201
|
Anti-CTLA-4 and anti-PD-1 immunotherapies repress tumor progression in preclinical breast and colon model with independent regulatory T cells response. Transl Oncol 2022; 20:101405. [PMID: 35339889 PMCID: PMC8961218 DOI: 10.1016/j.tranon.2022.101405] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
Anti-PD-1 and anti-CTLA-4 induced anti-tumor response in breast cancer mouse model. Anti-PD-1 and anti-CTLA-4 induced anti-tumor response in colon cancer mouse model. Anti-CTLA-4 reduced colon cancer–derived lung metastasis formation in a mouse model. We identified specific T cell response between anti-PD-1 and anti-CTLA-4.
The recent development of immunotherapy represents a significant breakthrough in cancer therapy. Several immunotherapies provide robust efficacy gains in a wide variety of cancers. However, in some patients the immune checkpoint blockade remains ineffective due to poor therapeutic response and tumor relapse. An improved understanding of the mechanisms underlying tumor-immune system interactions can improve clinical management of cancer. Here, we report preclinical data evaluating two murine antibodies corresponding to recent FDA-approved antibodies for human therapy, e.g. anti-CTLA-4 and anti-PD-1. We demonstrated in two mouse syngeneic grafting models of triple negative breast or colon cancer that the two antibodies displayed an efficient anticancer activity, which is enhanced by combination treatment in the breast cancer model. We also demonstrated that CTLA-4 targeting reduced metastasis formation in the colon cancer metastasis model. In addition, using cytometry-based multiplex analysis, we showed that anti-CTLA-4 and anti-PD-1 affected the tumor immune microenvironment differently and in particular the tumor immune infiltration. This work demonstrated anti-cancer effect of CTLA-4 or PD-1 blockade on mouse colon and triple negative breast and on tumor-infiltrating immune cell subpopulations that could improve our knowledge and benefit the breast and colon cancer tumor research community.
Collapse
|
202
|
Li Q, Cheng X, Zhou C, Tang Y, Li F, Zhang B, Huang T, Wang J, Tu S. Fruquintinib Enhances the Antitumor Immune Responses of Anti-Programmed Death Receptor-1 in Colorectal Cancer. Front Oncol 2022; 12:841977. [PMID: 35371995 PMCID: PMC8968679 DOI: 10.3389/fonc.2022.841977] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Programmed death receptor-1 (PD-1) blockade shows little benefit in patients with microsatellite-stable colorectal cancer (MSS-CRC). Fruquintinib is a China-made anti-angiogenic drug which is approved for the third line therapy in mCRC. This study investigates the effect of the combination of fruquintinib and PD-1 blockade on MSS-CRC and its relative mechanisms. Methods The mouse allograft tumor models that represent MSS and microsatellite instability (MSI) CRC were established using murine CT26 and MC38 colon cancer cells, respectively, to assess the treatment efficacy. The percentages of immune cells were detected in the peripheral blood, spleen and tumor tissues in the tumor-bearing mice by flow cytometry analysis. Angiogenesis in tumor tissues was detected by immunofluorescence. The safety of drug treatment was evaluated by histopathology analysis in murine main organs. The efficacy of the combination of fruquintinib and sintilimab were verified in the treatment of MSS-CRC patients. Results Our results showed that the combination of fruquintinib and sintilimab exhibited the strongest inhibition of tumor growth and achieved the longest survival time in mice bearing MC38 or CT26 xenograft tumors, compared to fruquintinib and sintilimab alone. Mechanistically, the combination of fruquintinib and sintilimab reduced angiogenesis, reprogramed the vascular structure, enhanced the infiltration of CD8+T cells (p<0.05), CD8+TNFα+ (p<0.05) T cells and CD8+IFNγ+ (p<0.05) T cells and reduced the ratios of MDSCs and macrophages in mice. There was no obvious toxicity observed in the main organs of the tumor-bearing mice with the combined treatment. Moreover, the treatment using the combination of fruquintinib and sintilimab achieved effective response in five patients with refractory advanced MSS CRC. Conclusion Our results show that the combination of fruquintinib and sintilimab greatly inhibits CRC growth by altering tumor immune microenvironment. This study provides the rational for using the combination of fruquintinib and anti-PD-1 antibody for the treatment of advanced CRC.
Collapse
Affiliation(s)
- Qingli Li
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojiao Cheng
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Zhou
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Tang
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fuli Li
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baiwen Zhang
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tinglei Huang
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianzheng Wang
- Department of Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Shuiping Tu, ; Jianzheng Wang,
| | - Shuiping Tu
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Shuiping Tu, ; Jianzheng Wang,
| |
Collapse
|
203
|
Brumberger ZL, Branch ME, Klein MW, Seals A, Shapiro MD, Vasu S. Cardiotoxicity risk factors with immune checkpoint inhibitors. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2022; 8:3. [PMID: 35277208 PMCID: PMC8915459 DOI: 10.1186/s40959-022-00130-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/21/2022] [Indexed: 12/18/2022]
Abstract
Background Checkpoint-inhibitor immunotherapies have had a profound effect in the treatment of cancer by inhibiting down-regulation of T-cell response to malignancy. The cardiotoxic potential of these agents was first described in murine models and, more recently, in numerous clinical case reports of pericarditis, myocarditis, pericardial effusion, cardiomyopathy, and new arrhythmias. The objective of our study was to determine the frequency of and associated risk factors for cardiotoxic events in patients treated with immune checkpoint inhibitors. Methods Medical records of patients who underwent immunotherapy with durvalumab, ipilimumab, nivolumab, and pembrolizumab at Wake Forest Baptist Health were reviewed. We collected retrospective data regarding sex, cancer type, age, and cardiovascular disease risk factors and medications. We aimed to identify new diagnoses of heart failure, atrial fibrillation, ventricular fibrillation/tachycardia, myocarditis, and pericarditis after therapy onset. To assess the relationship between CVD risk factors and the number of cardiac events, a multivariate model was applied using generalized linear regression. Incidence rate ratios were calculated for every covariate along with the adjusted P-value. We applied a multivariate model using logistic regression to assess the relationship between CVD risk factors and mortality. Odds ratios were calculated for every covariate along with the adjusted P-value. Adjusted P-values were calculated using multivariable regression adjusting for other covariates. Results Review of 538 medical records revealed the following events: 3 ventricular fibrillation/tachycardia, 12 pericarditis, 11 atrial fibrillation with rapid ventricular rate, 0 myocarditis, 8 heart failure. Significant risk factors included female gender, African American race, and tobacco use with IRR 3.34 (95% CI 1.421, 7.849; P = 0.006), IRR 3.39 (95% CI 1.141, 10.055; P = 0.028), and IRR 4.21 (95% CI 1.289, 13.763; P = 0.017) respectively. Conclusions Our study revealed 34 significant events, most frequent being pericarditis (2.2%) and atrial fibrillation (2.0%) with strongest risk factors being female gender, African American race, and tobacco use. Patients who meet this demographic, particularly those with planned pembrolizumab treatment, may benefit from early referral to a cardio-oncologist. Further investigation is warranted on the relationship between CTLA-4 and PD-L1 expression and cardiac adverse events with ICIs, particularly for these subpopulations.
Collapse
Affiliation(s)
- Zachary L Brumberger
- Department of Internal Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Mary E Branch
- Department of Internal Medicine, Section On Cardiovascular Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Max W Klein
- Department of Internal Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| | - Austin Seals
- Department of Internal Medicine, Section On Cardiovascular Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Michael D Shapiro
- Department of Internal Medicine, Section On Cardiovascular Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Sujethra Vasu
- Department of Internal Medicine, Section On Cardiovascular Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| |
Collapse
|
204
|
Ogasawara M, Yamasaki-Yashiki S, Hamada M, Yamaguchi-Miyamoto T, Kawasuji T, Honda H, Yanagibashi T, Ikutani M, Watanabe Y, Fujimoto R, Matsunaga T, Nakajima N, Nagai Y, Takatsu K. Betulin Attenuates TGF-β1- and PGE 2-Mediated Inhibition of NK Cell Activity to Suppress Tumor Progression and Metastasis in Mice. Biol Pharm Bull 2022; 45:339-353. [PMID: 35228400 DOI: 10.1248/bpb.b21-00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transforming growth factor (TGF)-β1 and prostaglandin E2 (PGE2) are humoral factors critically involved in the induction of immunosuppression in the microenvironment of various types of tumors, including melanoma. In this study, we identified a natural compound that attenuated TGF-β1- and PGE2-induced immunosuppression and examined its effect on B16 melanoma growth in mice. By screening 502 natural compounds for attenuating activity against TGF-β1- or PGE2-induced suppression of cytolysis in poly(I:C)-stimulated murine splenocytes, we found that betulin was the most potent compound. Betulin also reduced TGF-β1- and PGE2-induced downregulation of perforin and granzyme B mRNA expression and cell surface expression of NKG2D and CD69 in natural killer (NK) cells. Cell depletion and coculture experiments showed that NK cells, dendritic cells, B cells, and T cells were necessary for the attenuating effects of betulin. Structure-activity relationship analysis revealed that two hydroxyl groups at positions C3 and C28 of betulin, their cis-configuration, and methyl group at C30 played crucial roles in its attenuating activity. In a subcutaneous implantation model of B16 melanoma in mice, intratumor administration of betulin and LY2157299, a TGF-β1 type I receptor kinase inhibitor, significantly retarded the growth of B16 melanoma. Notably, betulin increased significantly the number of CD69 positive NK cells in tumor sites at early stages of post-tumor cell injection. Our data suggest that betulin inhibits the growth of B16 melanoma by enhancing NK cell activity through attenuating the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Masaru Ogasawara
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | | | - Masahiro Hamada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | | | - Toru Kawasuji
- Toyama Prefectural Institute for Pharmaceutical Research
| | - Hiroe Honda
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | - Tsutomu Yanagibashi
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | - Masashi Ikutani
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama.,Graduate School of Integrated Sciences for Life, Hiroshima University.,Department of Immune Regulation, Research Institute, National Center for Global Health and Medicine
| | - Yasuharu Watanabe
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | - Ryota Fujimoto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | | | - Noriyuki Nakajima
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | - Yoshinori Nagai
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama.,Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | - Kiyoshi Takatsu
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| |
Collapse
|
205
|
Molecular glues modulate protein functions by inducing protein aggregation: A promising therapeutic strategy of small molecules for disease treatment. Acta Pharm Sin B 2022; 12:3548-3566. [PMID: 36176907 PMCID: PMC9513498 DOI: 10.1016/j.apsb.2022.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Molecular glues can specifically induce aggregation between two or more proteins to modulate biological functions. In recent years, molecular glues have been widely used as protein degraders. In addition, however, molecular glues play a variety of vital roles, such as complex stabilization, interactome modulation and transporter inhibition, enabling challenging therapeutic targets to be druggable and offering an exciting novel approach for drug discovery. Since most molecular glues are identified serendipitously, exploration of their systematic discovery and rational design are important. In this review, representative examples of molecular glues with various physiological functions are divided into those mediating homo-dimerization, homo-polymerization and hetero-dimerization according to their aggregation modes, and we attempt to elucidate their mechanisms of action. In particular, we aim to highlight some biochemical techniques typically exploited within these representative studies and classify them in terms of three stages of molecular glue development: starting point, optimization and identification.
