201
|
Liu Z, Zhang J, Liu H, Shen H, Meng N, Qi X, Ding K, Song J, Fu R, Ding D, Feng G. BSA-AIE Nanoparticles with Boosted ROS Generation for Immunogenic Cell Death Immunotherapy of Multiple Myeloma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208692. [PMID: 36529696 DOI: 10.1002/adma.202208692] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The main obstacle of multiple myeloma (MM) therapy is the compromised immune microenvironment, which leads to MM relapses and extramedullary disease progression. In this study, a novel strategy is reported of enhanced immunogenic cell death (ICD) immunotherapy with aggregation-induced emission (AIE) photosensitizer-loaded bovine serum albumin (BSA) nanoparticles (referred as BSA/TPA-Erdn), which can activate T cells, convert the cold tumor to hot, and reverse T cell senescence to restore the immune microenvironment for MM treatment. Loading AIE photosensitizer into the hydrophobic domain of BSA proteins significantly immobilizes the molecular geometry, which massively increases reactive oxygen species (ROS) generation and elicits a promising ICD immune response. Employing a NOD-SCID IL-2receptor gamma null mice model with MM patients' monocytes, it is shown that BSA/TPA-Erdn can simulate human dentric cell maturation, activate functional T lymphocytes, and increase additional polarization and differentiation signals to deliver a promising immunotherapy performance. Intriguingly, for the first time, it is shown that BSA/TPA-Erdn can greatly reverse T cell senescence, a main challenge in treating MM. Additionally, BSA/TPA-Erdn can effectively recruit more functional T lymphocytes into MM tumor. As a consequence, BSA/TPA-Erdn restores MM immune microenvironment and shows the best MM tumor eradication performance, which shall pave new insights for MM treatment in clinical practices.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jingtian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive, Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hongli Shen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Nanhao Meng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xinwen Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive, Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jia Song
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive, Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
202
|
Chen M, Wan Y, Li X, Xiang J, Chen X, Jiang J, Han X, Zhong L, Xiao F, Liu J, Huang H, Li H, Liu J, Hou J. Dynamic single-cell RNA-seq analysis reveals distinct tumor program associated with microenvironmental remodeling and drug sensitivity in multiple myeloma. Cell Biosci 2023; 13:19. [PMID: 36717896 PMCID: PMC9887807 DOI: 10.1186/s13578-023-00971-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematological malignancy characterized by clonal proliferation of malignant plasma cells. Despite extensive research, molecular mechanisms in MM that drive drug sensitivity and clinic outcome remain elusive. RESULTS Single-cell RNA sequencing was applied to study tumor heterogeneity and molecular dynamics in 10 MM individuals before and after 2 cycles of bortezomib-cyclophosphamide-dexamethasone (VCD) treatment, with 3 healthy volunteers as controls. We identified that unfolded protein response and metabolic-related program were decreased, whereas stress-associated and immune reactive programs were increased after 2 cycles of VCD treatment. Interestingly, low expression of the immune reactive program by tumor cells was associated with unfavorable drug response and poor survival in MM, which probably due to downregulation of MHC class I mediated antigen presentation and immune surveillance, and upregulation of markers related to immune escape. Furthermore, combined with immune cells profiling, we uncovered a link between tumor intrinsic immune reactive program and immunosuppressive phenotype in microenvironment, evidenced by exhausted states and expression of checkpoint molecules and suppressive genes in T cells, NK cells and monocytes. Notably, expression of YBX1 was associated with downregulation of immune activation signaling in myeloma and reduced immune cells infiltration, thereby contributed to poor prognosis. CONCLUSIONS We dissected the tumor and immune reprogramming in MM during targeted therapy at the single-cell resolution, and identified a tumor program that integrated tumoral signaling and changes in immune microenvironment, which provided insights into understanding drug sensitivity in MM.
Collapse
Affiliation(s)
- Mengping Chen
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Yike Wan
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Xin Li
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Jing Xiang
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Xiaotong Chen
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Jinxing Jiang
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Xiaofeng Han
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Lu Zhong
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Fei Xiao
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Jia Liu
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Honghui Huang
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Hua Li
- grid.16821.3c0000 0004 0368 8293Bio-ID Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, 200240 China
| | - Junling Liu
- grid.16821.3c0000 0004 0368 8293Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Jian Hou
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| |
Collapse
|
203
|
Pilcher W, Thomas BE, Bhasin SS, Jayasinghe RG, Yao L, Gonzalez-Kozlova E, Dasari S, Kim-Schulze S, Rahman A, Patton J, Fiala M, Cheloni G, Kourelis T, Dhodapkar MV, Vij R, Mehr S, Hamilton M, Cho HJ, Auclair D, Avigan DE, Kumar SK, Gnjatic S, Ding L, Bhasin M. Cross center single-cell RNA sequencing study of the immune microenvironment in rapid progressing multiple myeloma. NPJ Genom Med 2023; 8:3. [PMID: 36702834 PMCID: PMC9879959 DOI: 10.1038/s41525-022-00340-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/18/2022] [Indexed: 01/27/2023] Open
Abstract
Despite advancements in understanding the pathophysiology of Multiple Myeloma (MM), the cause of rapid progressing disease in a subset of patients is still unclear. MM's progression is facilitated by complex interactions with the surrounding bone marrow (BM) cells, forming a microenvironment that supports tumor growth and drug resistance. Understanding the immune microenvironment is key to identifying factors that promote rapid progression of MM. To accomplish this, we performed a multi-center single-cell RNA sequencing (scRNA-seq) study on 102,207 cells from 48 CD138- BM samples collected at the time of disease diagnosis from 18 patients with either rapid progressing (progression-free survival (PFS) < 18 months) or non-progressing (PFS > 4 years) disease. Comparative analysis of data from three centers demonstrated similar transcriptome profiles and cell type distributions, indicating subtle technical variation in scRNA-seq, opening avenues for an expanded multicenter trial. Rapid progressors depicted significantly higher enrichment of GZMK+ and TIGIT+ exhausted CD8+ T-cells (P = 0.022) along with decreased expression of cytolytic markers (PRF1, GZMB, GNLY). We also observed a significantly higher enrichment of M2 tolerogenic macrophages in rapid progressors and activation of pro-proliferative signaling pathways, such as BAFF, CCL, and IL16. On the other hand, non-progressive patients depicted higher enrichment for immature B Cells (i.e., Pre/Pro B cells), with elevated expression for markers of B cell development (IGLL1, SOX4, DNTT). This multi-center study identifies the enrichment of various pro-tumorigenic cell populations and pathways in those with rapid progressing disease and further validates the robustness of scRNA-seq data generated at different study centers.
Collapse
Affiliation(s)
- William Pilcher
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lijun Yao
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Edgar Gonzalez-Kozlova
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Surendra Dasari
- Division of Biomedical Statistics & Informatics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adeeb Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Mark Fiala
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Giulia Cheloni
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Madhav V Dhodapkar
- Department of Hematology/Medical Oncology Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Ravi Vij
- Washington University School of Medicine, St Louis, MO, USA
| | - Shaadi Mehr
- Multiple Myeloma Research Foundation (MMRF), Norwalk, CT, USA
| | - Mark Hamilton
- Multiple Myeloma Research Foundation (MMRF), Norwalk, CT, USA
| | - Hearn Jay Cho
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Multiple Myeloma Research Foundation (MMRF), Norwalk, CT, USA
| | - Daniel Auclair
- Multiple Myeloma Research Foundation (MMRF), Norwalk, CT, USA
| | - David E Avigan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shaji K Kumar
- Mayo Clinic Rochester, Division of Hematology, Rochester, MN, USA
| | - Sacha Gnjatic
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA.
- Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Biomedical Informatics, Emory School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
204
|
Dicanio M, Giaccherini M, Clay‐Gilmour A, Macauda A, Sainz J, Machiela MJ, Rybicka‐Ramos M, Norman AD, Tyczyńska A, Chanock SJ, Barington T, Kumar SK, Bhatti P, Cozen W, Brown EE, Suska A, Haastrup EK, Orlowski RZ, Dudziński M, Garcia‐Sanz R, Kruszewski M, Martinez‐Lopez J, Beider K, Iskierka‐Jazdzewska E, Pelosini M, Berndt SI, Raźny M, Jamroziak K, Rajkumar SV, Jurczyszyn A, Vangsted AJ, Collado PG, Vogel U, Hofmann JN, Petrini M, Butrym A, Slager SL, Ziv E, Subocz E, Giles GG, Andersen NF, Mazur G, Watek M, Lesueur F, Hildebrandt MAT, Zawirska D, Ebbesen LH, Marques H, Gemignani F, Dumontet C, Várkonyi J, Buda G, Nagler A, Druzd‐Sitek A, Wu X, Kadar K, Camp NJ, Grzasko N, Waller RG, Vachon C, Canzian F, Campa D. A pleiotropic variant in DNAJB4 is associated with multiple myeloma risk. Int J Cancer 2023; 152:239-248. [PMID: 36082445 PMCID: PMC9828677 DOI: 10.1002/ijc.34278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023]
Abstract
Pleiotropy, which consists of a single gene or allelic variant affecting multiple unrelated traits, is common across cancers, with evidence for genome-wide significant loci shared across cancer and noncancer traits. This feature is particularly relevant in multiple myeloma (MM) because several susceptibility loci that have been identified to date are pleiotropic. Therefore, the aim of this study was to identify novel pleiotropic variants involved in MM risk using 28 684 independent single nucleotide polymorphisms (SNPs) from GWAS Catalog that reached a significant association (P < 5 × 10-8 ) with their respective trait. The selected SNPs were analyzed in 2434 MM cases and 3446 controls from the International Lymphoma Epidemiology Consortium (InterLymph). The 10 SNPs showing the strongest associations with MM risk in InterLymph were selected for replication in an independent set of 1955 MM cases and 1549 controls from the International Multiple Myeloma rESEarch (IMMEnSE) consortium and 418 MM cases and 147 282 controls from the FinnGen project. The combined analysis of the three studies identified an association between DNAJB4-rs34517439-A and an increased risk of developing MM (OR = 1.22, 95%CI 1.13-1.32, P = 4.81 × 10-7 ). rs34517439-A is associated with a modified expression of the FUBP1 gene, which encodes a multifunctional DNA and RNA-binding protein that it was observed to influence the regulation of various genes involved in cell cycle regulation, among which various oncogenes and oncosuppressors. In conclusion, with a pleiotropic scan approach we identified DNAJB4-rs34517439 as a potentially novel MM risk locus.
