201
|
Brister EY, Vasi Z, Antipova O, Robinson A, Tan X, Agarwal A, Stock SR, Carriero A, Richter CP. X-ray fluorescence microscopy: A method of measuring ion concentrations in the ear. Hear Res 2020; 391:107948. [PMID: 32283439 DOI: 10.1016/j.heares.2020.107948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022]
Abstract
This technical note describes synchrotron x-ray fluorescence microscopy (XFM) as a method for measuring the concentrations of different elements in cross-sections of the ear at extremely high resolution. This method could be of great importance for addressing many open questions in hearing research. XFM uses synchrotron radiation to evoke emissions from many biologically relevant elements in the tissue. The intensity and wavelength of the emitted radiation provide a fingerprint of the tissue composition that can be used to measure the concentration of the elements in the sampled location. Here, we focus on energies that target biologically-relevant elements of the periodic table between magnesium and zinc. Since a highly focused x-ray beam is used, the spot size is well below 1 μm and the samples can be scanned at a nanometer lateral resolution. This study shows that measurement of the concentrations of different elements is possible in a mid-modiolar cross-section of a mouse cochlea. Images are presented that indicate potassium and chloride "hot spots" in the spiral ligament and the spiral limbus, providing experimental evidence for the potassium recycling pathway and showing the cochlear structures involved. Scans of a section obtained from the incus, one of the middle ear ossicles, in a developing mouse have shown that zinc is not uniformly distributed This supports the hypothesis that zinc plays a special role in the process of ossification. Although limited by sophisticated sample preparation and sectioning, the method provides ample exciting opportunities, to understand the role of genetics and epigenetics on hearing mechanisms in ontogeny and phylogeny.
Collapse
Affiliation(s)
- Eileen Y Brister
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Speech and Hearing Sciences, Indiana University, Bloomington, IN, United States
| | - Zahra Vasi
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Illinois Mathematics and Science Academy, Aurora, IL, United States
| | - Olga Antipova
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States
| | - Alan Robinson
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xiaodong Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Aditi Agarwal
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stuart R Stock
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Alessandra Carriero
- Department of Biomedical Engineering, The City College of New York, NY, United States
| | - Claus-Peter Richter
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States; The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
202
|
Ahmadmehrabi S, Brant J, Epstein DJ, Ruckenstein MJ, Rader DJ. Genetics of Postlingual Sensorineural Hearing Loss. Laryngoscope 2020; 131:401-409. [PMID: 32243624 DOI: 10.1002/lary.28646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/19/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Literature and clinical practice around adult-onset hearing loss (HL) has traditionally focused on environmental risk factors, including noise exposure, ototoxic drug exposure, and cardiovascular disease. The most common diagnosis in adult-onset HL is presbycusis. However, the age of onset of presbycusis varies, and patients often describe family history of HL as well as individual variation in progression and severity. In recent years, there has been accumulating evidence of gene-environment interactions underlying adult cases of HL. Susceptibility loci for age-related HL have been identified, and genes related to postlingual nonsyndromic HL continue to be discovered through individual reports and genome-wide association studies. This review will outline main concepts in genetics as related to HL, identify implicated genes, and discuss clinical implications. Laryngoscope, 131:401-409, 2021.
Collapse
Affiliation(s)
- Shadi Ahmadmehrabi
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason Brant
- Department of Otorhinolaryngology Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Ruckenstein
- Department of Otorhinolaryngology Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
203
|
Phase 1 study to evaluate safety, tolerability and pharmacokinetics of a novel intra-tympanic administered thiosulfate to prevent cisplatin-induced hearing loss in cancer patients. Invest New Drugs 2020; 38:1463-1471. [PMID: 32157599 PMCID: PMC7497691 DOI: 10.1007/s10637-020-00918-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Cisplatin is a widely used chemotherapy for the treatment of certain solid tumors. Ototoxicity and subsequent permanent hearing loss remain a serious dose-limiting side effect associated with cisplatin treatment. To date, no therapies have been approved to prevent or treat cisplatin-induced hearing loss (CIHL). Sodium thiosulfate effectively inactivates cisplatin through covalent binding and may provide protection against cisplatin-induced ototoxicity. DB-020 is being developed as a novel formulation of sodium thiosulfate pentahydrate in 1% sodium hyaluronate for intratympanic injection (IT), enabling the delivery of high concentrations of thiosulfate into the cochlea prior to cisplatin administration. In the DB-020-002 phase 1a single-ascending dose study, healthy volunteers were enrolled into 5 cohorts to receive different doses of DB-020 via IT injection. Cohorts 1–4 received unilateral injections while Cohort 5 received bilateral injections. Plasma thiosulfate pharmacokinetics was measured, and safety and audiometric data were collected throughout the study. This study has demonstrated that intratympanic administration of DB-020 results in nominal systemic increases in thiosulfate levels, hence it should not compromise cisplatin anti-tumor efficacy. Furthermore, DB-020 was safe and well tolerated with most adverse events reported as transient, of mild-to-moderate severity and related to the IT administration procedure. These results support the design and execution of the ongoing proof-of-concept study, DB-020-002, to assess otoprotection using DB-020 in cancer patients receiving cisplatin without negatively impacting cisplatin anti-tumor efficacy.
Collapse
|
204
|
Hojan-Jezierska D, Chomiak A, Czopor A, Matthews-Kozanecka M, Majewska A, Urbaniak-Olejnik M, Matthews-Brzozowska T. Ototoxicity after platinum-based chemotherapy in the treatment of melanotic neuroectodermal tumour of infancy. Oncol Lett 2020; 19:3411-3416. [PMID: 32269613 PMCID: PMC7115066 DOI: 10.3892/ol.2020.11447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/06/2019] [Indexed: 11/10/2022] Open
Abstract
Melanotic neuroectodermal tumor of infancy (MNTI) is a rare infantile tumor that originates from mesenchymal-neuroectodermal cells, the treatment of which uses platinum derivatives that can affect hearing loss. The present study evaluated the long-term effects of ototoxicity following chemotherapy with cisplatin, vincristine, cyclophosphamide, teniposide and adriamycin in a 10-year-old patient after surgical removal of a MNTI tumor at the age of 8 months. Audiometric tests (high-frequency tonal audiometry, speech audiometry, speech acoustics, tympanometry and absorbance measurements) were performed during a 10-year follow-up after receiving chemotherapy. Hearing disorders in the high-frequency range (6,000 to 16,000 Hz range) were demonstrated for both ears, indicating that these may be the long-term effects of chemotherapy with use of platinum compounds during the treatment of infants.
Collapse
Affiliation(s)
- Dorota Hojan-Jezierska
- Department of Hearing Healthcare Profession, Chair of Biophysics, University of Medical Sciences, 60-780 Poznań, Poland
| | - Anna Chomiak
- Students Research Group of Department of Clinic of Maxillofacial Orthopaedics and Orthodontics, University of Medical Sciences, 60-780 Poznań, Poland
| | - Agata Czopor
- Students Research Group of Department of Clinic of Maxillofacial Orthopaedics and Orthodontics, University of Medical Sciences, 60-780 Poznań, Poland
| | | | - Anna Majewska
- Department of Hearing Healthcare Profession, Chair of Biophysics, University of Medical Sciences, 60-780 Poznań, Poland
| | - Marta Urbaniak-Olejnik
- Department of Hearing Healthcare Profession, Chair of Biophysics, University of Medical Sciences, 60-780 Poznań, Poland
| | - Teresa Matthews-Brzozowska
- Department of Maxillofacial Orthopaedics and Orthodontics, University of Medical Sciences, 60-780 Poznań, Poland
| |
Collapse
|
205
|
DeBacker JR, Harrison RT, Bielefeld EC. Cisplatin-induced threshold shift in the CBA/CaJ, C57BL/6J, BALB/cJ mouse models of hearing loss. Hear Res 2020; 387:107878. [DOI: 10.1016/j.heares.2019.107878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 10/25/2022]
|
206
|
Skalleberg J, Småstuen MC, Oldenburg J, Osnes T, Fosså SD, Bunne M. The Relationship Between Cisplatin-related and Age-related Hearing Loss During an Extended Follow-up. Laryngoscope 2020; 130:E515-E521. [PMID: 32065408 DOI: 10.1002/lary.28543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Cisplatin-related hearing loss (HL) is claimed to progress after treatment. This controlled longitudinal study with extended follow-up investigates HL in testicular cancer survivors (TCSs) after cisplatin-based chemotherapy (CBCT). STUDY DESIGN Controlled longitudinal study. METHODS Eighty-two TCSs treated with CBCT between 1980 and 1994 in Norway participated in two surveys (S1/S3), including pure-tone audiograms (0.125-8 kHz) and self-reported HL, 12 and 31 years after treatment, respectively. Hearing thresholds were age-adjusted based on age-matched hearing thresholds from the general population (controls). Hearing loss was defined as thresholds >20 dB at any frequency. RESULTS Between the two surveys, the prevalence of high-frequency HL (4, 6, and 8 kHz) increased from 73% to 94% but approached those of the aging general population after age adjustment. In TCSs aged >40 years at first survey, HL at the subsequent survey equaled that of controls. Self-reported HL increased from seven (9%) at S1 to 20 (26%) at S3. At S1, age-adjusted HL was identified in all (seven) TCSs reporting decreased hearing whereas at S3, hearing thresholds did not differ from controls in seven out of 20 patients reporting HL. CONCLUSION CBCT-related ototoxicity causes high-frequency HL, but in contrast to reports from follow-up studies from the first post-treatment decade, no major progression was found beyond the first post-treatment decade for frequencies 0.125-8 kHz. Importantly, with extended follow-up, hearing thresholds of patients approach those of the general population, possibly due to a less-than-additive effect with age-related hearing loss (ARHL) in CBCT-treated patients. Age-and sex-matching is strongly advised in long-term follow-up of CBCT-related ototoxicity. Specificity for detecting ototoxicity with self-reported questionnaires decreases with extended follow-up. LEVEL OF EVIDENCE 3 Laryngoscope, 130:E515-E523, 2020.
Collapse
Affiliation(s)
- Jakob Skalleberg
- Department of Otolaryngology, Head and Neck Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Jan Oldenburg
- Department of Oncology, Akershus University Hospital, Norway
| | - Terje Osnes
- Department of Otolaryngology, Head and Neck Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sophie D Fosså
- Norway National Resource Center for Late Effects after Cancer Treatment, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Marie Bunne
- Department of Otolaryngology, Head and Neck Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
207
|
Fernandez K, Spielbauer KK, Rusheen A, Wang L, Baker TG, Eyles S, Cunningham LL. Lovastatin protects against cisplatin-induced hearing loss in mice. Hear Res 2020; 389:107905. [PMID: 32062294 DOI: 10.1016/j.heares.2020.107905] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Abstract
Cisplatin is used to treat a variety of solid tumors in both children and adults. However, cisplatin has serious side-effects, some of which may permanently affect patients' quality of life following treatment, such as ototoxicity. There is currently no FDA-approved therapy for the prevention or treatment of cisplatin-induced hearing loss. Herein we examine the potential for statins to prevent cisplatin-induced ototoxicity. Statins, a class of drugs commonly used to prevent or manage hypercholesterolemia, have been of clinical utility for decades with dependable outcomes and reliable safety profiles in humans. Statins are known to be protective in animal models of noise-induced and age-related hearing loss. Moreover, studies have demonstrated an additive benefit of statins in cancer treatment. In the current study, lovastatin reduces cisplatin-induced hearing loss in adult mice. Lovastatin-mediated protection was significantly greater among female than male mice, and the dose of lovastatin required for protection was different between the sexes. Taken together our data indicate that lovastatin reduces cisplatin-induced hearing loss in mice and suggest that concurrent statin and cisplatin therapy may represent a feasible clinical strategy for reducing cisplatin-induced ototoxicity that should be explored for future clinical use.