Collapse
|
206
|
Pan X, Yi M, Liu C, Jin Y, Liu B, Hu G, Yuan X. Cilengitide, an αvβ3-integrin inhibitor, enhances the efficacy of anti-programmed cell death-1 therapy in a murine melanoma model. Bioengineered 2022; 13:4557-4572. [PMID: 35142593 PMCID: PMC8974133 DOI: 10.1080/21655979.2022.2029236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Integrins play an important role in multiple stages of tumor progression and metastasis. Previous studies have shown synergistic effects of combined αvβ6-integrin and αvβ8-integrin inhibitors with immunotherapy. However, the role of αvβ3-integrin inhibitor in tumor immunity is still unclear. In this study, we aimed to elucidate the impact of the αvβ3-integrin inhibitor on PD-L1 expression and sensitivity to immune checkpoint blockade in melanoma. We investigated the effects of cilengitide, an αvβ3-integrin inhibitor, on cell viability and apoptosis of melanoma cell lines. And we explored how cilengitide regulated the expression of PD-L1 in melanoma cells in vitro and in vivo, using immunofluorescence, flow cytometry, Western blotting, and immunohistochemistry. A subcutaneous B16 murine melanoma model was utilized to determine whether combining cilengitide with anti-PD1 therapy inhibited tumor growth and positively regulated tumor microenvironment (TME). Our results showed that cilengitide inhibited cell viability and induced apoptosis in B16 and A375 cell lines. Furthermore, cilengitide decreased PD-L1 expression by reducing STAT3 phosphorylation in two melanoma cell lines. Cilengitide also reduced subcutaneous tumor PD-L1 expression in the B16 murine melanoma model. Accordingly, cilengitide positively regulated antitumor immune responses and provided durable therapy when combined with anti-PD1 monoclonal antibody in the murine melanoma model. This combination therapy reduced tumor growth and extended survival. Our study highlights that cilengitide enhances the efficacy of anti-PD1 therapy and produces a stronger antitumor immune response. This combination therefore represents a novel therapeutic regimen that may improve immunotherapy treratment.
Collapse
Affiliation(s)
- Xin Pan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Minxiao Yi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chaofan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yu Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
207
|
First-Line Treatment of Advanced Non-Small-Cell Lung Cancer with Immune-Checkpoint Inhibitors: New Combinations and Long-Term Data. BioDrugs 2022; 36:137-151. [PMID: 35147894 DOI: 10.1007/s40259-022-00515-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 12/25/2022]
Abstract
Treatment of metastatic non-small-cell lung cancers (NSCLCs) has long been based on cytotoxic chemotherapy. Immune checkpoint inhibitors (ICIs), notably monoclonal antibodies directed against programmed cell death protein-1 (PD-1) or its ligand (PD-L1), have transformed therapeutic standards in thoracic oncology. These ICIs are now the reference first-line therapy, and numerous phase III trials have established their efficacy in treatment-naïve patients. First-line pembrolizumab monotherapy was validated for patients with ≥ 50% of tumor cells expressing PD-L1 and, in the USA, for patients with ≥ 1% PD-L1 positivity. More recently, cemiplimab as monotherapy was also validated for patients whose tumors expressed ≥ 50% PD-L1. Several ICIs (pembrolizumab, atezolizumab, nivolumab, and recently durvalumab) in combination with chemotherapy achieved overall survival gains among "all comers", compared with chemotherapy alone. The results were more contrasting for paired immunotherapies combining anti-PD-L1 and anti-cytotoxic T-lymphocyte antigen-4 agents, with the benefit/risk balance not yet fully established. Recently, nivolumab-ipilimumab and two chemotherapy cycles limited patient exposure to chemotherapy and obtained positive results compared with the latter alone. However, those phase III trials included selected patients in good general condition and without active brain metastases. Little is known about immunotherapy and combination immunotherapy-chemotherapy efficacies in never-smokers or patients with tumors harboring an epidermal growth factor receptor (EGFR) mutation or anaplastic lymphoma kinase (ALK) translocation. In this review, we report our analysis of the main results available on first-line ICI use, as monotherapy or combined or in combination with chemotherapy, to treat metastatic NSCLCs in general and also for specific populations: the elderly, never-smokers, patients with brain metastases, and those with an EGFR mutation or ALK translocation.
Collapse
|
208
|
Liu Z, Liu L, Weng S, Guo C, Dang Q, Xu H, Wang L, Lu T, Zhang Y, Sun Z, Han X. Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer. Nat Commun 2022; 13:816. [PMID: 35145098 PMCID: PMC8831564 DOI: 10.1038/s41467-022-28421-6] [Citation(s) in RCA: 260] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are recently implicated in modifying immunology in colorectal cancer (CRC). Nevertheless, the clinical significance of immune-related lncRNAs remains largely unexplored. In this study, we develope a machine learning-based integrative procedure for constructing a consensus immune-related lncRNA signature (IRLS). IRLS is an independent risk factor for overall survival and displays stable and powerful performance, but only demonstrates limited predictive value for relapse-free survival. Additionally, IRLS possesses distinctly superior accuracy than traditional clinical variables, molecular features, and 109 published signatures. Besides, the high-risk group is sensitive to fluorouracil-based adjuvant chemotherapy, while the low-risk group benefits more from bevacizumab. Notably, the low-risk group displays abundant lymphocyte infiltration, high expression of CD8A and PD-L1, and a response to pembrolizumab. Taken together, IRLS could serve as a robust and promising tool to improve clinical outcomes for individual CRC patients. Identification of long non-coding RNA (lncRNA) signatures could be used to improve cancer clinical outcome. Here the authors developed a machine learning-based integrative procedure to construct a consensus immune-related lncRNA signature to predict prognosis, recurrence and treatment benefits in colorectal cancer.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Taoyuan Lu
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. .,Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China. .,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
209
|
Qiu D, Zhang G, Yan X, Xiao X, Ma X, Lin S, Wu J, Li X, Wang W, Liu J, Ma Y, Ma M. Prospects of Immunotherapy for Triple-Negative Breast Cancer. Front Oncol 2022; 11:797092. [PMID: 35111680 PMCID: PMC8801574 DOI: 10.3389/fonc.2021.797092] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 01/22/2023] Open
Abstract
In the classification and typing of breast cancer, triple-negative breast cancer (TNBC) is one type of refractory breast cancer, while chemotherapy stays in the traditional treatment methods. However, the impact of chemotherapy is short-lived and may lead to recurrence due to incomplete killing of tumor cells. The occurrence, development, and relapse of breast cancer are relevant to T cell dysfunction, multiplied expression of related immune checkpoint molecules (ICIs) such as programmed death receptor 1 (PD-1), programmed cell death 1 ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) produce immunosuppressive effect. Immunotherapy (namely, immune checkpoint inhibitors, adoptive cellular immunotherapy, CAR-T immunotherapy and some potential treatments) provides new hope in TNBC. This review focuses on the new immune strategies of TNBC patients.
Collapse
Affiliation(s)
- Dan Qiu
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China
| | - Guijuan Zhang
- School of Nursing of Jinan University, Jinan University, Guangzhou, China
| | - Xianxin Yan
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China
| | - Xinqin Xiao
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China
| | - Xinyi Ma
- School Public Health, Southern Medical University (No: 3210090112), Guangzhou, China
| | - Shujun Lin
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China
| | - Jieyan Wu
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China
| | - Xinyuan Li
- School of Medicine, Jinan University, Guangzhou, China
| | - Wandi Wang
- School of Medicine, Jinan University, Guangzhou, China
| | - Junchen Liu
- School of Medicine, Jinan University, Guangzhou, China
| | - Yi Ma
- Department of Cellular Biology, Institute of Biomedicine, National Engineering, Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Min Ma
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China.,The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
210
|
Immunogenic hydrogel toolkit disturbing residual tumor “seeds” and pre-metastatic “soil” for inhibition of postoperative tumor recurrence and metastasis. Acta Pharm Sin B 2022; 12:3383-3397. [PMID: 35967277 PMCID: PMC9366231 DOI: 10.1016/j.apsb.2022.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 02/06/2022] [Indexed: 11/21/2022] Open
Abstract
Tumor recurrence and metastasis is the leading cause of mortality for postoperative breast cancer patients. However, chemotherapy intervention after surgery is often unsatisfactory, because residual microtumors are difficult to target and require frequent administration. Here, an all-in-one and once-for-all drug depot based on in situ-formed hydrogel was applied to fit the irregular surgical trauma, and enable direct contact with residual tumors and sustained drug release. Our immunological analysis after resection of orthotopic breast tumor revealed that postsurgical activation of CXCR4–CXCL12 signal exacerbated the immunosuppression and correlated with adaptive upregulation of PD-L1 in recurrent tumors. Thus, a multifunctional hydrogel toolkit was developed integrating strategies of CXCR4 inhibition, immunogenicity activation and PD-L1 blockade. Our results showed that the hydrogel toolkit not only exerted local effect on inhibiting residual tumor cell “seeds” but also resulted in abscopal effect on disturbing pre-metastatic “soil”. Furthermore, vaccine-like effect and durable antitumor memory were generated, which resisted a secondary tumor rechallenge in 100% cured mice. Strikingly, one single dose of such modality was able to eradicate recurrent tumors, completely prevent pulmonary metastasis and minimize off-target toxicity, thus providing an effective option for postoperative intervention.
Collapse
|
211
|
Emerging strategies for biomaterial-assisted cancer immunotherapy. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
212
|
Chen Y, Chen D, Wang Q, Xu Y, Huang X, Haglund F, Su H. Immunological Classification of Pancreatic Carcinomas to Identify Immune Index and Provide a Strategy for Patient Stratification. Front Immunol 2022; 12:719105. [PMID: 35111149 PMCID: PMC8801451 DOI: 10.3389/fimmu.2021.719105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background Cancer immunotherapy has produced significant positive clinical effects in a variety of tumor types. However, pancreatic ductal adenocarcinoma (PDAC) is widely considered to be a "cold" cancer with poor immunogenicity. Our aim is to determine the detailed immune features of PDAC to seek new treatment strategies. Methods The immune cell abundance of PDAC patients was evaluated with the single-sample gene set enrichment analysis (ssGSEA) using 119 immune gene signatures. Based on these data, patients were classified into different immune subtypes (ISs) according to immune gene signatures. We analyzed their response patterns to immunotherapy in the datasets, then established an immune index to reflect the different degrees of immune infiltration through linear discriminant analysis (LDA). Finally, potential prognostic markers associated with the immune index were identified based on weighted correlation network analysis (WGCNA) that was functionally validated in vitro. Results Three ISs were identified in PDAC, of which IS3 had the best prognosis across all three cohorts. The different expressions of immune profiles among the three ISs indicated a distinct responsiveness to immunotherapies in PDAC subtypes. By calculating the immune index, we found that the IS3 represented higher immune infiltration, while IS1 represented lower immune infiltration. Among the investigated signatures, we identified ZNF185, FANCG, and CSTF2 as risk factors associated with immune index that could potentially facilitate diagnosis and could be therapeutic target markers in PDAC patients. Conclusions Our findings identified immunologic subtypes of PDAC with distinct prognostic implications, which allowed us to establish an immune index to represent the immune infiltration in each subtype. These results show the importance of continuing investigation of immunotherapy and will allow clinical workers to personalized treatment more effectively in PDAC patients.
Collapse
Affiliation(s)
- Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Didi Chen
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Wang
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Yajing Xu
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaowei Huang
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Huafang Su
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
213
|
Cancer cell-expressed BTNL2 facilitates tumour immune escape via engagement with IL-17A-producing γδ T cells. Nat Commun 2022; 13:231. [PMID: 35017553 PMCID: PMC8752682 DOI: 10.1038/s41467-021-27936-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Therapeutic blockade of the immune checkpoint proteins programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA4) has transformed cancer treatment. However, the overall response rate to these treatments is low, suggesting that immune checkpoint activation is not the only mechanism leading to dysfunctional anti-tumour immunity. Here we show that butyrophilin-like protein 2 (BTNL2) is a potent suppressor of the anti-tumour immune response. Antibody-mediated blockade of BTNL2 attenuates tumour progression in multiple in vivo murine tumour models, resulting in prolonged survival of tumour-bearing mice. Mechanistically, BTNL2 interacts with local γδ T cell populations to promote IL-17A production in the tumour microenvironment. Inhibition of BTNL2 reduces the number of tumour-infiltrating IL-17A-producing γδ T cells and myeloid-derived suppressor cells, while facilitating cytotoxic CD8+ T cell accumulation. Furthermore, we find high BTNL2 expression in several human tumour samples from highly prevalent cancer types, which negatively correlates with overall patient survival. Thus, our results suggest that BTNL2 is a negative regulator of anti-tumour immunity and a potential target for cancer immunotherapy. Cancer cells producing ligands for the immune checkpoint molecules PD-1 and CTLA-4 is an important mechanism of tumour immune resistance. Here authors show that BTNL2 expression on cancer cells generates a dysfunctional tumour immune microenvironment via promoting IL-17A-producing γδ T cells.