Collapse
Affiliation(s)
| | | | - Alyssa Clay‐Gilmour
- Department of Epidemiology and Biostatistics, Arnold School of Public HealthUniversity of South CarolinaGreenvilleSouth CarolinaUSA
| | - Angelica Macauda
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Juan Sainz
- Genomic Oncology Area, GENYO. Center for Genomics and Oncological Research: PfizerUniversity of Granada/Andalusian Regional GovernmentGranadaSpain,Department of HematologyVirgen de las Nieves University HospitalGranadaSpain,Department of MedicineUniversity of GranadaGranadaSpain
| | - Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institues of HealthBethesdaMarylandUSA
| | | | - Aaron D. Norman
- Division of Epidemiology, Department of Health Sciences ResearchMayo ClinicRochesterOntarioUSA,Division of Biomedical Statistics and Informatics, Department of Health Sciences ResearchMayo ClinicRochesterOntarioUSA
| | - Agata Tyczyńska
- Department of Hematology and TransplantologyMedical University of GdańskGdańskPoland
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institues of HealthBethesdaMarylandUSA
| | | | - Shaji K. Kumar
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterOntarioUSA
| | - Parveen Bhatti
- Cancer Control ResearchBC CancerVancouverCanada,Program in Epidemiology, Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Wendy Cozen
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Susan and Henry Samueli College of Health SciencesChao Family Comprehensive Cancer Center, University of CaliforniaIrvineCaliforniaUSA,Department of Pathology, School of Medicine, Susan and Henry Samueli College of Health SciencesChao Family Comprehensive Cancer Center, University of CaliforniaIrvineCaliforniaUSA
| | - Elizabeth E. Brown
- Department of Pathology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Anna Suska
- Plasma Cell Dyscrasia Center Department of Hematology Jagiellonian University Faculty of MedicineKrakówPoland
| | | | - Robert Z. Orlowski
- Department of Lymphoma ‐ Myeloma, Division of Cancer MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Marek Dudziński
- Department of Hematology, Institute of Medical Sciences, College of Medical SciencesUniversity of RzeszowRzeszowPoland
| | - Ramon Garcia‐Sanz
- Medina A. Department of Hematology, University Hospital of Salamanca (HUS/IBSAL)CIBERONC and Cancer Research Institute of Salamanca‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Marcin Kruszewski
- Department of HematologyUniversity Hospital No. 2 in BydgoszczBydgoszczPoland
| | | | - Katia Beider
- Hematology Division Chaim Sheba Medical CenterTel HashomerIsrael
| | | | - Matteo Pelosini
- U.O. Dipartimento di EmatologiaAzienda USL Toscana Nord OvestLivornoItaly,Present address:
Ospedale Santa ChiaraPisaItaly
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institues of HealthBethesdaMarylandUSA
| | | | - Krzysztof Jamroziak
- Department of HematologyInstitute of Hematology and Transfusion MedicineWarsawPoland
| | - S. Vincent Rajkumar
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterOntarioUSA
| | - Artur Jurczyszyn
- Plasma Cell Dyscrasia Center Department of Hematology Jagiellonian University Faculty of MedicineKrakówPoland
| | | | | | - Ulla Vogel
- National Research Center for the Working EnvironmentCopenhagenDenmark
| | - Jonathan N. Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer InstituteNational Institues of HealthBethesdaMarylandUSA
| | - Mario Petrini
- Hematology Unit, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Aleksandra Butrym
- Department of Cancer Prevention and TherapyWroclaw Medical UniversityWroclawPoland
| | - Susan L. Slager
- Division of Epidemiology, Department of Health Sciences ResearchMayo ClinicRochesterOntarioUSA
| | - Elad Ziv
- Department of MedicineUniversity of California San Francisco Helen Diller Family Comprehensive Cancer CenterSan FranciscoCaliforniaUSA
| | - Edyta Subocz
- Department of HematologyMilitary Institute of MedicineWarsawPoland
| | - Graham G. Giles
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneVictoriaAustralia,Center for Epidemiology and Biostatistics, School of Population and Global HealthThe University of MelbourneMelbourneVictoriaAustralia,Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVictoriaAustralia
| | | | - Grzegorz Mazur
- Department of Internal Diseases, Occupational Medicine, Hypertension and Clinical OncologyWroclaw Medical UniversityWroclawPoland
| | - Marzena Watek
- Department of HematologyInstitute of Hematology and Transfusion MedicineWarsawPoland,Department of HematologyHolycross Cancer CenterKielcePoland
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL Research University, Mines ParisTechParisFrance
| | - Michelle A. T. Hildebrandt
- Department of Lymphoma ‐ Myeloma, Division of Cancer MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Daria Zawirska
- Department of HematologyUniversity Hospital in CracowCracowPoland
| | | | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Health SciencesUniversity of Minho, Braga, Portugal and ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | | | | | - Judit Várkonyi
- Department of Hematology and Internal MedicineSemmelweis UniversityBudapestHungary
| | - Gabriele Buda
- Hematology Unit, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Arnon Nagler
- Hematology Division Chaim Sheba Medical CenterTel HashomerIsrael
| | - Agnieszka Druzd‐Sitek
- Department of Lymphoproliferative DiseasesMaria Skłodowska‐Curie National Research Institute of OncologyWarsawPoland
| | - Xifeng Wu
- Department of Epidemiology, Division of Cancer Prevention and Population SciencesUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Katalin Kadar
- Department of Hematology and Internal MedicineSemmelweis UniversityBudapestHungary
| | - Nicola J. Camp
- Division of Hematology and Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Norbert Grzasko
- Department of Experimental HematooncologyMedical University of LublinLublinPoland
| | - Rosalie G. Waller
- Division of Biomedical Statistics and Informatics, Department of Health Sciences ResearchMayo ClinicRochesterOntarioUSA
| | - Celine Vachon
- Division of Epidemiology, Department of Health Sciences ResearchMayo ClinicRochesterOntarioUSA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ)HeidelbergGermany
| | | |
Collapse
|
205
|
Kurata K, James-Bott A, Tye MA, Yamamoto L, Samur MK, Tai YT, Dunford J, Johansson C, Senbabaoglu F, Philpott M, Palmer C, Ramasamy K, Gooding S, Smilova M, Gaeta G, Guo M, Christianson JC, Payne NC, Singh K, Karagoz K, Stokes ME, Ortiz M, Hagner P, Thakurta A, Cribbs A, Mazitschek R, Hideshima T, Anderson KC, Oppermann U. Prolyl-tRNA synthetase as a novel therapeutic target in multiple myeloma. Blood Cancer J 2023; 13:12. [PMID: 36631435 PMCID: PMC9834298 DOI: 10.1038/s41408-023-00787-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterised by aberrant production of immunoglobulins requiring survival mechanisms to adapt to proteotoxic stress. We here show that glutamyl-prolyl-tRNA synthetase (GluProRS) inhibition constitutes a novel therapeutic target. Genomic data suggest that GluProRS promotes disease progression and is associated with poor prognosis, while downregulation in MM cells triggers apoptosis. We developed NCP26, a novel ATP-competitive ProRS inhibitor that demonstrates significant anti-tumour activity in multiple in vitro and in vivo systems and overcomes metabolic adaptation observed with other inhibitor chemotypes. We demonstrate a complex phenotypic response involving protein quality control mechanisms that centers around the ribosome as an integrating hub. Using systems approaches, we identified multiple downregulated proline-rich motif-containing proteins as downstream effectors. These include CD138, transcription factors such as MYC, and transcription factor 3 (TCF3), which we establish as a novel determinant in MM pathobiology through functional and genomic validation. Our preclinical data therefore provide evidence that blockade of prolyl-aminoacylation evokes a complex pro-apoptotic response beyond the canonical integrated stress response and establish a framework for its evaluation in a clinical setting.
Collapse
Affiliation(s)
- Keiji Kurata
- grid.38142.3c000000041936754XJerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | - Anna James-Bott
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Mark A. Tye
- grid.32224.350000 0004 0386 9924Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114 USA ,Harvard Graduate School of Arts and Sciences, Cambridge, MA 02138 USA ,grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Leona Yamamoto
- grid.38142.3c000000041936754XJerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | - Mehmet K. Samur
- grid.38142.3c000000041936754XJerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA ,grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115 USA ,grid.65499.370000 0001 2106 9910Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Yu-Tzu Tai
- grid.38142.3c000000041936754XJerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | - James Dunford
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Catrine Johansson
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Filiz Senbabaoglu
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Martin Philpott
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Charlotte Palmer
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Karthik Ramasamy
- grid.4991.50000 0004 1936 8948Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD UK ,grid.4991.50000 0004 1936 8948Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LD UK
| | - Sarah Gooding
- grid.4991.50000 0004 1936 8948Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD UK ,grid.421962.a0000 0004 0641 4431Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 7LD UK
| | - Mihaela Smilova
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Giorgia Gaeta
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Manman Guo
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - John C. Christianson
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK ,grid.4991.50000 0004 1936 8948Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD UK
| | - N. Connor Payne
- grid.32224.350000 0004 0386 9924Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114 USA ,grid.38142.3c000000041936754XDepartment of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138 USA
| | - Kritika Singh
- grid.32224.350000 0004 0386 9924Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114 USA ,grid.261112.70000 0001 2173 3359Department of Bioengineering, Northeastern University, Boston, MA 02115 USA
| | - Kubra Karagoz
- grid.419971.30000 0004 0374 8313Bristol Myers Squibb, Summit, NJ 07901 USA
| | - Matthew E. Stokes
- grid.419971.30000 0004 0374 8313Bristol Myers Squibb, Summit, NJ 07901 USA
| | - Maria Ortiz
- grid.419971.30000 0004 0374 8313Bristol Myers Squibb, Summit, NJ 07901 USA
| | - Patrick Hagner
- grid.419971.30000 0004 0374 8313Bristol Myers Squibb, Summit, NJ 07901 USA
| | - Anjan Thakurta
- grid.4991.50000 0004 1936 8948Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD UK ,grid.419971.30000 0004 0374 8313Bristol Myers Squibb, Summit, NJ 07901 USA
| | - Adam Cribbs
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK ,grid.4991.50000 0004 1936 8948Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD UK
| | - Ralph Mazitschek
- grid.32224.350000 0004 0386 9924Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114 USA ,grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Kenneth C. Anderson
- grid.38142.3c000000041936754XJerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK. .,Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
206
|
Implications and prognostic impact of mass spectrometry in patients with newly-diagnosed multiple myeloma. Blood Cancer J 2023; 13:1. [PMID: 36599831 DOI: 10.1038/s41408-022-00772-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Mass spectrometry (MS) is a promising tool for monitoring monoclonal protein in plasma cell dyscrasias. We included 480 transplant-eligible newly-diagnosed multiple myeloma (MM) patients from the GMMG-MM5 trial (EudraCT No. 2010-019173-16) and performed a retrospective MS analysis at baseline (480 patients) and at the pre-defined, consecutive time points after induction (444 patients), prior to maintenance (305 patients) and after one year of maintenance (227 patients). We found that MS negativity was significantly associated with improved progression-free survival (PFS) even in patients with complete response (CR) at all investigated follow-up time points. The prognostic impact was independent of established risk factors, such as the revised International Staging System. Combining MS and baseline cytogenetics improved the prediction of outcome: MS-positive patients with high-risk cytogenetics had a dismal PFS of 1.9 years (95% confidence interval [CI]: 1.6-2.3 years) from the start of maintenance. Testing the value of sequential MS prior to and after one year of maintenance, patients converting from MS positivity to negativity had an excellent PFS (median not reached) while patients converting from MS negativity to positivity progressed early (median 0.6 years, 95% CI: 0.3-not reached). Among patients with sustained MS positivity, the baseline high-risk cytogenetic status had a significant impact and defined a group with poor PFS. Combining minimal residual disease (MRD) in the bone marrow and MS allowed the identification of double negative patients with a favorable PFS (median 3.33 years, 95% CI: 3.08-not reached) and no overall survival events. Our study provides strong evidence that MS is superior to conventional response monitoring, highlighting the potential of MS to become a new standard. Our data indicate that MS should be performed sequentially and combined with baseline disease features and MRD to improve its clinical value.Clinical Trials Register: EudraCT No. 2010-019173-16.
Collapse
|
207
|
Pandya SK, Pandya A, Larsen A, Gowin K. A Review of The Synergistic Effects of Curcumin with Proteasome Inhibitors in Multiple Myeloma Preclinical Models. Integr Cancer Ther 2023; 22:15347354231159322. [PMID: 36879488 PMCID: PMC9996714 DOI: 10.1177/15347354231159322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Proteasome inhibitors are the cornerstone of multiple myeloma treatment, but challenges still remain despite the increased survival rates. We conducted a review on the role of curcumin, a natural product, as an adjunct to bortezomib and carfilzomib in preclinical multiple myeloma models. Four studies reviewed showed enhanced anticancer effects when curcumin was combined with bortezomib compared to either treatment alone. Two additional studies showed similar results with carfilzomib. Synergistic mechanisms include inhibition of NF-kB, IL-6-induced signaling pathways, JNK pathway modulation, and increased cell cycle arrest.
Collapse
|
208
|
Chen Y, Gao S, Wang Y, Lu M, Chu B, Shi L, Xiang Q, Fang L, Ding Y, Wang M, Liu X, Zhao X, Sun K, Bao L. Pre-mobilization platelet count predicts stem cell yield during mobilization in patients with multiple myeloma. CANCER PATHOGENESIS AND THERAPY 2023; 1:40-45. [PMID: 38328606 PMCID: PMC10846336 DOI: 10.1016/j.cpt.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/05/2022] [Accepted: 11/27/2022] [Indexed: 02/09/2024]
Abstract
Background Autologous hematopoietic stem cell (HSC) transplantation remains the recommended treatment for eligible patients with multiple myeloma (MM). Increasing the number of transplanted CD34+ cells shorten the time to hematopoietic reconstitution and increases the overall survival of patients. With the harvest of a sufficient CD34+ cell number being crucial, this study aimed to predict the factors that affect stem cell collection. Methods We conducted a retrospective study of 110 patients who were newly diagnosed with MM and underwent autologous HSC collection at Beijing Jishuitan Hospital between March 2016 and July 2022. Multiple factors were analyzed using the Mann-Whitney U tests for between-group comparisons. Differences were considered statistically significant at P < 0.05. Results We found that patient age affected stem cell collection significantly; for patients younger than 55 years, the number of CD34+ cells harvested may be ≥ 2 × 106/L, is unlikely to reach 5 × 106/L. Platelet count at initial mobilization was a predictor of the number of CD34+ cells collected. Collection may fail when the platelet count at initial mobilization is below 177 × 109/L and may be excellent when it is higher than 199 × 109/L. Conclusions This finding could guide us to predict the approximate number of CD34+ cells collected in advance during autologous transplant mobilization for MM and to decide in advance whether to apply plerixafor to improve the number of HSCs collected.
Collapse
Affiliation(s)
- Yuan Chen
- Hematology Department, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Shan Gao
- Hematology Department, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yutong Wang
- Hematology Department, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Minqiu Lu
- Hematology Department, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Bin Chu
- Hematology Department, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Lei Shi
- Hematology Department, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Qiuqing Xiang
- Hematology Department, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Lijuan Fang
- Hematology Department, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yuehua Ding
- Hematology Department, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Mengzhen Wang
- Hematology Department, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xi Liu
- Hematology Department, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xin Zhao
- Hematology Department, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Kai Sun
- Hematology Department, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Li Bao
- Hematology Department, Beijing Jishuitan Hospital, Beijing 100035, China
| |
Collapse
|
209
|
Mikhael J, Bhutani M, Cole CE. Multiple Myeloma for the Primary Care Provider: A Practical Review to Promote Earlier Diagnosis Among Diverse Populations. Am J Med 2023; 136:33-41. [PMID: 36150517 DOI: 10.1016/j.amjmed.2022.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022]
Abstract
Multiple myeloma is the second most common hematologic malignancy in the United States and the most common hematologic malignancy among Blacks/African Americans. Delay in diagnosis is common and has been associated with inferior disease-free survival and increased rates of myeloma-related complications. Despite a roughly 2-times higher risk of multiple myeloma, diagnostic delay appears more common, and improvements in 5-year survival rates have been slower among Blacks/African Americans than their White counterparts. When patient symptoms and basic laboratory findings are suggestive of multiple myeloma, the primary care provider should initiate extended laboratory work-up that includes serum protein electrophoresis, serum immunoglobulin free light chain assay, and serum immunofixation. Heightened awareness within high-risk populations such as Blacks/African Americans may help to eliminate racial disparities in the diagnosis and treatment of multiple myeloma.