Collapse
Affiliation(s)
- Katharine Fernandez
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Katie K Spielbauer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Aaron Rusheen
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Lizhen Wang
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany G Baker
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Stephen Eyles
- Department of Biochemistry and Molecular Biology and Mass Spectrometry, Core, University of Massachusetts, Amherst, MA, USA
| | - Lisa L Cunningham
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
208
|
Nadol JB. Contemporary techniques in human otopathology and promise for the future. Laryngoscope Investig Otolaryngol 2020; 5:145-151. [PMID: 32128441 PMCID: PMC7042644 DOI: 10.1002/lio2.341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 12/01/2022] Open
Abstract
Contemporary histopathology of the ear is based on an evolution of equipment and histological techniques over the last 500 years, including the invention of the light microscope and protocols for fixation, embedment, sectioning, and staining of tissue samples, and visual documentation of findings. Several recent techniques which can be utilized in otopathology hold promise for significant improvement in methods and a better understanding of pathologic processes in diseases of the ear.
Collapse
Affiliation(s)
- Joseph B. Nadol
- Otopathology Laboratory, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and EarHarvard Medical SchoolBostonMassachusetts
| |
Collapse
|
209
|
Delhez A, Lefebvre P, Péqueux C, Malgrange B, Delacroix L. Auditory function and dysfunction: estrogen makes a difference. Cell Mol Life Sci 2020; 77:619-635. [PMID: 31522250 PMCID: PMC11105012 DOI: 10.1007/s00018-019-03295-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023]
Abstract
Estrogen is the major female hormone involved in reproductive functions, but it also exerts a variety of additional roles in non-reproductive organs. In this review, we highlight the preclinical and clinical studies that have pointed out sex differences and estrogenic influence on audition. We also describe the experimental evidences supporting a protective role of estrogen towards acquired forms of hearing loss. Although a high level of endogenous estrogen is associated with a better hearing function, hormonal treatments at menopause have provided contradictory outcomes. The various factors that are likely to explain these discrepancies include the treatment regimen as well as the hormonal status and responsiveness of the patients. The complexity of estrogen signaling is being untangled and many downstream effectors of its genomic and non-genomic actions have been identified in other systems. Based on these advances and on the common physio-pathological events that underlie age-related, drug or noise-induced hearing loss, we discuss potential mechanisms for their protective actions in the cochlea.
Collapse
Affiliation(s)
- Amandine Delhez
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liege, Liege, Belgium
- Department of ENT, CHU de Liege, Liege, Belgium
| | | | - Christel Péqueux
- GIGA-Cancer, Laboratory of Tumors Biology and Development, University of Liege, Liege, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liege, Liege, Belgium
| | - Laurence Delacroix
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liege, Liege, Belgium.
| |
Collapse
|
210
|
The dual role of curcumin and ferulic acid in counteracting chemoresistance and cisplatin-induced ototoxicity. Sci Rep 2020; 10:1063. [PMID: 31974389 PMCID: PMC6978317 DOI: 10.1038/s41598-020-57965-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Platinum-based agents, such as cisplatin, form the mainstay of currently used chemotherapeutic regimens for several malignancies; however, the main limitations are chemoresistance and ototoxic side effects. In this study we used two different polyphenols, curcumin and ferulic acid as adjuvant chemotherapeutics evaluating (1) in vivo their antioxidant effects in protecting against cisplatin ototoxicity and (2) in vitro the transcription factors involved in tumor progression and cisplatin resistance. We reported that both polyphenols show antioxidant and oto-protective activity in the cochlea by up-regulating Nrf-2/HO-1 pathway and downregulating p53 phosphorylation. However, only curcumin is able to influence inflammatory pathways counteracting NF-κB activation. In human cancer cells, curcumin converts the anti-oxidant effect into a pro-oxidant and anti-inflammatory one. Curcumin exerts permissive and chemosensitive properties by targeting the cisplatin chemoresistant factors Nrf-2, NF-κB and STAT-3 phosphorylation. Ferulic acid shows a biphasic response: it is pro-oxidant at lower concentrations and anti-oxidant at higher concentrations promoting chemoresistance. Thus, polyphenols, mainly curcumin, targeting ROS-modulated pathways may be a promising tool for cancer therapy. Thanks to their biphasic activity of antioxidant in normal cells undergoing stressful conditions and pro-oxidant in cancer cells, these polyphenols probably engage an interplay among the key factors Nrf-2, NF-κB, STAT-3 and p53.
Collapse
|
211
|
Domarecka E, Skarzynska M, Szczepek AJ, Hatzopoulos S. Use of zebrafish larvae lateral line to study protection against cisplatin-induced ototoxicity: A scoping review. Int J Immunopathol Pharmacol 2020; 34:2058738420959554. [PMID: 33084473 PMCID: PMC7786420 DOI: 10.1177/2058738420959554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
AIM The present review aimed to consolidate and analyze the recent information about the use of zebrafish in studies concerning cisplatin-induced ototoxicity and otoprotection. MATERIAL AND METHODS The PubMed, Web of Science, and Scopus databanks were searched using the following MESH terms: zebrafish, cisplatin, ototoxicity. The identified publications were screened according to inclusion and exclusion criteria and the 26 qualifying manuscripts were included in the full-text analysis. The experimental protocols, including cisplatin concentrations, the exposure duration and the outcome measurements used in zebrafish larvae studies, were evaluated and the reported knowledge was summarized. RESULTS Twenty-six substances protecting from cisplatin-induced toxicity were identified with the use of zebrafish larvae. These substances include quinine, salvianolic acid B, berbamine 6, benzamil, quercetin, dexmedetomidine, dexamethsanone, quinoxaline, edaravone, apocynin, dimethyl sulfoxide, KR-22335, SRT1720, ORC-13661, 3-MA, D-methionine, mdivi-1, FUT-175, rapamycin, Z-LLF-CHO, ATX, NAC, CYM-5478, CHCP1, CHCP2 and leupeptin. The otoprotective effects of compounds were attributed to their anti-ROS, anti-apoptotic and cisplatin uptake-blocking properties. The broadest range of protection was achieved when the experimental flow used preconditioning with an otoprotective compound and later a co-incubation with cisplatin. Protection against a high concentration of cisplatin was observed only in protocols using short exposure times (4 and 6 h). CONCLUSIONS The data extracted from the selected papers confirm that despite the differences between the human and the zebra fish hearing thresholds (as affected by cisplatin), the sensory cells of zebrafish and larval zebrafish are a valuable tool which could be used: (i) for the discovery of novel otoprotective substances and compounds; (ii) to screen their side effects and (iii) to extend the knowledge on the mechanisms of cisplatin-induced inner ear damage. For future studies, the development of a consensus experimental protocol is highly recommended.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Magda Skarzynska
- Institute of Sensory Organs, Kajetany, Poland
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
212
|
Santos NAGD, Ferreira RS, Santos ACD. Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem Toxicol 2019; 136:111079. [PMID: 31891754 DOI: 10.1016/j.fct.2019.111079] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Cisplatin has dramatically improved the survival rate of cancer patients, but it has also increased the prevalence of hearing and neurological deficits in this population. Cisplatin induces ototoxicity, peripheral (most prevalent) and central (rare) neurotoxicity. This review addresses the ototoxicity and the neurotoxicity associated with cisplatin-based chemotherapy, providing an integrated view of the potential protective agents that have been evaluated in vitro, in vivo and in clinical trials, their targets and mechanisms of protection and their effects on the antitumor activity of cisplatin. So far, the findings are insufficient to support the use of any oto- or neuroprotective agent before, during or after cisplatin chemotherapy. Despite their promising effects in vitro and in animal studies, many agents have not been evaluated in clinical trials. Additionally, the clinical trials have limitations concerning the sample size, controls, measurement, heterogeneous groups, several arms of treatment, short follow-up or no blinding. Besides that, for most agents, the effects on the antitumor activity of cisplatin have not been evaluated in tumor-bearing animals, which discourages clinical trials. Further well-designed randomized controlled clinical trials are necessary to definitely demonstrate the effectiveness of the oto- or neuroprotective agents proposed by animal and in vitro studies.
Collapse
Affiliation(s)
- Neife Aparecida Guinaim Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Scalco Ferreira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio Cardozo Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
213
|
Baguley DM, Prayuenyong P. Looking beyond the audiogram in ototoxicity associated with platinum-based chemotherapy. Cancer Chemother Pharmacol 2019; 85:245-250. [PMID: 31865419 PMCID: PMC7015967 DOI: 10.1007/s00280-019-04012-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
Introduction Ototoxicity associated with platinum-based chemotherapy is highly prevalent and can cause detrimental consequences among cancer survivors. Discussion In this article, we highlight important aspects of the evaluation of ototoxicity with the aim to increase awareness of Oncologists in this regard. Standard pure tone audiometry alone is inadequate for this context. Comprehensive and consistent hearing tests should be implemented in a monitoring and surveillance program. High-frequency audiometry (10–16 kHz) is a sensitive tool in the detection of ototoxic hearing loss at onset. In addition to threshold audiometry, measures of speech comprehension (both in quiet and in noise) can add useful information in the evaluation of hearing in real-life situations. Not only hearing loss, but also tinnitus and imbalance are common in patients who receive platinum-based chemotherapy, and can cause debilitating effects upon quality of life in this population. Moreover, self-report measures associated with cochlear and vestibular handicaps can provide valuable information regarding the impact of ototoxicity. Conclusions It is vital to build awareness about the variety and impact of the symptoms of ototoxicity. Comprehensive evaluation of hearing status along with self-reported impact of the cochlear and vestibular handicap should be implemented in a monitoring and surveillance program for appropriate investigation and management.