Collapse
|
214
|
Zhang S, Wang H, Liu Y, Tao T, Zeng Z, Zhou Y, Wang M. Nocardia rubra cell-wall skeleton influences the development of cervical carcinoma by promoting the antitumor effect of macrophages and dendritic cells. Cancer Med 2022; 11:1249-1268. [PMID: 34994088 PMCID: PMC8894708 DOI: 10.1002/cam4.4526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Background As an immune enhancer, Nocardia rubra cell‐wall skeleton (Nr‐CWS) has been used to treat persistent human papillomavirus infection and cervical precancerous lesions. However, it is still unclear whether it can be used to treat cervical carcinoma. Methods In our study, the aim was to determine whether Nr‐CWS affects the apoptosis of cervical carcinoma cells by enhancing the antitumor effect of dendritic cells and macrophages in vivo and in vitro. Results The experimental results showed that Nr‐CWS can promote the activity of dendritic cells and macrophages and reduce their apoptosis. It also increased the cytokines IL‐6, IL‐12, TNF‐ɑ, and IL‐1β secreted by dendritic cells and macrophages and reduced their PD‐L1 expression. In vitro, Nr‐CWS inhibited the proliferation, colony forming ability of HeLa and SiHa cervical carcinoma cell lines cultured with macrophages, and more cells were blocked in G2/M phase. Nr‐CWS promoted TNF‐ɑ/TNFR1/caspase‐8‐mediated apoptosis by increasing macrophages secretion of TNF‐ɑ and inhibited cell migration and invasion regulated by the WNT/β‐catenin‐EMT pathway. Nr‐CWS also reduced the expression of the cervical carcinoma genes E6 and E7 thereby increasing expression of p53 gene and decreasing expression of PD‐L1 gene. In vivo, Nr‐CWS inhibited tumor growth and decreased the expression of E6, E7, PD‐L1, P16, Ki67, and PCNA in tumors. Conclusions Therefore, our results suggest that Nr‐CWS can promote apoptosis of cervical carcinoma cells by enhancing the antitumor effect of dendritic cells and macrophages.
Collapse
Affiliation(s)
- Siyang Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Han Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yisi Liu
- Department of Obstetrics and Gynecology, Cancer Hospital of China Medical University, Shenyang, China
| | - Tao Tao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhi Zeng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingying Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
215
|
Tong Y, Yu Y, Zheng H, Wang Y, Xie S, Chen C, Lu R, Guo L. Differentially Expressed Genes in Clear Cell Renal Cell Carcinoma as a Potential Marker for Prognostic and Immune Signatures. Front Oncol 2022; 11:776824. [PMID: 34976818 PMCID: PMC8716543 DOI: 10.3389/fonc.2021.776824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/24/2021] [Indexed: 01/22/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by the inactivation of the von Hippel–Lindau (VHL) gene. Of note, no other gene is mutated as frequently as VHL in ccRCC, turning out that patients with inactivated VHL constitute the majority of ccRCC-related character. Thus, differentially expressed genes (DEGs) and their molecular networks caused by VHL mutation were considered as important factors for influencing the prognosis of ccRCC. Here, we first screened out six DEGs (GSTA1, GSTA2, NAT8, FABP7, SLC17A3, and SLC17A4) which downregulated in ccRCC patients with VHL non-mutation than with the mutation. Generally, most DEGs with high expression were associated with a favorable prognosis and low-risk score. Meanwhile, we spotted transcription factors and their kinases as hubs of DEGs. Finally, we clustered ccRCC patients into three subgroups according to the expression of hub proteins, and analyzed these subgroups with clinical profile, outcome, immune infiltration, and potential Immune checkpoint blockade (ICB) response. Herein, DEGs might be a promising biomarker panel for immunotherapy and prognosis in ccRCC. Moreover, the ccRCC subtype associated with high expression of hubs fit better for ICB therapy.
Collapse
Affiliation(s)
- Ying Tong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yiwen Yu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cuncun Chen
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
216
|
Puleo J, Polyak K. A Darwinian perspective on tumor immune evasion. Biochim Biophys Acta Rev Cancer 2022; 1877:188671. [PMID: 34933050 PMCID: PMC8818030 DOI: 10.1016/j.bbcan.2021.188671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 01/03/2023]
Abstract
Evading immune-mediated destruction is a critical step of tumor evolution and the immune system is one of the strongest selective pressures during tumorigenesis. Analyzing tumor immune evasion from a Darwinian perspective may provide critical insight into the mechanisms of primary immune escape and acquired resistance to immunotherapy. Here, we review the steps required to mount an anti-tumor immune response, describe how each of these steps is disrupted during tumorigenesis, list therapeutic strategies to restore anti-tumor immunity, and discuss each mechanism of immune and therapeutic evasion from a Darwinian perspective.
Collapse
Affiliation(s)
- Julieann Puleo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
217
|
Wu L, Liu J, Wang S, Bai M, Wu M, Gao Z, Li J, Yu J, Liu J, Meng X. Negative Correlation Between 18F-RGD Uptake via PET and Tumoral PD-L1 Expression in Non-Small Cell Lung Cancer. Front Endocrinol (Lausanne) 2022; 13:913631. [PMID: 35846323 PMCID: PMC9279559 DOI: 10.3389/fendo.2022.913631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE We investigated the correlation of 18F-AlF-NOTAPRGD2 (18F-RGD) uptake during positron emission tomography (PET) with tumoral programmed death-ligand 1 (PD-L1) expression and explored its potential in immune checkpoint inhibitor treatment. METHODS Forty-two mice were subcutaneously injected with CMT-167 lung carcinoma cells. A total of 30 mice with good growth tumor and good general condition were selected. 18F-RGD PET scanning was performed on days 0, 2, 4, 6, 9, and 11 with five mice per day. Immunohistochemistry (IHC) for PD-L1 was performed on each specimen obtained from tumors. Thirty patients with advanced non-small cell lung cancer (NSCLC) were scanned using 18F-RGD PET/CT, and Milliplex multifactor detection analyzed serum PD-1/PD-L1 expression of twenty-eight of them. Thirteen of them were analyzed immunohistochemically using core needle biopsy samples obtained from primary tumors. RESULTS Thirty mice were scanned by 18F-RGD PET/CT and analyzed for PD-L1 expression in tumor cells by IHC finally. Maximum standard uptake value (SUVmax) and mean SUV (SUVmean) were significantly lower in relatively-higher-PD-L1-expression tumors than in relatively-low-PD-L1-expression tumors (P < 0.05). In patients, the SUVmax was significantly negatively correlated with tumoral PD-L1 expression by IHC (P=0.014). SUVmean, peak SUV (SUVpeak), and gross tumor volume (GTV) were also negatively correlated with PD-L1, but without significance (P > 0.05). SUVmax, SUVmean, SUVpeak, and GTV were negatively correlated with serum PD-1 and PD-L1, but not significantly. According to the receiver operating characteristic curve analysis, significant correlations between SUVmax and tumoral PD-L1 expression in both mice and patients were present (P < 0.05). CONCLUSION Higher 18F-RGD uptake is correlated with depressed PD-L1 expression in tumor cells, and SUVmax is the best parameter to display tumoral expression of PD-L1. 18F-RGD PET may be useful for reflecting the immune status of NSCLC.
Collapse
Affiliation(s)
- Leilei Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingru Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shasha Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Menglin Bai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Min Wu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenhua Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jianing Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, China
- *Correspondence: Jinming Yu, ; Jie Liu, ; Xue Meng,
| | - Jie Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Jinming Yu, ; Jie Liu, ; Xue Meng,
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Jinming Yu, ; Jie Liu, ; Xue Meng,
| |
Collapse
|
218
|
Chang CH, Sung WW. Nevi, dysplastic nevi, and melanoma: Molecular and immune mechanisms involving the progression. Tzu Chi Med J 2022; 34:1-7. [PMID: 35233349 PMCID: PMC8830542 DOI: 10.4103/tcmj.tcmj_158_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 03/12/2021] [Indexed: 11/25/2022] Open
Abstract
Melanocytic nevi, dysplastic nevi, and melanoma are all derived from the pigment-producing cells, namely melanocytes. Concerning the clinical spectrum, cutaneous melanoma is the most aggressive skin cancer with a low survival rate, while nevi are the most common benign lesions in the general population, and dysplastic nevi place in between nevi and melanoma. Ultraviolet (UV) radiation is a well-recognized extrinsic risk factor for all three. BRAFV600E is a well-recognized driver mutation that activates the RAS-BRAF-mitogen-activated protein kinase (MAPK) signaling pathway among 40%–60% of melanoma cases. Interestingly, BRAFV600E mutation is detected even more in acquired nevi, approximately 80%. However, in nevi, several tumor suppressors such as p53 and phosphatase and tensin homolog (PTEN) are intact, and senescence factors, including p15INK4b, p16INK4a, p19, and senescence-associated acidic β-galactosidase, are expressed, leading to cell senescence and cell cycle arrest. Although loss of p53 function is rarely found in melanoma, decreased or loss of PTEN with an activated PI3k/Akt signaling pathway is common in nevi, which may abolish senescence status and allow further progression into dysplastic nevi or melanoma. At present, mouse models closely resembling human nevi are used for investigating these phenomena. Melanocortin 1 receptor deficiency, an intrinsic risk factor for melanomagenesis, is related to the production of procarcinogenic pheomelanin and the inhibition of PTEN function. Immune response escape via programmed cell death-1/programmed cell death ligand-1 interaction plays further roles in monitoring the spectrum. Here, we review the current literature on the molecular and immune mechanisms involving the transition from benign nevi to malignant melanoma.
Collapse
|
219
|
Yang X. Mechanism and Clinical Application of PD-1/PD-L1 Inhibitors in Immunotherapy. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225501007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tumor immunotherapy is currently a hot research topic in the field of oncology, and is an efficacious mode of tumor treatment. Programmed cell death receptor PD-1 (PD-1) is an important immunosuppressive molecule, which is mainly expressed in activated T and B cells. PD-1/PD-L1 inhibitors can block the binding of PD-1 to PD-L1, block the negative regulatory signals, and restore the activity of T cells, thus enhancing the immune response.
Collapse
|
220
|
Yang Z, Huang J, Lin Y, Luo X, Lin H, Lin H, Gao J. A dual-responsive doxorubicin-indoximod conjugate for programmed chemoimmunotherapy. RSC Chem Biol 2022; 3:853-858. [PMID: 35866166 PMCID: PMC9257650 DOI: 10.1039/d1cb00257k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/29/2022] [Indexed: 11/21/2022] Open
Abstract
Herein we report a dual-responsive doxorubicin–indoximod conjugate (DOXIND) for programmed chemoimmunotherapy. This conjugate is able to release doxorubicin and indoximod upon exposure to appropriate stimuli for synergistic chemotherapy and immunotherapy, respectively. We demonstrate its promoting effects on immune response and inhibiting effects on tumor growth through a series of in vitro and in vivo experiments. A dual-responsive doxorubicin–indoximod conjugate was developed, which allows for sequential on-demand release of doxorubicin and indoximod for programmed chemoimmunotherapy.![]()
Collapse
Affiliation(s)
- Zhaoxuan Yang
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China China
| | - Jiaqi Huang
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China China
| | - Yaying Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China China
| | - Xiangjie Luo
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China China
| | - Haojin Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China China
| | - Hongyu Lin
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China China
| | - Jinhao Gao
- Fujian Provincial Key Laboratory of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China China
| |
Collapse
|
221
|
Ren J, Sun J, Li M, Zhang Z, Yang D, Cao H. MAPK Activated Protein Kinase 3 Is a Prognostic-Related Biomarker and Associated With Immune Infiltrates in Glioma. Front Oncol 2021; 11:793025. [PMID: 34938665 PMCID: PMC8685266 DOI: 10.3389/fonc.2021.793025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Glioma is the most common primary brain tumor that causes significant morbidity and mortality. MAPK activated protein kinase 3 (MAPKAPK3/MK3) is a serine/threonine protein kinase regulating various cellular responses and gene expression. However, the role of MK3 in tumor progress, prognosis, and immunity for glioma remains unclear. Here, we determined the expression and prognostic values of MK3. We further analyzed the correlation of MK3 expression with immune infiltrations by using the biochemical methods and bioinformatic approaches with available databases. We find that MK3 is aberrantly upregulated in glioma. In addition, the higher MK3 expression is closely linked to the poor clinicopathologic features of glioma patients. Importantly, MK3 expression is negatively correlated with the prognosis of patients with glioma. Mechanistically, we demonstrated that the correlated genes of MK3 were mainly enriched in pathways that regulate tumor immune responses. The MK3 level was significantly associated with tumor-infiltrating immune cells and positively correlated with the majority of tumor immunoinhibitors, chemokines, and chemokine receptors in glioma. Thus, these findings suggest the novel prognostic roles of MK3 and define MK3 as a promising target for glioma immunotherapy.