Collapse
Affiliation(s)
- Joseph Mikhael
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen), City of Hope Cancer Center, Phoenix, Ariz; International Myeloma Foundation, Studio City, Calif.
| | - Manisha Bhutani
- Department of Hematologic Oncology and Blood Disorders, Division of Plasma Cell Disorders, Atrium Health/Wake Forest Baptist, Levine Cancer Institute, Charlotte, NC
| | - Craig E Cole
- Department of Medicine, Michigan State University-Karmanos Cancer Institute at McLaren Greater Lansing, Lansing
| |
Collapse
|
210
|
Zhang J, Wang Z, Wang K, Xin D, Wang L, Fan Y, Xu Y. Increased Expression of SRSF1 Predicts Poor Prognosis in Multiple Myeloma. JOURNAL OF ONCOLOGY 2023; 2023:9998927. [PMID: 37206090 PMCID: PMC10191755 DOI: 10.1155/2023/9998927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/11/2022] [Accepted: 01/19/2023] [Indexed: 05/21/2023]
Abstract
Background Multiple myeloma (MM) is a clonal plasma cell disorder which still lacks sufficient prognostic factors. The serine/arginine-rich splicing factor (SRSF) family serves as an important splicing regulator in organ development. Among all members, SRSF1 plays an important role in cell proliferation and renewal. However, the role of SRSF1 in MM is still unknown. Methods SRSF1 was selected from the primary bioinformatics analysis of SRSF family members, and then we integrated 11 independent datasets and analyzed the relationship between SRSF1 expression and MM clinical characteristics. Gene set enrichment analysis (GSEA) was conducted to explore the potential mechanism of SRSF1 in MM progression. ImmuCellAI was used to estimate the abundance of immune infiltrating cells between the SRSF1high and SRSF1low groups. The ESTIMATE algorithm was used to evaluate the tumor microenvironment in MM. The expression of immune-related genes was compared between the groups. Additionally, SRSF1 expression was validated in clinical samples. SRSF1 knockdown was conducted to explore the role of SRSF1 in MM development. Results SRSF1 expression showed an increasing trend with the progression of myeloma. Besides, SRSF1 expression increased as the age, ISS stage, 1q21 amplification level, and relapse times increased. MM patients with higher SRSF1 expression had worse clinical features and poorer outcomes. Univariate and multivariate analysis indicated that upregulated SRSF1 expression was an independent poor prognostic factor for MM. Enrichment pathway analysis confirmed that SRSF1 takes part in the myeloma progression via tumor-associated and immune-related pathways. Several checkpoints and immune-activating genes were significantly downregulated in the SRSF1high groups. Furthermore, we detected that SRSF1 expression was significantly higher in MM patients than that in control donors. SRSF1 knockdown resulted in proliferation arrest in MM cell lines. Conclusion The expression value of SRSF1 is positively associated with myeloma progression, and high SRSF1 expression might be a poor prognostic biomarker in MM patients.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zanzan Wang
- Department of Hematology, Ningbo First Hospital, Ningbo 315010, China
| | - Kailai Wang
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Dijia Xin
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Luyao Wang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yili Fan
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
211
|
Charalampous C, Goel U, Gertz M, Lacy M, Dispenzieri A, Hayman S, Dingli D, Buadi F, Kapoor P, Kourelis T, Warsame R, Hogan WJ, Kumar S. Impact of the time interval between end of induction and autologous hematopoietic transplantation in newly diagnosed patients with multiple myeloma. Bone Marrow Transplant 2023; 58:46-53. [PMID: 36203088 PMCID: PMC9812760 DOI: 10.1038/s41409-022-01835-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 01/10/2023]
Abstract
Multiple Myeloma patients eligible for autologous hematopoietic transplantation (AHT) typically receive 3-6 cycles of induction therapy before transplant. The last induction cycle is completed 2-4 weeks prior to mobilization. We evaluated the impact of the time interval between end of induction and AHT on progression-free survival (PFS) and overall survival (OS). A total of 1055 patients who underwent AHT were identified. The median time to transplant (TTT) was 33 days (27-42 quartile range). Patients with less than 33 days of TTT had significantly prolonged PFS (35.6 vs. 32.1 months, p < 0.03) but non-significant OS differences compared to those with more than 33 days. Quartile comparisons showed that patients in the 1st quartile (less than 27 days) had significantly prolonged PFS (36.7 vs. 30.9 months, p < 0.01) compared to the 4th quartile group (more than 42 days). In a subgroup analysis of patients with partial or worse biochemical response prior to transplant, patients in the 1st quartile had significantly prolonged PFS (37.7 vs. 28.7 months, p < 0.04) compared to the 4th quartile group. In conclusion, we showed that a prolonged TTT is associated with inferior outcomes compared to tighter chemotherapy schedules. This finding was especially prevalent in patients with partial response at induction.
Collapse
Affiliation(s)
- Charalampos Charalampous
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Utkarsh Goel
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Morie Gertz
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Martha Lacy
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Angela Dispenzieri
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Suzanne Hayman
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - David Dingli
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Francis Buadi
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Prashant Kapoor
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Taxiarchis Kourelis
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Rahma Warsame
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - William J. Hogan
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN USA
| | - Shaji Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
212
|
Wang Z, Chen C, Wang L, Jia Y, Qin Y. Chimeric antigen receptor T-cell therapy for multiple myeloma. Front Immunol 2022; 13:1050522. [PMID: 36618390 PMCID: PMC9814974 DOI: 10.3389/fimmu.2022.1050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is a malignant plasma cell disorder that remains incurable for most patients, as persistent clonal evolution drives new mutations which confer MM high-risk signatures and resistance to standard care. The past two decades have significantly refashioned the therapeutic options for MM, especially adoptive T cell therapy contributing to impressive response rate and clinical efficacy. Despite great promises achieved from chimeric antigen receptor T-cell (CAR-T) therapy, the poor durability and severe toxicity (cytokine release syndrome and neurotoxicity) are still huge challenges. Therefore, relapsed/refractory multiple myeloma (RRMM), characterized by the nature of clinicopathologic and molecular heterogeneity, is frequently associated with poor prognosis. B Cell Maturation Antigen (BCMA) is the most successful target for CAR-T therapy, and other potential targets either for single-target or dual-target CAR-T are actively being studied in numerous clinical trials. Moreover, mechanisms driving resistance or relapse after CAR-T therapy remain uncharacterized, which might refer to T-cell clearance, antigen escape, and immunosuppressive tumor microenvironment. Engineering CAR T-cell to improve both efficacy and safety continues to be a promising area for investigation. In this review, we aim to describe novel tumor-associated neoantigens for MM, summarize the data from current MM CAR-T clinical trials, introduce the mechanism of disease resistance/relapse after CAR-T infusion, highlight innovations capable of enhanced efficacy and reduced toxicity, and provide potential directions to optimize manufacturing processes.
Collapse
Affiliation(s)
| | | | | | - Yongxu Jia
- *Correspondence: Yongxu Jia, ; Yanru Qin,
| | - Yanru Qin
- *Correspondence: Yongxu Jia, ; Yanru Qin,
| |
Collapse
|
213
|
Chari A, Minnema MC, Berdeja JG, Oriol A, van de Donk NWCJ, Rodríguez-Otero P, Askari E, Mateos MV, Costa LJ, Caers J, Verona R, Girgis S, Yang S, Goldsmith RB, Yao X, Pillarisetti K, Hilder BW, Russell J, Goldberg JD, Krishnan A. Talquetamab, a T-Cell-Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma. N Engl J Med 2022; 387:2232-2244. [PMID: 36507686 DOI: 10.1056/nejmoa2204591] [Citation(s) in RCA: 227] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND G protein-coupled receptor, family C, group 5, member D (GPRC5D) is an orphan receptor expressed in malignant plasma cells. Talquetamab, a bispecific antibody against CD3 and GPRC5D, redirects T cells to mediate killing of GPRC5D-expressing myeloma cells. METHODS In a phase 1 study, we evaluated talquetamab administered intravenously weekly or every other week (in doses from 0.5 to 180 μg per kilogram of body weight) or subcutaneously weekly, every other week, or monthly (5 to 1600 μg per kilogram) in patients who had heavily pretreated relapsed or refractory multiple myeloma that had progressed with established therapies (a median of six previous lines of therapy) or who could not receive these therapies without unacceptable side effects. The primary end points - the frequency and type of dose-limiting toxic effects (study part 1 only), adverse events, and laboratory abnormalities - were assessed in order to select the recommended doses for a phase 2 study. RESULTS At the data-cutoff date, 232 patients had received talquetamab (102 intravenously and 130 subcutaneously). At the two subcutaneous doses recommended for a phase 2 study (405 μg per kilogram weekly [30 patients] and 800 μg per kilogram every other week [44 patients]), common adverse events were cytokine release syndrome (in 77% and 80% of the patients, respectively), skin-related events (in 67% and 70%), and dysgeusia (in 63% and 57%); all but one cytokine release syndrome event were of grade 1 or 2. One dose-limiting toxic effect of grade 3 rash was reported in a patient who had received talquetamab at the 800-μg dose level. At median follow-ups of 11.7 months (in patients who had received talquetamab at the 405-μg dose level) and 4.2 months (in those who had received it at the 800-μg dose level), the percentages of patients with a response were 70% (95% confidence interval [CI], 51 to 85) and 64% (95% CI, 48 to 78), respectively. The median duration of response was 10.2 months and 7.8 months, respectively. CONCLUSIONS Cytokine release syndrome, skin-related events, and dysgeusia were common with talquetamab treatment but were primarily low-grade. Talquetamab induced a substantial response among patients with heavily pretreated relapsed or refractory multiple myeloma. (Funded by Janssen Research and Development; MonumenTAL-1 ClinicalTrials.gov number, NCT03399799.).
Collapse
Affiliation(s)
- Ajai Chari
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Monique C Minnema
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Jesus G Berdeja
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Albert Oriol
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Niels W C J van de Donk
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Paula Rodríguez-Otero
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Elham Askari
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - María-Victoria Mateos
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Luciano J Costa
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Jo Caers
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Raluca Verona
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Suzette Girgis
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Shiyi Yang
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Rachel B Goldsmith
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Xiang Yao
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Kodandaram Pillarisetti
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Brandi W Hilder
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Jeffery Russell
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Jenna D Goldberg
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| | - Amrita Krishnan
- From the Mount Sinai School of Medicine, New York (A.C.); University Medical Center Utrecht, Utrecht University, Utrecht (M.C.M.), and Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam (N.W.C.J.D.) - both in the Netherlands; Sarah Cannon Research Institute and Tennessee Oncology, Nashville (J.G.B.); Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona (A.O.), Clínica Universidad de Navarra, Pamplona (P.R.-O.), Hospital Universitario Fundación Jiménez Díaz, Madrid (E.A.), and University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cáncer, Centro de Investigación Biomédica en Red de Cáncer, Salamanca (M.-V.M.) - all in Spain; the University of Alabama at Birmingham, Birmingham (L.J.C.); Centre Hospitalier Universitaire de Liège, Liege, Belgium (J.C.); Janssen Research and Development, Spring House, PA (R.V., S.G., S.Y., R.B.G., K.P., B.W.H., J.R.); Janssen Research and Development, La Jolla (X.Y.), and City of Hope Comprehensive Cancer Center, Duarte (A.K.) - both in California; and Janssen Research and Development, Raritan, NJ (J.D.G.)
| |
Collapse
|
214
|
Gkotzamanidou M, Terpos E, Dimopoulos MA, Souliotis VL. The Combination of Panobinostat and Melphalan for the Treatment of Patients with Multiple Myeloma. Int J Mol Sci 2022; 23:ijms232415671. [PMID: 36555311 PMCID: PMC9778728 DOI: 10.3390/ijms232415671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylase inhibitors show synergy with several genotoxic drugs. Herein, we investigated the biological impact of the combined treatment of panobinostat and melphalan in multiple myeloma (MM). DNA damage response (DDR) parameters and the expression of DDR-associated genes were analyzed in bone marrow plasma cells (BMPCs) and peripheral blood mononuclear cells (PBMCs) from 26 newly diagnosed MM patients. PBMCs from 25 healthy controls (HC) were examined in parallel. Compared with the ex vivo melphalan-only treatment, combined treatment with panobinostat and melphalan significantly reduced the efficiency of nucleotide excision repair (NER) and double-strand-break repair (DSB/R), enhanced the accumulation of DNA lesions (monoadducts and DSBs), and increased the apoptosis rate only in patients’ BMPCs (all p < 0.001); marginal changes were observed in PBMCs from the same patients or HC. Accordingly, panobinostat pre-treatment decreased the expression levels of critical NER (DDB2, XPC) and DSB/R (MRE11A, PRKDC/DNAPKc, RAD50, XRCC6/Ku70) genes only in patients’ BMPCs; no significant changes were observed in PBMCs from patients or HC. Together, our findings demonstrate that panobinostat significantly increased the melphalan sensitivity of malignant BMPCs without increasing the melphalan sensitivity of PBMCs from the same patients, thus paving the way for combination therapies in MM with improved anti-myeloma efficacy and lower side effects.
Collapse
Affiliation(s)
- Maria Gkotzamanidou
- Oncology Department, 251 Hellenic Air-Force General Hospital, 155 61 Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Vassilis L. Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
- Correspondence:
| |
Collapse
|
215
|
Molecular Features of the Mesenchymal and Osteoblastic Cells in Multiple Myeloma. Int J Mol Sci 2022; 23:ijms232415448. [PMID: 36555090 PMCID: PMC9779562 DOI: 10.3390/ijms232415448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a monoclonal gammopathy characterized by biological heterogeneity and unregulated proliferation of plasma cells (PCs) in bone marrow (BM). MM is a multistep process based on genomic instability, epigenetic dysregulation and a tight cross-talk with the BM microenvironment that plays a pivotal role supporting the proliferation, survival, drug-resistance and homing of PCs. The BM microenvironment consists of a hematopoietic and a non-hematopoietic compartment, which cooperate to create a tumor environment. Among the non-hematopoietic component, mesenchymal stromal cells (MSCs) and osteoblasts (OBs) appear transcriptionally and functionally different in MM patients compared to healthy donors (HDs) and to patients with pre-malignant monoclonal gammopathies. Alterations of both MSCs and OBs underly the osteolytic lesions that characterize myeloma-associated bone disease. In this review, we will discuss the different characteristics of MSCs and OBs in MM patients, analyzing the transcriptome, the deregulated molecular pathways and the role performed by miRNAs and exosome in the pathophysiology of MM.