Collapse
Affiliation(s)
- David M Baguley
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham, UK.,Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Pattarawadee Prayuenyong
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK. .,NIHR Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham, UK. .,Nottingham University Hospitals NHS Trust, Nottingham, UK. .,Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
214
|
Korrapati S, Taukulis I, Olszewski R, Pyle M, Gu S, Singh R, Griffiths C, Martin D, Boger E, Morell RJ, Hoa M. Single Cell and Single Nucleus RNA-Seq Reveal Cellular Heterogeneity and Homeostatic Regulatory Networks in Adult Mouse Stria Vascularis. Front Mol Neurosci 2019; 12:316. [PMID: 31920542 PMCID: PMC6933021 DOI: 10.3389/fnmol.2019.00316] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
The stria vascularis (SV) generates the endocochlear potential (EP) in the inner ear and is necessary for proper hair cell mechanotransduction and hearing. While channels belonging to SV cell types are known to play crucial roles in EP generation, relatively little is known about gene regulatory networks that underlie the ability of the SV to generate and maintain the EP. Using single cell and single nucleus RNA-sequencing, we identify and validate known and rare cell populations in the SV. Furthermore, we establish a basis for understanding molecular mechanisms underlying SV function by identifying potential gene regulatory networks as well as druggable gene targets. Finally, we associate known deafness genes with adult SV cell types. This work establishes a basis for dissecting the genetic mechanisms underlying the role of the SV in hearing and will serve as a basis for designing therapeutic approaches to hearing loss related to SV dysfunction.
Collapse
Affiliation(s)
- Soumya Korrapati
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Ian Taukulis
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Madeline Pyle
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Riya Singh
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Carla Griffiths
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Daniel Martin
- Biomedical Research Informatics Office, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Erich Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
215
|
Nan B, Gu X, Huang X. The Role of the Reactive Oxygen Species Scavenger Agent, Astaxanthin, in the Protection of Cisplatin-Treated Patients Against Hearing Loss. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4291-4303. [PMID: 31908415 PMCID: PMC6927222 DOI: 10.2147/dddt.s212313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Emerging evidence of significant hearing loss occurring shortly after cisplatin administration in cancer patients has stimulated research into the causes and treatment of this side effect. Although the aetiology of cisplatin-induced hearing loss (CIHL) remains unknown, an increasing body of research suggests that it is associated with excessive generation of intracellular reactive oxygen species (ROS) in the cochlea. Astaxanthin, a xanthophyll carotenoid, has powerful anti-oxidant, anti-inflammatory, and anti-apoptotic properties based on its unique cell membrane function, diverse biological activities, and ability to permeate the blood-brain barrier. In this review, we summarize the role of ROS in CIHL and the effect of astaxanthin on inhibiting ROS production. We focus on investigating the mechanism of action of astaxanthin in suppressing excessive production of ROS.
Collapse
Affiliation(s)
- Benyu Nan
- Department of Otorhinolaryngology-Head and Neck Surgery, Wenzhou Medical University, Affiliated Hospital 2, Wenzhou 325000, People's Republic of China.,Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| | - Xi Gu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, People's Republic of China
| | - Xinsheng Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| |
Collapse
|
216
|
Lu J, Wang W, Liu H, Liu H, Wu H. Cisplatin induces calcium ion accumulation and hearing loss by causing functional alterations in calcium channels and exocytosis. Am J Transl Res 2019; 11:6877-6889. [PMID: 31814894 PMCID: PMC6895503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
In recent years, molecular biology and biochemistry have been a focus of studies on the ototoxic side effects of cisplatin. In this paper, the application of cisplatin for 4 h and 72 h was studied from the perspective of electrophysiological function. Patch clamp experiments and immunofluorescence staining were performed on inner hair cells of the cochlea. The patch-clamp results showed that the calcium current amplitude decreased significantly at 4 h and 72 h after cisplatin treatment, the reversal potential was negatively polarized, and the activation time decreased. We suspected that intracellular calcium accumulation was responsible for this result and confirmed this hypothesis by using calpain to measure intracellular calcium concentrations. We tested membrane capacitive function, whose levels after cisplatin application were significantly lower than those in the control group, thus indicating dysfunctional cytoplasmic effervescent function. CtBP2 staining was used to verify this result and indicated a decrease in ribbon synapses. Simultaneously, we observed dysfunction of vesicle circulation after cisplatin application. We found that cisplatin induces the accumulation of calcium ions in inner hair cells by calpain staining and fluoresce intensity calculation, thus decreasing calcium current and synaptic vesicle release, and impairing vesicles cycling, all of which are important mechanisms of cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Jiawen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| | - Wenxiao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| | - Hongchao Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| |
Collapse
|
217
|
Baharlou H, Canete NP, Cunningham AL, Harman AN, Patrick E. Mass Cytometry Imaging for the Study of Human Diseases-Applications and Data Analysis Strategies. Front Immunol 2019; 10:2657. [PMID: 31798587 PMCID: PMC6868098 DOI: 10.3389/fimmu.2019.02657] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023] Open
Abstract
High parameter imaging is an important tool in the life sciences for both discovery and healthcare applications. Imaging Mass Cytometry (IMC) and Multiplexed Ion Beam Imaging (MIBI) are two relatively recent technologies which enable clinical samples to be simultaneously analyzed for up to 40 parameters at subcellular resolution. Importantly, these "Mass Cytometry Imaging" (MCI) modalities are being rapidly adopted for studies of the immune system in both health and disease. In this review we discuss, first, the various applications of MCI to date. Second, due to the inherent challenge of analyzing high parameter spatial data, we discuss the various approaches that have been employed for the processing and analysis of data from MCI experiments.
Collapse
Affiliation(s)
- Heeva Baharlou
- The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Nicolas P. Canete
- The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Anthony L. Cunningham
- The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Andrew N. Harman
- The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Ellis Patrick
- The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
218
|
Kuzucu İ, Baklacı D, Guler İ, Uçaryılmaz EÖ, Kum RO, Özcan M. Investigation of the Ototoxic Effect of Pembrolizumab Using a Rat Model. Cureus 2019; 11:e6057. [PMID: 31827988 PMCID: PMC6890160 DOI: 10.7759/cureus.6057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective Programmed cell death protein-1 (PD-1) inhibitors that have been recently introduced for the systemic treatment of head and neck cancers offer the advantage of fewer side effects and more effective treatment than chemotherapy drugs. A review of the literature shows that the ototoxic side effects of the PD-1 inhibitor have not yet been fully elucidated. In this study, we aimed to investigate whether the PD-1 inhibitor has ototoxic activity using both electrophysiological and histopathological methods. Methods A total of 24 rats, 12 for the study group, and 12 for the control group were included in the study. The study group was administered the PD-1 inhibitor. The auditory brainstem responses (ABR) of the study and control groups were evaluated. At the end of the study, all animals were sacrificed, and their cochleae were examined by immunohistochemical staining. Results In the study group, the ABR values were 13.95 ± 2.70 before treatment, 15.83 ± 1.94 at week 4 of treatment (p=0.024), and 15.00 ± 1.06 at week 7 (p=0.157). Furthermore, according to immunohistochemical staining, the cochlear hair cells were reduced in the study group compared to the control group. Conclusion It was determined that the PD-1 inhibitor showed ototoxic activity during the course of treatment, but this was spontaneously resolved during follow-up. The clinical significance of these findings should be supported by human studies.
Collapse
Affiliation(s)
- İhsan Kuzucu
- Otolaryngology, Aksaray University, Faculty of Medicine, Aksaray, TUR
| | - Deniz Baklacı
- Otorhinolaryngology, Kahramankazan State Hospital, Ankara, TUR
| | - İsmail Guler
- Otolaryngology, Medipol University School of Medicine, Ankara, TUR
| | | | - Rauf Oğuzhan Kum
- Otolaryngology, Ministry of Health Ankara City Hospital, Department of Otolatyngology, Ankara, TUR
| | - Müge Özcan
- Otolaryngology, Ministry of Health Ankara City Hospital, Department of Otolatyngology, Ankara, TUR
| |
Collapse
|
219
|
Kros CJ, Steyger PS. Aminoglycoside- and Cisplatin-Induced Ototoxicity: Mechanisms and Otoprotective Strategies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033548. [PMID: 30559254 DOI: 10.1101/cshperspect.a033548] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ototoxicity refers to damage of inner ear structures (i.e., the cochlea and vestibule) and their function (hearing and balance) following exposure to specific in-hospital medications (i.e., aminoglycoside antibiotics, platinum-based drugs), as well as a variety of environmental or occupational exposures (e.g., metals and solvents). This review provides a narrative derived from relevant papers describing factors contributing to (or increasing the risk of) aminoglycoside and cisplatin-induced ototoxicity. We also review current strategies to protect against ototoxicity induced by these indispensable pharmacotherapeutic treatments for life-threatening infections and solid tumors. We end by highlighting several interventional strategies that are currently in development, as well as the diverse challenges that still need to be overcome to prevent drug-induced hearing loss.
Collapse
Affiliation(s)
- Corné J Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon 97239.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon 97239
| |
Collapse
|
220
|
Schultz C, Pecora Liberman PH, Schmidt Goffi-Gomez MV. Are There Cochlear Dead Regions Involved in Hearing Loss after Cisplatin Ototoxicity? Audiol Neurootol 2019; 24:253-257. [PMID: 31661686 DOI: 10.1159/000502250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The most common complaint of patients affected by chemotherapy-induced hearing loss is difficulty understanding speech in noisy environments despite the use of hearing aids. Cochlear dead regions, those areas with damaged or absent inner hair cells and dendrites, may account for this type of hearing loss. However, it is unknown whether this condition is associated with cisplatin agents. OBJECTIVE The aim of this study was to determine whether cisplatin is associated with hearing loss and cochlear dead regions. METHODS This prospective cross-sectional study was conducted in patients participating in routine audiological monitoring during and after chemotherapy treatment. Adults undergoing audiological evaluation who had completed chemotherapy treatment were invited to participate. Patients were divided into 3 groups according to pure tone thresholds. Group 1 patients had thresholds over 70 dB (HL) at 2,000 Hz and higher frequencies. Group 2 patients had thresholds below 70 dB (HL) up to 2,000 Hz. Patients in the control group had normal thresholds at all frequencies. The threshold equalizing noise test (TEN[HL]) was used to identify cochlear dead regions by repeating thresholds in the presence of TEN noise played from a compact disc. The presence of cochlear dead regions was established when the masked threshold was 10 dB or greater above the TEN level and 10 dB or greater above the absolute threshold at any frequency. RESULTS Twelve patients were included in study group 1, 10 patients in study group 2, and 7 patients in the control group. Cochlear dead regions were present in all patients with hearing loss and in none of the control group. For groups 1 and 2, mean differences between absolute and masked thresholds were 21 and 16 dB at 500 Hz; 22 and 15 dB at 1,000 Hz; 31 and 17 dB at 2,000 Hz; 32 and 20 dB at 3,000 Hz; and 31 and 21 dB at 4,000 Hz, respectively. Nevertheless, analysis of variance testing with Bonferroni analysis showed a difference between groups 1 and 2 only at 2,000, 3,000, and 4,000 Hz. CONCLUSION We found unresponsive or dead cochlear regions in patients who had undergone cisplatin chemotherapy even among patients with mild to moderate hearing loss.