Collapse
Affiliation(s)
- Jing Ren
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Jinmin Sun
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Mengwei Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Zifan Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Dejun Yang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Haowei Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
222
|
Hamidi AA, Zangoue M, Kashani D, Zangouei AS, Rahimi HR, Abbaszadegan MR, Moghbeli M. MicroRNA-217: a therapeutic and diagnostic tumor marker. Expert Rev Mol Diagn 2021; 22:61-76. [PMID: 34883033 DOI: 10.1080/14737159.2022.2017284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cancer as one of the most common causes of death has always been one of the major health challenges globally. Since, the identification of tumors in the early tumor stages can significantly reduce mortality rates; it is required to introduce novel early detection tumor markers. MicroRNAs (miRNAs) have pivotal roles in regulation of cell proliferation, migration, apoptosis, and tumor progression. Moreover, due to the higher stability of miRNAs than mRNAs in body fluids, they can be considered as non-invasive diagnostic or prognostic markers in cancer patients. AREAS COVERED In the present review we have summarized the role of miR-217 during tumor progressions. The miR-217 functions were categorized based on its target molecular mechanisms and signaling pathways. EXPERT OPINION It was observed that miR-217 mainly exerts its function by regulation of the transcription factors during tumor progressions. The WNT, MAPK, and PI3K/AKT signaling pathways were also important molecular targets of miR-217 in different cancers. The present review clarifies the molecular biology of miR-217 and paves the way of introducing miR-217 as a non-invasive diagnostic marker and therapeutic target in cancer therapy.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Zangoue
- Department of Anesthesiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Daniel Kashani
- Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
223
|
Sun Y, Hu L, Yang P, Zhang M, Wang X, Xiao H, Qiao C, Wang J, Luo L, Feng J, Zheng Y, Wang Y, Shi Y, Chen G. pH Low Insertion Peptide-Modified Programmed Cell Death-Ligand 1 Potently Suppresses T-Cell Activation Under Acidic Condition. Front Immunol 2021; 12:794226. [PMID: 35003115 PMCID: PMC8733706 DOI: 10.3389/fimmu.2021.794226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death-ligand 1 (PD-L1)/PD-1 axis is critical for maintenance of immune homeostasis by limiting overactivation of effector T-cell responses. The impairment of PD-L1/PD-1 signals play an important role in the pathogenesis of inflammatory diseases, making this pathway an ideal target for novel therapeutics to induce immune tolerance. Given weakly acidic environment as a putative hallmark of inflammation, in this study we designed a new cargo by linking the ectodomain of murine PD-L1 to the N terminus of pHLIPs, a low pH-responding and membrane-insertion peptide, and demonstrated its potent immune-suppressive activity. Specifically, PD-L1-pHLIP spanned the cellular membrane and perfectly recognized its ligand PD-1 in acidic buffer. Immobile PD-L1-pHLIP actively inhibited T-cell proliferation and IFN-γ production. Importantly, soluble PD-L1-pHLIP retained its function to dampen T-cell responses under acidic condition instead of neutral aqueous solution. Overall, these data suggest that PD-L1-pHLIP has potentials to be a novel therapeutic avenue for T-cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Ying Sun
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Linhan Hu
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Peng Yang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinwei Wang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Yi Wang
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yanchun Shi
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
224
|
A Comprehensive Review of Recent Advancements in Cancer Immunotherapy and Generation of CAR T Cell by CRISPR-Cas9. Processes (Basel) 2021. [DOI: 10.3390/pr10010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms involved in immune responses to cancer have been extensively studied for several decades, and considerable attention has been paid to harnessing the immune system’s therapeutic potential. Cancer immunotherapy has established itself as a promising new treatment option for a variety of cancer types. Various strategies including cancer vaccines, monoclonal antibodies (mAbs), adoptive T-cell cancer therapy and CAR T-cell therapy have gained prominence through immunotherapy. However, the full potential of cancer immunotherapy remains to be accomplished. In spite of having startling aspects, cancer immunotherapies have some difficulties including the inability to effectively target cancer antigens and the abnormalities in patients’ responses. With the advancement in technology, this system has changed the genome-based immunotherapy process in the human body including the generation of engineered T cells. Due to its high specificity, CRISPR-Cas9 has become a simple and flexible genome editing tool to target nearly any genomic locus. Recently, the CD19-mediated CAR T-cell (chimeric antigen receptor T cell) therapy has opened a new avenue for the treatment of human cancer, though low efficiency is a major drawback of this process. Thus, increasing the efficiency of the CAR T cell (engineered T cells that induce the chimeric antigen receptor) by using CRISPR-Cas9 technology could be a better weapon to fight against cancer. In this review, we have broadly focused on recent immunotherapeutic techniques against cancer and the use of CRISPR-Cas9 technology for the modification of the T cell, which can specifically recognize cancer cells and be used as immune-therapeutics against cancer.
Collapse
|
225
|
PD-L1: Can it be a biomarker for the prognosis or a promising therapeutic target in cervical cancer? Int Immunopharmacol 2021; 103:108484. [PMID: 34954558 DOI: 10.1016/j.intimp.2021.108484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
Cervical cancer is one of the most common in the female genital tract and remains a leading cause that threatens the health and lives of women worldwide, although preventive vaccines and early diagnosis have reduced mortality. While treatment by operation and chemoradiotherapy for early-stage patients achieve good outcomes, the great majority of cervical cancers caused by the human papilloma virus (HPV) make immunotherapy realizable for patients with advanced and recurrent cervical cancer. To date, some clinical trials of checkpoint immunotherapy in cervical cancer have indicated significant benefits of programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) inhibitors, providing strong evidence for PD-1/PD-L1 as a therapeutic target. In this review article, we discuss the role of PD-L1 and the application of PD-L1 inhibitors in cervical cancer, with the aim of providing direction for future research.
Collapse
|
226
|
Chemokines modulate glycan binding and the immunoregulatory activity of galectins. Commun Biol 2021; 4:1415. [PMID: 34931005 PMCID: PMC8688422 DOI: 10.1038/s42003-021-02922-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022] Open
Abstract
Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8+ T cells, while no effect is observed in CD4+ T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4+ T cells and not of CD8+ T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins.
Collapse
|
227
|
Integrative analysis from multi-center studies identities a consensus machine learning-derived lncRNA signature for stage II/III colorectal cancer. EBioMedicine 2021; 75:103750. [PMID: 34922323 PMCID: PMC8686027 DOI: 10.1016/j.ebiom.2021.103750] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have recently emerged as essential biomarkers of cancer progression. However, studies are limited regarding lncRNAs correlated with recurrence and fluorouracil-based adjuvant chemotherapy (ACT) in stage II/III colorectal cancer (CRC). Methods 1640 stage II/III CRC patients were enrolled from 15 independent datasets and a clinical in-house cohort. 10 prevalent machine learning algorithms were collected and then combined into 76 combinations. 109 published transcriptome signatures were also retrieved. qRT-PCR assay was performed to verify our model. Findings We comprehensively identified 27 stably recurrence-related lncRNAs from multi-center cohorts. According to these lncRNAs, a consensus machine learning-derived lncRNA signature (CMDLncS) that exhibited best power for predicting recurrence risk was determined from 76 kinds of algorithm combinations. A high CMDLncS indicated unfavorable recurrence and mortality rates. CMDLncS not only could work independently of common clinical traits (e.g., AJCC stage) and molecular features (e.g., microsatellite state, KRAS mutation), but also presented dramatically better performance than these variables. qRT-PCR results from 173 patients further verified our in-silico findings and assessed its feasible in different centers. Comparisons of CMDLncS with 109 published transcriptome signatures further demonstrated its predictive superiority. Additionally, patients with high CMDLncS benefited more from fluorouracil-based ACT and were characterized by activation of stromal and epithelial-mesenchymal transition, while patients with low CMDLncS suggested the sensitivity to bevacizumab and displayed enhanced immune activation. Interpretation CMDLncS provides an attractive platform for identifying patient at high risk of recurrence and could optimize precision treatment to improve the clinical outcomes in stage II/III CRC. Funding This study was supported by the National Natural Science Foundation of China (81,972,663); Henan Province Young and Middle‐Aged Health Science and Technology Innovation Talent Project (YXKC2020037); and Henan Provincial Health Commission Joint Youth Project (SB201902014).
Collapse
|
228
|
Li W, Zhang X, Zhang C, Yan J, Hou X, Du S, Zeng C, Zhao W, Deng B, McComb DW, Zhang Y, Kang DD, Li J, Carson WE, Dong Y. Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. Nat Commun 2021; 12:7264. [PMID: 34907171 PMCID: PMC8671507 DOI: 10.1038/s41467-021-27434-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/18/2021] [Indexed: 01/07/2023] Open
Abstract
Antibodies targeting costimulatory receptors of T cells have been developed for the activation of T cell immunity in cancer immunotherapy. However, costimulatory molecule expression is often lacking in tumor-infiltrating immune cells, which can impede antibody-mediated immunotherapy. Here, we hypothesize that delivery of costimulatory receptor mRNA to tumor-infiltrating T cells will enhance the antitumor effects of antibodies. We first design a library of biomimetic nanoparticles and find that phospholipid nanoparticles (PL1) effectively deliver costimulatory receptor mRNA (CD137 or OX40) to T cells. Then, we demonstrate that the combination of PL1-OX40 mRNA and anti-OX40 antibody exhibits significantly improved antitumor activity compared to anti-OX40 antibody alone in multiple tumor models. This treatment regimen results in a 60% complete response rate in the A20 tumor model, with these mice being resistant to rechallenge by A20 tumor cells. Additionally, the combination of PL1-OX40 mRNA and anti-OX40 antibody significantly boosts the antitumor immune response to anti-PD-1 + anti-CTLA-4 antibodies in the B16F10 tumor model. This study supports the concept of delivering mRNA encoding costimulatory receptors in combination with the corresponding agonistic antibody as a strategy to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Wenqing Li
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Xinfu Zhang
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA ,grid.30055.330000 0000 9247 7930State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Chengxiang Zhang
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Jingyue Yan
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Xucheng Hou
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Shi Du
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Chunxi Zeng
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Weiyu Zhao
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Binbin Deng
- grid.261331.40000 0001 2285 7943Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH 43212 USA
| | - David W. McComb
- grid.261331.40000 0001 2285 7943Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH 43212 USA ,grid.261331.40000 0001 2285 7943Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Yuebao Zhang
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Diana D. Kang
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Junan Li
- grid.261331.40000 0001 2285 7943Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - William E. Carson
- grid.412332.50000 0001 1545 0811Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and The OSU James Comprehensive Cancer Center, Columbus, OH USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA. .,The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH, 43210, USA. .,The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Radiation Oncology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
229
|
Chan BK, Seward E, Lainchbury M, Brewer TF, An L, Blench T, Cartwright MW, Chan GKY, Choo EF, Drummond J, Elliott RL, Gancia E, Gazzard L, Hu B, Jones GE, Luo X, Madin A, Malhotra S, Moffat JG, Pang J, Salphati L, Sneeringer CJ, Stivala CE, Wei B, Wang W, Wu P, Heffron TP. Discovery of Spiro-azaindoline Inhibitors of Hematopoietic Progenitor Kinase 1 (HPK1). ACS Med Chem Lett 2021; 13:84-91. [PMID: 35059127 PMCID: PMC8762754 DOI: 10.1021/acsmedchemlett.1c00473] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/01/2021] [Indexed: 01/16/2023] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is implicated as a negative regulator of T-cell receptor-induced T-cell activation. Studies using HPK1 kinase-dead knock-in animals have demonstrated the loss of HPK1 kinase activity resulted in an increase in T-cell function and tumor growth inhibition in glioma models. Herein, we describe the discovery of a series of small molecule inhibitors of HPK1. Using a structure-based drug design approach, the kinase selectivity of the molecules was significantly improved by inducing and stabilizing an unusual P-loop folded binding mode. The metabolic liabilities of the initial 7-azaindole high-throughput screening hit were mitigated by addressing a key metabolic soft spot along with physicochemical property-based optimization. The resulting spiro-azaindoline HPK1 inhibitors demonstrated improved in vitro ADME properties and the ability to induce cytokine production in primary human T-cells.