Collapse
|
216
|
Łuczkowska K, Kulig P, Baumert B, Machaliński B. The Evidence That 25(OH)D3 and VK2 MK-7 Vitamins Influence the Proliferative Potential and Gene Expression Profiles of Multiple Myeloma Cells and the Development of Resistance to Bortezomib. Nutrients 2022; 14:5190. [PMID: 36501221 PMCID: PMC9736786 DOI: 10.3390/nu14235190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable hematological malignancy. Bortezomib (BTZ) is a proteasome inhibitor widely used in MM therapy whose potent activity is often hampered by the development of resistance. The immune system is vital in the pathophysiology of BTZ resistance. Vitamins D (VD) and K (VK) modulate the immune system; therefore, they are potentially beneficial in MM. The aim of the study was to evaluate the effect of BTZ therapy and VD and VK supplementation on the proliferation potential and gene expression profiles of MM cells in terms of the development of BTZ resistance. The U266 MM cell line was incubated three times with BTZ, VD and VK at different timepoints. Then, proliferation assays, RNA sequencing and bioinformatics analysis were performed. We showed BTZ resistance to be mediated by processes related to ATP metabolism and oxidative phosphorylation. The upregulation of genes from the SNORDs family suggests the involvement of epigenetic mechanisms. Supplementation with VD and VK reduced the proliferation of MM cells in both the non-BTZ-resistant and BTZ-resistant phenotypes. VD and VK, by restoring proper metabolism, may have overcome resistance to BTZ in vitro. This observation forms the basis for further clinical trials evaluating VD and VK as potential adjuvant therapies for MM patients.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Bartłomiej Baumert
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
217
|
Molecular Crosstalk between Chromatin Remodeling and Tumor Microenvironment in Multiple Myeloma. Curr Oncol 2022; 29:9535-9549. [PMID: 36547163 PMCID: PMC9777166 DOI: 10.3390/curroncol29120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a complex disease driven by numerous genetic and epigenetic alterations that are acquired over time. Despite recent progress in the understanding of MM pathobiology and the availability of innovative drugs, which have pronounced clinical outcome, this malignancy eventually progresses to a drug-resistant lethal stage and, thus, novel therapeutic drugs/models always play an important role in effective management of MM. Modulation of tumor microenvironment is one of the hallmarks of cancer biology, including MM, which affects the myeloma genomic architecture and disease progression subtly through chromatin modifications. The bone marrow niche has a prime role in progression, survival, and drug resistance of multiple myeloma cells. Therefore, it is important to develop means for targeting the ecosystem between multiple myeloma bone marrow microenvironment and chromatin remodeling. Extensive gene expression profile analysis has indeed provided the framework for new risk stratification of MM patients and identifying novel molecular targets and therapeutics. However, key tumor microenvironment factors/immune cells and their interactions with chromatin remodeling complex proteins that drive MM cell growth and progression remain grossly undefined.
Collapse
|
218
|
Farhangnia P, Akbarpour M, Yazdanifar M, Aref AR, Delbandi AA, Rezaei N. Advances in therapeutic targeting of immune checkpoints receptors within the CD96-TIGIT axis: clinical implications and future perspectives. Expert Rev Clin Immunol 2022; 18:1217-1237. [PMID: 36154551 DOI: 10.1080/1744666x.2022.2128107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The development of therapeutic antibodies targeting immune checkpoint molecules (ICMs) that induce long-term remissions in cancer patients has revolutionized cancer immunotherapy. However, a major drawback is that relapse after an initial response may be attributed to innate and acquired resistance. Additionally, these treatments are not beneficial to all patients. Therefore, the discovery and targeting of novel ICMs and their combination with other immunotherapeutics are urgently needed. AREAS COVERED There has been increasing evidence of the CD96-TIGIT axis as ICMs in cancer immunotherapy in the last five years. This review will highlight and discuss the current knowledge about the role of CD96 and TIGIT in hematological and solid tumor immunotherapy in the context of empirical studies and clinical trials, and provide a comprehensive list of ongoing cancer clinical trials on the blockade of these ICMs, as well as the rationale behind combinational therapies with anti-PD-1/PD-L1 agents, chemotherapy drugs, and radiotherapy. Moreover, we share our perspectives on anti-CD96/TIGIT-related combination therapies. EXPERT OPINION CD96-TIGIT axis regulates anti-tumor immune responses. Thus, the receptors within this axis are the potential candidates for cancer immunotherapy. Combining the inhibition of CD96-TIGIT with anti-PD-1/PD-L1 mAbs and chemotherapy drugs has shown relatively effective results in the context of preclinical studies and tumor models.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
219
|
Zhang L, Zhang R, Wang J, Chen Y, Qiao C, Shi Q, Jin Y, Shen X, Li J, Chen L. Identification of clinical implications and potential prognostic models of chromatin regulator mutations in multiple myeloma. Clin Epigenetics 2022; 14:93. [PMID: 35870987 PMCID: PMC9308335 DOI: 10.1186/s13148-022-01314-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/16/2022] [Indexed: 12/29/2022] Open
Abstract
Abstract
Background
With the rapid development of next-generation sequencing (NGS) technologies, researchers are making efforts to reveal the genomic landscape of multiple myeloma (MM). However, the clinical significance of many mutations remains poorly defined due to the genetic heterogeneity of MM. To systematically explore the clinical implications of gene mutations and build practical prognostic models, we performed DNA sequencing in newly diagnosed MM patients.
Methods
MM cells were purified from bone marrow aspirates using CD138 microbeads and subjected to sequencing with a 387-gene Panel. Nomogram was developed using Cox’s proportional hazards model, and candidate variables were screened by stepwise regression. Internal validation was carried out by the bootstrap method.
Results
Between July 2016 and December 2020, a total of 147 patients were included in our study. We found patients with a higher mutational load had a significantly shorter progress-free survival (PFS) (19.0 vs. 32.0 months, P = 0.0098) and overall survival (OS) (3-year OS rates were 66.1% and 80.0%, P = 0.0290). Mutations in chromatin regulators (CRs) including KMT2C (14.3%), KMT2D (14.3%), EP300 (11.6%) and ARID gene family (31.3%) were highly frequent in newly diagnosed MM patients. Interestingly, proteins encoded by these genes could form a complex called KMT2C/D COMPASS (KCDCOMs). Patients with mutations of ARID gene family had a significantly shorter PFS (15.5 vs. 34.0 months, P = 0.0003) and OS (3-year OS rates were 64.9% and 81.0%, P = 0.0351) than patients without ARID gene mutations. Incorporating ARID gene mutations into the current staging system could successfully improve their prognostic performance. The PFS and OS nomogram models (including 1q21 copies, ARID gene mutations, extramedullary disease, mutational load and TP53 mutations) showed good predicting performance in both training and validation sets.
Conclusion
Our findings emphasized the importance of CRs mutations in newly diagnosed MM patients and indicated the mutations affecting KCDCOMs might promote the development of MM. High mutational load and harboring mutations in the ARID gene family were novel predictors of adverse prognosis in MM. Prognostic models based on gene mutations were commendably prognostic evaluation methods that could provide a reference for clinical practices.
Collapse
|
220
|
Zuo X, Liu D. Mechanism of immunomodulatory drug resistance and novel therapeutic strategies in multiple myeloma. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1110-1121. [PMID: 36121114 DOI: 10.1080/16078454.2022.2124694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The mechanism of immunomodulatory drugs (IMiDs) resistance to multiple myeloma (MM) cells has been gradually demonstrated by recently studies, and some potential novel strategies have been confirmed to have antimyeloma activity and be associated with IMiD activity in MM. METHODS This article searched the Pubmed library, reviewed some recently studies related to IMiD resistance to MM cells and summarized some potent agents to improve IMiD resistance to MM cells. RESULTS Studies have confirmed that cereblon is a primary direct protein target of IMiDs. IRF4 not only is affected by the IKZF protein but also can directly inhibit the expression of BMF and BIM, thereby promoting the survival of MM cells. Additionally, the expression of IRF4 and MYC also plays an important role in three important signaling pathways (Wnt, STAT3 and MAPK/ERK) related to IMiD resistance. Notably, MYC, a downstream factor of IRF4, may be upregulated by BRD4, and upregulation of MYC promotes cell proliferation in MM and disease progression. Recently, some novel therapeutic agents targeting BRD4, a histone modification-related 'reader' of epigenetic marks, or other important factors (e.g. TAK1) in relevant signaling pathways have been developed and they may provide new options for relapse/refractory MM therapy, such as BET inhibitors, CBP/EP300 inhibitors, dual-target BET-CBP/EP300 inhibitors, TAK1 inhibitors, and they may provide new options for relapsed/refractory MM therapy. CONCLUSIONS Accumulated studies have revealed that some key factors associated with the mechanism of IMiD resistance to MM cells. Some agents represent promising new therapeutics of MM to regulate the IRF4/MYC axis by inhibiting BRD4 expression or signaling pathway activation.
Collapse
Affiliation(s)
- Xiaojia Zuo
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China.,Department of Oncology and Hematology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, People's Republic of China.,Guizhou Medical University, Guiyang, People's Republic of China
| | - Dingsheng Liu
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
221
|
Cichocki F, Bjordahl R, Goodridge JP, Mahmood S, Gaidarova S, Abujarour R, Davis ZB, Merino A, Tuininga K, Wang H, Kumar A, Groff B, Witty A, Bonello G, Huffman J, Dailey T, Lee TT, Malmberg KJ, Walcheck B, Höpken U, Rehm A, Valamehr B, Miller JS. Quadruple gene-engineered natural killer cells enable multi-antigen targeting for durable antitumor activity against multiple myeloma. Nat Commun 2022; 13:7341. [PMID: 36446823 PMCID: PMC9709157 DOI: 10.1038/s41467-022-35127-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/20/2022] [Indexed: 11/30/2022] Open
Abstract
Allogeneic natural killer (NK) cell adoptive transfer is a promising treatment for several cancers but is less effective for the treatment of multiple myeloma. In this study, we report on quadruple gene-engineered induced pluripotent stem cell (iPSC)-derived NK cells designed for mass production from a renewable source and for dual targeting against multiple myeloma through the introduction of an NK cell-optimized chimeric antigen receptor (CAR) specific for B cell maturation antigen (BCMA) and a high affinity, non-cleavable CD16 to augment antibody-dependent cellular cytotoxicity when combined with therapeutic anti-CD38 antibodies. Additionally, these cells express a membrane-bound interleukin-15 fusion molecule to enhance function and persistence along with knock out of CD38 to prevent antibody-mediated fratricide and enhance NK cell metabolic fitness. In various preclinical models, including xenogeneic adoptive transfer models, quadruple gene-engineered NK cells consistently demonstrate durable antitumor activity independent of exogenous cytokine support. Results presented here support clinical translation of this off-the-shelf strategy for effective treatment of multiple myeloma.
Collapse
Affiliation(s)
- Frank Cichocki
- University of Minnesota, Department of Medicine, Minneapolis, MN, 55455, USA
| | | | | | | | | | | | - Zachary B Davis
- University of Minnesota, Department of Medicine, Minneapolis, MN, 55455, USA
| | - Aimee Merino
- University of Minnesota, Department of Medicine, Minneapolis, MN, 55455, USA
| | - Katie Tuininga
- University of Minnesota, Department of Medicine, Minneapolis, MN, 55455, USA
| | - Hongbo Wang
- University of Minnesota, Department of Medicine, Minneapolis, MN, 55455, USA
| | - Akhilesh Kumar
- University of Minnesota, Department of Medicine, Minneapolis, MN, 55455, USA
| | - Brian Groff
- Fate Therapeutics, San Diego, CA, 92121, USA
| | - Alec Witty
- Fate Therapeutics, San Diego, CA, 92121, USA
| | | | | | | | - Tom T Lee
- Fate Therapeutics, San Diego, CA, 92121, USA
| | | | - Bruce Walcheck
- University of Minnesota, Department of Veterinary and Biomedical Sciences, St. Paul, MN, 55108, USA
| | - Uta Höpken
- Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | - Armin Rehm
- Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | | | - Jeffrey S Miller
- University of Minnesota, Department of Medicine, Minneapolis, MN, 55455, USA.
| |
Collapse
|
222
|
Giliberto M, Santana LM, Holien T, Misund K, Nakken S, Vodak D, Hovig E, Meza-Zepeda LA, Coward E, Waage A, Taskén K, Skånland SS. Mutational analysis and protein profiling predict drug sensitivity in multiple myeloma cell lines. Front Oncol 2022; 12:1040730. [PMID: 36523963 PMCID: PMC9745900 DOI: 10.3389/fonc.2022.1040730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2023] Open
Abstract
INTRODUCTION Multiple myeloma (MM) is a heterogeneous disease where cancer-driver mutations and aberrant signaling may lead to disease progression and drug resistance. Drug responses vary greatly, and there is an unmet need for biomarkers that can guide precision cancer medicine in this disease. METHODS To identify potential predictors of drug sensitivity, we applied integrated data from drug sensitivity screening, mutational analysis and functional signaling pathway profiling in 9 cell line models of MM. We studied the sensitivity to 33 targeted drugs and their association with the mutational status of cancer-driver genes and activity level of signaling proteins. RESULTS We found that sensitivity to mitogen-activated protein kinase kinase 1 (MEK1) and phosphatidylinositol-3 kinase (PI3K) inhibitors correlated with mutations in NRAS/KRAS, and PI3K family genes, respectively. Phosphorylation status of MEK1 and protein kinase B (AKT) correlated with sensitivity to MEK and PI3K inhibition, respectively. In addition, we found that enhanced phosphorylation of proteins, including Tank-binding kinase 1 (TBK1), as well as high expression of B cell lymphoma 2 (Bcl-2), correlated with low sensitivity to MEK inhibitors. DISCUSSION Taken together, this study shows that mutational status and signaling protein profiling might be used in further studies to predict drug sensitivities and identify resistance markers in MM.