Collapse
Affiliation(s)
| | | | - Maria Valéria Schmidt Goffi-Gomez
- Department of Audiology, AC Camargo Cancer Center, São Paulo, Brazil.,ENT Department, AC Camargo Cancer Center, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
221
|
Shaili E, Salassa L, Woods JA, Clarkson G, Sadler PJ, Farrer NJ. Platinum(iv) dihydroxido diazido N-(heterocyclic)imine complexes are potently photocytotoxic when irradiated with visible light. Chem Sci 2019; 10:8610-8617. [PMID: 31803436 PMCID: PMC6844273 DOI: 10.1039/c9sc02644d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/28/2019] [Indexed: 01/05/2023] Open
Abstract
A series of trans-di-(N-heterocyclic)imine dihydroxido diazido PtIV complexes of the form trans,trans,trans-[Pt(N3)2(OH)2(L1)(L2)] where L = pyridine, 2-picoline, 3-picoline, 4-picoline, thiazole and 1-methylimidazole have been synthesised and characterised, and their photochemical and photobiological activity evaluated. Notably, complexes 19 (L1 = py, L2 = 3-pic) and 26 (L1 = L2 = 4-pic) were potently phototoxic following irradiation with visible light (420 nm), with IC50 values of 4.0 μM and 2.1 μM respectively (A2780 cancer cell line), demonstrating greater potency than the previously reported complex 1 (L1 = L2 = py; 6.7 μM); whilst also being minimally toxic in the absence of irradiation. Complexes with mixed N-(heterocyclic)imine ligands 19 and 20 (L1 = py, L2 = 4-pic) were particularly photocytotoxic towards cisplatin resistant (A2780cis) cell lines. Complex 18 (L1 = py, L2 = 2-pic) was comparatively less photocytotoxic (IC50 value 14.5 μM) than the other complexes, despite demonstrating the greatest absorbance at the irradiation wavelength and the fastest half-life for loss of the N3 → Pt LMCT transition upon irradiation (λ irr = 463 nm) in aqueous solution. Complex 29 (X1 = X2 = thiazole) although potently phototoxic (2.4 μM), was also toxic towards cells in the absence of irradiation.
Collapse
Affiliation(s)
- Evyenia Shaili
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK
| | - Luca Salassa
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK
| | - Julie A Woods
- Photobiology Unit , Department of Dermatology and Photobiology , Ninewells Hospital , Dundee , DD1 9SY , UK
| | - Guy Clarkson
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK
| | - Nicola J Farrer
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK . ; ; Tel: +44 (0)1865 285131
| |
Collapse
|
222
|
Lu J, Liu H, Lin S, Li C, Wu H. Electrophysiological characterization of acutely isolated spiral ganglion neurons in neonatal and mature sonic hedgehog knock-in mice. Neurosci Lett 2019; 714:134536. [PMID: 31589904 DOI: 10.1016/j.neulet.2019.134536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/04/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022]
Abstract
Spiral ganglion neurons (SGNs) are primary afferent auditory neurons activated by inner hair cells in mammalian cochlea. Here, for the convenience of SGN studies such as patch-clamp or single cell RNA-sequence studies, a knock-in mouse (ShhCreEGFP/+; Rosa26-Tdtomatoloxp/+) was generated for the purpose of obtaining fluorescence SGNs. Auditory brainstem response (ABR) and Tuj1 immunohistochemistry staining were performed to verify the hearing function and the morphological characteristics. The results showed that there was no significant difference between shh and wild type mice. In electrophysiological studies, we verified a series of electrophysiological characteristics including the amplitude of sodium and potassium currents and action potential characteristics of shh and wild type mice and no significant differences were found either. From the above, shh mice have the same cell function and morphology as their littermate control wild type mice and could be used as an ideal tool to study the function and characteristics of spiral ganglion neurons. Potassium channels of SGNs play an important role in resolving time accuracy. We obtained similar amplitude of IK+ in neonatal and mature mice in the aging competition experiment, however, the density of IK+ from mature mice were significantly different from those of neonatal mice, a phenomenon that may play a key role in the nervous system. Potassium channels have been shown to contribute to apoptosis induced by cisplatin administration in various cell lines. Here we used cisplatin administration to study the ototoxicity and found that the effects of a low dose of cisplatin (0.5 mM correspond to therapeutic doses) causes a decrease in currents and is reversible after a short administration time. Moreover, we propose the activated state of potassium channels has changed but the characteristic and number remain still after cisplatin administration. The excess potassium ions may accumulate in the cell body, which had affected the firing properties and induce cytotoxicity and apoptosis. We suggest that the electrophysiological properties of acutely isolated SGNs may support further research on the mechanics of auditory propagation and ion channel pharmacology.
Collapse
Affiliation(s)
- Jiawen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shanshan Lin
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chao Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
223
|
Trendowski MR, El-Charif O, Ratain MJ, Monahan P, Mu Z, Wheeler HE, Dinh PC, Feldman DR, Ardeshir-Rouhani-Fard S, Hamilton RJ, Vaughn DJ, Fung C, Kollmannsberger C, Mushiroda T, Kubo M, Hannigan R, Strathmann F, Einhorn LH, Fossa SD, Travis LB, Dolan ME. Clinical and Genome-Wide Analysis of Serum Platinum Levels after Cisplatin-Based Chemotherapy. Clin Cancer Res 2019; 25:5913-5924. [PMID: 31296530 PMCID: PMC6774840 DOI: 10.1158/1078-0432.ccr-19-0113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/17/2019] [Accepted: 07/09/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Serum platinum is measurable for years after completion of cisplatin-based chemotherapy (CBC). We report the largest investigation of serum platinum levels to date of 1,010 testicular cancer survivors (TCS) assessed 1-35 years after CBC and evaluate genetic contributions to these levels. EXPERIMENTAL DESIGN Eligible TCS given 300 or 400 (±15) mg/m2 cisplatin underwent extensive audiometric testing, clinical examination, completed questionnaires, and had crude serum platinum levels measured. Associations between serum platinum and various risk factors and toxicities were assessed after fitting a biexponential model adjusted for follow-up time and cumulative cisplatin dose. A genome-wide association study (GWAS) was performed using the serum platinum residuals of the dose and time-adjusted model. RESULTS Serum platinum levels exceeded the reference range for approximately 31 years, with a strong inverse relationship with creatinine clearance at follow-up (age-adjusted P = 2.13 × 10-3). We observed a significant, positive association between residual platinum values and luteinizing hormone (age-adjusted P = 6.58 × 10-3). Patients with high residual platinum levels experienced greater Raynaud phenomenon than those with medium or low levels (age-adjusted ORhigh/low = 1.46; P = 0.04), as well as a higher likelihood of developing tinnitus (age-adjusted ORhigh/low = 1.68, P = 0.07). GWAS identified one single-nucleotide polymorphism (SNP) meeting genome-wide significance, rs1377817 (P = 4.6 × 10-8, a SNP intronic to MYH14). CONCLUSIONS This study indicates that residual platinum values are correlated with several cisplatin-related toxicities. One genetic variant is associated with these levels.
Collapse
Affiliation(s)
| | - Omar El-Charif
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Mark J Ratain
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Patrick Monahan
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| | - Zepeng Mu
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Heather E Wheeler
- Departments of Biology and Computer Science, Loyola University Chicago, Chicago, Illinois
| | - Paul C Dinh
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| | - Darren R Feldman
- Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | - Robert J Hamilton
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David J Vaughn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | | | | | - Michiaki Kubo
- RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Robyn Hannigan
- School for the Environment, University of Massachusetts Boston, Boston, Massachusetts
| | | | - Lawrence H Einhorn
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| | - Sophie D Fossa
- Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway
| | - Lois B Travis
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana.
| | - M Eileen Dolan
- Department of Medicine, University of Chicago, Chicago, Illinois.
| |
Collapse
|
224
|
NHC-Ir(I) complexes derived from 5,6-dinitrobenzimidazole. Synthesis, characterization and preliminary evaluation of their in vitro anticancer activity. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
225
|
Skin platinum deposition in colorectal cancer patients following oxaliplatin-based therapy. Cancer Chemother Pharmacol 2019; 84:1195-1200. [PMID: 31520102 DOI: 10.1007/s00280-019-03956-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Oxaliplatin is widely used in the treatment of gastrointestinal malignancies. One of the most common and dose-limiting side effects of oxaliplatin is the chronic peripheral sensory neuropathy. The mechanism of this neurotoxicity is poorly understood and there are no effective preventive or treatment strategies, other than oxaliplatin dose interruption or reduction. METHODS Colorectal cancer patients who completed FOLFOX at least 6 months prior to enrollment were eligible. EORTC QLQ-CIPN20 questionnaire was used for assessing self-reported neuropathic symptom. Blood samples and skin biopsies were obtained and analyzed for platinum. RESULTS Twelve patients were enrolled. The mean cumulative dose of oxaliplatin was 818 ± 54 mg/m2, and the median time from last dose of oxaliplatin was 38.7 months (range: 7.2-65.6 months). The QLQ-CIPN20 sensory score was 18 or less in 10 patients and 19 and 25, respectively, in 2 patients. Platinum was detectable in plasma from 4/12 patients up to 63.3 months after the completion of FOLFOX. In all six patients with skin biopsies, platinum was present in the skin with imaging mass cytometry. CONCLUSIONS QLQ-CIPN20 scores and plasma platinum concentrations were not related to cumulative doses of oxaliplatin or interval from the last dose of oxaliplatin. Platinum was readily detectable in skin biopsies more than 60 months post-completion of FOLFOX. This is the first demonstration of platinum deposition in skin post-oxaliplatin treatment and it provides a possible mechanism for oxaliplatin-induced peripheral sensory neuropathy and its persistence.
Collapse
|
226
|
Park HJ, Kim MJ, Rothenberger C, Kumar A, Sampson EM, Ding D, Han C, White K, Boyd K, Manohar S, Kim YH, Ticsa MS, Gomez AS, Caicedo I, Bose U, Linser PJ, Miyakawa T, Tanokura M, Foster TC, Salvi R, Someya S. GSTA4 mediates reduction of cisplatin ototoxicity in female mice. Nat Commun 2019; 10:4150. [PMID: 31515474 PMCID: PMC6742643 DOI: 10.1038/s41467-019-12073-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Cisplatin is one of the most widely used chemotherapeutic drugs for the treatment of cancer. Unfortunately, one of its major side effects is permanent hearing loss. Here, we show that glutathione transferase α4 (GSTA4), a member of the Phase II detoxifying enzyme superfamily, mediates reduction of cisplatin ototoxicity by removing 4-hydroxynonenal (4-HNE) in the inner ears of female mice. Under cisplatin treatment, loss of Gsta4 results in more profound hearing loss in female mice compared to male mice. Cisplatin stimulates GSTA4 activity in the inner ear of female wild-type, but not male wild-type mice. In female Gsta4−/− mice, cisplatin treatment results in increased levels of 4-HNE in cochlear neurons compared to male Gsta4−/− mice. In CBA/CaJ mice, ovariectomy decreases mRNA expression of Gsta4, and the levels of GSTA4 protein in the inner ears. Thus, our findings suggest that GSTA4-dependent detoxification may play a role in estrogen-mediated neuroprotection. A common complication of cisplatin-based chemotherapy is hearing loss. Here, Park et al. show that glutathione transferase α4 (GSTA4) contributes to reducing cisplatin toxicity in the inner ear of female mice by removing 4-hydroxynonenal (4-HNE).