Collapse
Affiliation(s)
- Bryan K. Chan
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States,
| | - Eileen Seward
- Charles
River Laboratories, 8-9
Spire Green, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Michael Lainchbury
- Charles
River Laboratories, 8-9
Spire Green, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Thomas F. Brewer
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Le An
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Toby Blench
- Charles
River Laboratories, 8-9
Spire Green, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Matthew W. Cartwright
- Charles
River Laboratories, 8-9
Spire Green, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Grace Ka Yan Chan
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Edna F. Choo
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason Drummond
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Richard L. Elliott
- Charles
River Laboratories, 8-9
Spire Green, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Emanuela Gancia
- Charles
River Laboratories, 8-9
Spire Green, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Lewis Gazzard
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Baihua Hu
- Pharmaron
Beijing Co, No. 6 Tai He Road, BDA, Beijing 100176, P.R. China
| | - Graham E. Jones
- Charles
River Laboratories, 8-9
Spire Green, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Xifeng Luo
- Pharmaron
Beijing Co, No. 6 Tai He Road, BDA, Beijing 100176, P.R. China
| | - Andrew Madin
- Charles
River Laboratories, 8-9
Spire Green, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Sushant Malhotra
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John G. Moffat
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jodie Pang
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Laurent Salphati
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Craig E. Stivala
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Binqing Wei
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Weiru Wang
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ping Wu
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Timothy P. Heffron
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
230
|
Lin X, Chen H, Xie Y, Zhou X, Wang Y, Zhou J, Long S, Hu Z, Zhang S, Qiu W, Zeng Z, Liu L. Combination of CTLA-4 blockade with MUC1 mRNA nanovaccine induces enhanced anti-tumor CTL activity by modulating tumor microenvironment of triple negative breast cancer. Transl Oncol 2021; 15:101298. [PMID: 34875483 PMCID: PMC8652013 DOI: 10.1016/j.tranon.2021.101298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
The immunosuppressive tumor microenvironment (TME) is the main reason for the failure of many immunotherapies that directly stimulate anti-tumor immune response. Anti-CTLA-4 antibody may reduce effector regulatory T (Treg) cell numbers and their suppressive activity in the TME. We have previously reported that combination of anti-CTLA-4 antibody with MUC1 mRNA nanovaccine may mutually enhance each single treatment. But the enhancement mechanism of therapeutic efficacy of MUC1 mRNA nanovaccine plus anti-CTLA-4 monoclonal antibody (mAb) is unknown. In this study, anti-tumor CTL activity induced by combination of CTLA-4 Blockade with MUC1 mRNA nanovaccine and immunosuppressive factors in the TME of triple negative breast cancer were investigated. The results demonstrated that combined therapy with nanovaccine and anti-CTLA-4 mAb could induce stronger anti-tumor CTL response than each monotherapy, result in significantly decreased numbers of myeloid-derived suppressor cells (MDSC), Treg cells, tumor-associated fibroblasts (TAFs) and tumor vasculature in the TME, downregulated levels of interleukin-6, tumor necrosis factor-α and transforming growth factor-β, and significantly upregulated levels of IFN-γ and interleukin-12 as well as increased number of CD8+ T cell, and appear more effective than either nanovaccine or anti-CTLA-4 mAb alone at increasing level of apoptosis in tumor cells. In addition, combination immunotherapy could significantly downregulated the signal transducer and activator of transcription 3 (STAT3) signal pathway. Therefore, it can be concluded that combination of CTLA-4 blockade with MUC1 mRNA nanovaccine enhances anti-tumor cytotoxic T-lymphocyte activity by reducing immunosuppressive TME and inhibiting tumor-promoting STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xuan Lin
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Hedan Chen
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Ying Xie
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Xue Zhou
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yun Wang
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China; School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jing Zhou
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Shiqi Long
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Zuquan Hu
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Shichao Zhang
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Wei Qiu
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Zhu Zeng
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China; School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| | - Lina Liu
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
231
|
Abstract
After decades of extensive fundamental studies and clinical trials, lipid nanoparticles (LNPs) have demonstrated effective mRNA delivery such as the Moderna and Pfizer-BioNTech vaccines fighting against COVID-19. Moreover, researchers and clinicians have been investigating mRNA therapeutics for a variety of therapeutic indications including protein replacement therapy, genome editing, and cancer immunotherapy. To realize these therapeutics in the clinic, there are many formidable challenges. First, novel delivery systems such as LNPs with high delivery efficiency and low toxicity need to be developed for different cell types. Second, mRNA molecules need to be engineered for improved pharmaceutical properties. Lastly, the LNP-mRNA nanoparticle formulations need to match their therapeutic applications.In this Account, we summarize our recent advances in the design and development of various classes of lipids and lipid derivatives, which can be formulated with multiple types of mRNA molecules to treat diverse diseases. For example, we conceived a series of ionizable lipid-like molecules based on the structures of a benzene core, an amide linker, and hydrophobic tails. We identified N1,N3,N5-tris(3-(didodecylamino)propyl)benzene-1,3,5-tricarboxamide (TT3) as a lead compound for mRNA delivery both in vitro and in vivo. Moreover, we tuned the biodegradability of these lipid-like molecules by introducing branched ester or linear ester chains. Meanwhile, inspired by biomimetic compounds, we synthesized vitamin-derived lipids, chemotherapeutic conjugated lipids, phospholipids, and glycolipids. These scaffolds greatly broaden the chemical space of ionizable lipids for mRNA delivery. In another section, we highlight our efforts on the research direction of mRNA engineering. We previously optimized mRNA chemistry using chemically-modified nucleotides to increase the protein expression, such as pseudouridine (ψ), 5-methoxyuridine (5moU), and N1-methylpseudouridine (me1ψ). Also, we engineered the sequences of mRNA 5' untranslated regions (5'-UTRs) and 3' untranslated regions (3'-UTRs), which dramatically enhanced protein expression. With the progress of LNP development and mRNA engineering, we consolidate these technologies and apply them to treat diseases such as genetic disorders, infectious diseases, and cancers. For instance, TT3 and its analog-derived lipid-like nanoparticles can effectively deliver factor IX or VIII mRNA and recover the clotting activity in hemophilia mouse models. Engineered mRNAs encoding SARS-CoV-2 antigens serve well as vaccine candidates against COVID-19. Vitamin-derived lipid nanoparticles loaded with antimicrobial peptide-cathepsin B mRNA enable adoptive macrophage transfer to treat multidrug resistant bacterial sepsis. Biomimetic lipids such as phospholipids formulated with mRNAs encoding costimulatory receptors lead to enhanced cancer immunotherapy.Overall, lipid-mRNA nanoparticle formulations have considerably benefited public health in the COVID-19 pandemic. To expand their applications in clinical use, research work from many disciplines such as chemistry, engineering, materials, pharmaceutical sciences, and medicine need to be integrated. With these collaborative efforts, we believe that more and more lipid-mRNA nanoparticle formulations will enter the clinic in the near future and benefit human health.
Collapse
Affiliation(s)
- Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
232
|
Zhou ZX, Zhang HX, Zheng QC. Predicting a Kind of Unusual Multiple-States Dimerization-Modes Transformation in Protein PD-L1 System by Computational Investigation and a Generalized Rate Theory. Front Chem 2021; 9:783444. [PMID: 34858950 PMCID: PMC8631179 DOI: 10.3389/fchem.2021.783444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
The new cancer immunotherapy has been carried out with an almost messianic zeal, but its molecular basis remains unclear due to the complexity of programmed death ligand 1 (PD-L1) dimerization. In this study, a new and integral multiple dimerization-modes transformation process of PD-L1s (with a new PD-L1 dimerization mode and a new transformation path discovered) and the corresponding mechanism are predicted using theoretical and computational methods. The results of the state analysis show that 5 stable binding states exist in system. A generalized inter-state transformation rate (GITR) theory is also proposed in such multiple-states self-assembly system to explore the kinetic characteristics of inter-state transformation. A “drug insertion” path was identified as the dominant path of the PD-L1 dimerization-modes transformation. Above results can provide supports for both the relative drug design and other multiple-states self-assembly system from the theoretical chemistry perspective.
Collapse
Affiliation(s)
- Zhong-Xing Zhou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Hong-Xing Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Qing-Chuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| |
Collapse
|
233
|
Nakhjavani M, Shigdar S. Future of PD-1/PD-L1 axis modulation for the treatment of triple-negative breast cancer. Pharmacol Res 2021; 175:106019. [PMID: 34861397 DOI: 10.1016/j.phrs.2021.106019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancer (TNBC) has the worst prognosis among the subtypes of breast cancer, with no targeted therapy available. Immunotherapy targeting programmed cell death protein-1 (PD-1) and its ligand (PD-L1) has resulted in some promising outcomes in cancer patients. The common treatments are monoclonal antibodies (mAbs). Despite novel methodologies in developing mAbs, there are several drawbacks with these medications. Immunological reactions, expensive and time-consuming production and requiring refrigeration are some of the challenging characteristics of mAbs that are addressed with using aptamers. Aptamers are nucleotide-based structures with high selectivity and specificity for target. Their small size helps aptamers penetrate the tissue better. In this review, we have discussed the nature of PD-1/PD-L1 interaction and summarised the available mAbs and aptamers specific for these two targets. This review highlights the role of aptamers as a future pathway for PD-1/PD-L1 modulation.
Collapse
Affiliation(s)
- Maryam Nakhjavani
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia.
| | - Sarah Shigdar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
234
|
Celus W, Oliveira AI, Rivis S, Van Acker HH, Landeloos E, Serneels J, Cafarello ST, Van Herck Y, Mastrantonio R, Köhler A, Garg AD, Flamand V, Tamagnone L, Marine JC, Matteo MD, Costa BM, Bechter O, Mazzone M. Plexin-A4 Mediates Cytotoxic T-cell Trafficking and Exclusion in Cancer. Cancer Immunol Res 2021; 10:126-141. [PMID: 34815265 DOI: 10.1158/2326-6066.cir-21-0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/07/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
Cytotoxic T cell (CTL) infiltration of the tumor carries the potential to limit cancer progression, but their exclusion by the immunosuppressive tumor microenvironment hampers the efficiency of immunotherapy. Here, we show that expression of the axon guidance molecule Plexin-A4 (Plxna4) in CTLs, especially in effector/memory CD8+ T cells, is induced upon T-cell activation, sustained in the circulation, but reduced when entering the tumor bed. Therefore, we deleted Plxna4 and observed that Plxna4-deficient CTLs acquired improved homing capacity to the lymph nodes and to the tumor, as well as increased proliferation, both achieved through enhanced Rac1 activation. Mice with stromal or hematopoietic Plxna4 deletion exhibited enhanced CTL infiltration and impaired tumor growth. In a melanoma model, adoptive transfer of CTLs lacking Plxna4 prolonged survival and improved therapeutic outcome, which was even stronger when combined with anti-programmed cell death protein 1 (PD-1) treatment. PLXNA4 abundance in circulating CTLs was augmented in melanoma patients versus healthy volunteers but decreased after the first cycle of anti-PD-1, alone or in combination with anti-cytotoxic T-Lymphocyte Associated Protein 4 (CTLA-4), in those patients showing complete or partial response to the treatment. Altogether, our data suggest that Plxna4 acts as a "checkpoint," negatively regulating CTL migration and proliferation through cell-autonomous mechanisms independent of the interaction with host-derived Plxna4 ligands, semaphorins. These findings pave the way toward Plxna4-centric immunotherapies and propose Plxna4 detection in circulating CTLs as a potential way to monitor the response to immune checkpoint blockade in patients with metastatic melanoma.