Collapse
Affiliation(s)
- Mariaserena Giliberto
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Leonardo Miranda Santana
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Toril Holien
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway
- Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigve Nakken
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Daniel Vodak
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Leonardo A. Meza-Zepeda
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eivind Coward
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anders Waage
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway
- Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sigrid S. Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
223
|
A Rare Case of Acute Hemolytic Anemia in a Patient with Newly Diagnosed Multiple Myeloma: Maintaining a Fine Balance between Occam's Razor and Hickam's Dictum. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1753500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractAnemia is a common feature in multiple myeloma and is multifactorial. A 52-year-old lady was admitted to our hospital with complaints of fatigue, exertional dyspnea, paresthesia, and a recent-onset confusion state. Fundus examination revealed features of hyperviscosity. The patient received 2 units of packed red blood cell transfusion (PRBC) before the present hospital admission. Laboratory investigations revealed severe anemia and thrombocytopenia. The M-protein was 5.8 g/dL. Bone marrow showed sheets of plasma cells. Immunofixation electrophoresis confirmed the presence of an IgAλ band. FISH was positive for IgH-FGFR3 fusion. The investigations confirmed multiple myeloma R-ISS stage III. The patient was immediately started on CyBorD chemotherapy regimen. The patient had indirect hyperbilirubinemia and symptomatic anemia. Initial testing of the patient's sample showed blood grouping discrepancy with DCT, ICT, and auto control positive. The symptomatic anemia persisted requiring PRC transfusions. Further antibody study revealed the presence of anti-Jka antibody—a warm IgG antibody and cold antibody. Subsequently, the patient received Jka antigen-negative B-positive compatible PRBC transfusions and the hemoglobin normalized. Our patient had transfusion-associated alloimmunization along with hyperviscosity. The timely recognition and early institution of plasmapheresis and myeloma-directed therapy along with transfusion of compatible Jka antigen-negative PRBC lead to rapid improvement.
Collapse
|
224
|
Li X, Wang W, Zhang X, Liang Y. Multiple myeloma with isolated central nervous system relapse after autologous stem cell transplantation: A case report and review of the literature. Front Oncol 2022; 12:1027585. [PMID: 36505789 PMCID: PMC9732423 DOI: 10.3389/fonc.2022.1027585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Patients with multiple myeloma (MM) rarely present with central nervous system (CNS) involvement as a manifestation of extramedullary disease (EMD), a condition that is associated with poor prognosis. CNS relapse without evidence of systemic involvement is even rarer, and there is no standardized treatment because there are only few case reports. We present a 47-year-old female who was diagnosed with nonsecretory multiple myeloma (NSMM) 9 years previously. She had a complete remission after receiving aggressive therapies, including high-dose chemotherapy and autologous stem cell transplantation (ASCT). However, after 7 years of progression-free survival, she had CNS relapse without evidence of systemic involvement. We switched to a salvage regimen consisting of high-dose methotrexate with lenalidomide. She achieved rapid clinical improvement, with a reduction in cerebrospinal fluid plasmacytosis of more than 80%, and no notable side effects. Our description of this unique case of a patient with MM and isolated CNS relapse after ASCT provides a reference for physicians to provide more appropriate management of these patients. We also reviewed previously reported cases and summarized the outcomes of isolated CNS relapse after ASCT, and discuss the pathogenesis and possible treatment strategies for MM with isolated CNS relapse.
Collapse
|
225
|
Yue X, Huang L, Yang Y, Zhao Y, He D, Han X, Zheng G, Li Y, Zhang E, Cai Z, Huang X, He J. High levels of serum IL-10 indicate disease progression, extramedullary involvement, and poor prognosis in multiple myeloma. J Zhejiang Univ Sci B 2022; 23:968-974. [PMID: 36379615 PMCID: PMC9676094 DOI: 10.1631/jzus.b2200277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/28/2022] [Indexed: 09/01/2023]
Abstract
Multiple myeloma (MM) is a common malignant hematological tumor in adults, which is characterized by clonal malignant proliferation of plasma cells in the bone marrow and secretion of a large number of abnormal monoclonal immunoglobulins (M protein), leading to bone destruction, hypercalcemia, anemia, and renal insufficiency (Alexandrakis et al., 2015; Yang et al., 2018). Since a large number of new drugs, represented by proteasome inhibitors and immunomodulators, have been successfully used to treat MM, treatment efficacy and survival of patients have been significantly improved. However, due to the high heterogeneity of this disease, patients have responded differently to treatments with these new drugs (Palumbo and Anderson, 2011; Wang et al., 2016; Huang et al., 2020). Growth and survival of MM cells depend on the bone marrow microenvironment, especially numerous inflammatory cytokines secreted by myeloma cells and bone marrow stromal cells, such as vascular endothelial growth factor (VEGF), interleukin (IL)-6, transforming growth factor-β (TGF-β), and IL-10. These cytokines can promote the growth of myeloma cells, induce angiogenesis, and inhibit antitumor immunity, and are often linked to patient prognosis (Kumar et al., 2017). In this era of new drugs, the prognostic values of the serum levels of these cytokines in MM need further evaluation.
Collapse
Affiliation(s)
- Xiaoyan Yue
- Bone Marrow Transplantation Center, Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Linlin Huang
- Bone Marrow Transplantation Center, Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yang Yang
- Bone Marrow Transplantation Center, Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi Zhao
- Bone Marrow Transplantation Center, Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Donghua He
- Bone Marrow Transplantation Center, Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaoyan Han
- Bone Marrow Transplantation Center, Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Gaofeng Zheng
- Bone Marrow Transplantation Center, Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi Li
- Bone Marrow Transplantation Center, Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Institute of Hematology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Xin Huang
- Institute of Hematology, Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jingsong He
- Bone Marrow Transplantation Center, Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
226
|
Wan X, Guo W, Zhan Z, Bai O. Dysregulation of FBW7 in malignant lymphoproliferative disorders. Front Oncol 2022; 12:988138. [PMID: 36457505 PMCID: PMC9707496 DOI: 10.3389/fonc.2022.988138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is involved in various aspects of cell processes, including cell proliferation, differentiation, and cell cycle progression. F-box and WD repeat domain-containing protein 7 (FBW7), as a key component of UPS proteins and a critical tumor suppressor in human cancers, controls proteasome-mediated degradation by ubiquitinating oncoproteins such as c-Myc, Mcl-1, cyclin E, and Notch. It also plays a role in the development of various cancers, including solid and hematological malignancies, such as T-cell acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and multiple myeloma. This comprehensive review emphasizes the functions, substrates, and expression of FBW7 in malignant lymphoproliferative disorders.
Collapse
Affiliation(s)
| | | | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
227
|
Amundarain A, Pastor F, Prósper F, Agirre X. Aptamers, a New Therapeutic Opportunity for the Treatment of Multiple Myeloma. Cancers (Basel) 2022; 14:5471. [PMID: 36358889 PMCID: PMC9657029 DOI: 10.3390/cancers14215471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 08/30/2023] Open
Abstract
Multiple Myeloma (MM) remains an incurable disease due to high relapse rates and fast development of drug resistances. The introduction of monoclonal antibodies (mAb) has caused a paradigm shift in MM treatment, paving the way for targeted approaches with increased efficacy and reduced toxicities. Nevertheless, antibody-based therapies face several difficulties such as high immunogenicity, high production costs and limited conjugation capacity, which we believe could be overcome by the introduction of nucleic acid aptamers. Similar to antibodies, aptamers can bind to their targets with great affinity and specificity. However, their chemical nature reduces their immunogenicity and production costs, while it enables their conjugation to a wide variety of cargoes for their use as delivery agents. In this review, we summarize several aptamers that have been tested against MM specific targets with promising results, establishing the rationale for the further development of aptamer-based strategies against MM. In this direction, we believe that the study of novel plasma cell surface markers, the development of intracellular aptamers and further research on aptamers as building blocks for complex nanomedicines will lead to the generation of next-generation targeted approaches that will undoubtedly contribute to improve the management and life quality of MM patients.
Collapse
Affiliation(s)
- Ane Amundarain
- Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 31008 Pamplona, Spain
| | - Fernando Pastor
- Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 31008 Pamplona, Spain
| | - Felipe Prósper
- Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 31008 Pamplona, Spain
- Hematology Department, Clínica Universidad de Navarra, CCUN, University of Navarra, 31008 Pamplona, Spain
| | - Xabier Agirre
- Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 31008 Pamplona, Spain
| |
Collapse
|
228
|
Ferro A, Cretton S, Abreu Venturini Polese A, Endringer DC, Cuendet M. Active Compounds From Inga edulis Martius Seeds Against Multiple Myeloma. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221131125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma is an incurable hematological cancer with an average survival time of only 5 to 10 years due to the high rate of relapse and resistance. Although the introduction of novel classes of drugs has improved the standard of care, new strategies are urgently needed. Plants are primary sources of bioactive natural compounds for cancer treatment. This study aimed at evaluating the in vitro inhibitory activity of the Inga edulis seed extract against multiple myeloma cells, as well as the compounds isolated from this extract. The ethanolic extract of the seeds of I. edulis inhibited 85% of RPMI 8226 cell proliferation at 20 µg/mL. Then, the extract was subjected to a bioassay-guided fractionation to afford 3 saponins known as concinnoside D (1), julibroside A1 (2), and julibroside A3 (3). The isolated saponins exhibited antiproliferative activity with IC50 values in the low µM range for compounds 2 and 3. Compound 1 was considered inactive (IC50 > 20 µM). Therefore, the seeds of I. edulis could be considered as a source of active compounds against multiple myeloma.
Collapse
Affiliation(s)
- Angelica Ferro
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Sylvian Cretton
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | | | - Denise Coutinho Endringer
- University Vila Velha, Boa Vista, Espírito Santo, Brazil
- Instituto Capixaba de Ciências e Administração, Vila Velha, Espírito Santo, Brazil
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
229
|
Prevalence of corneal findings and their interrelation with hematological findings in monoclonal gammopathy. PLoS One 2022; 17:e0276048. [PMID: 36315502 PMCID: PMC9621422 DOI: 10.1371/journal.pone.0276048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE To determine prevalence of paraproteinemic keratopathy (PPK) among patients with monoclonal gammopathy (MG). To evaluate interrelation between corneal and hematological parameters in patients with PPK. METHODS Fifty-one patients with monoclonal gammopathy of undetermined significance (n = 19), smoldering multiple myeloma (n = 5) or multiple myeloma (n = 27) were prospectively included in this study. Best-corrected visual acuity, slit-lamp biomicroscopy, Scheimpflug tomography, in-vivo confocal laser scanning microscopy, optical coherence tomography and complete hematological workup were assessed. RESULTS We identified n = 19 patients with bilateral corneal opacities compatible with PPK. PPK was newly diagnosed in 13 (29%) of 45 patients with a primary hematological diagnosis and in n = 6 patients without previous hematological diagnosis. The most common form was a discreet stromal flake-like PPK (n = 14 of 19). The median level of M-protein (p = 0.59), IgA (p = 0.53), IgG (p = 0.79) and IgM (p = 0.59) did not differ significantly between the patients with and without PPK. The median level of the FLC κ in serum of patients with kappa-restricted plasma cell dyscrasia was 209 mg/l in patients with PPK compared to 38.1 mg/l in patients without PPK (p = 0.18). Median level of FLC lambda in serum of patients with lambda-restricted plasma cell dyscrasia was lower in patients with PPK compared to patients without PPK (p = 0.02). CONCLUSION The PPK was mostly discreet, but its prevalence (29%) was higher than expected. Median level of the monoclonal paraprotein was not significantly higher in patients with PPK compared to patients without PPK. Our results suggest a lack of correlation between morphology and severity of the ocular findings and severity of the monoclonal gammopathy. TRIAL REGISTRATION German Clinical Trial Register: DRKS00023893.
Collapse
|
230
|
Wu J, Chu E, Paul B, Kang Y. Mechanistic Studies and a Retrospective Cohort Study: The Interaction between PPAR Agonists and Immunomodulatory Agents in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14215272. [PMID: 36358696 PMCID: PMC9657746 DOI: 10.3390/cancers14215272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 01/05/2023] Open
Abstract
Our previous study demonstrated that peroxisome proliferator-activated receptor (PPAR) agonists downregulated cereblon (CRBN) expression and reduced the anti-myeloma activity of lenalidomide in vitro and in vivo. We aimed to determine whether DNA methylation and protein degradation contribute to the effects of PPAR agonists. CRBN promoter methylation status was detected using methylation-specific polymerase chain reaction. The CRBN protein degradation rate was measured using a cycloheximide chase assay. Metabolomic analysis was performed in multiple myeloma (MM) cells treated with PPAR agonists and/or lenalidomide. Our retrospective study determined the effect of co-administration of PPAR agonists with immunomodulatory drugs on the outcomes of patients with MM. CpG islands of the CRBN promoter region became highly methylated upon treatment with PPAR agonists, whereas treatment with PPAR antagonists resulted in unmethylation. The CRBN protein was rapidly degraded after treatment with PPAR agonists. Lenalidomide and fenofibrate showed opposite effects on acylcarnitines and amino acids. Co-administration of immunomodulatory drugs and PPAR agonists was associated with inferior treatment responses and poor survival. Our study provides the first evidence that PPAR agonists reduce CRBN expression through various mechanisms including inducing methylation of CRBN promoter CpG island, enhancing CRBN protein degradation, and affecting metabolomics of MM cells.