Collapse
Affiliation(s)
- Hyo-Jin Park
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32611, USA
| | - Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32611, USA
| | - Christina Rothenberger
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32611, USA
| | - Ashok Kumar
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Edith M Sampson
- Monoclonal Antibody Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Chul Han
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32611, USA
| | - Karessa White
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32611, USA
| | - Kevin Boyd
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32611, USA
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Yong-Hwan Kim
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Maria S Ticsa
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32611, USA
| | - Aaron S Gomez
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32611, USA
| | - Isabela Caicedo
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32611, USA
| | - Upal Bose
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32611, USA
| | - Paul J Linser
- Whitney Laboratory, University of Florida, St. Augustine, FL, 32080, USA
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, 113-8657, Japan
| | - Thomas C Foster
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY, 14214, USA.,Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan, 41354, Republic of China
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
227
|
Hu L, Cao Z, Ma L, Liu Z, Liao G, Wang J, Shen S, Li D, Yang X. The potentiated checkpoint blockade immunotherapy by ROS-responsive nanocarrier-mediated cascade chemo-photodynamic therapy. Biomaterials 2019; 223:119469. [PMID: 31520886 DOI: 10.1016/j.biomaterials.2019.119469] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/19/2019] [Accepted: 09/01/2019] [Indexed: 12/25/2022]
Abstract
Checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies, have been proven as a promising type of immunotherapy in a number of cancers, but the relatively low response rates limit their scope of clinical application. Here, we report the use of cascade chemo-photodynamic therapy (chemo-PDT) with reactive oxygen species (ROS)-sensitive lipid-polymer hybrid nanoparticles TKHNP-C/D to potentiate the antitumor efficacy of anti-PD-L1 antibody (aPD-L1). Under light irradiation, TKHNP-C/D not only induced photodynamic therapy (PDT) but also boosted intracellular DOX release via the rapid degradation of its hydrophobic core, promoting an efficient cascade of chemo-PDT to inhibit tumor growth by a single treatment. More importantly, the cascade chemo-PDT could evoke anticancer immune responses and efficiently synergize with aPD-L1 to generate an abscopal effect, which could simultaneously inhibit primary and distant tumor growth.
Collapse
Affiliation(s)
- Liqin Hu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Ziyang Cao
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangzhou, 510006, China
| | - Leilei Ma
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Junxia Wang
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangzhou, 510006, China.
| | - Song Shen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangzhou, 510006, PR China
| | - Dongdong Li
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Xianzhu Yang
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangzhou, 510006, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, China.
| |
Collapse
|
228
|
Roccio M, Edge ASB. Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration. Development 2019; 146:146/17/dev177188. [PMID: 31477580 DOI: 10.1242/dev.177188] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of therapeutic interventions for hearing loss requires fundamental knowledge about the signaling pathways controlling tissue development as well as the establishment of human cell-based assays to validate therapeutic strategies ex vivo Recent advances in the field of stem cell biology and organoid culture systems allow the expansion and differentiation of tissue-specific progenitors and pluripotent stem cells in vitro into functional hair cells and otic-like neurons. We discuss how inner ear organoids have been developed and how they offer for the first time the opportunity to validate drug-based therapies, gene-targeting approaches and cell replacement strategies.
Collapse
Affiliation(s)
- Marta Roccio
- Inner Ear Research Laboratory, Department of Biomedical Research (DBMR), University of Bern, Bern 3008, Switzerland .,Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
229
|
Qi L, Luo Q, Zhang Y, Jia F, Zhao Y, Wang F. Advances in Toxicological Research of the Anticancer Drug Cisplatin. Chem Res Toxicol 2019; 32:1469-1486. [PMID: 31353895 DOI: 10.1021/acs.chemrestox.9b00204] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cisplatin is one of the most widely used chemotherapeutic agents for various solid tumors in the clinic due to its high efficacy and broad spectrum. The antineoplastic activity of cisplatin is mainly due to its ability to cross-link with DNA, thus blocking transcription and replication. Unfortunately, the clinical use of cisplatin is limited by its severe, dose-dependent toxic side effects. There are approximately 40 specific toxicities of cisplatin, among which nephrotoxicity is the most common one. Other common side effects include ototoxicity, neurotoxicity, gastrointestinal toxicity, hematological toxicity, cardiotoxicity, and hepatotoxicity. These side effects together reduce the life quality of patients and require lowering the dosage of the drug, even stopping administration, thus weakening the treatment effect. Few effective measures exist clinically against these side effects because the exact mechanisms of various side effects from cisplatin remain still unclear. Therefore, substantial effort has been made to explore the complicated biochemical processes involved in the toxicology of cisplatin, aiming to identify effective ways to reduce or eradicate its toxicity. This review summarizes and reviews the updated advances in the toxicological research of cisplatin. We anticipate to provide insights into the understanding of the mechanisms underlying the side effects of cisplatin and designing comprehensive therapeutic strategies involving cisplatin.
Collapse
Affiliation(s)
- Luyu Qi
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Feifei Jia
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China.,Basic Medical College , Shandong University of Chinese Traditional Medicine , Jinan 250355 , P.R. China
| |
Collapse
|
230
|
Rybak LP, Dhukhwa A, Mukherjea D, Ramkumar V. Local Drug Delivery for Prevention of Hearing Loss. Front Cell Neurosci 2019; 13:300. [PMID: 31338024 PMCID: PMC6629775 DOI: 10.3389/fncel.2019.00300] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022] Open
Abstract
Systemic delivery of therapeutics for targeting the cochlea to prevent or treat hearing loss is challenging. Systemic drugs have to cross the blood-labyrinth barrier (BLB). BLB can significantly prevent effective penetration of drugs in appropriate concentrations to protect against hearing loss caused by inflammation, ototoxic drugs, or acoustic trauma. This obstacle may be obviated by local administration of protective agents. This route can deliver higher concentration of drug compared to systemic application and preclude systemic side effects. Protective agents have been administered by intra-tympanic injection in numerous preclinical studies. Drugs such as steroids, etanercept, D and L-methionine, pifithrin-alpha, adenosine agonists, melatonin, kenpaullone (a cyclin-dependent kinase 2 (CDK2) inhibitor) have been reported to show efficacy against cisplatin ototoxicity in animal models. Several siRNAs have been shown to ameliorate cisplatin ototoxicity when administered by intra-tympanic injection. The application of corticosteroids and a number of other drugs with adjuvants appears to enhance efficacy. Administration of siRNAs to knock down AMPK kinase, liver kinase B1 (LKB1) or G9a in the cochlea have been found to ameliorate noise-induced hearing loss. The local administration of these compounds appears to be effective in protecting the cochlea against damage from cisplatin or noise trauma. Furthermore the intra-tympanic route yields maximum protection in the basal turn of the cochlea which is most vulnerable to cisplatin ototoxicity and noise trauma. There appears to be very little transfer of these agents to the systemic circulation. This would avoid potential side effects including interference with anti-tumor efficacy of cisplatin. Nanotechnology offers strategies to effectively deliver protective agents to the cochlea. This review summarizes the pharmacology of local drug delivery by intra-tympanic injection to prevent hearing loss caused by cisplatin and noise exposure in animals. Future refinements in local protective agents provide exciting prospects for amelioration of hearing loss resulting from cisplatin or noise exposure.
Collapse
Affiliation(s)
- Leonard P Rybak
- Department of Otolaryngology, School of Medicine, Southern Illinois University, Springfield, IL, United States.,Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| | - Asmita Dhukhwa
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| | - Debashree Mukherjea
- Department of Otolaryngology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| | - Vickram Ramkumar
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| |
Collapse
|
231
|
Sheth S, Sheehan K, Dhukhwa A, Al Aameri RFH, Mamillapalli C, Mukherjea D, Rybak LP, Ramkumar V. Oral Administration of Caffeine Exacerbates Cisplatin-Induced Hearing Loss. Sci Rep 2019; 9:9571. [PMID: 31267026 PMCID: PMC6606569 DOI: 10.1038/s41598-019-45964-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
Adenosine A1 receptors (A1AR) are well characterized for their role in cytoprotection. Previous studies have demonstrated the presence of these receptors in the cochlea where their activation were shown to suppress cisplatin-induced inflammatory response and the resulting ototoxicity. Inhibition of A1AR by caffeine, a widely consumed psychoactive substance, could antagonize the endogenous protective role of these receptors in cochlea and potentiate cisplatin-induced hearing loss. This hypothesis was tested in a rat model of cisplatin ototoxicity following oral administration of caffeine. We report here that single-dose administration of caffeine exacerbates cisplatin-induced hearing loss without increasing the damage to outer hair cells (OHCs), but increased synaptopathy and inflammation in the cochlea. These effects of caffeine were mediated by its blockade of A1AR, as co-administration of R-PIA, an A1AR agonist, reversed the detrimental actions of caffeine and cisplatin on hearing loss. Multiple doses of caffeine exacerbated cisplatin ototoxicity which was associated with damage to OHCs and cochlear synaptopathy. These findings highlight a possible drug-drug interaction between caffeine and cisplatin for ototoxicity and suggest that caffeine consumption should be cautioned in cancer patients treated with a chemotherapeutic regimen containing cisplatin.
Collapse
Affiliation(s)
- Sandeep Sheth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Kelly Sheehan
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Raheem F H Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Chaitanya Mamillapalli
- Department of Internal Medicine (Division of Endocrinology), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Debashree Mukherjea
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Leonard P Rybak
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States.
| |
Collapse
|
232
|
Abstract
Modern research on ototoxicity goes back to the 1940s, when streptomycin was introduced into clinical practice. Today, aminoglycoside antibiotics and platinum-based chemotherapy, mainly cisplatin, are the most important drugs that damage the inner ear and cause hearing loss. The mode of drug administration as well as drug characteristics influence the likelihood that adequate monitoring of drug pharmacokinetics can be performed. It is not possible to predict the individual risk of treatment with an ototoxic drug, but identification of high-risk treatment protocols is important. There are many studies ongoing with the aim of discovering and developing drugs to treat different types of inner ear disorders. The mechanisms of ototoxicity and subsequent loss of hearing function have been mapped in various experimental models and have provided us with useful information for developing protective treatment. When an ototoxic lesion is established, restoration of hearing function becomes more difficult. For both aminoglycoside antibiotics and cisplatin, a large number of otoprotectors have been suggested. Systemic co-administration of an otoprotector would be the easiest approach to avoid ototoxicity in patients but it may negatively affect the intended pharmacotherapeutic aim of the ototoxic drug. New pharmacological formulations are being developed for local otoprotective treatment. This short review focuses on results from clinical reports on otoprotection in patients treated with aminoglycoside antibiotics and cisplatin. So far there is limited evidence for the safe management of otoprotection in patients. Further high-quality studies are needed to provide reliable data on the safety and effectiveness of pharmacological interventions to reduce drug-induced hearing loss.