Collapse
Affiliation(s)
- Ward Celus
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium. .,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ana I Oliveira
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, University of Minho, Braga, Portugal
| | - Silvia Rivis
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Heleen H Van Acker
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jens Serneels
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sarah Trusso Cafarello
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Yannick Van Herck
- Department of General Medical Oncology, University Hospitals Leuven, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Roberta Mastrantonio
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Arnaud Köhler
- Institute for Medical Immunology, ULB-Center for Research in Immunology, Gosselies, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, ULB-Center for Research in Immunology, Gosselies, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, University of Minho, Braga, Portugal
| | - Oliver Bechter
- Department of General Medical Oncology, University Hospitals Leuven, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium. .,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
235
|
Recent advancements and future submissions of silica core-shell nanoparticles. Int J Pharm 2021; 609:121173. [PMID: 34627997 DOI: 10.1016/j.ijpharm.2021.121173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
The core-shell silica-based nanoparticles (CSNPs) possess outstanding properties for developing next-generation therapeutics. CSNPs provide greater surface area owing to their mesoporous structure, which offers a high opportunity for surface modification. This review highlights the potential of core-shell silica-based nanoparticle (CSNP) based injectable nanotherapeutics (INT); its role in drug delivery, biomedical imaging, light-triggered phototherapy, Plasmonic enhancers, gene delivery, magnetic hyperthermia, immunotherapy, and potential as next-generation theragnostic. Specifically, the conceptual crosstalk on modern synthetic strategies, biodistribution profiles with a mechanistic view on the therapeutics loading and release modeling are dealt in detail. The manuscript also converses the challenges associated with CSNPs, regulatory hurdles, and their current market position.
Collapse
|
236
|
Safety and efficacy of durvalumab with R-CHOP or R 2-CHOP in untreated, high-risk DLBCL: a phase 2, open-label trial. Int J Hematol 2021; 115:222-232. [PMID: 34797531 DOI: 10.1007/s12185-021-03241-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022]
Abstract
Patients with high-risk diffuse large B-cell lymphoma (DLBCL) have poor outcomes following first-line cyclophosphamide, doxorubicin, vincristine, prednisone, and rituximab (R-CHOP). Evidence shows chemotherapy and immune checkpoint blockade can increase antitumor efficacy. This study investigated durvalumab, a programmed death-ligand 1 inhibitor, combined with R-CHOP or lenalidomide + R-CHOP (R2-CHOP) in newly diagnosed high-risk DLBCL. Patients received durvalumab 1125 mg every 21 days for 2-8 cycles + R-CHOP (non-activated B-cell [ABC] subtype) or R2-CHOP (ABC), then durvalumab consolidation (1500 mg every 28 days). Of 46 patients, 43 received R-CHOP and three R2-CHOP. All patients had the high-risk disease; 14 (30.4%) and eight (17.4%) had double- or triple-hit DLBCL, respectively. Following induction, 20/37 (54.1%) patients receiving durvalumab + R-CHOP achieved complete response (CR), and seven (18.9%) partial response (PR); 25 (67.6% [95% CI 50.2-82.0]) continued to consolidation and were progression-free at 12 months. Among efficacy-evaluable patients with double- or triple-hit DLBCL (n = 12), five achieved CR and five PR. Adverse events were generally consistent with R-CHOP. Correlative analyses did not identify conclusive biomarkers of response. Durvalumab + R-CHOP is feasible in DLBCL with no new safety signals, but the combination provided no greater benefit than R-CHOP.
Collapse
|
237
|
CMTM6, a potential immunotherapy target. J Cancer Res Clin Oncol 2021; 148:47-56. [PMID: 34783871 DOI: 10.1007/s00432-021-03835-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/18/2021] [Indexed: 10/19/2022]
Abstract
The CKLF-like MARVEL transmembrane domain-containing protein 6 (CMTM6), which binds to the programmed death ligand 1 (PD-L1) and stabilizes the expression of PD-L1 on the cell surface, has been recently discovered as a novel regulator of PD-L1 expression in cancer. PD-L1 is an immune checkpoint inhibitory molecule that can mediate the immune escape of tumor cells in various tumors and has been studied intensively in recent years. In 2017, two articles simultaneously reported that CMTM6 can stabilize the expression of PD-L1 on the plasma membrane and prevent PD-L1 from being degraded by lysosomes; therefore, CMTM6 may play an important role in tumor cell immune escape and immunosuppression. At present, there are few studies on the relationship between the expression of CMTM6 and PD-L1 in different tumors and diseases. These studies together suggested that CMTM6 may be a potential novel immunotherapy target. In this review, we briefly describe the latest research progresses of CMTM6 in various cancers and other diseases.
Collapse
|
238
|
Liu Z, Weng S, Xu H, Wang L, Liu L, Zhang Y, Guo C, Dang Q, Xing Z, Lu T, Han X. Computational Recognition and Clinical Verification of TGF-β-Derived miRNA Signature With Potential Implications in Prognosis and Immunotherapy of Intrahepatic Cholangiocarcinoma. Front Oncol 2021; 11:757919. [PMID: 34760703 PMCID: PMC8573406 DOI: 10.3389/fonc.2021.757919] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) were recently implicated in modifying the transforming growth factor β (TGF-β) signaling in multiple cancers. However, TGF-β-derived miRNAs and their potential clinical significance remain largely unexplored in intrahepatic cholangiocarcinoma (ICC). In this study, we proposed an integrated framework that enables the identification of TGF-β-derived miRNAs in ICC (termed “TGFmitor”). A total of 36 TGF-β-derived miRNAs were identified, of which nine significantly correlated with overall survival (OS) and aberrantly expressed in ICC. According to these miRNAs, we discovered and validated a TGF-β associated miRNA signature (TAMIS) in GSE53870 (n =63) and TCGA-CHOL (n =32). To further confirm the clinical interpretation of TAMIS, another validation based on qRT-PCR results from 181 ICC tissues was performed. TAMIS was proven to be an independent risk indicator for both OS and relapse-free survival (RFS). TAMIS also displayed robust performance in three cohorts, with satisfactory AUCs and C-index. Besides, patients with low TAMIS were characterized by superior levels of CD8+ T cells infiltration and PD-L1 expression, while patients with high TAMIS possessed enhanced CMTM6 expression. Kaplan-Meier analysis suggested CMTM6 could further stratify TAMIS. The TAMIShighCMTM6high subtype had the worst prognosis and lowest levels of CD8A and PD-L1 expression relative to the other subtypes, indicating this subtype might behave as “super-cold” tumors. Notably, the improved discrimination was observed when CMTM6 was combined with TAMIS. Overall, our signature could serve as a powerful tool to help improve prognostic management and immunotherapies of ICC patients.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - ChunGuang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Taoyuan Lu
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
239
|
Wang Y, Li P, Mao S, Mo Z, Cao Z, Luo J, Zhou M, Liu X, Zhang S, Yu L. Exosome CTLA-4 Regulates PTEN/CD44 Signal Pathway in Spleen Deficiency Internal Environment to Promote Invasion and Metastasis of Hepatocellular Carcinoma. Front Pharmacol 2021; 12:757194. [PMID: 34744733 PMCID: PMC8564353 DOI: 10.3389/fphar.2021.757194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 01/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary cancers, and its pathogenesis is complicated and difficult to screen. Currently, there is no effective treatment. In traditional Chinese medicine, a large proportion of patients with HCC have been diagnosed with spleen deficiency (SD) syndrome and treated with tonifying traditional Chinese medicine, which has significant clinical efficacy. However, the role and molecular mechanism of SD in HCC remain unclear. In this study, 40 mice were randomly divided into four groups: control, SD, HCC, and SD-HCC groups. The liver cancer model of SD was established by reserpine induction and orthotopic transplantation. The effects of SD on the proliferation, apoptosis, invasion, and metastasis of HCC cells were studied by cell proliferation, cell apoptosis, cell scratch, and transwell assay. We found that compared with the HCC group, the protein expressions of cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), phosphatase and tensin homolog (PTEN), and AKT (also known as protein kinase B or PKB) in the exosomes of the SD-HCC group were upregulated. In addition, the metastases and self-renewal of exosomes in the SD-HCC group were more aggressive than those in the HCC group, which could be partially reversed with the addition of CTLA-4 inhibitors. Further studies showed that in the internal environment of SD, CTLA-4 promoted tumor invasion and metastasis by regulating the PTEN/CD44 pathway. In conclusion, our findings suggest that during SD in the internal environment, exosome CTLA-4 regulates the PTEN/CD44 signal pathway to promote the proliferation, self-renewal, and metastasis of liver cancer.
Collapse
Affiliation(s)
- Yongdan Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pan Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuai Mao
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhuomao Mo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirui Cao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin Luo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meiling Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xifeng Liu
- School of Life Sciences, Xiangya Medical College, Central South University, Changsha, China
| | - Shijun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ling Yu
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,AMI Key Laboratory of Chinese Medicine in Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
240
|
Wang L, Chang N, Wu L, Li J, Zhang L, Chen Y, Zhou Z, Hao J, Wang Q, Jiao S. A nomogram-based immunoprofile predicts clinical outcomes for stage II and III human colorectal cancer. Mol Clin Oncol 2021; 15:257. [PMID: 34712487 PMCID: PMC8549000 DOI: 10.3892/mco.2021.2419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
An immunoscore for colorectal cancer (CRC) has higher prognostic significance than the TNM staging system. However, the tumor immune microenvironment contains various components that affect clinical prognosis. Therefore, a broader range of immune markers is required to establish an accurate immunoprofile to assess the prognosis of patients with CRC. Using immunohistochemistry combined with multispectral immunohistochemistry and objective assessments, the infiltration of four immune cell types (CD4+/CD8+/forkhead box p3+/CD33+ cells), as well as the expression of six co-signaling molecules [programmed cell death 1 (PD1) ligand 1/PD1/T-cell immunoglobulin mucin family member 3/lymphocyte-activating 3/tumor necrosis factor receptor superfamily, member 4/inducible T-cell costimulator] and indoleamine 2,3-dioxygenase 1 were investigated in two independent cohorts of CRC. The patients' overall survival (OS) was evaluated using the Kaplan-Meier method. Using the Cox proportional hazards model, independent prognostic factors of patients were assessed and a nomogram-based immunoprofile system was developed. The predictive ability of the nomogram was determined using a concordance index (C-index) and calibration curve. To facilitate clinical application, a simplified nomogram-based immunoprofile was constructed. Using receiver operating characteristic (ROC) analysis, the predictive accuracy for OS was compared between the immunoprofile and the TNM staging system for patients with stage II/III CRC. According to multivariate analysis for the primary cohort, independent prognostic factors for OS were CD8+ tumor-infiltrating lymphocytes, CD33+ myeloid-derived suppressor cells and TNM stage, which were included in the nomogram. The C-index of the nomogram for predicting OS was 0.861 (95% CI: 0.796-0.925) for the internal validation and 0.759 (95% CI: 0.714-0.804) for the external validation cohort. The simplified nomogram-based immunoprofile system was able to separate same-stage patients into different risk subgroups, particularly for TNM stage II (P<0.0001) and III (P=0.0002) patients. Pairwise comparison of ROC curves for the immunoprofile and TNM stage systems for patients with stage II/III CRC revealed statistically significant differences (P=0.046) and the Z-statistic value was 1.995. In conclusion, the nomogram-based immunoprofile system provides prognostic accuracy regarding clinical outcomes and is a useful supplement to the TNM staging system for patients with stage II/III CRC.
