201
|
Jia X, Chen H, Ren Y, Dejizhuoga, Gesangyuzhen, Gao N, Feng H, Huang W, Liao Y, Yu H. BAP1 antagonizes WWP1-mediated transcription factor KLF5 ubiquitination and inhibits autophagy to promote melanoma progression. Exp Cell Res 2021; 402:112506. [PMID: 33516665 DOI: 10.1016/j.yexcr.2021.112506] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/07/2023]
Abstract
Accumulating evidence revealed the abnormal expression of KLF5 in human cancers while its role in melanoma remains uncharacterized. This study aimed to explore the role of KLF5 in the proliferation and metastasis of melanoma. Bioinformatics analysis was performed to detect WWP1, BAP1 and KLF5 expression in melanoma, followed by expression determination on clinical tissues from melanoma patients and cancer cells. The cancer cells were infected with lentivirus expressing KLF5 or BAP1 while PI3K, AKT and mTOR expression was detected and autophagy was observed. Treated cells were injected to mice when tumor growth was measured and autophagy-related protein was detected. Plasmids expressing WWP1 and Ub-K48 were co-transfected into treated melanoma cells while immunoprecipitation assay was performed to determine the interaction among KLF5, WWP1, and BAP1. WWP1 was poorly expressed in melanoma cells and tissues whereas KLF5 was highly expressed and was positively correlated to poor prognosis. KLF5 promoted melanoma cell malignant phenotypes as well as inhibited autophagy. Interestingly, KLF5 contributed to activation of PI3K-AKT-mTOR signaling pathway, thereby inhibiting autophagy in melanoma cells. WWP1 mediated K48-linked ubiquitination of KLF5 to promote its degradation, and BAP1 antagonized this modification and stabilized KLF5 protein expression. Besides, BAP1 promoted KLF5-mediated growth of melanoma in vivo. Taken altogether, BAP1 antagonized WWP1-mediated ubiquitination of KLF5 to inhibit autophagy and promote melanoma development.
Collapse
Affiliation(s)
- Xiaomin Jia
- Department of Pathology, Lhasa People's Hospital, Tibet Autonomous Region, Lhasa, 850000, PR China
| | - Hongwei Chen
- Department of General Surgery, Hunan Province Brain Hospital, Changsha, 410007, PR China
| | - Yi Ren
- Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Dejizhuoga
- Department of Pathology, Lhasa People's Hospital, Tibet Autonomous Region, Lhasa, 850000, PR China
| | - Gesangyuzhen
- Department of Pathology, Lhasa People's Hospital, Tibet Autonomous Region, Lhasa, 850000, PR China
| | - Nina Gao
- Department of Pathology, Hunan Cancer Hospital, Changsha, 410013, PR China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, PR China.
| | - Wei Huang
- Department of Gynaecology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, PR China.
| | - Yangying Liao
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, PR China
| | - Hong Yu
- Department of Pathology, The Third People's Hospital of Shenzhen, Shenzhen, 518000, PR China
| |
Collapse
|
202
|
Zhang Y, Hou J, Shi S, Du J, Liu Y, Huang P, Li Q, Liu L, Hu H, Ji Y, Guo L, Shi Y, Liu Y, Cui H. CSN6 promotes melanoma proliferation and metastasis by controlling the UBR5-mediated ubiquitination and degradation of CDK9. Cell Death Dis 2021; 12:118. [PMID: 33483464 PMCID: PMC7822921 DOI: 10.1038/s41419-021-03398-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
As a critical subunit of the constitutive photomorphogenesis 9 (COP9) signalosome (CSN), CSN6 is upregulated in some human cancers and plays critical roles in tumorigenesis and progression, but its biological functions and molecular mechanisms in melanoma remain unknown. Our study showed that CSN6 expression was upregulated in melanoma patients and cells, and correlated with poor survival in melanoma patients. In melanoma cells, CSN6 knockdown remarkably inhibited cell proliferation, tumorigenicity, migration, and invasion, whereas CSN6 recovery rescued the proliferative and metastatic abilities. Notably, we identified that CSN6 stabilized CDK9 expression by reducing CDK9 ubiquitination levels, thereby activating CDK9-mediated signaling pathways. In addition, our study described a novel CSN6-interacting E3 ligase UBR5, which was negatively regulated by CSN6 and could regulate the ubiquitination and degradation of CDK9 in melanoma cells. Furthermore, in CSN6-knockdown melanoma cells, UBR5 knockdown abrogated the effects caused by CSN6 silencing, suggesting that CSN6 activates the UBR5/CDK9 pathway to promote melanoma cell proliferation and metastasis. Thus, this study illustrates the mechanism by which the CSN6-UBR5-CDK9 axis promotes melanoma development, and demonstrate that CSN6 may be a potential biomarker and anticancer target in melanoma.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China.,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China
| | - Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Juan Du
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Yudong Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China.,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China
| | - Pan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China.,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China
| | - Qian Li
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Lichao Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Huanrong Hu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Yacong Ji
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Leiyang Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Yaqiong Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China. .,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China. .,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China. .,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
203
|
Zhang JA, Zhou XY, Huang D, Luan C, Gu H, Ju M, Chen K. Development of an Immune-Related Gene Signature for Prognosis in Melanoma. Front Oncol 2021; 10:602555. [PMID: 33585219 PMCID: PMC7874014 DOI: 10.3389/fonc.2020.602555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma remains a potentially deadly malignant tumor. The incidence of melanoma continues to rise. Immunotherapy has become a new treatment method and is widely used in a variety of tumors. Original melanoma data were downloaded from TCGA. ssGSEA was performed to classify them. GSVA software and the "hclust" package were used to analyze the data. The ESTIMATE algorithm screened DEGs. The edgeR package and Venn diagram identified valid immune-related genes. Univariate, LASSO and multivariate analyses were used to explore the hub genes. The "rms" package established the nomogram and calibrated the curve. Immune infiltration data were obtained from the TIMER database. Compared with that of samples in the high immune cell infiltration cluster, we found that the tumor purity of samples in the low immune cell infiltration cluster was higher. The immune score, ESTIMATE score and stromal score in the low immune cell infiltration cluster were lower. In the high immune cell infiltration cluster, the immune components were more abundant, while the tumor purity was lower. The expression levels of TIGIT, PDCD1, LAG3, HAVCR2, CTLA4 and the HLA family were also higher in the high immune cell infiltration cluster. Survival analysis showed that patients in the high immune cell infiltration cluster had shorter OS than patients in the low immune cell infiltration cluster. IGHV1-18, CXCL11, LTF, and HLA-DQB1 were identified as immune cell infiltration-related DEGs. The prognosis of melanoma was significantly negatively correlated with the infiltration of CD4+ T cells, CD8+ T cells, dendritic cells, neutrophils and macrophages. In this study, we identified immune-related melanoma core genes and relevant immune cell subtypes, which may be used in targeted therapy and immunotherapy of melanoma.
Collapse
Affiliation(s)
- Jia-An Zhang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Xu-Yue Zhou
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Dan Huang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Chao Luan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Heng Gu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Mei Ju
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Kun Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| |
Collapse
|
204
|
Decreased Expression of CPEB3 Predicts a Poor Prognosis in Patients with Melanoma: A Study Based on TCGA Data. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8197936. [PMID: 33506034 PMCID: PMC7815395 DOI: 10.1155/2021/8197936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022]
Abstract
Aim Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) has been acknowledged as a tumor-suppressive gene in several cancers; however, there are few reports on the clinical significance of CPEB3 in melanoma. The aim of this study was to investigate the role of CPEB3 in predicting the prognosis of melanoma patients. Methods The association of CPEB3 expression and clinical pathologic features was performed using The Cancer Genome Atlas (TCGA) data set. The role of CPEB3 expression in prognosis was also analyzed. In addition, CPEB3 expression-related pathways were enriched by gene set enrichment analysis (GSEA). Association analysis of CPEB3 gene expression and immune infiltration was performed by ssGSEA. Results The mRNA was significantly less in melanoma than in normal tissues (p < 0.001). The decrease in CPEB3 expression in melanoma was significantly correlated with T staging (p < 0.001), clinical staging (p = 0.029), melanoma Clark level (p = 0.014), and melanoma ulceration (p = 0.003), while it was marginally significant in N staging (p = 0.089). Melanoma with low CPEB3 expression was associated with worse OS (overall survival), progression-free survival (PFS), and disease-specific survival (DSS) than in that with high expression. In the univariate analysis, expression of CPEB3, melanoma ulceration, Clark level of melanoma, age, clinical stage, T stage, and N stage were correlated with OS (p < 0.05). Further analysis by multivariate Cox regression showed that N stage (p = 0.029), melanoma ulceration (p = 0.004), and CPEB3 expression (p < 0.001) were independent prognostic factors of OS in melanoma. Moreover, GSEA showed that several pathways were enriched in CPEB3, such as PD1 signaling, CTLA4 pathway, CTCF pathway, CHEMOKIN signaling, VEGF signaling, and JAK-STAT pathway. CPEB3 was significantly correlated with the infiltration level of B cells (p < 0.001), T cells (p < 0.001), T helper cells (p < 0.001), and central memory T (Tcm) cells (p < 0.001). Conclusion CPEB3 may be a potential prognostic marker in melanoma with poor survival. Moreover, PD1 signaling, CTLA4 pathway, CTCF pathway, CHEMOKIN signaling, VEGF signaling, and JAK-STAT pathway may be the key pathway regulated by CPEB3. Moreover, the expression of CPEB3 in melanoma is related to the level of immune infiltration.
Collapse
|
205
|
Discovery of a new molecule inducing melanoma cell death: dual AMPK/MELK targeting for novel melanoma therapies. Cell Death Dis 2021; 12:64. [PMID: 33431809 PMCID: PMC7801734 DOI: 10.1038/s41419-020-03344-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
In the search of biguanide-derived molecules against melanoma, we have discovered and developed a series of bioactive products and identified the promising new compound CRO15. This molecule exerted anti-melanoma effects on cells lines and cells isolated from patients including the ones derived from tumors resistant to BRAF inhibitors. Moreover, CRO15 was able to decrease viability of cells lines from a broad range of cancer types. This compound acts by two distinct mechanisms. First by activating the AMPK pathway induced by a mitochondrial disorder. Second by inhibition of MELK kinase activity, which induces cell cycle arrest and activation of DNA damage repair pathways by p53 and REDD1 activation. All of these mechanisms activate autophagic and apoptotic processes resulting in melanoma cell death. The strong efficacy of CRO15 to reduce the growth of melanoma xenograft sensitive or resistant to BRAF inhibitors opens interesting perspective.