Collapse
|
231
|
Cholujova D, Koklesova L, Lukacova Bujnakova Z, Dutkova E, Valuskova Z, Beblava P, Matisova A, Sedlak J, Jakubikova J. In vitro and ex vivo anti-myeloma effects of nanocomposite As 4S 4/ZnS/Fe 3O 4. Sci Rep 2022; 12:17961. [PMID: 36289430 PMCID: PMC9606304 DOI: 10.1038/s41598-022-22672-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/18/2022] [Indexed: 02/06/2023] Open
Abstract
Nanoparticles in medicine can integrate actively targeted imaging agents and drug delivery vehicles, and combining multiple types of therapeutics in a single particle has numerous advantages, especially in multiple myeloma. MM is an incurable hematological disorder characterized by clonal proliferation of plasma cells in the bone marrow. In this study, we evaluated the anti-myeloma activity of 3 nanocomposites (3NPs): As4S4/ZnS/Fe3O4 (1:4:1), As4S4/ZnS/Fe3O4 with folic acid (FA), and As4S4/ZnS/Fe3O4 with FA and albumin with reduced survival MM cell lines and primary MM samples by each of 3NP. Cytotoxic effects of 3NPs were associated with caspase- and mitochondria-dependent apoptosis induction and reduced c-Myc expression. Modulation of cell cycle regulators, such as p-ATM/ATM and p-ATR/ATR, and increases in p-Chk2, cyclin B1, and histones were accompanied by G2/M arrest triggered by 3NPs. In addition, 3NPs activated several myeloma-related signaling, including JNK1/2/3, ERK1/2 and mTOR. To overcome BM microenvironment-mediated drug resistance, nanocomposites retained its anti-MM activity in the presence of stroma. 3NPs significantly decreased the stem cell-like side population in MM cells, even in the context of stroma. We observed strong synergistic effects of 3NPs combined with lenalidomide, pomalidomide, or melphalan, suggesting the potential of these combinations for future clinical studies.
Collapse
Affiliation(s)
- Danka Cholujova
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia ,grid.419303.c0000 0001 2180 9405Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84511 Slovakia
| | - Lenka Koklesova
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia ,grid.7634.60000000109409708Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, 03601 Slovakia
| | - Zdenka Lukacova Bujnakova
- grid.419303.c0000 0001 2180 9405Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, Košice, 04001 Slovakia
| | - Erika Dutkova
- grid.419303.c0000 0001 2180 9405Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, Košice, 04001 Slovakia
| | - Zuzana Valuskova
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia
| | - Patricia Beblava
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia
| | - Anna Matisova
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia
| | - Jan Sedlak
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia
| | - Jana Jakubikova
- grid.420087.90000 0001 2106 1943Department of Tumor Immunology, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505 Slovakia ,grid.419303.c0000 0001 2180 9405Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84511 Slovakia
| |
Collapse
|
232
|
Xing Y, Yan J, Yu Z, Zhao J, Wang Y, Li X, Qin Y, Sun S. High-cutoff hemodialysis in multiple myeloma patients with acute kidney injury. Front Oncol 2022; 12:1024133. [PMID: 36387107 PMCID: PMC9645355 DOI: 10.3389/fonc.2022.1024133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/06/2022] [Indexed: 10/27/2023] Open
Abstract
Multiple myeloma (MM), an incurable hematological malignancy with clonal proliferation of plasma cells, is mainly characterized by excessive production of monoclonal immunoglobulins and free light chains (FLCs). Kidney injury is one of the main clinical manifestations and is also a significant predictor of the prognosis of symptomatic MM patients, especially those who require dialysis-supported treatment. Overproduction of FLCs is the trigger for kidney injury, as they can induce the transcription of inflammatory and profibrotic cytokines in the proximal tubule and bind to Tamm-Horsfall protein in the distal tubules to form casts that obstruct the tubules, leading to kidney injury and even renal fibrosis. In addition to traditional antimyeloma treatment, high-cutoff hemodialysis (HCO-HD), which can effectively remove FLCs in vitro, has attracted much attention in recent years. Due to its greater membrane pore size, it has significant advantages in removing larger molecules and can be applied in rhabdomyolysis, sepsis, and even myeloma cast nephropathy. However, mounting questions have recently been raised regarding whether HCO-HD can truly provide clinical benefits in MM patients with acute kidney injury (AKI). Therefore, in this study, we discussed the pathological causes of AKI secondary to MM and summarized the current situation of HCO-HD in MM patients compared with other available extracorporeal techniques. In addition, pivotal clinical trials that reflect the ability of the clearance of FLCs and the side effects of HCO-HD are highlighted, and the relevant protocol of HCO-HD is also provided to assist clinicians in decision-making.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
233
|
Li W, Fu H, Fang L, Chai H, Gao T, Chen Z, Qian S. Shikonin induces ferroptosis in multiple myeloma via GOT1-mediated ferritinophagy. Front Oncol 2022; 12:1025067. [PMID: 36387145 PMCID: PMC9641271 DOI: 10.3389/fonc.2022.1025067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/07/2022] [Indexed: 10/04/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy that lacks effective therapeutic interventions. Ferroptosis is a newly discovered form of cell death that has shown great potential for MM therapy. As a proteasome inhibitor and necroptosis inducer, shikonin (SHK) performs dual functions in MM cells. However, whether SHK inhibits the development of MM via ferroptosis or any other mechanism remains elusive. Here, we provide evidence that SHK treatment was capable of inducing ferroptosis and immunogenic cell death (ICD) in MM. The results showed that SHK treatment induced lactate dehydrogenase release, triggered cell death, evoked oxidative stress, and enhanced ferrous iron and lipid peroxidation levels. Furthermore, treatment with ferroptosis inhibitors reversed SHK-induced cell death, which indicated that ferroptosis contributed to this phenomenon. Meanwhile, ferroptosis was accompanied by the extracellular release of Adenosine 5'-triphosphate (ATP) and High mobility group protein B1 (HMGB1), which are characteristics of ICD. Further investigation showed that glutamic-oxaloacetic transaminase 1 (GOT1) acted as a critical mediator of SHK-induced ferroptosis by promoting ferritinophagy. In conclusion, our findings suggest that SHK exerts ferroptotic effects on MM by regulating GOT1-mediated ferritinophagy. Thus, SHK is a potential therapeutic agent for MM.
Collapse
Affiliation(s)
- Wenxia Li
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangjie Fu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liuyuan Fang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Chai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianwen Gao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenzhen Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenxian Qian
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Hematology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
234
|
Li X, Chen M, Wan Y, Zhong L, Han X, Chen X, Xiao F, Liu J, Zhang Y, Zhu D, Xiang J, Liu J, Huang H, Hou J. Single-cell transcriptome profiling reveals the key role of ZNF683 in natural killer cell exhaustion in multiple myeloma. Clin Transl Med 2022; 12:e1065. [PMID: 36245253 PMCID: PMC9574488 DOI: 10.1002/ctm2.1065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUNDS Decreased cytotoxicity of natural killer (NK) cells has been shown in multiple myeloma (MM). However, the underlying molecular mechanisms remain unclear. Here, by using single-cell RNA sequencing analysis and in vitro experiments, we aim to uncover and validate molecularly distinctive insights into identifying regulators for NK cell exhaustion and provide potential targets for novel immune therapies in MM. METHODS Single-cell RNA sequencing was conducted in the bone marrow and peripheral blood samples from 10 newly diagnosed MM patients and three healthy volunteers. Based on the cluster-defining differentially expressed genes, we named and estimated functional states of each cluster via bioinformatics analyses. Functional significance of key findings obtained from sequencing analysis was examined in a series of in vitro experiments, including luciferase reporter assay, lentiviral expression vector construction, NK cell transfection, RT-qPCR, flow cytometry, and cytotoxicity assay. RESULTS We classified NK cells into seven distinct clusters and confirmed that a subset of ZNF683+ NK cells were enriched in MM patients with 'exhausted' transcriptomic profile, featuring as decreased expression of activating receptors and cytolytic molecules, as well as increased expression of inhibitory receptors. Next, we found a significant downregulation of SH2D1B gene that encodes EAT-2, an adaptor protein of activating receptor SLAMF7, in ZNF683+ NK cells from MM patients versus healthy volunteers. We further proved that ZNF683 transfection in NK cells significantly downregulated SH2D1B expression via directly binding to the promoter of SH2D1B, leading to NK cell cytotoxic activity impairment and exhausted phenotypes acquisition. In contrast, ZNF683 knockout in NK cells from MM patients increased cytotoxic activity and reversed NK cell exhaustion. CONCLUSIONS In summary, our findings uncover an important mechanism of ZNF683+ NK cell exhaustion and suggest that transcriptional suppressor ZNF683 as a potential useful therapeutic target in immunotherapy of MM.
Collapse
Affiliation(s)
- Xin Li
- Department of HematologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mengping Chen
- Department of HematologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yike Wan
- Department of HematologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lu Zhong
- Department of HematologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaofeng Han
- Department of HematologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaotong Chen
- Department of HematologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fei Xiao
- Department of HematologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jia Liu
- Department of HematologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiwei Zhang
- Department of HematologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Di Zhu
- Department of HematologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jing Xiang
- Department of HematologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Junling Liu
- Department of Biochemistry and Molecular Cell BiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Honghui Huang
- Department of HematologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jian Hou
- Department of HematologyRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
235
|
Xu J, Zuo Y, Sun J, Zhou M, Dong X, Chen B. Application of clinical nomograms to predicting overall survival and event-free survival in multiple myeloma patients: Visualization tools for prognostic stratification. Front Public Health 2022; 10:958325. [PMID: 36324453 PMCID: PMC9618800 DOI: 10.3389/fpubh.2022.958325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
Background This study aimed to develop reliable nomogram-based predictive models that could guide prognostic stratification and individualized treatments in patients with multiple myeloma (MM). Methods Clinical information of 560 patients was extracted from the MM dataset of the MicroArray Quality Control (MAQC)-II project. The patients were divided into a development cohort (n = 350) and an internal validation cohort (n = 210) according to the therapeutic regimens received. Univariate and multivariate Cox regression analyses were performed to identify independent prognostic factors for nomogram construction. Nomogram performance was assessed using concordance indices, the area under the curve, calibration curves, and decision curve analysis. The nomograms were also validated in an external cohort of 56 patients newly diagnosed with MM at Nanjing Drum Tower Hospital from May 2016 to June 2019. Results Lactate dehydrogenase (LDH), albumin, and cytogenetic abnormalities were incorporated into the nomogram to predict overall survival (OS), whereas LDH, β2-microglobulin, and cytogenetic abnormalities were incorporated into the nomogram to predict event-free survival (EFS). The nomograms showed good predictive performances in the development, internal validation, and external validation cohorts. Additionally, we observed a superior prognostic predictive ability in nomograms compared to that of the International Staging System. According to the prognostic nomograms, risk stratification was applied to divide the patients into two risk groups. The OS and EFS rates of low-risk patients were significantly better than those of high-risk patients, suggesting a greater function of the nomogram models for risk stratification. Conclusion Two simple-to-use prognostic models were established and validated. The proposed nomograms have potential clinical applications in predicting OS and EFS for patients with MM.
Collapse
|
236
|
Hou Z, Jiang P, Su S, Zhou H. Hotspots and trends in multiple myeloma bone diseases: A bibliometric visualization analysis. Front Pharmacol 2022; 13:1003228. [PMID: 36313356 PMCID: PMC9614215 DOI: 10.3389/fphar.2022.1003228] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022] Open
Abstract
Objective: This study aims to explore the research hotspots and trends of multiple myeloma bone disease in the past 20 years by bibliometric visualization analysis. Methods: With the Web of Science Core Collection database as the data source, the relevant publications of multiple myeloma bone disease from 2002 to 2021 are retrieved. These data are analyzed using software CiteSpace 5.8.R3 and Scimago Graphica 1.0.24, together with the Online Analysis Platform of Literature Metrology. Results: A total of 6,168 published research papers, including 4668 articles and 1500 review papers, are included in this study. Generally speaking, annual publications and citations are on the rise, especially in recent 2 years. The majority of these papers are published in the United States, with Mayo Clinic being the greatest contributor. The most productive journal and author are Blood and Terpos E, respectively, while the most frequently co-cited reference, author and journal are Rajkumar et al., 2014, Lancet Oncol, Kyle RA and Blood, respectively. The major research subject categories are oncology and hematology. The “disease diagnosis”, “prognosis evaluation”, “pathogenesis”, “imaging technology” and “targeted therapy” are recent research frontiers. The burst keywords “transplantation”, “progression”, “activation”, “lenalidomide”, “flow cytometry”, “drug resistance”, “management” and “mesenchymal stem cell” reflect the latest research hotspots. Conclusion: This study reveals the research hotspots and trends of multiple myeloma bone disease through bibliometric visualization analysis, and provides a valuable reference for further research.