Collapse
Affiliation(s)
- Lingxiong Wang
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Nijia Chang
- Department of Oncology, The Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Liangliang Wu
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jinfeng Li
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lijun Zhang
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yin Chen
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhou Zhou
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jianqing Hao
- Department of Pneumology, Qingyang People's Hospital, Qingyang, Gansu 745000, P.R. China
| | - Qiong Wang
- Department of Pathology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Shunchang Jiao
- Department of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
241
|
Fan F, Liu P, Bao R, Chen J, Zhou M, Mo Z, Ma Y, Liu H, Zhou Y, Cai X, Qian C, Liu X. A Dual PI3K/HDAC Inhibitor Induces Immunogenic Ferroptosis to Potentiate Cancer Immune Checkpoint Therapy. Cancer Res 2021; 81:6233-6245. [PMID: 34711611 DOI: 10.1158/0008-5472.can-21-1547] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
The capacity of targeted anticancer agents to exert immunomodulatory effects provides a strong rationale to develop novel agents suitable for combinatorial regimens with immunotherapy to improve clinical outcomes. In this study, we developed a dual-targeting PI3K and HDAC inhibitor BEBT-908 that potently inhibits tumor cell growth and potentiates anti-PD1 therapy in mice by inducing immunogenic ferroptosis in cancer cells. Treatment with BEBT-908 promoted ferroptotic cell death of cancer cells by hyperacetylating p53 and facilitating the expression of ferroptotic signaling. Furthermore, BEBT-908 promoted a pro-inflammatory tumor microenvironment that activated host anti-tumor immune responses and potentiated immune checkpoint blockade therapy. Mechanistically, BEBT-908-induced ferroptosis led to upregulation of major histocompatibility complex class I (MHC I) and activation of endogenous interferon gamma (IFNγ) signaling in cancer cells via the STAT1 signaling pathway. The dual PI3K/HDAC inhibitor BEBT-908 is a promising targeted therapeutic agent against multiple cancer types that promotes immunogenic ferroptosis and enhances the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Fushun Fan
- Biology, Guangzhou BeBetter Medicine Technology Co., LTD
| | - Pei Liu
- School of medcine, Sun Yat-sen University
| | | | - Jian Chen
- School of Medicine, Sun Yat-sen University
| | - Minhua Zhou
- Pharmacology, Guangzhou BeBetter Medicine Technology Co., LTD
| | - Zhenxian Mo
- Biology, Guangzhou BeBetter Medicine Technology Co., LTD
| | - Yaru Ma
- Biology, Guangzhou BeBetter Medicine Technology Co., LTD
| | - Haiqi Liu
- 1Guangzhou BeBetter Medicine Technology Co., LTD
| | - Yiping Zhou
- Guangzhou BeBetter Medicine Technology Co., LTD
| | - Xiong Cai
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University
| | - Changgeng Qian
- Pharmacology, Guangzhou BeBetter Medicine Technology Co., LTD
| | | |
Collapse
|
242
|
Saiz-Ladera C, Baliu-Piqué M, Cimas FJ, Manzano A, García-Barberán V, Camarero SC, Hinojal GF, Pandiella A, Győrffy B, Stewart D, Cruz-Hernández JJ, Pérez-Segura P, Ocana A. Transcriptomic Correlates of Immunologic Activation in Head and Neck and Cervical Cancer. Front Oncol 2021; 11:714550. [PMID: 34692491 PMCID: PMC8527851 DOI: 10.3389/fonc.2021.714550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/13/2021] [Indexed: 12/31/2022] Open
Abstract
Targeting the immune system has emerged as an effective therapeutic strategy for the treatment of various tumor types, including Head and Neck Squamous Cell Carcinoma (HNSCC) and Non-small-Cell Lung Cancer (NSCLC), and checkpoint inhibitors have shown to improve patient survival in these tumor types. Unfortunately, not all cancers respond to these agents, making it necessary to identify responsive tumors. Several biomarkers of response have been described and clinically tested. As of yet what seems to be clear is that a pre-activation state of the immune system is necessary for these agents to be efficient. In this study, using established transcriptomic signatures, we identified a group of gene combination associated with favorable outcome in HNSCC linked to a higher presence of immune effector cells. CD2, CD3D, CD3E, and CXCR6 combined gene expression is associated with improved outcome of HNSCC patients and an increase of infiltrating immune effector cells. This new signature also identifies a subset of cervical squamous cell carcinoma (CSCC) patients with favorable prognosis, who show an increased presence of immune effector cells in the tumor, which outcome shows similarities with the HP-positive HNSCC cohort of patients. In addition, CD2, CD3D, CD3E, and CXCR6 signature is able to predict the best favorable prognosis in terms of overall survival of CSSC patients. Of note, these findings were not reproduced in other squamous cell carcinomas like esophageal SCC or lung SCC. Prospective confirmatory studies should be employed to validate these findings.
Collapse
Affiliation(s)
- Cristina Saiz-Ladera
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| | - Mariona Baliu-Piqué
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| | - Francisco J Cimas
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomedicas, Castilla-La Mancha University (CRIB-UCLM), Albacete, Spain
| | - Aránzazu Manzano
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| | - Vanesa García-Barberán
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| | - Santiago Cabezas Camarero
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| | - Gonzalo Fernández Hinojal
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Balázs Győrffy
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,2nd Department of Pediatrics, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Institute of Enzymology, Research Centre of Nature Sciences, Budapest, Hungary
| | - David Stewart
- Ottawa University Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Juan J Cruz-Hernández
- Instituto de Biología Molecular y Celular del Cáncer and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Pedro Pérez-Segura
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| | - Alberto Ocana
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain.,Translational Oncology Laboratory, Centro Regional de Investigaciones Biomedicas, Castilla-La Mancha University (CRIB-UCLM), Albacete, Spain
| |
Collapse
|
243
|
Liu Z, Xu N, Zhao L, Yu J, Zhang P. Bifunctional lipids in tumor vaccines: An outstanding delivery carrier and promising immune stimulator. Int J Pharm 2021; 608:121078. [PMID: 34500059 DOI: 10.1016/j.ijpharm.2021.121078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Cancer is still a major threat for human life, and the cancer immunotherapy can be more optimized to prolong life. However, the effect of immunotherapy is not encouraging. In order to achieve outstanding immune effect, it is necessary to strengthen antigens uptake of antigen presenting cells. Adjuvants were added to vaccines to achieve this purpose, which could be divided into two types: as an immunostimulatory molecule, the innate immunities of the body were triggered; or as a delivery carrier, and antigens were cross-delivery through the "cytoplasmic pathway" and released at a specific location. This paper reviewed the relevant research status of tumor vaccine immune adjuvants in recent years. Among the review, the function, combination strategies and derivatives of lipid A were discussed in detail. In addition, some suggestions on the existing problems and research direction of lipids as tumor vaccine adjuvants were put forward.
Collapse
Affiliation(s)
- Zhiling Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Na Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Lin Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jia Yu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
244
|
Zhang H, Wang Y, Onuma A, He J, Wang H, Xia Y, Lal R, Cheng X, Kasumova G, Hu Z, Deng M, Beane JD, Kim AC, Huang H, Tsung A. Neutrophils Extracellular Traps Inhibition Improves PD-1 Blockade Immunotherapy in Colorectal Cancer. Cancers (Basel) 2021; 13:5333. [PMID: 34771497 PMCID: PMC8582562 DOI: 10.3390/cancers13215333] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors can improve the prognosis of patients with advanced malignancy; however, only a small subset of advanced colorectal cancer patients in microsatellite-instability-high or mismatch-repair-deficient colorectal cancer can benefit from immunotherapy. Unfortunately, the mechanism behind this ineffectiveness is unclear. The tumor microenvironment plays a critical role in cancer immunity, and may contribute to the inhibition of immune checkpoint inhibitors and other novel immunotherapies in patients with advanced cancer. Herein, we demonstrate that the DNase I enzyme plays a pivotal role in the degradation of NETs, significantly dampening the resistance to anti-PD-1 blockade in a mouse colorectal cancer model by attenuating tumor growth. Remarkably, DNase I decreases tumor-associated neutrophils and the formation of MC38 tumor cell-induced neutrophil extracellular trap formation in vivo. Mechanistically, the inhibition of neutrophil extracellular traps with DNase I results in the reversal of anti-PD-1 blockade resistance through increasing CD8+ T cell infiltration and cytotoxicity. These findings signify a novel approach to targeting the tumor microenvironment using DNase I alone or in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Hongji Zhang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (H.Z.); (Y.W.); (A.O.); (J.H.); (H.W.); (Y.X.); (X.C.); (G.K.); (Z.H.); (M.D.); (J.D.B.); (A.C.K.)
| | - Yu Wang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (H.Z.); (Y.W.); (A.O.); (J.H.); (H.W.); (Y.X.); (X.C.); (G.K.); (Z.H.); (M.D.); (J.D.B.); (A.C.K.)
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Amblessed Onuma
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (H.Z.); (Y.W.); (A.O.); (J.H.); (H.W.); (Y.X.); (X.C.); (G.K.); (Z.H.); (M.D.); (J.D.B.); (A.C.K.)
| | - Jiayi He
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (H.Z.); (Y.W.); (A.O.); (J.H.); (H.W.); (Y.X.); (X.C.); (G.K.); (Z.H.); (M.D.); (J.D.B.); (A.C.K.)
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Han Wang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (H.Z.); (Y.W.); (A.O.); (J.H.); (H.W.); (Y.X.); (X.C.); (G.K.); (Z.H.); (M.D.); (J.D.B.); (A.C.K.)
- Department of Gastroenterology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujia Xia
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (H.Z.); (Y.W.); (A.O.); (J.H.); (H.W.); (Y.X.); (X.C.); (G.K.); (Z.H.); (M.D.); (J.D.B.); (A.C.K.)
- Department of Gastroenterology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rhea Lal
- Neuroscience Undergraduate Division, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Xiang Cheng
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (H.Z.); (Y.W.); (A.O.); (J.H.); (H.W.); (Y.X.); (X.C.); (G.K.); (Z.H.); (M.D.); (J.D.B.); (A.C.K.)
| | - Gyulnara Kasumova
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (H.Z.); (Y.W.); (A.O.); (J.H.); (H.W.); (Y.X.); (X.C.); (G.K.); (Z.H.); (M.D.); (J.D.B.); (A.C.K.)
| | - Zhiwei Hu
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (H.Z.); (Y.W.); (A.O.); (J.H.); (H.W.); (Y.X.); (X.C.); (G.K.); (Z.H.); (M.D.); (J.D.B.); (A.C.K.)
| | - Meihong Deng
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (H.Z.); (Y.W.); (A.O.); (J.H.); (H.W.); (Y.X.); (X.C.); (G.K.); (Z.H.); (M.D.); (J.D.B.); (A.C.K.)