Collapse
|
206
|
Simeone E, Scognamiglio G, Capone M, Giannarelli D, Grimaldi AM, Mallardo D, Madonna G, Curvietto M, Esposito A, Sandomenico F, Sabbatino F, Bayless NL, Warren S, Ong S, Botti G, Flaherty KT, Ferrone S, Ascierto PA. A monocentric phase I study of vemurafenib plus cobimetinib plus PEG-interferon (VEMUPLINT) in advanced melanoma patients harboring the V600BRAF mutation. J Transl Med 2021; 19:17. [PMID: 33407577 PMCID: PMC7789377 DOI: 10.1186/s12967-020-02680-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Studies carried out in vitro and in a mouse model have shown that BRAF inhibitors enhance the effects of IFN-α on BRAFV600E melanoma cells through the inhibition of ERK. Therefore, the combination of vemurafenib and IFN-α in patients with BRAFV600E melanoma may provide therapeutic benefits; MEK inhibition may prevent the reactivation of the MAPK pathway induced by BRAF inhibitor resistance. PATIENTS AND METHODS In a phase I study, adult patients with advanced BRAFV600-mutated melanoma were treated with vemurafenib + PEG-IFN-α-2b or vemurafenib + cobimetinib + PEG-IFN-α-2b, to assess the safety of the combination and the upregulation of IFN-α/β receptor-1 (IFNAR1). RESULTS Eight patients were treated; 59 adverse events with four serious ones (three related to study treatments) were reported. Patients with a pre-treatment IFNAR1 expression on ≤ 35% melanoma cells had a median progression-free survival of 12.0 months (range: 5.6-18.4 months) and a median overall survival of 31.0 months (range: 19.8-42.2 months), while patients with a pre-treatment IFNAR1 expression on > 35% of melanoma cells had a median progression-free survival of 4.0 months (range: 0-8.8; p = 0.03), and a median overall survival of 5 months (p = 0.02). Following treatment, responders had higher levels of growth-suppressor genes, including GAS1 and DUSP1, and genes involved in a metabolically robust immune response, including FAP. CONCLUSION Our study supports the overall safety of the vemurafenib + PEG-IFN-α-2b + cobimetinib combination. IFNAR1 expression levels correlated with response to treatment, including survival. Vemurafenib + PEG-IFN-α-2b + cobimetinib would have difficulty finding a niche in the current treatment scenario for advanced melanoma, but we speculate that our findings may contribute to identify subjects particularly responsive to treatment. TRIAL REGISTRATION The study was registered at clinicaltrials.gov (NCT01959633). Registered 10 October 2013, https://clinicaltrials.gov/ct2/show/NCT01959633.
Collapse
Affiliation(s)
- Ester Simeone
- Istituto Nazionale Tumori–IRCCS–Fondazione G Pascale, Naples, Italy
| | | | | | | | | | | | - Gabriele Madonna
- Istituto Nazionale Tumori–IRCCS–Fondazione G Pascale, Naples, Italy
| | | | - Assunta Esposito
- Istituto Nazionale Tumori–IRCCS–Fondazione G Pascale, Naples, Italy
| | | | | | | | | | - SuFey Ong
- NanoString Technologies, Seattle, WA USA
| | - Gerardo Botti
- Istituto Nazionale Tumori–IRCCS–Fondazione G Pascale, Naples, Italy
| | | | - Soldano Ferrone
- Massachusetts General Hospital Cancer Center, Boston, MA USA
| | | |
Collapse
|
207
|
Abstract
Cell migration is a critical process involved in morphogenesis, inflammation, and cancer metastasis. Wound healing assay is a simple, non-expensive, and highly reproducible method to study cancer cell migration in vitro. It is based on the observation that cells growing in a monolayer migrate to re-establish cell contacts after the development of an artificial wound. The assay involves creation of a wound in a monolayer, image acquisition during wound closure, and comparison of migrated area at initial and final time points.
Collapse
Affiliation(s)
- Juliano T Freitas
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Ivan Jozic
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Barbara Bedogni
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
208
|
Abstract
Since the first resection of melanoma by Hunter in 1787, efforts to treat patients with this deadly malignancy have been ongoing. Initial work to understand melanoma biology for therapeutics development began with the employment of isolated cancer cells grown in cell cultures. However, these models lack in vivo interactions with the tumor microenvironment. Melanoma cell line transplantation into suitable animals such as mice has been informative and useful for testing therapeutics as a preclinical model. Injection of freshly isolated patient melanomas into immunodeficient animals has shown the capacity to retain the genetic heterogeneity of the tumors, which is lost during the long-term culture of melanoma cells. Upon advancement of technology, genetically engineered animals have been generated to study the spontaneous development of melanomas in light of newly discovered genetic aberrations associated with melanoma formation. Culturing melanoma cells in a matrix generate tumor spheroids, providing an in vitro environment that promotes the heterogeneity commonplace with human melanoma and displaces the need for animal care facilities. Advanced 3D cultures have been created simulating the structure and cellularity of human skin to permit in vitro testing of therapeutics on melanomas expressing the same phenotype as demonstrated in vivo. This review will discuss these models and their relevance to the study of melanomagenesis, growth, metastasis, and therapy.
Collapse
Affiliation(s)
- Randal K Gregg
- Department of Basic Medical Sciences, DeBusk College of Osteopathic Medicine at Lincoln Memorial University-Knoxville, Knoxville, TN, USA.
| |
Collapse
|
209
|
Wang M, Rao J, Wang M, Li X, Liu K, Naylor MF, Nordquist RE, Chen WR, Zhou F. Cancer photo-immunotherapy: from bench to bedside. Theranostics 2021; 11:2218-2231. [PMID: 33500721 PMCID: PMC7797676 DOI: 10.7150/thno.53056] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Targeted therapy and immunotherapy in combination is considered the ideal strategy for treating metastatic cancer, as it can eliminate the primary tumors and induce host immunity to control distant metastases. Phototherapy, a promising targeted therapy, eradicates primary tumors using an appropriate dosage of focal light irradiation, while initiating antitumor immune responses through induced immunogenic tumor cell death. Recently, phototherapy has been employed to improve the efficacy of immunotherapies such as chimeric antigen receptor T-cell therapy and immune checkpoint inhibitors. Phototherapy and immunoadjuvant therapy have been used in combination clinically, wherein the induced immunogenic cell death and enhanced antigen presentation synergy, inducing a systemic antitumor immune response to control residual tumor cells at the treatment site and distant metastases. This review summarizes studies on photo-immunotherapy, the combination of phototherapy and immunotherapy, especially focusing on the development and progress of this unique combination from a benchtop project to a promising clinical therapy for metastatic cancer.
Collapse
Affiliation(s)
- Miao Wang
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Jie Rao
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Meng Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaosong Li
- Department of Oncology, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
| | - Kaili Liu
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | | | - Robert E. Nordquist
- Immunophotonics, Inc., 4320 Forest Park Ave., #303 (BAL), St. Louis, MO 63108, USA
| | - Wei R. Chen
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Feifan Zhou
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
210
|
Zhang Y, Hao S, Gao Y, Sun W, Li Y. Decoding Immune Heterogeneity of Melanoma and identifying immune-prognostic hub genes. J Cancer 2021; 12:703-716. [PMID: 33403028 PMCID: PMC7778557 DOI: 10.7150/jca.50277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
Melanoma is an aggressive skin cancer that has gained attention worldwide. Growing evidence has highlighted that the tumor microenvironment (TME) is an important feature of carcinogenesis and contributes to therapeutic efficacy in melanoma. However, additional advances in melanoma immuno-oncology are necessary to achieve a comprehensive knowledge of the immune infiltrate population and to identify accurate and readily measurable biomarkers. In this study, we analyzed gene expression of 468 melanoma cases from the TCGA database, which led to the identification of three melanoma clusters (representedby low, median and high infiltration) that display unique immune features. We found that the microenvironment clusters had substantial prognostic efficacy. The median cluster was characterized by an inability to draw immune cells, highlighting possible immune escape mechanisms, and lower CXCL9 and CXCL10 expression, which was correlated to poor prognosis. Deep molecular characterization of immune cells, cytolytic-activity and tumor-inflammatory status revealed diversity of the local immune infiltration landscape in the melanoma clusters. Differentially expressed genes related to TME were extracted from each infiltration cluster. Functional annotations revealed that these genes were mainly related to immune system activation and the processes of immunoreaction. The top ten hub genes in immune infiltration-related protein-protein interaction (PPI) networks were selected for further prognostic investigation. Further validation showed that five of ten hub genes were good prognostic biomarkers for melanoma in two independent groups from the Gene Expression Omnibus database. In brief, these data highlight that systemic characterization of melanoma could uncover tumor infiltrate characteristics, which can help select the most adequate treatment and identify consistent and important indicators of the local immune tumor microenvironment in melanoma patients.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, No.248 Xuefu Road, Nangang District, Harbin. 150081, P. R. China
| | - Siyu Hao
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, No.248 Xuefu Road, Nangang District, Harbin. 150081, P. R. China
| | - Yingli Gao
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, No.248 Xuefu Road, Nangang District, Harbin. 150081, P. R. China
| | - Weina Sun
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, No.248 Xuefu Road, Nangang District, Harbin. 150081, P. R. China
| | - Yuzhen Li
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, No.248 Xuefu Road, Nangang District, Harbin. 150081, P. R. China
| |
Collapse
|
211
|
Identification of robust reference genes for studies of gene expression in FFPE melanoma samples and melanoma cell lines. Melanoma Res 2020; 30:26-38. [PMID: 31567589 PMCID: PMC6940030 DOI: 10.1097/cmr.0000000000000644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Supplemental Digital Content is available in the text. There is an urgent need for novel diagnostic melanoma biomarkers that can predict increased risk of metastasis at an early stage. Relative quantification of gene expression is the preferred method for quantitative validation of potential biomarkers. However, this approach relies on robust tissue-specific reference genes. In the melanoma field, this has been an obstacle due to lack of validated reference genes. Accordingly, we aimed to identify robust reference genes for normalization of gene expression in melanoma. The robustness of 24 candidate reference genes was evaluated across 80 formalin-fixed paraffin-embedded melanomas of different thickness, −/+ ulceration, −/+ reported cases of metastases and of different BRAF mutation status using quantitative real-time PCR. The expression of the same genes and their robustness as normalizers was furthermore evaluated across a number of melanoma cell lines. We show that housekeeping genes like GAPDH do not qualify as stand-alone normalizers of genes expression in melanoma. Instead, we have as the first identified a panel of robust reference genes for normalization of gene expression in melanoma tumors and cultured melanoma cells. We recommend using a geometric mean of the expression of CLTA, MRPL19 and ACTB for normalization of gene expression in melanomas and a geometric mean of the expression of CASC3 and RPS2 for normalization of gene expression in melanoma cell lines. Normalization, according to our recommendation will allow for quantitative validation of potential novel melanoma biomarkers by quantitative real-time PCR.
Collapse
|
212
|
Zhao B, Xie J, Zhou X, Zhang L, Cheng X, Liang C. YAP activation in melanoma contributes to anoikis resistance and metastasis. Exp Biol Med (Maywood) 2020; 246:888-896. [PMID: 33307801 DOI: 10.1177/1535370220977101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Melanoma is inherently heterogeneous, providing resistance to apoptosis. Anoikis resistance is a hallmark feature of metastatic melanoma to escape apoptosis when cells lose contact with adjacent cells or extracellular matrix. The yes-associated protein transcription co-activator is the effector of Hippo pathway. Herein, we investigated the function of yes-associated protein in anoikis resistance of melanoma cells. When melanoma cells were grown under anchorage-independent condition, anoikis-resistant cells displayed higher levels of yes-associated protein activation than the cells that were attached to the basement membrane, as evidenced by downregulated phosphorylated yes-associated protein at Ser127 and higher expression of downstream genes BCL2 and MCL-1. Yes-associated protein overexpression directly enhanced the anoikis resistance and metastatic potential of melanoma cells. Conversely, yes-associated protein inhibitor CA3 exhibited Dose-dependent induction of anoikis in resistant melanoma cells and exerted great inhibition on cell migration. Knockdown of yes-associated protein expression by shRNA also rendered melanoma cells susceptible to anoikis and interrupted cell invasiveness. Yes-associated protein inhibition in anoikis-resistant cells also reduced the number of metastatic nodules in the lung sections of SCID mice. Clinically, higher yes-associated protein level in the lung metastasis tissues correlated with higher BCL2 and MCL1 expressions compared with the non-metastasis tissues. Overall, our finding suggests that the aberrant activation of yes-associated protein exerts important role on anoikis resistance and metastatic capability of melanoma cells.