Collapse
Affiliation(s)
- Zhaomeng Hou
- Guangxi University of Chinese Medicine, Nanning, China
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China
| | - Ping Jiang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoting Su
- Guangxi University of Chinese Medicine, Nanning, China
| | - Honghai Zhou
- Guangxi University of Chinese Medicine, Nanning, China
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Honghai Zhou,
| |
Collapse
|
237
|
Liu ZK, Luo TC, Qiang WT, Lu J, Jin LN, Jiang H, Fu WJ, Du J. [Analysis of clinical characteristics and prognosis of non-secretory multiple myeloma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:861-864. [PMID: 36709202 PMCID: PMC9669626 DOI: 10.3760/cma.j.issn.0253-2727.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/30/2023]
Affiliation(s)
- Z K Liu
- Department of Hematology, the Myeloma & Lymphoma Center, Changzheng Hospital, Naval Medical University, Shanghai 200433, China
| | - T C Luo
- Department of Hematology, the Myeloma & Lymphoma Center, Changzheng Hospital, Naval Medical University, Shanghai 200433, China
| | - W T Qiang
- Department of Hematology, the Myeloma & Lymphoma Center, Changzheng Hospital, Naval Medical University, Shanghai 200433, China
| | - J Lu
- Department of Hematology, the Myeloma & Lymphoma Center, Changzheng Hospital, Naval Medical University, Shanghai 200433, China
| | - L N Jin
- Department of Hematology, the Myeloma & Lymphoma Center, Changzheng Hospital, Naval Medical University, Shanghai 200433, China
| | - H Jiang
- Department of Hematology, the Myeloma & Lymphoma Center, Changzheng Hospital, Naval Medical University, Shanghai 200433, China
| | - W J Fu
- Department of Hematology, the Myeloma & Lymphoma Center, Changzheng Hospital, Naval Medical University, Shanghai 200433, China
| | - J Du
- Department of Hematology, the Myeloma & Lymphoma Center, Changzheng Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
238
|
Yu S, Han R, Gan R. The Wnt/β-catenin signalling pathway in Haematological Neoplasms. Biomark Res 2022; 10:74. [PMID: 36224652 PMCID: PMC9558365 DOI: 10.1186/s40364-022-00418-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Leukaemia and lymphoma are common malignancies. The Wnt pathway is a complex network of proteins regulating cell proliferation and differentiation, as well as cancer development, and is divided into the Wnt/β-catenin signalling pathway (the canonical Wnt signalling pathway) and the noncanonical Wnt signalling pathway. The Wnt/β-catenin signalling pathway is highly conserved evolutionarily, and activation or inhibition of either of the pathways may lead to cancer development and progression. The aim of this review is to analyse the mechanisms of action of related molecules in the Wnt/β-catenin pathway in haematologic malignancies and their feasibility as therapeutic targets.
Collapse
Affiliation(s)
- Siwei Yu
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P. R. China
| | - Ruyue Han
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P. R. China
| | - Runliang Gan
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P. R. China.
| |
Collapse
|
239
|
Unexpected Heterogeneity of Newly Diagnosed Multiple Myeloma Patients with Plasmacytomas. Biomedicines 2022; 10:biomedicines10102535. [PMID: 36289797 PMCID: PMC9599767 DOI: 10.3390/biomedicines10102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
In multiple myeloma (MM), malignant plasma cells infiltrate the bone marrow. In some cases, plasma cells migrate out of the bone marrow creating either para-skeletal plasmacytomas (PS) or infiltrating soft tissues as extramedullary plasmacytomas (EMD). The aim of this study was to define risk groups in newly diagnosed MM (NDMM) patients with PS and EMD plasmacytomas. In total, 523 NDMM patients with PS plasmacytomas and 196 NDMM patients with EMD plasmacytomas were diagnosed in the Czech Republic between 2004 and 2021 using modern imaging methods. Patients’ data were analyzed from the Registry of Monoclonal Gammopathies of the Czech Myeloma Group. In NDMM patients with PS plasmacytomas, we found a subgroup with <5% of bone-marrow plasma cells to have the best prognosis (mPFS: 58.3 months (95% CI: 33.0−NA); mOS: not reached). The subgroup with >5% of bone-marrow plasma cells and ≥3 plasmacytomas had the worst prognosis (mPFS: 19.3 months (95% CI: 13.4−28.8), p < 0.001; mOS: 27.9 months (95% CI: 19.3−67.8), p < 0.001). Our results show association between tumor burden and prognosis of NDMM patients with plasmacytomas. In the case of PS plasmacytomas, NDMM patients with low BM PC infiltration have an excellent prognosis.
Collapse
|
240
|
Gritti I, Basso V, Rinchai D, Corigliano F, Pivetti S, Gaviraghi M, Rosano D, Mazza D, Barozzi S, Roncador M, Parmigiani G, Legube G, Parazzoli D, Cittaro D, Bedognetti D, Mondino A, Segalla S, Tonon G. Loss of ribonuclease DIS3 hampers genome integrity in myeloma by disrupting DNA:RNA hybrid metabolism. EMBO J 2022; 41:e108040. [PMID: 36215697 PMCID: PMC9670201 DOI: 10.15252/embj.2021108040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/25/2022] [Accepted: 09/23/2022] [Indexed: 01/13/2023] Open
Abstract
The ribonuclease DIS3 is one of the most frequently mutated genes in the hematological cancer multiple myeloma, yet the basis of its tumor suppressor function in this disease remains unclear. Herein, exploiting the TCGA dataset, we found that DIS3 plays a prominent role in the DNA damage response. DIS3 inactivation causes genomic instability by increasing mutational load, and a pervasive accumulation of DNA:RNA hybrids that induces genomic DNA double-strand breaks (DSBs). DNA:RNA hybrid accumulation also prevents binding of the homologous recombination (HR) machinery to double-strand breaks, hampering DSB repair. DIS3-inactivated cells become sensitive to PARP inhibitors, suggestive of a defect in homologous recombination repair. Accordingly, multiple myeloma patient cells mutated for DIS3 harbor an increased mutational burden and a pervasive overexpression of pro-inflammatory interferon, correlating with the accumulation of DNA:RNA hybrids. We propose DIS3 loss in myeloma to be a driving force for tumorigenesis via DNA:RNA hybrid-dependent enhanced genome instability and increased mutational rate. At the same time, DIS3 loss represents a liability that might be therapeutically exploited in patients whose cancer cells harbor DIS3 mutations.
Collapse
Affiliation(s)
- Ilaria Gritti
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Veronica Basso
- Division of Immunology, Transplantation and Infectious DiseaseIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | | | - Federica Corigliano
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Silvia Pivetti
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Marco Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Dalia Rosano
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Davide Mazza
- Experimental Imaging CenterIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Sara Barozzi
- IFOM, The FIRC Institute of Molecular OncologyMilanoItaly
| | - Marco Roncador
- Department of Data SciencesDana Farber Cancer InstituteBostonMAUSA,Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Giovanni Parmigiani
- Department of Data SciencesDana Farber Cancer InstituteBostonMAUSA,Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Gaelle Legube
- MCD, Centre de Biologie Intégrative (CBI), CNRSUniversity of ToulouseToulouseFrance
| | | | - Davide Cittaro
- Center for Omics Sciences @OSR (COSR)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Davide Bedognetti
- Cancer Research DepartmentSidra MedicineDohaQatar,Dipartimento di Medicina Interna e Specialità MedicheUniversità degli Studi di GenovaGenoaItaly
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious DiseaseIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Simona Segalla
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly,Center for Omics Sciences @OSR (COSR)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly,Università Vita‐Salute San RaffaeleMilanItaly
| |
Collapse
|
241
|
Beider K, Voevoda-Dimenshtein V, Zoabi A, Rosenberg E, Magen H, Ostrovsky O, Shimoni A, Weiss L, Abraham M, Peled A, Nagler A. CXCL13 chemokine is a novel player in multiple myeloma osteolytic microenvironment, M2 macrophage polarization, and tumor progression. J Hematol Oncol 2022; 15:144. [PMID: 36217194 PMCID: PMC9549634 DOI: 10.1186/s13045-022-01366-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/02/2022] [Indexed: 12/04/2022] Open
Abstract
Background We assessed the mechanism by which multiple myeloma (MM) shapes the bone marrow (BM) microenvironment and affects MΦ polarization. Methods In vivo xenograft model of BM-disseminated human myeloma, as well as analysis of MM cell lines, stromal components, and primary samples from patients with MM, was utilized. Results Analysis of the BM from MM-bearing mice inoculated with human CXCR4-expressing RPMI8226 cells revealed a significant increase in M2 MΦ cell numbers (p < 0.01). CXCL13 was one of the most profoundly increased factors upon MM growth with increased levels in the blood of MM-bearing animals. Myeloid cells were the main source of the increased murine CXCL13 detected in MM-infiltrated BM. MM cell lines induced CXCL13 and concurrent expression of M2 markers (MERTK, CD206, CD163) in co-cultured human MΦ in vitro. Interaction with MΦ reciprocally induced CXCL13 expression in MM cell lines. Mechanistically, TGFβ signaling was involved in CXCL13 induction in MM cells, while BTK signaling was implicated in MM-stimulated increase of CXCL13 in MΦ. Recombinant CXCL13 increased RANKL expression and induced TRAP+ osteoclast (OC) formation in vitro, while CXCL13 neutralization blocked these activities. Moreover, mice inoculated with CXCL13-silenced MM cells developed significantly lower BM disease. Reduced tumor load correlated with decreased numbers of M2 MΦ in BM, decreased bone disease, and lower expression of OC-associated genes. Finally, higher levels of CXCL13 were detected in the blood and BM samples of MM patients in comparison with healthy individuals. Conclusions Altogether, our findings suggest that bidirectional interactions of MΦ with MM tumor cells result in M2 MΦ polarization, CXCL13 induction, and subsequent OC activation, enhancing their ability to support bone resorption and MM progression. CXCL13 may thus serve as a potential novel target in MM. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01366-5.
Collapse
Affiliation(s)
- Katia Beider
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | | | - Ali Zoabi
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Evgenia Rosenberg
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Hila Magen
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Olga Ostrovsky
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Avichai Shimoni
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| | - Lola Weiss
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Michal Abraham
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Arnon Nagler
- Division of Hematology and CBB, Chaim Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel.
| |
Collapse
|
242
|
Hypoxia induces chemoresistance to proteasome inhibitors through orchestrating deSUMOylation and ubiquitination of SRC-3 in multiple myeloma. Oncogene 2022; 41:4971-4979. [PMID: 36209257 DOI: 10.1038/s41388-022-02494-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
The bone marrow microenvironment in multiple myeloma (MM) is hypoxic and provides multi-advantages for the initiation of chemoresistance, but the underlying mechanisms and key regulators are still indistinct. In the current study, we found that hypoxia stimulus easily induced chemoresistance to proteasome inhibitors (PIs), and the steroid receptor coactivator 3 (SRC-3) expression was remarkably augmented at posttranslational level. Protein interactome analysis identified SENP1 as a key modifier of SRC-3 stability, as SENP1-mediated deSUMOylation attenuated the K11-linked polyubiquitination of SRC-3. SENP1 depletion in the SENP1fl/flCD19Cre/+ B cells showed impaired SRC3 stability, and knockdown of SENP1 in MM cells by CRISPR/cas9 sgRNA accelerated the degradation of SRC-3 and remarkably overcame the resistance to PIs. In the Vk*Myc and 5TGM1 mouse models as well as patient-derived xenograft (PDX) of myeloma, SENP1 inhibitor Momordin Ιc (Mc) increased the sensitivity to PIs in MM cells. Importantly, SENP1 level was positively correlated with SRC-3 level in the tissues from refractory/relapsed MM, as well as in xenograft tissues from mice treated with bortezomib and Mc. Taken together, our findings suggest that hypoxia-induced SENP1 is a crucial regulator of chemoresistance to PIs, and shed light on developing therapeutic strategies to overcome chemoresistance by using small molecules targeting SENP1 or SRC-3.
Collapse
|
243
|
Kim MJ, Valderrábano RJ, Wu JY. Osteoblast Lineage Support of Hematopoiesis in Health and Disease. J Bone Miner Res 2022; 37:1823-1842. [PMID: 35983701 PMCID: PMC11346465 DOI: 10.1002/jbmr.4678] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/21/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022]
Abstract
In mammals, hematopoiesis migrates to the bone marrow during embryogenesis coincident with the appearance of mineralized bone, where hematopoietic stem cells (HSCs) and their progeny are maintained by the surrounding microenvironment or niche, and sustain the entirety of the hematopoietic system. Genetic manipulation of niche factors and advances in cell lineage tracing techniques have implicated cells of both hematopoietic and nonhematopoietic origin as important regulators of hematopoiesis in health and disease. Among them, cells of the osteoblast lineage, from stromal skeletal stem cells to matrix-embedded osteocytes, are vital niche residents with varying capacities for hematopoietic support depending on stage of differentiation. Here, we review populations of osteoblasts at differing stages of differentiation and summarize the current understanding of the role of the osteoblast lineage in supporting hematopoiesis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Matthew J Kim
- Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rodrigo J Valderrábano
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joy Y Wu
- Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
244
|
Chen Y, Qian J, Ding P, Wang W, Li X, Tang X, Tang C, Yang Y, Gu C. Elevated SFXN2 limits mitochondrial autophagy and increases iron-mediated energy production to promote multiple myeloma cell proliferation. Cell Death Dis 2022; 13:822. [PMID: 36163342 PMCID: PMC9513108 DOI: 10.1038/s41419-022-05272-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/23/2023]
Abstract
Human sideroflexin 2 (SFXN2) belongs to the SFXN protein family, which is a mitochondrial outer membrane protein involved in mitochondrial iron metabolism. Mitochondria are indispensable for cellular energy production and iron metabolism. However, it remains elusive how SFXN2 modulates mitochondrial homeostasis and cellular iron metabolism in multiple myeloma (MM). In this study, we first found that SFXN2 was significantly elevated and correlated to poor outcomes in MM patients from clinical datasets. SFXN2 overexpression promoted MM cell proliferation and suppressed starvation-induced autophagy/mitophagy, while SFXN2 knockdown aggravated mitochondria damage and autophagic processes in ARP1 and H929 MM cell lines. Furthermore, inhibition of SFXN2 exerted effectively anti-myeloma activity in vivo by using myeloma xenograft model. Mechanism studies indicated that heme oxygenase 1 (HO1) with anti-oxidant function contributed to the process of autophagy suppression and cellular proliferation mediated by SFXN2. Our study revealed the critical role of SFXN2 in regulating mitochondrial bioenergetics, mitophagy, cellular iron metabolism, and redox homeostasis in interconnected and intricate way. Collectively, these findings not only provide insights into the metabolic reprogramming of tumor cells, but also highlight the therapeutic potential of SFXN2 in combination with iron metabolism as target for prognosis and treatment in MM patients.