Collapse
|
233
|
Pierstorff E, Yang WW, Chen YJA, Cheung S, Kalinec F, Slattery WH. Prevention of cisplatin-induced hearing loss by extended release fluticasone propionate intracochlear implants. Int J Pediatr Otorhinolaryngol 2019; 121:157-163. [PMID: 30913504 PMCID: PMC6502669 DOI: 10.1016/j.ijporl.2019.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/27/2019] [Accepted: 03/17/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Cisplatin is a chemotherapeutic drug known to induce hearing loss. Although corticosteroids may help to mitigate the ototoxic side effects of cisplatin, there are complications associated with their systemic and prolonged use. The goal of this study is to test the efficacy of extended-release fluticasone propionate intracochlear implant particles to protect against cisplatin-induced hearing loss. METHODS We used guinea pigs (n = 9) injected with cisplatin (IP, 12 mg/kg weight). Fluticasone particles were delivered to the cochlear scala tympani through the round window membrane into the right ears of the guinea pigs (left ears being used as a control) two weeks prior to cisplatin administration, and hearing function was evaluated by ABR and DPOAE before implantation, immediately before cisplatin administration, and 2 weeks after the challenge with cisplatin. Data was statistically evaluated using paired t-test analysis. RESULTS No significant differences were observed in ABR threshold between control and implanted ears on day 14 (23.9 ± 2.3 dB vs. 25.6 ± 1.3 dB, P = 0.524), whereas the significant cisplatin-induced hearing loss in control animals (23.9 ± 2.3 dB at day 14 vs. 40.7 ± 2.5 dB at day 28, P ≤ 0.0001) was prevented in implanted animals (25.6 ± 1.3 dB at day 14 vs. 25.0 ± 3.1 at day 28, P ≥ 0.85). A similar, though not statistically significant, trend was observed in DPOAE responses in untreated ears (7.9 ± 5.8 dB at day14 vs. -0.5 ± 5.3 dB at day 28, P = 0.654) as compared to treatment (11.1 ± 3.4 dB at day 14 vs. 13.6 ± 4.8 dB at day 28, P = 0.733). CONCLUSION These results suggest that fluticasone intracochlear implants are safe and able to provide effective otoprotection against cisplatin-induced hearing loss in the guinea pig model.
Collapse
Affiliation(s)
- Erik Pierstorff
- O-Ray Pharma, Inc., 2285 E. Foothill Blvd, Pasadena, CA, 91107, USA.
| | - Wan-Wan Yang
- O-Ray Pharma, Inc., 2285 E. Foothill Blvd, Pasadena, CA, 91107, USA
| | - Yen-Jung Angel Chen
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Shirley Cheung
- O-Ray Pharma, Inc., 2285 E. Foothill Blvd, Pasadena, CA, 91107, USA
| | - Federico Kalinec
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | | |
Collapse
|
234
|
Rybak LP, Mukherjea D, Ramkumar V. Mechanisms of Cisplatin-Induced Ototoxicity and Prevention. Semin Hear 2019; 40:197-204. [PMID: 31036996 DOI: 10.1055/s-0039-1684048] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cisplatin is a highly effective antineoplastic agent used to treat solid tumors. Unfortunately, the administration of this drug leads to significant side effects, including ototoxicity, nephrotoxicity, and neurotoxicity. This review addresses the mechanisms of cisplatin-induced ototoxicity and various strategies tested to prevent this distressing adverse effect. The molecular pathways underlying cisplatin ototoxicity are still being investigated. Cisplatin enters targeted cells in the cochlea through the action of several transporters. Once it enters the cochlea, cisplatin is retained for months to years. It can cause DNA damage, inhibit protein synthesis, and generate reactive oxygen species that can lead to inflammation and apoptosis of outer hair cells, resulting in permanent hearing loss. Strategies to prevent cisplatin ototoxicity have utilized antioxidants, transport inhibitors, G-protein receptor agonists, and anti-inflammatory agents. There are no FDA-approved drugs to prevent cisplatin ototoxicity. It is critical that potential protective agents do not interfere with the antitumor efficacy of cisplatin.
Collapse
Affiliation(s)
- Leonard P Rybak
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois.,Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Debashree Mukherjea
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois.,Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois
| |
Collapse
|
235
|
El Charif O, Mapes B, Trendowski MR, Wheeler HE, Wing C, Dinh PC, Frisina RD, Feldman DR, Hamilton RJ, Vaughn DJ, Fung C, Kollmannsberger C, Mushiroda T, Kubo M, Gamazon ER, Cox NJ, Huddart R, Ardeshir-Rouhani-Fard S, Monahan P, Fossa SD, Einhorn LH, Travis LB, Dolan ME. Clinical and Genome-wide Analysis of Cisplatin-induced Tinnitus Implicates Novel Ototoxic Mechanisms. Clin Cancer Res 2019; 25:4104-4116. [PMID: 30952644 DOI: 10.1158/1078-0432.ccr-18-3179] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Cisplatin, a commonly used chemotherapeutic, results in tinnitus, the phantom perception of sound. Our purpose was to identify the clinical and genetic determinants of tinnitus among testicular cancer survivors (TCS) following cisplatin-based chemotherapy. EXPERIMENTAL DESIGN TCS (n = 762) were dichotomized to cases (moderate/severe tinnitus; n = 154) and controls (none; n = 608). Logistic regression was used to evaluate associations with comorbidities and SNP dosages in genome-wide association study (GWAS) following quality control and imputation (covariates: age, noise exposure, cisplatin dose, genetic principal components). Pathway over-representation tests and functional studies in mouse auditory cells were performed. RESULTS Cisplatin-induced tinnitus (CisIT) significantly associated with age at diagnosis (P = 0.007) and cumulative cisplatin dose (P = 0.007). CisIT prevalence was not significantly greater in 400 mg/m2-treated TCS compared with 300 (P = 0.41), but doses >400 mg/m2 (median 580, range 402-828) increased risk by 2.61-fold (P < 0.0001). CisIT cases had worse hearing at each frequency (0.25-12 kHz, P < 0.0001), and reported more vertigo (OR = 6.47; P < 0.0001) and problems hearing in a crowd (OR = 8.22; P < 0.0001) than controls. Cases reported poorer health (P < 0.0001) and greater psychotropic medication use (OR = 2.4; P = 0.003). GWAS suggested a variant near OTOS (rs7606353, P = 2 × 10-6) and OTOS eQTLs were significantly enriched independently of that SNP (P = 0.018). OTOS overexpression in HEI-OC1, a mouse auditory cell line, resulted in resistance to cisplatin-induced cytotoxicity. Pathway analysis implicated potassium ion transport (q = 0.007). CONCLUSIONS CisIT associated with several neuro-otological symptoms, increased use of psychotropic medication, and poorer health. OTOS, expressed in the cochlear lateral wall, was implicated as protective. Future studies should investigate otoprotective targets in supporting cochlear cells.
Collapse
Affiliation(s)
- Omar El Charif
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Brandon Mapes
- Department of Medicine, University of Chicago, Chicago, Illinois
| | | | - Heather E Wheeler
- Departments of Biology and Computer Science, Loyola University Chicago, Chicago, Illinois
| | - Claudia Wing
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Paul C Dinh
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| | - Robert D Frisina
- Departments of Medical and Chemical & Biomolecular Engineering and Communication Sciences & Disorders, Global Center for Hearing and Speech Research, University of South Florida, Tampa, Florida
| | - Darren R Feldman
- Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Robert J Hamilton
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David J Vaughn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | | | | | - Michiaki Kubo
- RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Eric R Gamazon
- Clare Hall, University of Cambridge, Cambridge, United Kingdom.,Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nancy J Cox
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Patrick Monahan
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| | - Sophie D Fossa
- Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway
| | - Lawrence H Einhorn
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| | - Lois B Travis
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana.
| | - M Eileen Dolan
- Department of Medicine, University of Chicago, Chicago, Illinois.
| |
Collapse
|
236
|
Nader ME, Gidley PW. Challenges of Hearing Rehabilitation after Radiation and Chemotherapy. J Neurol Surg B Skull Base 2019; 80:214-224. [PMID: 30931231 PMCID: PMC6438801 DOI: 10.1055/s-0039-1677865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022] Open
Abstract
Radiation and chemotherapy are frequently used in the treatment of head and neck malignancies. Ototoxicity is a common adverse effect of these treatment modalities. This article discusses the patterns of hearing loss following chemotherapy and radiation therapy. Specific issues related to hearing rehabilitation in oncological patients will also be covered, such as controversies regarding treatment of radiation-induced serous otitis media, risks of otologic surgery, and the use of osseointegrated hearing aids and cochlear implants.
Collapse
Affiliation(s)
- Marc-Elie Nader
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Paul W. Gidley
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| |
Collapse
|
237
|
Fernandez K, Wafa T, Fitzgerald TS, Cunningham LL. An optimized, clinically relevant mouse model of cisplatin-induced ototoxicity. Hear Res 2019; 375:66-74. [PMID: 30827780 PMCID: PMC6416072 DOI: 10.1016/j.heares.2019.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Cisplatin-induced ototoxicity results in significant, permanent hearing loss in pediatric and adult cancer survivors. Elucidating the mechanisms underlying cisplatin-induced hearing loss as well as the development of therapies to reduce and/or reverse cisplatin ototoxicity have been impeded by suboptimal animal models. Clinically, cisplatin is most commonly administered in multi-dose, multi-cycle protocols. However, many animal studies are conducted using single injections of high-dose cisplatin, which is not reflective of clinical cisplatin administration protocols. Significant limitations of both high-dose, single-injection protocols and previous multi-dose protocols in rodent models include high mortality rates and relatively small changes in hearing sensitivity. These limitations restrict assessment of both long-term changes in hearing sensitivity and effects of potential protective therapies. Here, we present a detailed method for an optimized mouse model of cisplatin ototoxicity that utilizes a multi-cycle administration protocol that better approximates the type and degree of hearing loss observed clinically. This protocol results in significant hearing loss with very low mortality. This mouse model of cisplatin ototoxicity provides a platform for examining mechanisms of cisplatin-induced hearing loss as well as developing therapies to protect the hearing of cancer patients receiving cisplatin therapy.