Collapse
Affiliation(s)
- Bei Zhao
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Jun Xie
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Xiyuan Zhou
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Lixia Zhang
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Xiankui Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Chenglin Liang
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| |
Collapse
|
213
|
Abstract
HSP90 (heat shock protein 90) is an ATP-dependent molecular chaperone involved in a proper folding and maturation of hundreds of proteins. HSP90 is abundantly expressed in cancer, including melanoma. HSP90 client proteins are the key oncoproteins of several signaling pathways controlling melanoma development, progression and response to therapy. A number of natural and synthetic compounds of different chemical structures and binding sites within HSP90 have been identified as selective HSP90 inhibitors. The majority of HSP90-targeting agents affect N-terminal ATPase activity of HSP90. In contrast to N-terminal inhibitors, agents interacting with the middle and C-terminal domains of HSP90 do not induce HSP70-dependent cytoprotective response. Several inhibitors of HSP90 were tested against melanoma in pre-clinical studies and clinical trials, providing evidence that these agents can be considered either as single or complementary therapeutic strategy. This review summarizes current knowledge on the role of HSP90 protein in cancer with focus on melanoma, and provides an overview of structurally different HSP90 inhibitors that are considered as potential therapeutics for melanoma treatment.
Collapse
Affiliation(s)
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
214
|
Dammeijer F, van Gulijk M, Mulder EE, Lukkes M, Klaase L, van den Bosch T, van Nimwegen M, Lau SP, Latupeirissa K, Schetters S, van Kooyk Y, Boon L, Moyaart A, Mueller YM, Katsikis PD, Eggermont AM, Vroman H, Stadhouders R, Hendriks RW, Thüsen JVD, Grünhagen DJ, Verhoef C, van Hall T, Aerts JG. The PD-1/PD-L1-Checkpoint Restrains T cell Immunity in Tumor-Draining Lymph Nodes. Cancer Cell 2020; 38:685-700.e8. [PMID: 33007259 DOI: 10.1016/j.ccell.2020.09.001] [Citation(s) in RCA: 332] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/28/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Abstract
PD-1/PD-L1-checkpoint blockade therapy is generally thought to relieve tumor cell-mediated suppression in the tumor microenvironment but PD-L1 is also expressed on non-tumor macrophages and conventional dendritic cells (cDCs). Here we show in mouse tumor models that tumor-draining lymph nodes (TDLNs) are enriched for tumor-specific PD-1+ T cells which closely associate with PD-L1+ cDCs. TDLN-targeted PD-L1-blockade induces enhanced anti-tumor T cell immunity by seeding the tumor site with progenitor-exhausted T cells, resulting in improved tumor control. Moreover, we show that abundant PD-1/PD-L1-interactions in TDLNs of nonmetastatic melanoma patients, but not those in corresponding tumors, associate with early distant disease recurrence. These findings point at a critical role for PD-L1 expression in TDLNs in governing systemic anti-tumor immunity, identifying high-risk patient groups amendable to adjuvant PD-1/PD-L1-blockade therapy.
Collapse
Affiliation(s)
- Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Mandy van Gulijk
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Evalyn E Mulder
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Melanie Lukkes
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Larissa Klaase
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sai Ping Lau
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Kitty Latupeirissa
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sjoerd Schetters
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Louis Boon
- Polpharma Biologics, Utrecht, the Netherlands
| | - Antien Moyaart
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Heleen Vroman
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jan von der Thüsen
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Dirk J Grünhagen
- Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Cornelis Verhoef
- Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| | - Joachim G Aerts
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
215
|
Xia Y, Zhao J, Yang C. Identification of key genes and pathways for melanoma in the TRIM family. Cancer Med 2020; 9:8989-9005. [PMID: 33118318 PMCID: PMC7724299 DOI: 10.1002/cam4.3545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/27/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Certain members of the TRIM family have been shown to have abnormal expression and prognostic value in cancer. However, in the development and progression of melanoma, the role of different TRIM family members remains unknown. To address this issue, this study used the Oncomine, UCSC, Human Protein Atlas, DAVID, and GEPIA databases to study the role of TRIMs in the prognosis of melanoma. Differential expression of TRIM2, TRIM7, TRIM8, TRIM18 (MID1), TRIM19 (PML), TRIM27, and TRIM29 may play an important role in the development of melanoma. The expression TRIM7 and TRIM29 appeared to be helpful in the identification of primary tumors and metastases. Survival analysis suggested that the expression of TRIM27 significantly affected the overall survival and disease‐free survival of melanoma, and its expression was confirmed by qRT‐PCR. Our results indicated that the expression level of TRIM27 might be a prognostic marker of melanoma.
Collapse
Affiliation(s)
- YiJun Xia
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jun Zhao
- Department of Dermatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Chunjun Yang
- Department of Dermatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
216
|
Kumar-Sinha C, Anderson B, Heider A, Vo JN, Robinson DR, Wu YM, Chinnaiyan AM, Mody R. Clinical Sequencing of High-Grade Undifferentiated Sarcomas: A Case Series and Report of an Aggressive Primary Cardiac Tumor With Multiple Oncogenic Drivers. JCO Precis Oncol 2020; 4:PO.19.00322. [PMID: 33015523 PMCID: PMC7529506 DOI: 10.1200/po.19.00322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
- Chandan Kumar-Sinha
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Bailey Anderson
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Amer Heider
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Josh N. Vo
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Dan R. Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| | - Rajen Mody
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
217
|
Li D, Liu Y, Hao S, Chen B, Li A. Mining database for the clinical significance and prognostic value of CBX family in skin cutaneous melanoma. J Clin Lab Anal 2020; 34:e23537. [PMID: 32860274 PMCID: PMC7755763 DOI: 10.1002/jcla.23537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is one of the most aggressive malignancies with high invasiveness. Chromobox (CBX) family are involved in the regulation of the tumorigenesis, progression, invasion, and apoptosis of many malignancies. METHODS The clinical significance and prognostic value of CBX family in SKCM were analyzed via a series of databases, including ONCOMINE, GEPIA, UALCAN, TIMER, GSCALite, DAVID 6.8, GeneMANIA, and LinkedOmics. RESULTS We found that the level of CBX2, CBX3, CBX5, and CBX6 was upregulated while the level of CBX7 and CBX8 was downregulated in tumor tissues in SKCM. Moreover, the mRNA expression of CBX1 and CBX2 was significantly associated with the pathological stage in SKCM. Prognosis analysis revealed that SKCM patients with high CBX5 level and low CBX7 level had a poor prognosis. Immune infiltrations analysis revealed that the expression of CBX family was associated with the abundance of certain immune cells in SKCM. We also found that CBX family were associated with the activation of cell cycle pathway and DNA damage response, and the inhibition of apoptosis pathway. Moreover, enrichment analysis revealed that CBX family and correlated genes were enriched in chromatin modification, PcG protein complex, transcription coactivator activity, protein binding, and RNA splicing. Several Kinase targets (ATM, CDK1, and PLK1) and miRNA targets (MIR-331, MIR-296, and MIR-496) of CBX family were also identified. CONCLUSION Our study may uncover CBX family-associated molecular mechanisms involved in the tumorigenesis and progression of SKCM and provide additional choice for the prognosis and therapy biomarker for SKCM.
Collapse
Affiliation(s)
- Ding Li
- Integrated Chinese and Western Medicine Center, Qingdao University Medical College, Qingdao, China
| | - YiRan Liu
- The Third Institute of Clinical Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Shuai Hao
- Department of Traditional Chinese Medicine, Qingdao Huangdao District Central Hospital, Qingdao, China
| | - Bo Chen
- Department of Traditional Chinese Medicine, Qingdao Huangdao District Central Hospital, Qingdao, China
| | - AnHai Li
- Department of Dermatology, Qingdao Huangdao District Central Hospital, Qingdao, China
| |
Collapse
|
218
|
Yuan J, Dong X, Yap J, Hu J. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. J Hematol Oncol 2020; 13:113. [PMID: 32807225 PMCID: PMC7433213 DOI: 10.1186/s13045-020-00949-4] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is characterized as a complex disease caused by coordinated alterations of multiple signaling pathways. The Ras/RAF/MEK/ERK (MAPK) signaling is one of the best-defined pathways in cancer biology, and its hyperactivation is responsible for over 40% human cancer cases. To drive carcinogenesis, this signaling promotes cellular overgrowth by turning on proliferative genes, and simultaneously enables cells to overcome metabolic stress by inhibiting AMPK signaling, a key singular node of cellular metabolism. Recent studies have shown that AMPK signaling can also reversibly regulate hyperactive MAPK signaling in cancer cells by phosphorylating its key components, RAF/KSR family kinases, which affects not only carcinogenesis but also the outcomes of targeted cancer therapies against the MAPK signaling. In this review, we will summarize the current proceedings of how MAPK-AMPK signalings interplay with each other in cancer biology, as well as its implications in clinic cancer treatment with MAPK inhibition and AMPK modulators, and discuss the exploitation of combinatory therapies targeting both MAPK and AMPK as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Jimin Yuan
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Geriatric Department, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Xiaoduo Dong
- Shenzhen People's Hospital, 1017 Dongmen North Road, Shenzhen, 518020, China
| | - Jiajun Yap
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jiancheng Hu
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
| |
Collapse
|
219
|
Loss-of-function variants in FSIP1 identified by targeted sequencing are associated with one particular subtype of mucosal melanoma. Gene 2020; 759:144964. [PMID: 32717308 DOI: 10.1016/j.gene.2020.144964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/04/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mucosal melanoma is a tumor caused by the malignant transformation of pigment-producing cells and can arise from any mucosal tissue where melanocytes are present. Due to its rarity, the mucosal melanoma subtype is poorly described, and its genetic characteristics are infrequently studied. The discovery or confirmation of new mucosal melanoma susceptibility genes will provide important insights for the study of its pathogenesis. MATERIALS AND METHODS We performed deep targeted sequencing of 100 previously reported melanoma-related genes in 39 mucosal melanoma samples and a gene-level loss-of-function (LOF) variant enrichment analysis for mucosal melanoma from different incidence sites. RESULTS We detected 7,589 variants in these samples, and 484 were LOF variants (gain or loss of a stop codon, missense, and splice site). Four different gene-level enrichment analyses revealed that FSIP1 (fibrous sheath interacting protein 1) is a susceptibility gene for oral mucosal melanoma (OR = 0.33, PChi = 4.05 × 10-2, Pburden = 3.06 × 10-2, Pskat = 3.01 × 10-2, Pskato = 3.01 × 10-2), whereas the different methods did not detect a significant susceptibility gene for the other subtypes. CONCLUSIONS In our study, a susceptibility gene for oral mucosal melanoma was confirmed in a Chinese Han population, and these findings contribute to a better genetic understanding of mucosal melanoma of different subtypes.