Collapse
Affiliation(s)
- Ying Chen
- grid.410745.30000 0004 1765 1045Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China ,grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Qian
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pinggang Ding
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wang Wang
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinying Li
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaozhu Tang
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Tang
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- grid.410745.30000 0004 1765 1045Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China ,grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
245
|
Liang Y, He H, Wang W, Wang H, Mo S, Fu R, Liu X, Song Q, Xia Z, Wang L. Malignant clonal evolution drives multiple myeloma cellular ecological diversity and microenvironment reprogramming. Mol Cancer 2022; 21:182. [PMID: 36131282 PMCID: PMC9492468 DOI: 10.1186/s12943-022-01648-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/27/2022] [Indexed: 11/14/2022] Open
Abstract
Background Multiple myeloma (MM) is a heterogeneous disease with different patterns of clonal evolution and a complex tumor microenvironment, representing a challenge for clinicians and pathologists to understand and dissect the contribution and impact of polyclonality on tumor progression. Methods In this study, we established a global cell ecological landscape of the bone marrow (BM) from MM patients, combining single-cell RNA sequencing and single-molecule long-read genome sequencing data. Results The malignant mutation event was localized to the tumor cell clusters with shared mutation of ANK1 and IFITM2 in all malignant subpopulations of all MM patients. Therefore, these two variants occur in the early stage of malignant clonal origin to mediate the malignant transformation of proplasmacytes or plasmacytes to MM cells. Tumor cell stemness index score and pseudo-sequential clonal evolution analysis can be used to divide the evolution model of MM into two clonal origins: types I and IX. Notably, clonal evolution and the tumor microenvironment showed an interactive relationship, in which the evolution process is not only selected by but also reacts to the microenvironment; thus, vesicle secretion enriches immune cells with malignant-labeled mRNA for depletion. Interestingly, microenvironmental modification exhibited significant heterogeneity among patients. Conclusions This characterization of the malignant clonal evolution pattern of MM at the single-cell level provides a theoretical basis and scientific evidence for a personalized precision therapy strategy and further development of a potential new adjuvant strategy combining epigenetic agent and immune checkpoint blockade. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01648-z.
Collapse
Affiliation(s)
- Yuanzheng Liang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Haiyan He
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Weida Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Henan Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Shaowen Mo
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.,Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.,Department of Basic Science, YuanDong International Academy of Life Sciences, Hong Kong, 999077, China.,Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, Hong Kong, 999077, China
| | - Ruiying Fu
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xindi Liu
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Qiong Song
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Zhongjun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
246
|
Gu X, Wang Z, Pan Q. Overexpression of NIMA related kinase 2 in multiple myeloma and its relevance with disease features and prognosis to bortezomib treatment. J Clin Pharm Ther 2022; 47:1690-1697. [PMID: 36087032 DOI: 10.1111/jcpt.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE NIMA related kinase 2 (NEK2) promotes the malignant transformation and enhances the chemoresistance to proteasome inhibitor in multiple myeloma (MM) cell lines. The current study aimed to further investigate its correlation with clinical features and responsiveness to bortezomib treatment in MM patients. METHODS Totally, 76 MM patients and 30 health donors (HDs) were enrolled to collect bone marrow plasma cells for NEK2 detection using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Meanwhile, NEK2 siRNA was transfected into the RPMI-8226 and KMS-11 cells, subsequently their cell viability was evaluated using Cell Counting Kit-8 reagent after treatment with different doses of bortezomib. RESULTS AND DISCUSSION NEK2 expression was higher in MM patients compared with HDs (Z = -5.123, p < 0.001). Besides, elevated NEK2 expression was associated with the occurrence of the bone lesion (χ2 = 4.610, p = 0.032) and t (4; 14) (χ2 = 3.971, p = 0.046). Additionally, elevated NEK2 expression was correlated with declined objective response rate (ORR) (χ2 = 4.808, p = 0.028), but not with complete response (CR) (χ2 = 2.341, p = 0.126). More importantly, elevated NEK2 expression was correlated with shorter progression-free survival (PFS) (χ2 = 8.352, p = 0.039), but not with overall survival (OS) (χ2 = 5.624, p = 0.131), What is more, NEK2 silence decreased the cell viability under bortezomib treatment and the inhibitory concentration (IC50 ) value of bortezomib in RPMI-8226 and KMS-11 cell lines (all p < 0.05). WHAT IS NEW AND CONCLUSION NEK2 overexpression links with occurrence of bone lesion, t (4; 14), and poor prognosis to bortezomib treatment in MM patients.
Collapse
Affiliation(s)
- Xiaolin Gu
- Department of Hematology, Zhejiang Putuo Hospital, Zhoushan, China
| | - Zhenhua Wang
- Department of Hematology, Zhejiang Putuo Hospital, Zhoushan, China
| | - Qiqun Pan
- Department of Hematology, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| |
Collapse
|
247
|
Ishida T, Ito S, Tanaka J, Uchiyama M, Kawano Y, Moreau P, Martin T, Risse ML, Tada K, Suzuki K, Ishizawa K. Isatuximab plus carfilzomib and dexamethasone in Japanese patients with relapsed multiple myeloma: subgroup analysis of the randomized, open label, phase 3 IKEMA study. Jpn J Clin Oncol 2022; 52:1446-1449. [PMID: 36073950 PMCID: PMC9721457 DOI: 10.1093/jjco/hyac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Tadao Ishida
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Shigeki Ito
- Division of Hematology & Oncology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Michihiro Uchiyama
- Department of Hematology, Japanese Red Cross Society, Suwa Hospital, Suwa, Japan
| | - Yawara Kawano
- Department of Hematology, Kumamoto University Hospital, Kumamoto, Japan
| | - Philippe Moreau
- Department of Hematology, University Hospital of Nantes, Nantes, France
| | - Thomas Martin
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | - Kenshi Suzuki
- Myeloma/Amyloidosis Center, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Kenichi Ishizawa
- For reprints and all correspondence: Kenichi Ishizawa, Department of Internal Medicine III, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan. E-mail:
| |
Collapse
|
248
|
Qi M, Zhao X, Fan R, Zhang X, Peng S, Xu D, Yang Y. Cold Atmospheric Plasma Suppressed MM In Vivo Engraftment by Increasing ROS and Inhibiting the Notch Signaling Pathway. Molecules 2022; 27:molecules27185832. [PMID: 36144566 PMCID: PMC9501839 DOI: 10.3390/molecules27185832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy. MM stem cells (MMSCs) are thought to be the main causes of in vivo engraftment and eventual recurrence. As a notable new technology, cold atmospheric plasmas (CAPs) show a promising anti-tumor effect, due to their production of various ROS. In this study, we found that different types of plasma could inhibit MM’s ability to form cell colonies, suppress MM in vivo engraftment, and extend survival times. We demonstrated that NAC (a ROS scavenger) could block ROS increases and reverse the inhibition of MM’s cell-colony-formation ability, which was induced by the plasma treatment. By using a stem cell signaling array, we found that the Notch pathway was inhibited by the plasma treatment; this was further confirmed by conducting real-time PCRs of three MM cell lines. Together, these results constitute the first report of plasma treatment inhibiting MM in vivo engraftment and prolonging survival time by suppressing the Notch pathway via ROS regulation.
Collapse
Affiliation(s)
- Miao Qi
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xinyi Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Runze Fan
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xinying Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China
| | - Sansan Peng
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (D.X.); (Y.Y.)
| | - Yanjie Yang
- Department of Cardiovascular Medicine, First Affiliated Hospital of the Medical School, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (D.X.); (Y.Y.)
| |
Collapse
|
249
|
Trudu M, Oliva L, Orfanelli U, Romano A, Di Raimondo F, Sanvito F, Ponzoni M, Cenci S. Preclinical evidence of a direct pro-survival role of arginine deprivation in multiple myeloma. Front Oncol 2022; 12:968208. [PMID: 36172163 PMCID: PMC9512038 DOI: 10.3389/fonc.2022.968208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple myeloma grows by establishing multiple interactions with bone marrow cells. These include expansion of myeloid-derived suppressor cells, which drive immunoevasion via mechanisms that include arginase-1-driven depletion of L-arginine, thus indirectly promoting myeloma cell survival and tumor progression. The peculiar biology of malignant plasma cells postulates that arginine depletion may benefit their fitness also directly, e.g., by engaging the integrated stress response, or by stimulating autophagy through mTORC1 inhibition. We thus investigated the direct impact of arginine deprivation on myeloma cells and challenged its pathophysiological relevance in vitro and in vivo. First, we found that partial arginine depletion spared proliferation of human multiple myeloma cells at concentrations that arrest human T cells. Next, we asked if arginine shortage activates putative adaptive pathways in myeloma cells. Low arginine failed to activate the integrated stress response, as indicated by unmodified phosphorylation of the eukaryotic initiation factor 2α, but sizably inhibited mTORC1, as revealed by reduced phosphorylation of ribosomal protein S6. Notably, depressed mTORC1 activity was not sufficient to increase autophagy, as assessed by the lysosomal digestion rate of the autophagosome-associated protein, LC3-II. Rather, it stimulated mTORC2, resulting in increased phosphatidylinositol-3 kinase-dependent AKT phosphorylation and activity, leading to heightened inhibitory phosphorylation of the pro-apoptotic BAD protein. We then tested whether arginine depletion-activated AKT may protect malignant plasma cells from cell death. Indeed, culturing myeloma cells in low arginine medium significantly reduced the apoptotic effect of the first-in-class proteasome inhibitor, bortezomib, an outcome prevented by pharmacological inhibition of AKT phosphorylation. Finally, we challenged the relevance of the identified circuit in vivo. To gauge the pathophysiologic relevance of low arginine to myeloma growth independently of immunoevasion, we xenotransplanted human myeloma cells subcutaneously into T cell-deficient Rag2–/–γc–/– recipient mice and treated palpable tumor-bearing mice with the clinical-grade arginase inhibitor CB1158. Arginase inhibition significantly raised serum arginine concentration, reduced tumor growth by caliper assessment, and decreased intra-tumor AKT phosphorylation in vivo. Altogether, our results reveal a novel direct pro-survival effect of arginine deprivation on myeloma cells, with potential therapeutic implications.
Collapse
Affiliation(s)
- Matteo Trudu
- Age Related Diseases, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
| | - Laura Oliva
- Age Related Diseases, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Ugo Orfanelli
- Age Related Diseases, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Alessandra Romano
- Age Related Diseases, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | | | - Maurilio Ponzoni
- University Vita-Salute San Raffaele, Milano, Italy
- Pathology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Simone Cenci
- Age Related Diseases, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
- *Correspondence: Simone Cenci,
| |
Collapse
|
250
|
Paulmann C, Spallek R, Karpiuk O, Heider M, Schäffer I, Zecha J, Klaeger S, Walzik M, Öllinger R, Engleitner T, Wirth M, Keller U, Krönke J, Rudelius M, Kossatz S, Rad R, Kuster B, Bassermann F. The OTUD6B-LIN28B-MYC axis determines the proliferative state in multiple myeloma. EMBO J 2022; 41:e110871. [PMID: 36059274 PMCID: PMC9574752 DOI: 10.15252/embj.2022110871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Deubiquitylases (DUBs) are therapeutically amenable components of the ubiquitin machinery that stabilize substrate proteins. Their inhibition can destabilize oncoproteins that may otherwise be undruggable. Here, we screened for DUB vulnerabilities in multiple myeloma, an incurable malignancy with dependency on the ubiquitin proteasome system and identified OTUD6B as an oncogene that drives the G1/S‐transition. LIN28B, a suppressor of microRNA biogenesis, is specified as a bona fide cell cycle‐specific substrate of OTUD6B. Stabilization of LIN28B drives MYC expression at G1/S, which in turn allows for rapid S‐phase entry. Silencing OTUD6B or LIN28B inhibits multiple myeloma outgrowth in vivo and high OTUD6B expression evolves in patients that progress to symptomatic multiple myeloma and results in an adverse outcome of the disease. Thus, we link proteolytic ubiquitylation with post‐transcriptional regulation and nominate OTUD6B as a potential mediator of the MGUS‐multiple myeloma transition, a central regulator of MYC, and an actionable vulnerability in multiple myeloma and other tumors with an activated OTUD6B‐LIN28B axis.
Collapse
Affiliation(s)
- Carmen Paulmann
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Ria Spallek
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Oleksandra Karpiuk
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Michael Heider
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Isabell Schäffer
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Jana Zecha
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Susan Klaeger
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Michaela Walzik
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Rupert Öllinger
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Department of Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany
| | - Thomas Engleitner
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Department of Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Germany.,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Jan Krönke
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwigs Maximilians University, Munich, Germany
| | - Susanne Kossatz
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland Rad
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Department of Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Germany
| | - Florian Bassermann
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Germany
| |
Collapse
|