or lactate dehydrogenase (LDH) could be predictive for non-responsiveness to anti-PD-1. We retrospectively analysed advanced melanoma patients treated with anti-PD-1 monotherapy. Serum S100B and LDH levels were measured at baseline and before every infusion. Non-response was defined as progression or death at 6 months. Marker cut-offs were defined based on > 95% specificity and feasibility in clinical practice. For validation an independent cohort was analysed. In total, 313 patients were included (166 patients in training cohort, 147 patients in validation cohort). Increase of > 50% in LDH or > 100% in S100B above upper limit of normal at week 6 compared to baseline was determined as criterion to positively test for non-responsiveness. In the validation cohort, obtained specificity of the combination test was > 95% with a positive predictive value of 82%; obtained sensitivity was lower (21%), with a negative predictive value of 55%. Early increase in S100B or LDH is a strong parameter for non-responsiveness to anti-PD-1 in advanced melanoma. Prospective confirmation is needed before clinical implementation.
Collapse
Affiliation(s)
- Elisa A Rozeman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Judith M Versluis
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ruben Moritz
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sofie Wilgenhof
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Johannes V van Thienen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - John B A G Haanen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Michel M van de Heuvel
- Division of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Respiratory Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Christian U Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Huub H van Rossum
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
249
|
Dimitriou F, Hauschild A, Mehnert JM, Long GV. Double Trouble: Immunotherapy Doublets in Melanoma-Approved and Novel Combinations to Optimize Treatment in Advanced Melanoma. Am Soc Clin Oncol Educ Book 2022; 42:1-22. [PMID: 35658500 DOI: 10.1200/edbk_351123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immune checkpoint inhibitors, particularly anti-PD-1-based immune checkpoint inhibitors, have dramatically improved outcomes for patients with advanced melanoma and are currently deemed a standard of care. Ipilimumab/nivolumab is the first combination of immune checkpoint inhibitors to improve progression-free survival and overall survival in the first-line setting, with durable responses and the longest median overall survival, 72.1 months, of any drug therapy approved for advanced melanoma. However, its use is limited by the high rate of severe (grade 3-4) treatment-related adverse events. More recently, the novel immune checkpoint inhibitor combination of nivolumab/relatlimab (anti-PD-1/anti-LAG3) showed improved progression-free survival compared with nivolumab alone in the first-line setting and was well tolerated; thus, it is likely this combination will be added to the armamentarium as a first-line treatment for advanced melanoma. These changes in the treatment landscape have several treatment implications for decision-making. The choice of first-line systemic drug therapy, and the decision between immune checkpoint inhibitor monotherapy or combination therapy, requires a comprehensive assessment of disease-related factors and patient characteristics. Despite this striking progress, many patients' disease still progresses. Several new agents and therapeutic approaches are under investigation in clinical trials. Intralesional treatments hold promise for accessible metastases, although their broad application in the clinic will be limited. Prognostic and predictive biomarkers, as well as strategies to reduce treatment-related toxicities and overcome resistance, are required and are now the focus of clinical and translational research.
Collapse
Affiliation(s)
- Florentia Dimitriou
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Axel Hauschild
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Janice M Mehnert
- NYU Grossman School of Medicine and Perlmutter Cancer Center, New York, NY
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, Australia
| |
Collapse
|
250
|
Sanjida S, Betz-Stablein B, Atkinson V, Janda M, Barsoum R, Edwards HA, Chiu F, Tran MC, Soyer HP, Schaider H. In-Depth Characterisation of Real-World Advanced Melanoma Patients Receiving Immunotherapies and/or Targeted Therapies: A Case Series. Cancers (Basel) 2022; 14:cancers14112801. [PMID: 35681781 PMCID: PMC9179437 DOI: 10.3390/cancers14112801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Immunotherapies and targeted therapies have shown significant benefits for melanoma survival in the clinical trial setting. Much less is known about the characteristics and associated outcomes of those receiving such therapies in real-world settings. This study describes the characteristics of patients with advanced melanoma receiving immuno- and/or targeted therapies in a real-world setting. This prospective cohort study enrolled participants aged >18 years, diagnosed with advanced melanoma and currently undergoing immuno- and/or targeted therapies outside a clinical trial for follow-up with three-dimensional (3D) total-body imaging. Participants (n = 41) had a mean age of 62 years (range 29−86), 26 (63%) were male and the majority (n = 26, 63%) had ≥2 comorbidities. After a median of 39 months (range 1−52) follow-up, 59% (n = 24/41) of participants were alive. Despite multiple co-morbidities, the survival of participants with advanced melanoma treated using immuno- and/or targeted therapies was similar or better in our real-world setting compared to those treated in clinical trials using similar therapies. Larger studies powered to evaluate phenotypic and socio-economic characteristics, as well as specific comorbidities associated with survival in a real-world setting, are required to help determine those who will most benefit from immuno- and/or targeted therapies.
Collapse
Affiliation(s)
- Saira Sanjida
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia; (S.S.); (M.J.)
- The University of Queensland Diamantina Institute, Dermatology Research Centre, The University of Queensland, Woolloongabba, QLD 4102, Australia; (R.B.); (H.A.E.); (F.C.); (M.C.T.); (H.P.S.); (H.S.)
| | - Brigid Betz-Stablein
- The University of Queensland Diamantina Institute, Dermatology Research Centre, The University of Queensland, Woolloongabba, QLD 4102, Australia; (R.B.); (H.A.E.); (F.C.); (M.C.T.); (H.P.S.); (H.S.)
- Correspondence: ; Tel.: +61-7-34437399
| | - Victoria Atkinson
- Cancer Care Services, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia;
| | - Monika Janda
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia; (S.S.); (M.J.)
| | - Ramez Barsoum
- The University of Queensland Diamantina Institute, Dermatology Research Centre, The University of Queensland, Woolloongabba, QLD 4102, Australia; (R.B.); (H.A.E.); (F.C.); (M.C.T.); (H.P.S.); (H.S.)
| | - Harrison Aljian Edwards
- The University of Queensland Diamantina Institute, Dermatology Research Centre, The University of Queensland, Woolloongabba, QLD 4102, Australia; (R.B.); (H.A.E.); (F.C.); (M.C.T.); (H.P.S.); (H.S.)
| | - Frank Chiu
- The University of Queensland Diamantina Institute, Dermatology Research Centre, The University of Queensland, Woolloongabba, QLD 4102, Australia; (R.B.); (H.A.E.); (F.C.); (M.C.T.); (H.P.S.); (H.S.)
| | - My Co Tran
- The University of Queensland Diamantina Institute, Dermatology Research Centre, The University of Queensland, Woolloongabba, QLD 4102, Australia; (R.B.); (H.A.E.); (F.C.); (M.C.T.); (H.P.S.); (H.S.)
| | - H Peter Soyer
- The University of Queensland Diamantina Institute, Dermatology Research Centre, The University of Queensland, Woolloongabba, QLD 4102, Australia; (R.B.); (H.A.E.); (F.C.); (M.C.T.); (H.P.S.); (H.S.)
- Dermatology Department, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| | - Helmut Schaider
- The University of Queensland Diamantina Institute, Dermatology Research Centre, The University of Queensland, Woolloongabba, QLD 4102, Australia; (R.B.); (H.A.E.); (F.C.); (M.C.T.); (H.P.S.); (H.S.)
- Dermatology Department, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| |
Collapse
|