Collapse
|
220
|
Lourenço GJ, Oliveira C, Carvalho BS, Torricelli C, Silva JK, Gomez GVB, Rinck-Junior JA, Oliveira WL, Vazquez VL, Serrano SV, Moraes AM, Lima CSP. Inherited variations in human pigmentation-related genes modulate cutaneous melanoma risk and clinicopathological features in Brazilian population. Sci Rep 2020; 10:12129. [PMID: 32699307 PMCID: PMC7376158 DOI: 10.1038/s41598-020-68945-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/04/2020] [Indexed: 01/29/2023] Open
Abstract
Ultraviolet light exposure and cutaneous pigmentation are important host risk factors for cutaneous melanoma (CM), and it is well known that inherited ability to produce melanin varies in humans. The study aimed to identify single-nucleotide variants (SNVs) on pigmentation-related genes with importance in risk and clinicopathological aspects of CM. The study was conducted in two stages. In stage 1, 103 CM patients and 103 controls were analyzed using Genome-Wide Human SNV Arrays in order to identify SNVs in pigmentation-related genes, and the most important SNVs were selected for data validation in stage 2 by real-time polymerase-chain reaction in 247 CM patients and 280 controls. ADCY3 c.675+9196T>G, CREB1 c.303+373G>A, and MITF c.938-325G>A were selected for data validation among 74 SNVs. Individuals with CREB1 GA or AA genotype and allele "A" were under 1.79 and 1.47-fold increased risks of CM than others, respectively. Excesses of CREB1 AA and MITF AA genotype were seen in patients with tumors at Clark levels III to V (27.8% versus 13.7%) and at III or IV stages (46.1% versus 24.9%) compared to others, respectively. When compared to others, patients with ADCY3 TT had 1.89 more chances of presenting CM progression, and those with MITF GA or AA had 2.20 more chances of evolving to death by CM. Our data provide, for the first time, preliminary evidence that inherited abnormalities in ADCY3, CREB1, and MITF pigmentation-related genes, not only can increase the risk to CM, but also influence CM patients' clinicopathological features.
Collapse
Affiliation(s)
- Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Cristiane Oliveira
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Benilton Sá Carvalho
- Department of Statistics, Institute of Mathematics, Statistic, and Computer Science, University of Campinas, Campinas, São Paulo, Brazil
| | - Caroline Torricelli
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Janet Keller Silva
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Gabriela Vilas Bôas Gomez
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - José Augusto Rinck-Junior
- Clinical Oncology Service, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Rua Alexander Fleming, 181, Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil
- A.C. Camargo Cancer Center, São Paulo, São Paulo, Brazil
| | - Wesley Lima Oliveira
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Vinicius Lima Vazquez
- Melanoma and Sarcoma Surgery Department, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | - Aparecida Machado Moraes
- Clinical Oncology Service, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Rua Alexander Fleming, 181, Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil
| | - Carmen Silvia Passos Lima
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil.
- Clinical Oncology Service, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Rua Alexander Fleming, 181, Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil.
| |
Collapse
|
221
|
Effectiveness of Educational Practices in University Students' Knowledge about Sun Protection and Its Relation to Sunlight Exposure: An Exploratory Study in a Portuguese Higher Education Institution. Eur J Investig Health Psychol Educ 2020; 10:720-732. [PMID: 34542507 PMCID: PMC8314291 DOI: 10.3390/ejihpe10030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 11/17/2022] Open
Abstract
Nowadays, there is worldwide recognition that health and educational outcomes are inextricably linked. It is also recognized that health education comprises opportunities to improve health literacy, including the improvement of knowledge and the development of life skills to promote individual health. It is also known that the behavioral practices regarding sun exposure are an important risk factor for skin cancer. Research is needed in this area to understand the contribution of the "Education for Health" curricular unit to these issues. Our exploratory research sought to collect information about the knowledge and practices regarding sun exposure of a group of Portuguese university students who have already attended this curricular unit. The results indicate that the participants show that, notwithstanding that they have already attended this curricular unit, they do not have more literacy on skin health, do not perceive that sun exposure habits are related to skin health and do not perceive that photoprotection constitutes prevention of skin cancer. The results support the need to promote the necessary reflection and debate on the way in which health education should be taught, as well as what is taught, in order to empower students to get decision-making skills associated with the adoption of healthier attitudes and practices, thus helping to prevent skin cancer.
Collapse
|
222
|
Guo L, Qi J, Wang H, Jiang X, Liu Y. Getting under the skin: The role of CDK4/6 in melanomas. Eur J Med Chem 2020; 204:112531. [PMID: 32712436 DOI: 10.1016/j.ejmech.2020.112531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 02/08/2023]
Abstract
Melanoma is the deadliest type of cancer that affects the largest organ of our body, the skin. In recent years, there is an increase in the incidence and aggressiveness of melanomas. The number of treatment options has grown considerably in the past few years, leading to significant improvements in both overall and progression-free survival. One of the attractive candidates in this wave of treatment options is a cell cycle controller: cyclin-dependent kinases (CDK) 4/6 inhibitors. CDK4/6, a class of serine/threonine kinases expressed in most cell types, controls the first gap phase (G1 to S) of the cell cycle, indicating its vital importance in both normal cellular processes as well as tumorigenesis. Up to 90% of melanoma patients have genomic mutations affecting various parts of CDK4/6 pathway. Noticeably, with the help of next-generation sequencing technology, mutations with high frequency in the CDK4 pathway were also identified in relatively rare subtypes of melanoma including acral melanoma and mucosal melanoma. Therefore, CDK4/6 inhibitors have emerged as powerful and promising anticancer therapies, especially in combination treatment with immunotherapies or other targeted therapies. In this review, we will provide an overview of current scientific knowledge regarding the oncogenic properties of CDK4/6 in melanomas, we mainly discuss the latest genomic and preclinical findings of CDK4 signaling in melanoma, the progress of CDK4 inhibition as combined with other therapies for overcoming resistance and summarize recent advances from clinical trials as well as ongoing studies which gives us a better scope into the effectiveness of CDK4/6 therapy in treating malignant melanomas.
Collapse
Affiliation(s)
- Linghong Guo
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine, Animal Research Institute, Sichuan University, Chengdu, China; Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China; Department of Dermatology, The First People's Hospital of Zigong, Zigong, China; Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, China.
| | - Jinxin Qi
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China.
| | - Han Wang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China.
| | - Yin Liu
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine, Animal Research Institute, Sichuan University, Chengdu, China; Department of Dermatology, The First People's Hospital of Zigong, Zigong, China; Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, China; Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
223
|
Abstract
Ca2+ is a ubiquitous and dynamic second messenger molecule that is induced by many factors including receptor activation, environmental factors, and voltage, leading to pleiotropic effects on cell function including changes in migration, metabolism and transcription. As such, it is not surprising that aberrant regulation of Ca2+ signals can lead to pathological phenotypes, including cancer progression. However, given the highly context-specific nature of Ca2+-dependent changes in cell function, delineation of its role in cancer has been a challenge. Herein, we discuss the distinct roles of Ca2+ signaling within and between each type of cancer, including consideration of the potential of therapeutic strategies targeting these signaling pathways.
Collapse
Affiliation(s)
- Scott Gross
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Pranava Mallu
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hinal Joshi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Christina Go
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Department of Medical Genetics & Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
224
|
Iron Oxide/Salicylic Acid Nanoparticles as Potential Therapy for B16F10 Melanoma Transplanted on the Chick Chorioallantoic Membrane. Processes (Basel) 2020. [DOI: 10.3390/pr8060706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Unfavorable prognoses and low survival rates are specific features of metastatic melanoma that justify the concern for the development of new therapeutic strategies. Lately, nanotechnology has become an attractive field of study due to recent advances in nanomedicine. Using a chick chorioallantoic membrane (CAM) implanted with xenografts harvested from C57BL/6 mice with B16F10 melanoma cells, we studied the effects of iron oxide nanoparticles functionalized with salicylic acid (SaMNPs) as a form of therapy on the local development of xenotransplants and CAM vessels. The SaMNPs induced an anti-angiogenic effect on the CAM vessels, which accumulated preferentially in the melanoma cells and induced apoptosis and extensive xenograft necrosis. As a result, this slowed the increase in the xenograft volume and reduced the melanoma cells’ ability to metastasize locally and distally. Further, we demonstrate the use of the chick CAM model as a tool for testing the action of newly synthesized nanocomposites on melanoma xenotransplants. The SaMNPs had a therapeutic effect on B16F10 melanoma due to the synergistic action of the two components of its structure: the coating of the salicylic acid with antiangiogenic and chemotherapeutic action and the core of iron oxides with cytotoxic action.
Collapse
|
225
|
Gazzi RP, Frank LA, Onzi G, Pohlmann AR, Guterres SS. New pectin-based hydrogel containing imiquimod-loaded polymeric nanocapsules for melanoma treatment. Drug Deliv Transl Res 2020; 10:1829-1840. [PMID: 32562254 DOI: 10.1007/s13346-020-00805-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We developed a pectin-based hydrogel containing nanocapsules as a new strategy for melanoma treatment. Our first objective was to evaluate the nanoencapsulation effect of imiquimod on melanoma. Imiquimod-loaded polymeric nanocapsules (NCimiq) showed significant time-dependent decrease in cell viability after treatment at 3 μmol L-1 (79% viable cells in 24 h and 55% in 72 h), which was not observed in cells treated with the solution of the drug (IMIQ) (99% viable cells in 24 h and 91% in 72 h). The second objective was to develop the hydrogel containing the drug-loaded nanocapsules (PEC-NCimiq). In vitro release study showed that 63% of imiquimod was released from the pectin-based hydrogel containing the drug (PEC-imiq) after 2 h, while 60% of the drug was released from PEC-NCimiq after 8 h. In the permeation study, 2.5 μg of imiquimod permeated the skin within 8 h after the initial contact of PEC-NCimiq, whereas only 2.1 μg of drug permeated after 12 h of contact when PEC-imiq was assayed. Pectin-based hydrogels enabled the drug penetration in all skin layers, especially the dermis (PEC-NCimiq = 6.8 μg and PEC-imiq = 4.3 μg). In the adhesion study, PEC-NCimiq showed the highest adhesiveness (42% removed from the skin) in comparison to PEC-imiq (71% removed from the skin). In conclusion, the nanoencapsulation provided a higher cytotoxic effect of imiquimod in SK-MEL-28, and the incorporation of the drug-loaded nanocapsules in pectin-based hydrogel showed higher adhesiveness and deeper penetration of the drug into the skin. Graphical abstract.