Collapse
Affiliation(s)
- K Fernandez
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - T Wafa
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - T S Fitzgerald
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - L L Cunningham
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
238
|
Tserga E, Nandwani T, Edvall NK, Bulla J, Patel P, Canlon B, Cederroth CR, Baguley DM. The genetic vulnerability to cisplatin ototoxicity: a systematic review. Sci Rep 2019; 9:3455. [PMID: 30837596 PMCID: PMC6401165 DOI: 10.1038/s41598-019-40138-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
Ototoxicity is one of the major side-effects of platinum-based chemotherapy, in particular cisplatin (cis-diammine dichloroplatinum II). To our knowledge, no systematic review has previously provided a quantitative summary estimate of the impact of genetics upon the risk of developing hearing loss. We searched Embase, Medline, ASSIA, Pubmed, Scopus, and Web of Science, for studies documenting the genetic risk of ototoxicity in patients with cancer treated with cisplatin. Titles/abstracts and full texts were reviewed for inclusion. Meta-analytic estimates of risk (Odds Ratio) from the pooled data were calculated for studies that have been repeated twice or more. The search identified 3891 papers, of which 30 were included. The majority were retrospective (44%), ranging from n = 39 to n = 317, some including only patients younger than 25 years of age (33%), and some on both genders (80%). The most common cancers involved were osteosarcoma (53%), neuroblastoma (37%), prostate (17%) and reproductive (10%). Most studies performed genotyping, though only 5 studies performed genome-wide association studies. Nineteen single-nucleotide polymorphisms (SNPs) from 15 genes were repeated more than twice. Meta-analysis of group data indicated that rs1872328 on ACYP2, which plays a role in calcium homeostasis, increases the risk of ototoxicity by 4.61 (95% CI: 3.04-7.02; N = 696, p < 0.0001) as well as LRP2 rs4668123 shows a cumulated Odds Ratio of 3.53 (95% CI: 1.48-8.45; N = 118, p = 0.0059), which could not be evidenced in individual studies. Despite the evidence of heterogeneity across studies, these meta-analytic results from 30 studies are consistent with a view of a genetic predisposition to platinum-based chemotherapy mediated ototoxicity. These new findings are informative and encourage the genetic screening of cancer patients in order to identify patients with greater vulnerability of developing hearing loss, a condition having a potentially large impact on quality of life. More studies are needed, with larger sample size, in order to identify additional markers of ototoxic risk associated with platinum-based chemotherapy and investigate polygenic risks, where multiple markers may exacerbate the side-effects.
Collapse
Affiliation(s)
- Evangelia Tserga
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Tara Nandwani
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Niklas K Edvall
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Jan Bulla
- Department of Mathematics, University of Bergen, Bergen, Norway.,Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Poulam Patel
- Division of Oncology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Barbara Canlon
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Christopher R Cederroth
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - David M Baguley
- Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK. .,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
239
|
Clemens E, Brooks B, de Vries ACH, van Grotel M, van den Heuvel-Eibrink MM, Carleton B. A comparison of the Muenster, SIOP Boston, Brock, Chang and CTCAEv4.03 ototoxicity grading scales applied to 3,799 audiograms of childhood cancer patients treated with platinum-based chemotherapy. PLoS One 2019; 14:e0210646. [PMID: 30763334 PMCID: PMC6375552 DOI: 10.1371/journal.pone.0210646] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/29/2018] [Indexed: 01/12/2023] Open
Abstract
Childhood cancer patients treated with platinums often develop hearing loss and the degree is classified according to different scales globally. Our objective was to compare concordance between five well-known ototoxicity scales used for childhood cancer patients. Audiometric test results (n = 654) were evaluated longitudinally and graded according Brock, Chang, International Society of Pediatric Oncology (SIOP) Boston, Muenster scales and the U.S. National Cancer Institute Common Technology Criteria for Adverse Events (CTCAE) version 4.03. Adverse effects of grade 2, 3 and 4 are considered to reflect a degree of hearing loss sufficient to interfere with day-to-day communication (> = Chang grade 2a; > = Muenster grade 2b). We term this "deleterious hearing loss". A total number of 3,799 audiograms were evaluated. The prevalence of deleterious hearing loss according to the last available audiogram of each patient was 59.3% (388/654) according to Muenster, 48.2% (315/653) according to SIOP, 40.5% (265/652) according to Brock, 40.3% (263/652) according to Chang, and 57.5% (300/522) according to CTCAEv4.03. Overall concordance between the scales ranged from ĸ = 0.636 (Muenster vs. Chang) to ĸ = 0.975 (Brock vs. Chang). Muenster detected hearing loss the earliest in time, followed by Chang, SIOP and Brock. Generally good concordance between the scales was observed but there is still diversity in definitions of functional outcomes, such as differences in distribution levels of severity of hearing loss, and additional intermediate scales taking into account losses <40 dB as well. Regardless of the scale used, hearing function decreases over time and therefore, close monitoring of hearing function at baseline and with each cycle of platinum therapy should be conducted.
Collapse
Affiliation(s)
- E. Clemens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pediatric Hematology and Oncology, Erasmus MC – Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - B. Brooks
- Audiology and Speech Pathology Department, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - A. C. H. de Vries
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pediatric Hematology and Oncology, Erasmus MC – Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - M. van Grotel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - M. M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pediatric Hematology and Oncology, Erasmus MC – Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - B. Carleton
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
- Pharmaceutical Outcomes Programme, BC Children’s Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
240
|
Chakara ZS, Ramma L. The efficacy of strategies used to minimise or prevent Cisplatin-induced ototoxicity in patients. SOUTH AFRICAN JOURNAL OF ONCOLOGY 2019. [DOI: 10.4102/sajo.v3i0.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
241
|
Pang J, Xiong H, Zhan T, Cheng G, Jia H, Ye Y, Su Z, Chen H, Lin H, Lai L, Ou Y, Xu Y, Chen S, Huang Q, Liang M, Cai Y, Zhang X, Xu X, Zheng Y, Yang H. Sirtuin 1 and Autophagy Attenuate Cisplatin-Induced Hair Cell Death in the Mouse Cochlea and Zebrafish Lateral Line. Front Cell Neurosci 2019; 12:515. [PMID: 30692914 PMCID: PMC6339946 DOI: 10.3389/fncel.2018.00515] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Cisplatin-induced ototoxicity is one of the major adverse effects in cisplatin chemotherapy, and hearing protective approaches are unavailable in clinical practice. Recent work unveiled a critical role of autophagy in cell survival in various types of hearing loss. Since the excessive activation of autophagy can contribute to apoptotic cell death, whether the activation of autophagy increases or decreases the rate of cell death in CDDP ototoxicity is still being debated. In this study, we showed that CDDP induced activation of autophagy in the auditory cell HEI-OC1 at the early stage. We then used rapamycin, an autophagy activator, to increase the autophagy activity, and found that the cell death significantly decreased after CDDP injury. In contrast, treatment with the autophagy inhibitor 3-methyladenine (3-MA) significantly increased cell death. In accordance with in vitro results, rapamycin alleviated CDDP-induced death of hair cells in zebrafish lateral line and cochlear hair cells in mice. Notably, we found that CDDP-induced increase of Sirtuin 1 (SIRT1) in the HEI-OC1 cells modulated the autophagy function. The specific SIRT1 activator SRT1720 could successfully protect against CDDP-induced cell loss in HEI-OC1 cells, zebrafish lateral line, and mice cochlea. These findings suggest that SIRT1 and autophagy activation can be suggested as potential therapeutic strategies for the treatment of CDDP-induced ototoxicity.
Collapse
Affiliation(s)
- Jiaqi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Ting Zhan
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gui Cheng
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiying Jia
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yongyi Ye
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhongwu Su
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Chen
- Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Hanqing Lin
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lan Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongkang Ou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Yaodong Xu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Suijun Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Qiuhong Huang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Maojin Liang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Yuexin Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Xueyuan Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
242
|
Kenny RG, Marmion CJ. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem Rev 2019; 119:1058-1137. [PMID: 30640441 DOI: 10.1021/acs.chemrev.8b00271] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we are moving from a single- toward a multitargeted approach. This approach lies at the very heart of medicinal inorganic chemistry. In this review, we have endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many chemotherapeutic regimens. We have focused our attention on metallodrugs incorporating platinum and ruthenium ions given that complexes containing these metal ions are already in clinical use or have advanced to clinical trials as anticancer agents. The "multitargeted" complexes described herein not only target DNA but also contain either vectors to enable them to target cancer cells selectively and/or moieties that target enzymes, peptides, and intracellular proteins. Multitargeted complexes which have been designed to target the mitochondria or complexes inspired by natural product activity are also described. A summary of advances in this field over the past decade or so will be provided.
Collapse
Affiliation(s)
- Reece G Kenny
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|
243
|
Cheng K, Zhang Y, Li Y, Gao Z, Chen F, Sun K, An P, Sun C, Jiang Y, Sun B. A novel pH-responsive hollow mesoporous silica nanoparticle (HMSN) system encapsulating doxorubicin (DOX) and glucose oxidase (GOX) for potential cancer treatment. J Mater Chem B 2019. [DOI: 10.1039/c8tb03198c] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The multi-therapy modality is based on the combination and synergy of multiple single treatment modalities and materials chemistry.
Collapse
Affiliation(s)
- Kaiwu Cheng
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Yaojia Li
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Zhiguo Gao
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Fanghui Chen
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Kai Sun
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Peijing An
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Chen Sun
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 210089
- P. R. China
| |
Collapse
|
244
|
Bielefeld EC, Markle A, DeBacker JR, Harrison RT. Chronotolerance for cisplatin ototoxicity in the rat. Hear Res 2018; 370:16-21. [DOI: 10.1016/j.heares.2018.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 01/17/2023]
|
245
|
Parham K, Sohal M, Petremann M, Romanet C, Broussy A, Tran Van Ba C, Dyhrfjeld-Johnsen J. Noise-induced trauma produces a temporal pattern of change in blood levels of the outer hair cell biomarker prestin. Hear Res 2018; 371:98-104. [PMID: 30529910 DOI: 10.1016/j.heares.2018.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 01/12/2023]
Abstract
Biomarkers in easy-to-access body fluid compartments, such as blood, are commonly used to assess health of various organ systems in clinical medicine. At present, no such biomarkers are available to inform on the health of the inner ear. Previously, we proposed the outer-hair-cell-specific protein prestin, as a possible biomarker and provided proof of concept in noise- and cisplatin-induced hearing loss. Our ototoxicity data suggest that circulatory prestin changes after inner ear injury are not static and that there is a temporal pattern of change that needs to be further characterized before practical information can be extracted. To achieve this goal, we set out to 1) describe the time course of change in prestin after intense noise exposure, and 2) determine if the temporal patterns and prestin levels are sensitive to severity of injury. After assessing auditory brainstem thresholds and distortion product otoacoustic emission levels, rats were exposed to intense octave band noise for 2 h at either 110 or 120 dB SPL. Auditory function was re-assessed 1 and 14 days later. Blood samples were collected at baseline, 4, 24, 48, 72 h and 7 and 14 days post exposure and prestin concentrations were measured using enzyme-linked immunosorbent assay (ELISA). Functional measures showed temporary hearing loss 1 day after exposure in the 110 dB SPL group, but permanent loss through Day 14 in the 120 dB SPL group. Prestin levels temporarily increased 5% at 4 h after 120 dB SPL exposure, but not in the 110 dB SPL group. There was a gradual decline in prestin levels in both groups thereafter, with prestin being below baseline on Day 14 by 5% in the 110 dB group (NS) and more than 10% in the 120 dB SPL group (p = 0.043). These results suggest that there is a temporal pattern of change in serum prestin level after noise-induced hearing loss that is related to severity of hearing loss. Circulatory levels of prestin may be able to act as surrogate biomarker for hearing loss involving OHC loss.