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Joal D. Beane
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (H.Z.); (Y.W.); (A.O.); (J.H.); (H.W.); (Y.X.); (X.C.); (G.K.); (Z.H.); (M.D.); (J.D.B.); (A.C.K.)
| | - Alex C. Kim
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (H.Z.); (Y.W.); (A.O.); (J.H.); (H.W.); (Y.X.); (X.C.); (G.K.); (Z.H.); (M.D.); (J.D.B.); (A.C.K.)
| | - Hai Huang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (H.Z.); (Y.W.); (A.O.); (J.H.); (H.W.); (Y.X.); (X.C.); (G.K.); (Z.H.); (M.D.); (J.D.B.); (A.C.K.)
| | - Allan Tsung
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; (H.Z.); (Y.W.); (A.O.); (J.H.); (H.W.); (Y.X.); (X.C.); (G.K.); (Z.H.); (M.D.); (J.D.B.); (A.C.K.)
| |
Collapse
|
245
|
Bu X, Juneja VR, Reynolds CG, Mahoney KM, Bu MT, McGuire KA, Maleri S, Hua P, Zhu B, Klein SR, Greenfield EA, Armand P, Ritz J, Sharpe AH, Freeman GJ. Monitoring PD-1 Phosphorylation to Evaluate PD-1 Signaling during Antitumor Immune Responses. Cancer Immunol Res 2021; 9:1465-1475. [PMID: 34635486 DOI: 10.1158/2326-6066.cir-21-0493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022]
Abstract
PD-1 expression marks activated T cells susceptible to PD-1-mediated inhibition but not whether a PD-1-mediated signal is being delivered. Molecular predictors of response to PD-1 immune checkpoint blockade (ICB) are needed. We describe a monoclonal antibody (mAb) that detects PD-1 signaling through the detection of phosphorylation of the immunotyrosine switch motif (ITSM) in the intracellular tail of mouse and human PD-1 (phospho-PD-1). We showed PD-1+ tumor-infiltrating lymphocytes (TILs) in MC38 murine tumors had high phosphorylated PD-1, particularly in PD-1+TIM-3+ TILs. Upon PD-1 blockade, PD-1 phosphorylation was decreased in CD8+ TILs. Phospho-PD-1 increased in T cells from healthy human donors after PD-1 engagement and decreased in patients with Hodgkin lymphoma following ICB. These data demonstrate that phosphorylation of the ITSM motif of PD-1 marks dysfunctional T cells that may be rescued with PD-1 blockade. Detection of phospho-PD-1 in TILs is a potential biomarker for PD-1 immunotherapy responses.
Collapse
Affiliation(s)
- Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Vikram R Juneja
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts.,Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Carol G Reynolds
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kathleen M Mahoney
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Melissa T Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kathleen A McGuire
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Seth Maleri
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Ping Hua
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Baogong Zhu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Sarah R Klein
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Edward A Greenfield
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Philippe Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
246
|
Zhang Y, Jia H, Liu Z, Guo J, Li Y, Li R, Zhu G, Li J, Li M, Li X, Wang S, Dang C, Zhao T. D-MT prompts the anti-tumor effect of oxaliplatin by inhibiting IDO expression in a mouse model of colon cancer. Int Immunopharmacol 2021; 101:108203. [PMID: 34649091 DOI: 10.1016/j.intimp.2021.108203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023]
Abstract
Colon cancer is one of the most common malignant tumors in the digestive system. Although oxaliplatin, a chemotherapy drug, has been clinically used to treat colon cancer, its therapeutic effect is unsatisfactory. It has been proved that indoleamine dioxygenase 2,3 (IDO) is a tumor immunosuppressive factor for the immune response. Herein, an IDO inhibitor, D-MT (indoximod, 1-Methyl-D-tryptophan), was combined with oxaliplatin to treat colon cancer in mice. T cell infiltration in tumor tissues, the ratios of immune cells in the spleens, and the tumor growth and survival of the mice were detected and recorded. The results showed that the combination of oxaliplatin and D-MT significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice. More importantly, the combination treatment increased the ratios of CD4+ T, CD8+ T and NK cells from the spleen in tumor-bearing mice, and prompted T cell infiltration in tumor tissues. This study provided a new therapeutic strategy for colon cancer treatment in the clinic, especially for patients with oxaliplatin resistance.
Collapse
Affiliation(s)
- Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, PR China; Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shanxi, PR China
| | - Huijie Jia
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Zhiang Liu
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Jing Guo
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Yang Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Ruipeng Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Gaozan Zhu
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Jie Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Minjie Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Xinyi Li
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China
| | - Shenggen Wang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, PR China
| | - Chengxue Dang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shanxi, PR China.
| | - Tiesuo Zhao
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, PR China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang 453000, Henan, PR China; Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, China.
| |
Collapse
|
247
|
Fukaya-Shiba A, Otsuka K, Sasaki H, Shikano M, Wakao R. Identification of Novel Modalities Through Bibliometric Analysis for Timely Development of Regulatory Guidance: A Case Study of T Cell Immunity. Front Med (Lausanne) 2021; 8:756870. [PMID: 34708061 PMCID: PMC8544749 DOI: 10.3389/fmed.2021.756870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Background: The mission of medicines regulatory agencies is to ensure the timely access of innovative products for patients to improve public health. Thus, regulators should foresee evolving technologies and build expertise prior to reviewing innovative products. Novel modalities and new classes of therapeutics in biological or cell-based products represent a regulatory challenge because of knowledge gaps, as exemplified by the unexpected cytokine release syndrome in the first-in-human clinical trial of the CD28 super-agonist. Meanwhile, recent treatments harnessing T cell co-signaling pathways provide an opportunity for investigation. Therefore, this study aimed to systematically identify and evaluate novel modalities for T cell immunity to assess the need for regulatory guidance. Methods: A PubMed search was carried out using the query, "immun* AND t lymph*" to select publications. Subsequently, a citation network was created, followed by clustering and text mining to identify the modalities and classes of therapeutics under development. Results and Discussion: Analysis of the top 20 clusters revealed research domains characterized by keywords such as immune checkpoint antibody, chimeric antigen receptor (CAR)-T cells, microbiota, exosome, regulatory T cells, unconventional T cells, and vaccines. After reviewing the pharmacological concepts, clinical trial information, and available guidance, we presented a perspective on the future development of guidance for these domains. Conclusion: Bibliometric analyses identified a set of innovative modalities targeted for drug development with which regulatory guidance is going to catch up. This strategy could help in the successful development of upcoming modalities to ensure readiness for clinical application as part of horizon scanning.
Collapse
Affiliation(s)
- Ai Fukaya-Shiba
- Center for Regulatory Science, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Kouhei Otsuka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Hajime Sasaki
- Institute for Future Initiatives, The University of Tokyo, Tokyo, Japan
| | - Mayumi Shikano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Rika Wakao
- Center for Regulatory Science, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| |
Collapse
|
248
|
Jin SM, Lee SN, Kim JE, Yoo YJ, Song C, Shin HS, Phuengkham H, Lee CH, Um SH, Lim YT. Overcoming Chemoimmunotherapy-Induced Immunosuppression by Assemblable and Depot Forming Immune Modulating Nanosuspension. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102043. [PMID: 34363349 PMCID: PMC8498862 DOI: 10.1002/advs.202102043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 05/25/2023]
Abstract
The deficiency of antigen-specific T cells and the induction of various treatment-induced immunosuppressions still limits the clinical benefit of cancer immunotherapy. Although the chemo-immunotherapy adjuvanted with Toll-like receptor 7/8 agonist (TLR 7/8a) induces immunogenic cell death (ICD) and in situ vaccination effect, indoleamine 2,3-dioxygenase (IDO) is also significantly increased in the tumor microenvironment (TME) and tumor-draining lymph node (TDLN), which offsets the activated antitumor immunity. To address the treatment-induced immunosuppression, an assemblable immune modulating suspension (AIMS) containing ICD inducer (paclitaxel) and supra-adjuvant (immune booster; R848 as a TLR 7/8a, immunosuppression reliever; epacadostat as an IDO inhibitor) is suggested and shows that it increases cytotoxic T lymphocytes and relieves the IDO-related immunosuppression (TGF-β, IL-10, myeloid-derived suppressor cells, and regulatory T cells) in both TME and TDLN, by the formation of in situ depot in tumor bed as well as by the efficient migration into TDLN. Local administration of AIMS increases T cell infiltration in both local and distant tumors and significantly inhibits the metastasis of tumors to the lung. Reverting treatment-induced secondary immunosuppression and reshaping "cold tumor" into "hot tumor" by AIMS also increases the response rate of immune checkpoint blockade therapy, which promises a new nanotheranostic strategy in cancer immunotherapy.
Collapse
Affiliation(s)
- Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering and School of Chemical EngineeringSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Sang Nam Lee
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering and School of Chemical EngineeringSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Jung Eun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering and School of Chemical EngineeringSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Yeon Jeong Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering and School of Chemical EngineeringSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Chanyoung Song
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering and School of Chemical EngineeringSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Hong Sik Shin
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering and School of Chemical EngineeringSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Hathaichanok Phuengkham
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering and School of Chemical EngineeringSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Chang Hoon Lee
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering and School of Chemical EngineeringSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Soong Ho Um
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering and School of Chemical EngineeringSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT)Department of Nano Engineering and School of Chemical EngineeringSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| |
Collapse
|
249
|
Igarashi K, Cabral H, Hong T, Anraku Y, Mpekris F, Stylianopoulos T, Khan T, Matsumoto A, Kataoka K, Matsumoto Y, Yamasoba T. Vascular Bursts Act as a Versatile Tumor Vessel Permeation Route for Blood-Borne Particles and Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103751. [PMID: 34528759 DOI: 10.1002/smll.202103751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Dynamic bursting in tumor vasculature has recently sparked interest as a novel particle transportation route for drug delivery. These bursts facilitate the transport of sub-100 nm nanoparticles into tumors, though their contribution on the access of other blood-borne particles remains unknown. To evaluate the versatility of this phenomenon, the in vivo kinetics of a variety of intravenously injected particles and their penetration in tumor xenografts and allografts are compared. Dextran, polymeric micelles, liposomes, and polymeric vesicles with diameters ranging from 32 to 302 nm are found to colocalize in virtually all vascular bursts. By mathematical modeling, the burst vent size is estimated to be 625 nm or larger, indicating the dynamic and stochastic formation of large permeation routes in tumor vasculature. Furthermore, some burst vents are found to be µm-sized, allowing the transport of 1 µm microspheres. Moreover, antibody drugs and platelets are capable of utilizing vascular burst transportation, demonstrating the application of this phenomenon to other types of therapeutics and cellular components. These findings indicate the vast potential of vascular bursts, extending the biological and therapeutic significance of this phenomenon to a wide range of blood-borne particles and cells.
Collapse
Affiliation(s)
- Kazunori Igarashi
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Taehun Hong
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678, Cyprus
| | - Thahomina Khan
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
- Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tono-machi, Kawasaki-ku, Kawasaki City, Kanagawa, 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tono-machi, Kawasaki-ku, Kawasaki City, Kanagawa, 210-0821, Japan
- Institute of Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| | - Yu Matsumoto
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuya Yamasoba
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
250
|
Yu B, Luo F, Sun B, Liu W, Shi Q, Cheng S, Chen C, Chen G, Li Y, Feng H. KAT6A Acetylation of SMAD3 Regulates Myeloid-Derived Suppressor Cell Recruitment, Metastasis, and Immunotherapy in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100014. [PMID: 34392614 PMCID: PMC8529494 DOI: 10.1002/advs.202100014] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Aberrant SMAD3 activation has been implicated as a driving event in cancer metastasis, yet the underlying mechanisms are still elusive. Here, SMAD3 is identified as a nonhistone substrate of lysine acetyltransferase 6A (KAT6A). The acetylation of SMAD3 at K20 and K117 by KAT6A promotes SMAD3 association with oncogenic chromatin modifier tripartite motif-containing 24 (TRIM24) and disrupts SMAD3 interaction with tumor suppressor TRIM33. This event in turn promotes KAT6A-acetylated H3K23-mediated recruitment of TRIM24-SMAD3 complex to chromatin and thereby increases SMAD3 activation and immune response-related cytokine expression, leading to enhanced breast cancer stem-like cell stemness, myeloid-derived suppressor cell (MDSC) recruitment, and triple-negative breast cancer (TNBC) metastasis. Inhibiting KAT6A in combination with anti-PD-L1 therapy in treating TNBC xenograft-bearing animals markedly attenuates metastasis and provides a significant survival benefit. Thus, the work presents a KAT6A acetylation-dependent regulatory mechanism governing SMAD3 oncogenic function and provides insight into how targeting an epigenetic factor with immunotherapies enhances the antimetastasis efficacy.
Collapse
Affiliation(s)
- Bo Yu
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Fei Luo
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Bowen Sun
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Wenxue Liu
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qiqi Shi
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Shi‐Yuan Cheng
- Department of NeurologyLou and Jean Malnati Brain Tumor InstituteThe Robert H. Lurie Comprehensive Cancer CenterSimpson Querrey Institute for EpigeneticsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunming650223China
| | - Guoqiang Chen
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yanxin Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of HealthDepartment of Hematology and OncologyShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|