Collapse
Affiliation(s)
- R P Gazzi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - L A Frank
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - G Onzi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - A R Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de QuímicaOrgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Silvia S Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. .,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752/405 CEP, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
226
|
Li T, Gu M, Deng A, Qian C. Increased expression of YTHDF1 and HNRNPA2B1 as potent biomarkers for melanoma: a systematic analysis. Cancer Cell Int 2020; 20:239. [PMID: 32549786 PMCID: PMC7294677 DOI: 10.1186/s12935-020-01309-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
Background The incidence and mortality of melanoma is increasing around the world. To deeply explain the mechanism insight into it, we conducted a systematic analysis to examine the levels of regulatory genes of the common RNA epigenetic modification-N6-methyladenosine (m6A) in patients with melanoma compared by the healthy. Methods We analyzed the expression of m6A Eraser, Writer, and Reader genes based on publicly available datasets on Oncomine and validated the results with a gene expression omnibus dataset. Hub genes were identified with Cytohubba and the frequency of copy number alterations was analyzed with the cBioPortal tool. Results The results revealed the up-regulation of YTHDF1 and HNRNPA2B1 in melanoma. Combining the two genes improved the efficacy in diagnosing melanoma by about 10% compared to each gene alone. Hub genes identified with four analysis methods were compared and the overlapping genes were selected. These genes were enriched in several gene ontology terms. Genes related to p53-signaling consisted of CDK2, CDK1, RRM2, CCNB1, and CHEK1. All five genes were positively correlated with either YTHDF1 or HNRNPA2B1, suggesting that both genes may affect m6A modification by the five genes, further up-regulating their expression and facilitate their roles in inhibiting p53 to suppress tumorigenesis. We also observed major mutations in YTHDF1 and HNRNPA2B1 that led to their amplification in melanoma. Significant differences were observed in the clinical characteristics of patients with altered and unaltered m6A regulatory genes such as tumor stage and treatment response. Conclusions We, for the first time, identified a combination of m6A regulatory genes to diagnose melanoma. We also analyzed m6A-related genes more comprehensively based on systematic complete data. We found that YTHDF1 and HNRNPA2B1 were altered in melanoma and might influence the development of the disease through signaling pathways such as p53.
Collapse
Affiliation(s)
- Tengda Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Mingli Gu
- Department of Laboratory Diagnosis, Changhai Hospital, The Second Military Medical University, Shanghai, 200433 China
| | - Anmei Deng
- Changhai Hospital, The Second Military Medical University, Shanghai, 200433 China
| | - Cheng Qian
- Department of Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071 China
| |
Collapse
|
227
|
Liebl MC, Hofmann TG. Identification of responders to immune checkpoint therapy: which biomarkers have the highest value? J Eur Acad Dermatol Venereol 2020; 33 Suppl 8:52-56. [PMID: 31833606 DOI: 10.1111/jdv.15992] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022]
Abstract
Evasion of immune recognition by the innate and acquired immune system is a major principle of tumour cells and belongs to the hallmarks of cancer. Immune checkpoint inhibitor-based cancer therapies targeting the co-inhibitory receptors CTLA-4 or PD-1 have received enormous scientific and clinical attention during the last few years, because of promising clinical results observed in the treatment of different cancer entities including melanoma and cutaneous squamous cell carcinoma. However, the enthusiasm about the effects of the immune checkpoint inhibitors is muted as only a subfraction of patients shows a stable clinical response. To predefine the patient cohorts that may benefit from immune checkpoint therapy, rigorous biomarker analyses, which predict the response to these novel therapies, need to be performed. In addition, combination of immune checkpoint therapy with classical DNA-damaging chemotherapy or radiotherapy, which positively affects tumour neo-antigen presentation, appears to be a promising approach in optimizing patients' response. In this review, we briefly summarize important biomarkers for patient stratification and discuss the current limitations of these biomarkers in defining responders vs. non-responders to immune checkpoint therapy.
Collapse
Affiliation(s)
- M C Liebl
- Institute of Toxicology, University Medical Center Mainz at the Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - T G Hofmann
- Institute of Toxicology, University Medical Center Mainz at the Johannes Gutenberg, University of Mainz, Mainz, Germany
| |
Collapse
|
228
|
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 2020; 47:4587-4629. [PMID: 32333246 PMCID: PMC7295848 DOI: 10.1007/s11033-020-05435-1] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Given that the PI3K/AKT pathway has manifested its compelling influence on multiple cellular process, we further review the roles of hyperactivation of PI3K/AKT pathway in various human cancers. We state the abnormalities of PI3K/AKT pathway in different cancers, which are closely related with tumorigenesis, proliferation, growth, apoptosis, invasion, metastasis, epithelial-mesenchymal transition, stem-like phenotype, immune microenvironment and drug resistance of cancer cells. In addition, we investigated the current clinical trials of inhibitors against PI3K/AKT pathway in cancers and found that the clinical efficacy of these inhibitors as monotherapy has so far been limited despite of the promising preclinical activity, which means combinations of targeted therapy may achieve better efficacies in cancers. In short, we hope to feature PI3K/AKT pathway in cancers to the clinic and bring the new promising to patients for targeted therapies.
Collapse
Affiliation(s)
- Ningni Jiang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Qijie Dai
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
229
|
Wang MZ, Niu J, Ma HJ, Dad HA, Shao HT, Yuan TJ, Peng LH. Transdermal siRNA delivery by pH-switchable micelles with targeting effect suppress skin melanoma progression. J Control Release 2020; 322:95-107. [DOI: 10.1016/j.jconrel.2020.03.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/29/2020] [Accepted: 03/16/2020] [Indexed: 01/29/2023]
|
230
|
Hallajzadeh J, Amirani E, Mirzaei H, Shafabakhsh R, Mirhashemi SM, Sharifi M, Yousefi B, Mansournia MA, Asemi Z. Circular RNAs: new genetic tools in melanoma. Biomark Med 2020; 14:563-571. [PMID: 32462914 DOI: 10.2217/bmm-2019-0567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Melanoma is the most lethal form of skin cancer. New technologies have resulted in major advances in the diagnosis and treatment of melanoma and other cancer types. Recently, some studies have investigated the role of circular RNAs (circRNAs) in different cancers. CircRNAs are a member of long noncoding RNA family mainly formed through back-splicing and have a closed-loop structure. These molecules affect several biological and oncogenic cascades in diverse ways via acting as microRNA sponge, interacting with RNA-binding proteins and acting as a transcription regulator. In this review, we made an insight into the impact of circRNA dysregulation in the melanoma tumorigenesis based on the presented evidences.
Collapse
Affiliation(s)
- Jamal Hallajzadeh
- Department of Biochemistry & Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Elaheh Amirani
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyyed M Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehran Sharifi
- Department of Hematology & Oncology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Mansournia
- Department of Epidemiology & Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
231
|
Aira LE, Debes GF. B Cells and Melanoma Pathogenesis. J Invest Dermatol 2020; 139:1422-1424. [PMID: 31230637 DOI: 10.1016/j.jid.2019.03.1131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Melanoma is one of the deadliest cancers. In this issue, Kobayashi et al. (2019) demonstrate a novel role for tumor-infiltrating innate-like B1a B cells in promoting melanoma growth. IL-10+ (B1a) regulatory B cells accumulate selectively in melanomas, and enhance tumor growth through suppression of cytokine production by tumor-infiltrating CD8+ T cells and potentially additional IL-10-dependent mechanisms.
Collapse
Affiliation(s)
- Lazaro E Aira
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gudrun F Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
232
|
Barboza T, Gomes T, da Costa Medeiros P, Ramos IP, Francischetti I, Monteiro RQ, Gutfilen B, de Souza SAL. Development of 131I-ixolaris as a theranostic agent: metastatic melanoma preclinical studies. Clin Exp Metastasis 2020; 37:489-497. [PMID: 32394234 DOI: 10.1007/s10585-020-10036-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Tissue factor (TF), a blood coagulation protein, plays an important role in tumor growth, invasion, and metastasis. Ixolaris, a tick-derived non-immunogenic molecule that binds to TF, has demonstrated in vivo inhibitory effect on murine models of melanoma, including primary growth and metastasis. This work aimed to: I) develop an efficient and stable labeling technique of ixolaris with Iodine-131(131I); II) compare the biodistribution of 131I and 131I-ixolaris in tumor-free and melanoma-bearing mice; III) evaluate whether 131I-ixolaris could serve as an antimetastatic agent. Ixolaris radioiodination was performed using iodogen, followed by liquid paper chromatography. Labeling stability and anticoagulant activity were measured. Imaging studies were performed after intravenous administration of free 131I or 131I-ixolaris in a murine melanoma model employing the B16-F10 cell line. Animals were divided in three experimental groups: the first experimental group, D0, received a single-dose of 9.25 MBq of 131I-ixolaris at the same day the animals were inoculated with melanoma cells. In the second group, D15, a single-dose of 9.25 MBq of 131I-ixolaris or free 131I was applied into mice on the fifteenth day after the tumor induction. The third group, D1-D15, received two therapeutic doses of 9.25 MBq of 131I-ixolaris or 131I. In vitro studies demonstrated that 131I-ixolaris is stable for up to 24 h and retains its inhibitory activity on blood coagulation. Biodistribution analysis and metastasis assays showed that all treatment regimens with 131I-ixolaris were effective, being the double-treatment (D1/D15) the most effective one. Remarkably, treatment with free 131I showed no anti-metastatic effect. 131I-ixolaris is a promising theranostic agent for metastatic melanoma.
Collapse
Affiliation(s)
- Thiago Barboza
- Departamento de Radiologia, Faculdade de Medicina, Laboratório de Marcação de Células E Moléculas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Tainá Gomes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Priscylla da Costa Medeiros
- Departamento de Radiologia, Faculdade de Medicina, Laboratório de Marcação de Células E Moléculas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isalira Peroba Ramos
- Centro Nacional de Bioimagem E Biologia Estrutural, Bloco M, Unidade 2, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ivo Francischetti
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, USA
| | - Robson Q Monteiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Bianca Gutfilen
- Departamento de Radiologia, Faculdade de Medicina, Laboratório de Marcação de Células E Moléculas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Sergio Augusto Lopes de Souza
- Departamento de Radiologia, Faculdade de Medicina, Laboratório de Marcação de Células E Moléculas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil. .,Centro Nacional de Bioimagem E Biologia Estrutural, Bloco M, Unidade 2, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil.
| |
Collapse
|
233
|
Lee JW, Ratnakumar K, Hung KF, Rokunohe D, Kawasumi M. Deciphering UV-induced DNA Damage Responses to Prevent and Treat Skin Cancer. Photochem Photobiol 2020; 96:478-499. [PMID: 32119110 DOI: 10.1111/php.13245] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022]
Abstract
Ultraviolet (UV) radiation is among the most prevalent environmental factors that influence human health and disease. Even 1 h of UV irradiation extensively damages the genome. To cope with resulting deleterious DNA lesions, cells activate a multitude of DNA damage response pathways, including DNA repair. Strikingly, UV-induced DNA damage formation and repair are affected by chromatin state. When cells enter S phase with these lesions, a distinct mutation signature is created via error-prone translesion synthesis. Chronic UV exposure leads to high mutation burden in skin and consequently the development of skin cancer, the most common cancer in the United States. Intriguingly, UV-induced oxidative stress has opposing effects on carcinogenesis. Elucidating the molecular mechanisms of UV-induced DNA damage responses will be useful for preventing and treating skin cancer with greater precision. Excitingly, recent studies have uncovered substantial depth of novel findings regarding the molecular and cellular consequences of UV irradiation. In this review, we will discuss updated mechanisms of UV-induced DNA damage responses including the ATR pathway, which maintains genome integrity following UV irradiation. We will also present current strategies for preventing and treating nonmelanoma skin cancer, including ATR pathway inhibition for prevention and photodynamic therapy for treatment.