Collapse
Affiliation(s)
- Kourosh Parham
- Department of Surgery, Division of Otolaryngology - Head & Neck Surgery, UCONN School of Medicine, Farmington, CT, 06030, USA.
| | - Maheep Sohal
- Department of Surgery, Division of Otolaryngology - Head & Neck Surgery, UCONN School of Medicine, Farmington, CT, 06030, USA
| | | | | | - Audrey Broussy
- Sensorion, 375 Rue Du Professeur Blayac, 34080, Montpellier, France
| | | | | |
Collapse
|
246
|
Calyx junction dismantlement and synaptic uncoupling precede hair cell extrusion in the vestibular sensory epithelium during sub-chronic 3,3'-iminodipropionitrile ototoxicity in the mouse. Arch Toxicol 2018; 93:417-434. [PMID: 30377733 DOI: 10.1007/s00204-018-2339-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/23/2018] [Indexed: 10/28/2022]
Abstract
The cellular and molecular events that precede hair cell (HC) loss in the vestibular epithelium during chronic ototoxic exposure have not been widely studied. To select a study model, we compared the effects of sub-chronic exposure to different concentrations of 3,3'-iminodipropionitrile (IDPN) in the drinking water of two strains of mice and of both sexes. In subsequent experiments, male 129S1/SvImJ mice were exposed to 30 mM IDPN for 5 or 8 weeks; animals were euthanized at the end of the exposure or after a washout period of 13 weeks. In behavioral tests, IDPN mice showed progressive vestibular dysfunction followed by recovery during washout. In severely affected animals, light and electron microscopy observations of the vestibular epithelia revealed HC extrusion towards the endolymphatic cavity. Comparison of functional and ultrastructural data indicated that animals with fully reversible dysfunction did not have significant HC loss or stereociliary damage, but reversible dismantlement of the calyceal junctions that characterize the contact between type I HCs (HCI) and their calyx afferents. Immunofluorescent analysis revealed the loss of calyx junction proteins, Caspr1 and Tenascin-C, during exposure and their recovery during washout. Synaptic uncoupling was also recorded, with loss of pre-synaptic Ribeye and post-synaptic GluA2 puncta, and differential reversibility among the three different kinds of synaptic contacts existing in the epithelium. qRT-PCR analyses demonstrated that some of these changes are at least in part explained by gene expression modifications. We concluded that calyx junction dismantlement and synaptic uncoupling are early events in the mouse vestibular sensory epithelium during sub-chronic IDPN ototoxicity.
Collapse
|
247
|
Giurdanella G, Montalbano G, Gennuso F, Brancati S, Lo Furno D, Augello A, Bucolo C, Drago F, Salomone S. Isolation, cultivation, and characterization of primary bovine cochlear pericytes: A new in vitro model of stria vascularis. J Cell Physiol 2018; 234:1978-1986. [PMID: 30317595 DOI: 10.1002/jcp.27545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 12/14/2022]
Abstract
The study of strial pericytes has gained great interest as they are pivotal for the physiology of stria vascularis. To provide an easily accessible in vitro model, here we described a growth medium-based approach to obtain and cultivate primary bovine cochlear pericytes (BCP) from the stria vascularis of explanted bovine cochleae. We obtained high-quality pericytes in 8-10 days with a > 90% purity after the second passage. Immunocytochemical analysis showed a homogeneous population of cells expressing typical pericyte markers, such as neural/glial antigen 2 (NG2), platelet-derived growth factor receptorβ (PDGFRβ), α-smooth muscle actin (α-SMA), and negative for the endothelial marker von Willebrand factor. When challenged with tumor necrosis factor or lipopolysaccharide, BCP changed their shape, similarly to human retinal pericytes (HRPC). The sensitivity of BCP to ototoxic drugs was evaluated by challenging with cisplatin or gentamicin for 48 hr. Compared to human retinal endothelial cells and HRPC, cell viability of BCP was significantly lower ( p < 0.05) after the treatment with gentamicin or cisplatin. These data indicate that our protocol provides a simple and reliable method to obtain highly pure strial BCP. Furthermore, BCP are suitable to assess the safety profile of molecules which supposedly exert ototoxic activity, and may represent a valid alternative to in vivo tests.
Collapse
Affiliation(s)
- Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Montalbano
- Department of Veterinary Sciences and Zebrafish Neuromorphology Lab, University of Messina, Messina, Italia
| | - Florinda Gennuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Serena Brancati
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonio Augello
- ASP Catania Dipartimento di Prevenzione Veterinaria, Servizio Igiene degli Alimenti di Origine Animale (SIAOA), Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
248
|
Trendowski MR, El Charif O, Dinh PC, Travis LB, Dolan ME. Genetic and Modifiable Risk Factors Contributing to Cisplatin-induced Toxicities. Clin Cancer Res 2018; 25:1147-1155. [PMID: 30305294 DOI: 10.1158/1078-0432.ccr-18-2244] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/07/2018] [Accepted: 10/05/2018] [Indexed: 12/22/2022]
Abstract
Effective administration of traditional cytotoxic chemotherapy is often limited by off-target toxicities. This clinical dilemma is epitomized by cisplatin, a platinating agent, which has potent antineoplastic activity due to its affinity for DNA and other intracellular nucleophiles. Despite its efficacy against many adult-onset and pediatric malignancies, cisplatin elicits multiple off-target toxicities that can not only severely impact a patient's quality of life but also lead to dose reductions or the selection of alternative therapies that can ultimately affect outcomes. Without an effective therapeutic measure by which to successfully mitigate many of these symptoms, there have been attempts to identify a priori those individuals who are more susceptible to developing these sequelae through studies of genetic and nongenetic risk factors. Older age is associated with cisplatin-induced ototoxicity, neurotoxicity, and nephrotoxicity. Traditional genome-wide association studies have identified single-nucleotide polymorphisms in ACYP2 and WFS1 associated with cisplatin-induced hearing loss. However, validating associations between specific genotypes and cisplatin-induced toxicities with enough stringency to warrant clinical application remains challenging. This review summarizes the current state of knowledge with regard to specific adverse sequelae following cisplatin-based therapy, with a focus on ototoxicity, neurotoxicity, nephrotoxicity, myelosuppression, and nausea/emesis. We discuss variables (genetic and nongenetic) contributing to these detrimental toxicities and currently available means to prevent or treat their occurrence.
Collapse
Affiliation(s)
- Matthew R Trendowski
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Omar El Charif
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Paul C Dinh
- Indiana University, Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Lois B Travis
- Indiana University, Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - M Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
249
|
Abstract
Sensorineural hearing impairment is the most common sensory disorder and a major health and socio-economic issue in industrialized countries. It is primarily due to the degeneration of mechanosensory hair cells and spiral ganglion neurons in the cochlea via complex pathophysiological mechanisms. These occur following acute and/or chronic exposure to harmful extrinsic (e.g., ototoxic drugs, noise...) and intrinsic (e.g., aging, genetic) causative factors. No clinical therapies currently exist to rescue the dying sensorineural cells or regenerate these cells once lost. Recent studies have, however, provided renewed hope, with insights into the therapeutic targets allowing the prevention and treatment of ototoxic drug- and noise-induced, age-related hearing loss as well as cochlear cell degeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes are showing promise, as are cell-replacement therapies to repair damaged cells for the future restoration of hearing in deaf people. This review begins by recapitulating our current understanding of the molecular pathways that underlie cochlear sensorineural damage, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. It then guides the reader through to the recent discoveries in pharmacological, gene and cell therapy research towards hearing protection and restoration as well as their potential clinical application.
Collapse
Affiliation(s)
- Jing Wang
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
250
|
Hjelle LV, Gundersen POM, Hellesnes R, Sprauten M, Brydøy M, Tandstad T, Wilsgaard T, Fosså SD, Oldenburg J, Bremnes RM, Haugnes HS. Long-term serum platinum changes and their association with cisplatin-related late effects in testicular cancer survivors. Acta Oncol 2018; 57:1392-1400. [PMID: 29775128 DOI: 10.1080/0284186x.2018.1473641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND The long-term toxicities after cisplatin-based chemotherapy (CBCT) reveal a remarkable inter-individual variation among testicular cancer survivors (TCSs). Therefore, we assessed long-term platinum (Pt) changes and their associations with CBCT-related late effects in TCSs. MATERIAL AND METHODS In 77 TCSs treated with CBCT from 1984 to 1990, blood samples for analyses of Pt and a questionnaire including self-reported neuro- and ototoxicity (NTX) symptoms were collected during two follow-up surveys at median 12 (Survey I; SI) and 20 (Survey II; SII) years after treatment. Information about second cancers after SII was retrieved from the Norwegian Cancer Registry. RESULTS A larger Pt decline from SI to SII was associated with a decreased risk of a second cancer diagnosis (HR 0.78, 95% CI 0.62-0.99 per 10 ng/L/year), and worsening of paresthesias in hands (OR 1.98, 95% CI 1.09-3.59 per 10 ng/L/year) and tinnitus (OR 1.51, 95% CI 1.01-2.27 per 10 ng/L/year). CONCLUSION In summary, we found a significant association between a larger Pt decline and a reduced risk of second cancers and deterioration of paresthesias in hands and tinnitus.
Collapse
Affiliation(s)
- Line V. Hjelle
- Department of Clinical Medicine, Arctic University of Tromsø, Norway
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Per O. M. Gundersen
- Department of Clinical Pharmacology, St. Olav’s University Hospital, Trondheim, Norway
| | - Ragnhild Hellesnes
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Mette Sprauten
- Department of Oncology, Oslo University Hospital the Norwegian Radium Hospital, Oslo, Norway
| | - Marianne Brydøy
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Torgrim Tandstad
- The cancer Clinic, St. Olav’s University Hospital, Trondheim, Norway
| | - Tom Wilsgaard
- Department of Community Medicine, Arctic University of Tromsø, Tromsø, Norway
| | - Sophie D. Fosså
- Department of Oncology, Oslo University Hospital the Norwegian Radium Hospital, Oslo, Norway
- Medical Faculty, University of Oslo, Norway
- Cancer Registry of Norway, Oslo, Norway
| | - Jan Oldenburg
- Medical Faculty, University of Oslo, Norway
- Department of Oncology, Akershus University Hospital, Oslo, Norway
| | - Roy M. Bremnes
- Department of Clinical Medicine, Arctic University of Tromsø, Norway
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Hege S. Haugnes
- Department of Clinical Medicine, Arctic University of Tromsø, Norway
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|