Collapse
Affiliation(s)
- Jihoon W Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| | - Kajan Ratnakumar
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| | - Kai-Feng Hung
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Daiki Rokunohe
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masaoki Kawasumi
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
234
|
Efficient Suppression of NRAS-Driven Melanoma by Co-Inhibition of ERK1/2 and ERK5 MAPK Pathways. J Invest Dermatol 2020; 140:2455-2465.e10. [PMID: 32376279 DOI: 10.1016/j.jid.2020.03.972] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/24/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
Cutaneous melanoma is a highly malignant tumor typically driven by somatic mutation in the oncogenes BRAF or NRAS, leading to uncontrolled activation of the MEK/ERK MAPK pathway. Despite the availability of immunotherapy, MAPK pathway‒targeting regimens are still a valuable treatment option for BRAF-mutant melanoma. Unfortunately, patients with NRAS mutation do not benefit from such therapies owing to the lack of targetable BRAF mutations and a high degree of intrinsic and acquired resistance toward MEK inhibition. Here, we demonstrate that concomitant inhibition of ERK5 removes this constraint and effectively sensitizes NRAS-mutant melanoma cells for MAPK pathway‒targeting therapy. Using approved MEK inhibitors or a pharmacologic ERK inhibitor, we demonstrate that MAPK inhibition triggers a delayed activation of ERK5 through a PDGFR inhibitor-sensitive pathway in NRAS-mutant melanoma cells, resulting in sustained proliferation and survival. ERK5 phosphorylation also occurred naturally in NRAS-mutant melanoma cells and correlated with nuclear localization of its stem cell-associated effector KLF2. Importantly, MEK/ERK5 co-inhibition prevented long-term growth of human NRAS-mutant melanoma cells in vitro and effectively repressed tumor progression in a xenotransplant mouse model. Our findings suggest MEK/ERK5 cotargeting as a potential treatment option for NRAS-mutant melanoma, which currently is not amenable for targeted therapies.
Collapse
|
235
|
Ugurel S, Röhmel J, Ascierto PA, Becker JC, Flaherty KT, Grob JJ, Hauschild A, Larkin J, Livingstone E, Long GV, Lorigan P, McArthur GA, Ribas A, Robert C, Zimmer L, Schadendorf D, Garbe C. Survival of patients with advanced metastatic melanoma: The impact of MAP kinase pathway inhibition and immune checkpoint inhibition - Update 2019. Eur J Cancer 2020; 130:126-138. [DOI: 10.1016/j.ejca.2020.02.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/19/2022]
|
236
|
Abdul Pari AA, Singhal M, Hübers C, Mogler C, Schieb B, Gampp A, Gengenbacher N, Reynolds LE, Terhardt D, Géraud C, Utikal J, Thomas M, Goerdt S, Hodivala-Dilke KM, Augustin HG, Felcht M. Tumor Cell-Derived Angiopoietin-2 Promotes Metastasis in Melanoma. Cancer Res 2020; 80:2586-2598. [PMID: 32303578 DOI: 10.1158/0008-5472.can-19-2660] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/16/2020] [Accepted: 04/14/2020] [Indexed: 01/12/2023]
Abstract
The angiopoietin (Angpt)-TIE signaling pathway controls vascular maturation and maintains the quiescent phenotype of resting vasculature. The contextual agonistic and antagonistic Tie2 ligand ANGPT2 is believed to be exclusively produced by endothelial cells, disrupting constitutive ANGPT1-TIE2 signaling to destabilize the microvasculature during pathologic disorders like inflammation and cancer. However, scattered reports have also portrayed tumor cells as a source of ANGPT2. Employing ISH-based detection of ANGPT2, we found strong tumor cell expression of ANGPT2 in a subset of patients with melanoma. Comparative analysis of biopsies revealed a higher fraction of ANGPT2-expressing tumor cells in metastatic versus primary sites. Tumor cell-expressed Angpt2 was dispensable for primary tumor growth, yet in-depth analysis of primary tumors revealed enhanced intratumoral necrosis upon silencing of tumor cell Angpt2 expression in the absence of significant immune and vascular alterations. Global transcriptional profiling of Angpt2-deficient tumor cells identified perturbations in redox homeostasis and an increased response to cellular oxidative stress. Ultrastructural analyses illustrated a significant increase of dysfunctional mitochondria in Angpt2-silenced tumor cells, thereby resulting in enhanced reactive oxygen species (ROS) production and downstream MAPK stress signaling. Functionally, enhanced ROS in Angpt2-silenced tumor cells reduced colonization potential in vitro and in vivo. Taken together, these findings uncover the hitherto unappreciated role of tumor cell-expressed ANGPT2 as an autocrine-positive regulator of metastatic colonization and validate ANGPT2 as a therapeutic target for a well-defined subset of patients with melanoma. SIGNIFICANCE: This study reveals that tumor cells can be a source of ANGPT2 in the tumor microenvironment and that tumor cell-derived ANGPT2 augments metastatic colonization by protecting tumor cells from oxidative stress.
Collapse
Affiliation(s)
- Ashik Ahmed Abdul Pari
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Mahak Singhal
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Corinne Hübers
- Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany.,Department of Dermatology, Venerology und Allergology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Benjamin Schieb
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Anja Gampp
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Nicolas Gengenbacher
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Louise E Reynolds
- Center for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Center, London, United Kingdom
| | - Dorothee Terhardt
- Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Cyrill Géraud
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Dermatology, Venerology und Allergology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venerology und Allergology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Thomas
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Sergij Goerdt
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Dermatology, Venerology und Allergology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kairbaan M Hodivala-Dilke
- Center for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Center, London, United Kingdom
| | - Hellmut G Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany.,German Cancer consortium, Heidelberg, Germany
| | - Moritz Felcht
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,Department of Dermatology, Venerology und Allergology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
237
|
Peres de Oliveira A, Kazuo Issayama L, Betim Pavan IC, Riback Silva F, Diniz Melo-Hanchuk T, Moreira Simabuco F, Kobarg J. Checking NEKs: Overcoming a Bottleneck in Human Diseases. Molecules 2020; 25:molecules25081778. [PMID: 32294979 PMCID: PMC7221840 DOI: 10.3390/molecules25081778] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
In previous years, several kinases, such as phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), and extracellular-signal-regulated kinase (ERK), have been linked to important human diseases, although some kinase families remain neglected in terms of research, hiding their relevance to therapeutic approaches. Here, a review regarding the NEK family is presented, shedding light on important information related to NEKs and human diseases. NEKs are a large group of homologous kinases with related functions and structures that participate in several cellular processes such as the cell cycle, cell division, cilia formation, and the DNA damage response. The review of the literature points to the pivotal participation of NEKs in important human diseases, like different types of cancer, diabetes, ciliopathies and central nervous system related and inflammatory-related diseases. The different known regulatory molecular mechanisms specific to each NEK are also presented, relating to their involvement in different diseases. In addition, important information about NEKs remains to be elucidated and is highlighted in this review, showing the need for other studies and research regarding this kinase family. Therefore, the NEK family represents an important group of kinases with potential applications in the therapy of human diseases.
Collapse
Affiliation(s)
- Andressa Peres de Oliveira
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
| | - Luidy Kazuo Issayama
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Isadora Carolina Betim Pavan
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Fernando Riback Silva
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Talita Diniz Melo-Hanchuk
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Fernando Moreira Simabuco
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Correspondence: ; Tel.: +55-19-3521-8143
| |
Collapse
|
238
|
A Novel Hybrid Nanosystem Integrating Cytotoxic and Magnetic Properties as a Tool to Potentiate Melanoma Therapy. NANOMATERIALS 2020; 10:nano10040693. [PMID: 32268611 PMCID: PMC7221742 DOI: 10.3390/nano10040693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Cancer is a major health concern and the prognosis is often poor. Significant advances in nanotechnology are now driving a revolution in cancer detection and treatment. The goal of this study was to develop a novel hybrid nanosystem for melanoma treatment, integrating therapeutic and magnetic targeting modalities. Hence, we designed long circulating and pH-sensitive liposomes loading both dichloro(1,10-phenanthroline) copper (II) (Cuphen), a cytotoxic metallodrug, and iron oxide nanoparticles (IONPs). The synthetized IONPs were characterized by transmission electron microscopy and dynamic light scattering. Lipid-based nanoformulations were prepared by the dehydration rehydration method, followed by an extrusion step for reducing and homogenizing the mean size. Liposomes were characterized in terms of incorporation parameters and mean size. High Cuphen loadings were obtained and the presence of IONPs slightly reduced Cuphen incorporation parameters. Cuphen antiproliferative properties were preserved after association to liposomes and IONPs (at 2 mg/mL) did not interfere on cellular proliferation of murine and human melanoma cell lines. Moreover, the developed nanoformulations displayed magnetic properties. The absence of hemolytic activity for formulations under study demonstrated their safety for parenteral administration. In conclusion, a lipid-based nanosystem loading the cytotoxic metallodrug, Cuphen, and displaying magnetic properties was successfully designed.
Collapse
|
239
|
Moon H, White AC, Borowsky AD. New insights into the functions of Cox-2 in skin and esophageal malignancies. Exp Mol Med 2020; 52:538-547. [PMID: 32235869 PMCID: PMC7210257 DOI: 10.1038/s12276-020-0412-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Understanding the cellular and molecular mechanisms of tumor initiation and progression for each cancer type is central to making improvements in both prevention and therapy. Identifying the cancer cells of origin and the necessary and sufficient mechanisms of transformation and progression provide opportunities for improved specific clinical interventions. In the last few decades, advanced genetic manipulation techniques have facilitated rapid progress in defining the etiologies of cancers and their cells of origin. Recent studies driven by various groups have provided experimental evidence indicating the cellular origins for each type of skin and esophageal cancer and have identified underlying mechanisms that stem/progenitor cells use to initiate tumor development. Specifically, cyclooxygenase-2 (Cox-2) is associated with tumor initiation and progression in many cancer types. Recent studies provide data demonstrating the roles of Cox-2 in skin and esophageal malignancies, especially in squamous cell carcinomas (SCCs) occurring in both sites. Here, we review experimental evidence aiming to define the origins of skin and esophageal cancers and discuss how Cox-2 contributes to tumorigenesis and differentiation.
Collapse
Affiliation(s)
- Hyeongsun Moon
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, 95616, USA.
| | - Andrew C White
- Department of Biological Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Alexander D Borowsky
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, 95616, USA
| |
Collapse
|
240
|
Castillo P, Marginet M, Jares P, García M, Gonzalvo E, Arance A, García A, Alos L, Teixido C. Implementation of an NGS panel for clinical practice in paraffin-embedded tissue samples from locally advanced and metastatic melanoma patients. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:101-108. [PMID: 36046072 PMCID: PMC9400780 DOI: 10.37349/etat.2020.00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
Aim: Single biomarker diagnostic test of BRAFV600 locus in metastatic melanoma is mandatory for treatment decision; however, multiple-gene based techniques, such as targeted next-generation sequencing (NGS) are being used to maximize the number of patients that can benefit from a targeted therapy. The main objective of this study is to investigate whether an NGS panel could be adopted in routine clinical care for advanced melanoma. Methods: Patients diagnosed with advanced melanoma at our center from 2017 to 2019 were included. Presence of genetic alterations was performed using two methods: real-time polymerase chain reaction-based Idylla test (Biocartis) and NGS with the oncomine solid tumor DNA kit (Thermo Fisher Scientific). Total genomic DNA was extracted from formalin-fixed and paraffin embedded samples for sequencing. Results: A total of 155 samples were evaluated for molecular analysis but 40 samples (25.8%) were inadequate for sequencing. The clinical utility of BRAFV600 real-time polymerase chain reaction and targeted-NGS was compared in 29 samples and a very good concordance was observed (Kappa = 0.89, 95% confidence interval 0.68 ± 1.05). An oncogenic mutation by NGS was found in 75 samples (65%)–53% of whom were candidates for personalized therapies. The most prevalent mutated genes were BRAF (39%), TP53 (23%), and NRAS (14%). Other genes identified at lower incidence (< 5%) were: PIK3CA, ERBB4, CTNNB1, STK11, FGFR1, SMAD4, KRAS, FGFR3, PTEN and AKT. Co-occurrence of oncogenic mutations was detected in 40% of the samples. Among the mutations identified, TP53 was significantly more prevalent in men (men 31.8% versus women 12.2%, P = 0.03) and NRAS in women (men 9.1% versus women 24.4%, P = 0.03). Conclusions: Targeted-NGS testing is a feasible technique to implement in the routine clinical practice. Based on our results, NGS has provided more information on target-genes than RT-PCR technique, maximizing the benefit for patients with advanced melanoma.
Collapse
Affiliation(s)
- Paola Castillo
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Marta Marginet
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Pedro Jares
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Mireia García
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Elena Gonzalvo
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Ana Arance
- Department of Medical Oncology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Adriana García
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Llucia Alos
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Cristina Teixido
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
241
|
Abstract
BACKGROUND Melanoma is a malignancy that stems from melanocytes and is defined as the most dangerous skin malignancy in terms of metastasis and mortality rates. CXC motif chemokine 10 (CXCL10), also known as interferon gamma-induced protein-10 (IP-10), is a small cytokine-like protein secreted by a wide variety of cell types. CXCL10 is a ligand of the CXC chemokine receptor-3 (CXCR3) and is predominantly expressed by T helper cells (Th cells), cytotoxic T lymphocytes (CTLs), dendritic cells, macrophages, natural killer cells (NKs), as well as some epithelial and cancer cells. Similar to other chemokines, CXCL10 plays a role in immunomodulation, inflammation, hematopoiesis, chemotaxis and leukocyte trafficking. CONCLUSIONS Recent studies indicate that the CXCL10/CXCR3 axis may act as a double-edged sword in terms of pro- and anti-cancer activities in a variety of tissues and cells, especially in melanoma cells and their microenvironments. Most of these activities arise from the CXCR3 splice variants CXCR3-A, CXCR3-B and CXCR3-Alt. In this review, we discuss the pro- and anti-cancer properties of CXCL10 in various types of tissues and cells, particularly melanoma cells, including its potential as a therapeutic target.
Collapse
|
242
|
Stepula E, König M, Wang X, Levermann J, Schimming T, Kasimir‐Bauer S, Schilling B, Schlücker S. Localization of PD-L1 on single cancer cells by iSERS microscopy with Au/Au core/satellite nanoparticles. JOURNAL OF BIOPHOTONICS 2020; 13:e201960034. [PMID: 31605507 PMCID: PMC7065613 DOI: 10.1002/jbio.201960034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 05/05/2023]
Abstract
Programmed cell death-ligand 1 (PD-L1) is an important predictive biomarker. The detection of PD-L1 can be crucial for patients with advanced cancer where the use of immunotherapy is considered. Here, we demonstrate the use of immuno-SERS microscopy (iSERS) for localizing PD-L1 on single cancer SkBr-3 cells. A central advantage of iSERS is that the disturbing autofluorescence from cells and tissues can be efficiently minimized by red to near-infrared laser excitation. In this study we employed Au/Au core/satellite nanoparticles as SERS nanotags because of their remarkable signal brightness and colloidal stability upon red laser excitation. False-color iSERS images of the positive and negative controls clearly reveal the specific localization of PD-L1 with SERS nanotag-labeled antibodies.
Collapse
Affiliation(s)
- Elzbieta Stepula
- Department of Chemistry and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| | - Matthias König
- Department of Chemistry and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| | - Xin‐Ping Wang
- Department of Chemistry and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| | - Janina Levermann
- Department of Gynecology and Obstetrics, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Tobias Schimming
- Department of Dermatology, University HospitalUniversity of Duisburg‐EssenEssenGermany
| | - Sabine Kasimir‐Bauer
- Department of Gynecology and Obstetrics, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Bastian Schilling
- Department of Dermatology, University HospitalUniversity of Duisburg‐EssenEssenGermany
- Department of DermatologyUniversity Hospital in WürzburgWürzburgGermany
| | - Sebastian Schlücker
- Department of Chemistry and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| |
Collapse
|
243
|
Garza-Morales R, Rendon BE, Malik MT, Garza-Cabrales JE, Aucouturier A, Bermúdez-Humarán LG, McMasters KM, McNally LR, Gomez-Gutierrez JG. Targeting Melanoma Hypoxia with the Food-Grade Lactic Acid Bacterium Lactococcus Lactis. Cancers (Basel) 2020; 12:cancers12020438. [PMID: 32069844 PMCID: PMC7072195 DOI: 10.3390/cancers12020438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer. Hypoxia is a feature of the tumor microenvironment that reduces efficacy of immuno- and chemotherapies, resulting in poor clinical outcomes. Lactococcus lactis is a facultative anaerobic gram-positive lactic acid bacterium (LAB) that is Generally Recognized as Safe (GRAS). Recently, the use of LAB as a delivery vehicle has emerged as an alternative strategy to deliver therapeutic molecules; therefore, we investigated whether L. lactis can target and localize within melanoma hypoxic niches. To simulate hypoxic conditions in vitro, melanoma cells A2058, A375 and MeWo were cultured in a chamber with a gas mixture of 5% CO2, 94% N2 and 1% O2. Among the cell lines tested, MeWo cells displayed greater survival rates when compared to A2058 and A375 cells. Co-cultures of L. lactis expressing GFP or mCherry and MeWo cells revealed that L. lactis efficiently express the transgenes under hypoxic conditions. Moreover, multispectral optoacoustic tomography (MSOT), and near infrared (NIR) imaging of tumor-bearing BALB/c mice revealed that the intravenous injection of either L. lactis expressing β-galactosidase (β-gal) or infrared fluorescent protein (IRFP713) results in the establishment of the recombinant bacteria within tumor hypoxic niches. Overall, our data suggest that L. lactis represents an alternative strategy to target and deliver therapeutic molecules into the tumor hypoxic microenvironment.
Collapse
Affiliation(s)
- Rodolfo Garza-Morales
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
| | - Beatriz E. Rendon
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| | - Mohammad Tariq Malik
- Department of Microbiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Jeannete E. Garza-Cabrales
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
| | - Anne Aucouturier
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (A.A.); (L.G.B.-H.)
| | - Luis G. Bermúdez-Humarán
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (A.A.); (L.G.B.-H.)
| | - Kelly M. McMasters
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
| | - Lacey R. McNally
- Department of Bioengineering, Stephenson Cancer Center, University of Oklahoma, Norman, OK 73019, USA;
| | - Jorge G. Gomez-Gutierrez
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (R.G.-M.); (J.E.G.-C.); (K.M.M.)
- Correspondence: ; Tel.: +1-(502)-852-5745
| |
Collapse
|
244
|
Rok J, Karkoszka M, Rzepka Z, Respondek M, Banach K, Beberok A, Wrześniok D. Cytotoxic and proapoptotic effect of doxycycline - An in vitro study on the human skin melanoma cells. Toxicol In Vitro 2020; 65:104790. [PMID: 32044399 DOI: 10.1016/j.tiv.2020.104790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Doxycycline is a semisynthetic, second generation tetracycline. Currently, it is used, among others, in the treatment of acne and skin infections. Moreover, doxycycline has many valuable nonantibiotic properties, including anti-inflammatory, immunosuppressive and anticancer effects. Recent studies showed that the drug had the ability to inhibit the adhesion and migration of cancer cells, as well as affected their growth and proliferation and induced apoptosis. The purpose of this study was to examine the antimelanoma effect of doxycycline. The obtained results demonstrated that doxycycline decreased the viability and inhibited the proliferation of human melanoma cells, proportionally to the drug concentration and the treatment time. It was stated that doxycycline disturbed the homeostasis of the cells by lowering intracellular level of reduced thiols. In addition, the treatment changed the cell cycle profile and triggered the DNA fragmentation. Mitochondria of melanoma cells exposed to the drug had lowered membrane potential, which indicated cells apoptosis. Finally, doxycycline induced the externalization phosphatidylserine - a well-known hallmark of apoptosis, confirmed by results of annexin V test. The presented study contributes to the increase of knowledge about nonantibacterial action of doxycycline, including the influence on human cancer cells and indicates new potential possibility of effective treatment of malignant melanoma.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Marta Karkoszka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Michalina Respondek
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Klaudia Banach
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jagiellońska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
245
|
Guo W, Ma J, Yang Y, Guo S, Zhang W, Zhao T, Yi X, Wang H, Wang S, Liu Y, Dai W, Chen X, Shi Q, Wang G, Gao T, Li C. ATP-Citrate Lyase Epigenetically Potentiates Oxidative Phosphorylation to Promote Melanoma Growth and Adaptive Resistance to MAPK Inhibition. Clin Cancer Res 2020; 26:2725-2739. [PMID: 32034077 DOI: 10.1158/1078-0432.ccr-19-1359] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/12/2019] [Accepted: 02/04/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinyuan Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiyu Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Dai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuguang Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
246
|
Jorge NAN, Cruz JGV, Pretti MAM, Bonamino MH, Possik PA, Boroni M. Poor clinical outcome in metastatic melanoma is associated with a microRNA-modulated immunosuppressive tumor microenvironment. J Transl Med 2020; 18:56. [PMID: 32024530 PMCID: PMC7001250 DOI: 10.1186/s12967-020-02235-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/22/2020] [Indexed: 11/28/2022] Open
Abstract
Background Interaction between malignant cells and immune cells that reside within the tumor microenvironment (TME) modulate different aspects of tumor development and progression. Recent works showed the importance of miRNA-containing extracellular vesicles in this crosstalk. Methods Interested in understanding the interplay between melanoma and immune-related TME cells, we characterized the TCGA’s metastatic melanoma samples according to their tumor microenvironment profiles, HLA-I neoepitopes, transcriptome profile and classified them into three groups. Moreover, we combined our results with melanoma single-cell gene expression and public miRNA data to better characterize the regulatory network of circulating miRNAs and their targets related to immune evasion and microenvironment response. Results The group associated with a worse prognosis showed phenotypic characteristics that favor immune evasion, including a strong signature of suppressor cells and less stable neoantigen:HLA-I complexes. Conversely, the group with better prognosis was marked by enrichment in lymphocyte and MHC signatures. By analyzing publicly available melanoma single-cell RNA and microvesicle microRNAs sequencing data we identified circulating microRNAs potentially involved in the crosstalk between tumor and TME cells. Candidate miRNA/target gene pairs with previously reported roles in tumor progression and immune escape mechanisms were further investigated and demonstrated to impact patient’s overall survival not only in melanoma but across different tumor types. Conclusion Our results underscore the impact of tumor-microenvironment interactions on disease outcomes and reveal potential non-invasive biomarkers of prognosis and treatment response.
Collapse
Affiliation(s)
- Natasha A N Jorge
- Bioinformatics and Computational Biology Lab, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Jéssica G V Cruz
- Bioinformatics and Computational Biology Lab, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Marco Antônio M Pretti
- Bioinformatics and Computational Biology Lab, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, RJ, 20231-050, Brazil.,Program of Immunology and Tumor Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Martín H Bonamino
- Program of Immunology and Tumor Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, RJ, 20231-050, Brazil.,Vice Presidency of Research and Biological Collections, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Patricia A Possik
- Program of Immunology and Tumor Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, RJ, 20231-050, Brazil.
| | - Mariana Boroni
- Bioinformatics and Computational Biology Lab, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro, RJ, 20231-050, Brazil.
| |
Collapse
|
247
|
Precazzini F, Pancher M, Gatto P, Tushe A, Adami V, Anelli V, Mione MC. Automated in vivo screen in zebrafish identifies Clotrimazole as targeting a metabolic vulnerability in a melanoma model. Dev Biol 2020; 457:215-225. [PMID: 30998907 DOI: 10.1016/j.ydbio.2019.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/21/2023]
Abstract
Therapeutic approaches for cutaneous melanoma are flourishing, but despite promising results, there is an increasing number of reported primary or secondary resistance to the growing sets of drugs approved for therapy in the clinics. Combinatorial approaches may overcome resistance, as they may tackle specific weaknesses of melanoma cells, not sufficient on their own, but effective in combination with other therapies. The transgenic zebrafish line kita:ras develops melanoma with high frequency. At 3 dpf, transgenic kita:ras larvae show a hyperpigmentation phenotype as earliest evidence of abnormal melanocyte growth. Using this model, we performed a chemical screen based on automated detection of a reduction of melanocyte number caused by any of 1280 FDA or EMA approved drugs of the library. The analysis showed that 55 molecules were able to reduce by 60% or more the number of melanocytes per embryo. We further tested two compounds for each of the 5 classes, and a farnesyltransferase inhibitor (Lonafarnib), that inhibits an essential post-translational modification of HRAS and suppresses the hyperpigmentation phenotype. Combinations of Clotrimazole and Lonafarnib showed the most promising results in zebrafish embryos, allowing a dose reduction of both drugs. We performed validation of these observations in the metastatic human melanoma cell line A375M, and in normal human epithelial melanocytes (NHEM) in order to investigate the mechanism of action of Clotrimazole in blocking the proliferation of transformed melanocytes. Viability assay and analysis of energy metabolism in Clotrimazole treated cells show that this drug specifically affects melanoma cells in vitro and transformed melanocytes in vivo, having no effects on NHEM or wild type larvae. Similar effects were observed with another hit of the same class, Miconazole. Furthermore, we show that the effects of Clotrimazole are mediated by the inhibition of hexokinase activity, which is lethal to the abnormal metabolic profile of melanoma cells in vitro and in vivo. Thus, our study shows that the zebrafish can provide a phenotype-rich assay for fully automated screening approaches to identify drugs for synthetic lethal treatment in melanoma and suggest further testing of Clotrimazole in combinatorial treatments.
Collapse
Affiliation(s)
- Francesca Precazzini
- Laboratory of Experimental Cancer Biology, CIBIO Department, University of Trento, Via Sommarive 9, 38123 Povo TN, Italy
| | - Michael Pancher
- High Throughput Screening (HTS) Facility, CIBIO Department, University of Trento, Via Sommarive 9, 38123 Povo TN, Italy
| | - Pamela Gatto
- High Throughput Screening (HTS) Facility, CIBIO Department, University of Trento, Via Sommarive 9, 38123 Povo TN, Italy
| | - Ada Tushe
- Laboratory of Experimental Cancer Biology, CIBIO Department, University of Trento, Via Sommarive 9, 38123 Povo TN, Italy
| | - Valentina Adami
- High Throughput Screening (HTS) Facility, CIBIO Department, University of Trento, Via Sommarive 9, 38123 Povo TN, Italy
| | - Viviana Anelli
- Laboratory of Experimental Cancer Biology, CIBIO Department, University of Trento, Via Sommarive 9, 38123 Povo TN, Italy.
| | - Maria Caterina Mione
- Laboratory of Experimental Cancer Biology, CIBIO Department, University of Trento, Via Sommarive 9, 38123 Povo TN, Italy.
| |
Collapse
|
248
|
Xu C, Yang S, Jiang Z, Zhou J, Yao J. Self-Propelled Gemini-like LMWH-Scaffold Nanodrugs for Overall Tumor Microenvironment Manipulation via Macrophage Reprogramming and Vessel Normalization. NANO LETTERS 2020; 20:372-383. [PMID: 31840517 DOI: 10.1021/acs.nanolett.9b04024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Angiogenesis is the hallmark of melanoma that nurtures the tumor microenvironment (TME) for rapid tumor progression. Vessel normalization could benefit melanoma treatment through TME reconstruction, while its limited duration and extent are still the drag. Herein, two kinds of look-like nanodrugs, called Gemini-like nanodrugs (GLnano), were constructed separately with the same scaffold of antiangiogenic low molecular weight heparin (LMWH) and mixed upon administration in vivo. For one, doxorubicin (DOX) was encapsulated into LMWH-chrysin nanodrug (LCY) with DSPE-PEG-anisamide decoration (D-LCA nanodrugs) for active targeting and direct cell killing toward melanoma cells. For another, matrix metalloproteinases (MMPs)-sensitive peptide was conjugated to LMWH to encapsulate celecoxib (Cel) (C-Lpep nanodrugs), disassembling in TME by MMPs and releasing Cel for M2-to-M1 reprogramming of tumor-associated macrophages. Our results showed that GLnano could remarkably elongate the vessel normalization window up to 12 days with the highest pericyte coverage of nearly 75%, compared to only 4 days by LCY monotherapy. Furthermore, GLnano could spontaneously form the "treatment-delivery" loop to promote nanodrugs toward deep tumor regions, leading to a potent tumor inhibition, metastasis prevention, and overall TME improvements.
Collapse
MESH Headings
- Animals
- Doxorubicin/chemistry
- Doxorubicin/pharmacokinetics
- Doxorubicin/pharmacology
- Drug Delivery Systems
- Heparin, Low-Molecular-Weight/chemistry
- Heparin, Low-Molecular-Weight/pharmacokinetics
- Heparin, Low-Molecular-Weight/pharmacology
- Melanoma, Experimental/blood
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- RAW 264.7 Cells
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
- Cheng Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , China
| | - Shan Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , China
| | - Zhijie Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics , China Pharmaceutical University , 24 Tongjiaxiang , Nanjing 210009 , China
| |
Collapse
|
249
|
Predictive biomarkers and tumor microenvironment in female genital melanomas: a multi-institutional study of 55 cases. Mod Pathol 2020; 33:138-152. [PMID: 31383965 DOI: 10.1038/s41379-019-0345-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023]
Abstract
Female genital melanomas are rare. At diagnosis, most affected patients have advanced disease. Surgery remains the primary treatment, and adjuvant therapy is largely ineffective. Recently, immune checkpoints and the mitogen-activated protein kinase pathway have been explored as treatment targets. However, evaluation of these biomarkers in genital melanomas is limited. We evaluated the clinicopathological features of 20 vulvar, 32 vaginal, and three cervical melanomas and assessed programmed cell death ligand 1 (PD-L1) expression, CD8 tumor-infiltrating lymphocyte density, mismatch repair proteins, VE1 immunohistochemistry, and KIT and BRAF mutations. The median age of the patients was 66 years, and median tumor sizes were 25, 30, and 20 mm for vulvar, vaginal, and cervical tumors, respectively. Mean mitotic figures were 18, 19, and 30 per mm2. Thirty-seven patients (67%) had operable tumors. After a median follow-up of 15 months, only nine patients (16%) were alive. Eight of the nine survivors did not have lymph node metastasis. Using 5% as the threshold, PD-L1 expression was observed in 55%, 50%, and 33% of vulvar, vaginal, and cervical tumors, respectively, when the Roche SP263 antibody was used and 20%, 53%, and 0%, respectively, when the Dako 28-8 antibody was used. The median CD8 tumor-infiltrating lymphocyte density was significantly higher in vulvar/vaginal than cervical melanomas and correlated with PD-L1 expression. No cases exhibited loss of mismatch repair proteins. Five cases harbored KIT mutations, three of which were hotspots. BRAF V600E mutation was not detected. Univariable analysis showed that tumor size greater than or equal to 33 mm, mitotic figures of greater than or equal to 10 per mm2, lymph node metastasis, and low CD8+ tumor-infiltrating lymphocyte density were adverse prognostic factors. Thus, patients with genital melanomas have a poor prognosis, and evaluation of multiple biomarkers is necessary to identify patients who may benefit from immunotherapy or targeted therapy.
Collapse
|
250
|
Paschen A, Schadendorf D. The Era of Checkpoint Inhibition: Lessons Learned from Melanoma. Recent Results Cancer Res 2020; 214:169-187. [PMID: 31473853 DOI: 10.1007/978-3-030-23765-3_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Treatment of patients with advanced metastatic melanoma has for decades been a story of very limited success. This dramatically changed when therapy with anti-PD-1 checkpoint blocking antibodies was approved in the USA and Europe in 2014 and 2015, respectively. The therapy exploits the capacity of CD8+ T cells to specifically kill tumor cells. Within the tumor microenvironment, CD8+ T cell activity is blocked by suppressive signals received via PD-1, an inhibitory co-receptor and so-called checkpoint of T cell activation. PD-1 binds to its ligand PD-L1 on melanoma cells which dampens the T cell's activity. Antibodies blocking inhibitory PD-1/PD-L1 interaction release T cells from suppression. Treatment of late-stage disease melanoma patients with antibodies targeting the PD-1/PD-L1 axis, termed immune checkpoint blocking therapy (ICBT), yields clinical frequently long-lasting responses in 30-40% of cases. Despite this remarkable breakthrough, still the majority of patients resists ICBT or develops resistance after initial therapy response. Administration of anti-PD-1 antibodies in combination with antibodies targeting CTLA-4, another inhibitory immune checkpoint increased clinical responses rate up to 50% but at costs of higher treatment-related toxicities. Thus, strong efforts are now directed toward the understanding of therapy resistance, the identification of biomarkers predicting therapy response, and the development of alternative PD-1-based combination treatment to improve patient outcomes.
Collapse
Affiliation(s)
- Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| |
Collapse
|