201
|
Dotse E, Lim KH, Wang M, Wijanarko KJ, Chow KT. An Immunological Perspective of Circulating Tumor Cells as Diagnostic Biomarkers and Therapeutic Targets. Life (Basel) 2022; 12:323. [PMID: 35207611 PMCID: PMC8878951 DOI: 10.3390/life12020323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Immune modulation is a hallmark of cancer. Cancer-immune interaction shapes the course of disease progression at every step of tumorigenesis, including metastasis, of which circulating tumor cells (CTCs) are regarded as an indicator. These CTCs are a heterogeneous population of tumor cells that have disseminated from the tumor into circulation. They have been increasingly studied in recent years due to their importance in diagnosis, prognosis, and monitoring of treatment response. Ample evidence demonstrates that CTCs interact with immune cells in circulation, where they must evade immune surveillance or modulate immune response. The interaction between CTCs and the immune system is emerging as a critical point by which CTCs facilitate metastatic progression. Understanding the complex crosstalk between the two may provide a basis for devising new diagnostic and treatment strategies. In this review, we will discuss the current understanding of CTCs and the complex immune-CTC interactions. We also present novel options in clinical interventions, targeting the immune-CTC interfaces, and provide some suggestions on future research directions.
Collapse
Affiliation(s)
- Eunice Dotse
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - King H. Lim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Meijun Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Kevin Julio Wijanarko
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia;
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Kwan T. Chow
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| |
Collapse
|
202
|
Strategies for Isolating and Propagating Circulating Tumor Cells in Men with Metastatic Prostate Cancer. Diagnostics (Basel) 2022; 12:diagnostics12020497. [PMID: 35204587 PMCID: PMC8870963 DOI: 10.3390/diagnostics12020497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
Selecting a well-suited method for isolating/characterizing circulating tumor cells (CTCs) is challenging. Evaluating sensitive and specific markers for prostate cancer (PCa)-specific CTC identification and analysis is crucial. We used the CellCollector EpCAM-functionalized system (CC-EpCAM) and evaluated and developed a PCa-functionalized version (CC-PCa); we then compared CTC isolation techniques that exploit the physical and biological properties of CTCs. We established two cohorts of metastatic PCa patients (mPCa; 15 in cohort 1 and 10 in cohort 2). CTC cultivation experiments were conducted with two capturing methods (Ficoll and ScreenCell). The most sensitive detection rates and highest CTC counts were reached with the CC-PCa and ScreenCell system. Patients with ≥5 CTCs isolated with CC-EpCAM had an overall survival (OS) of 0.93 years, and patients with ≥5 CTCs isolated with CC-PCa had an OS of 1.5 years in cohort 1. Nevertheless, we observed the highest sensitivity and specificity for 24-month survival by the Ficoll with CD45 depletion and ScreenCell system with May-Grunwald Giemsa (MGG) staining. The EpCAM molecule is an essential factor related to OS for CTC isolation based on biological properties in mPCa patients. The best-suited CTC capture system is not limited to one characteristic of cells but adapted to downstream analysis.
Collapse
|
203
|
Recent Developments of Circulating Tumor Cell Analysis for Monitoring Cutaneous Melanoma Patients. Cancers (Basel) 2022; 14:cancers14040859. [PMID: 35205608 PMCID: PMC8870206 DOI: 10.3390/cancers14040859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) originating from cutaneous melanoma patients have been studied for several decades as surrogates for real-time clinical status and disease outcomes. Here, we will review clinical studies from the last 15 years that assessed CTCs and disease outcomes for melanoma patients. Assessment of multiple molecular melanoma-associated antigen (MAA) markers by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was the most common assay allowing for the improvement of assay sensitivity, to address tumor heterogeneity, and to predict patient outcomes. Multicenter studies demonstrate the utility of CTC assays reducing the bias observed in single-center trials. Recent development of CTC enrichment platforms has provided reproducible methods. CTC assessment enables both multiple mRNAs and DNAs genomic profiling. CTC provides specific important translational information on tumor progression, prediction of treatment response, and survival outcomes for cutaneous melanoma patients. Abstract Circulating tumor cells (CTCs) have been studied using multiple technical approaches for interrogating various cancers, as they allow for the real-time assessment of tumor progression, disease recurrence, treatment response, and tumor molecular profiling without the need for a tumor tissue biopsy. Here, we will review studies from the last 15 years on the assessment of CTCs in cutaneous melanoma patients in relation to different clinical outcomes. The focus will be on CTC detection in blood samples obtained from cutaneous melanoma patients of different clinical stages and treatments utilizing multiple platforms. Assessment of multiple molecular melanoma-associated antigen (MAA) markers by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was the most common assay allowing for the improvement of assay sensitivity, tumor heterogeneity, and to predict patient outcomes. Multicenter studies demonstrate the utility of CTC assays reducing the bias observed in single- center trials. The recent development of CTC enrichment platforms has provided reproducible methods. CTC assessment enables both multiple mRNAs and DNAs genomic aberration profiling. CTC provides specific important translational information on tumor progression, prediction of treatment response, and survival outcomes for cutaneous melanoma patients. The molecular studies on melanoma CTCs have provided and may set standards for other solid tumor CTC analyses.
Collapse
|
204
|
Kalita-de Croft P, Joshi V, Saunus JM, Lakhani SR. Emerging Biomarkers for Diagnosis, Prevention and Treatment of Brain Metastases-From Biology to Clinical Utility. Diseases 2022; 10:11. [PMID: 35225863 PMCID: PMC8884016 DOI: 10.3390/diseases10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Primary malignancies of the lung, skin (melanoma), and breast have higher propensity for metastatic spread to the brain. Advances in molecular tumour profiling have aided the development of targeted therapies, stereotactic radiotherapy, and immunotherapy, which have led to some improvement in patient outcomes; however, the overall prognosis remains poor. Continued research to identify new prognostic and predictive biomarkers is necessary to further impact patient outcomes, as this will enable better risk stratification at the point of primary cancer diagnosis, earlier detection of metastatic deposits (for example, through surveillance), and more effective systemic treatments. Brain metastases exhibit considerable inter- and intratumoural heterogeneity-apart from distinct histology, treatment history and other clinical factors, the metastatic brain tumour microenvironment is incredibly variable both in terms of subclonal diversity and cellular composition. This review discusses emerging biomarkers; specifically, the biological context and potential clinical utility of tumour tissue biomarkers, circulating tumour cells, extracellular vesicles, and circulating tumour DNA.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Vaibhavi Joshi
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Jodi M. Saunus
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
- Pathology Queensland, The Royal Brisbane and Women’s Hospital Herston, Herston, QLD 4029, Australia
| |
Collapse
|
205
|
Leong SP, Naxerova K, Keller L, Pantel K, Witte M. Molecular mechanisms of cancer metastasis via the lymphatic versus the blood vessels. Clin Exp Metastasis 2022; 39:159-179. [PMID: 34767139 PMCID: PMC8967809 DOI: 10.1007/s10585-021-10120-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
Cancer metastasis is the process by which primary cancer cells invade through the lymphatic or blood vessels to distant sites. The molecular mechanisms by which cancer cells spread either through the lymphatic versus blood vessels or both are not well established. Two major developments have helped us to understand the process more clearly. First, the development of the sentinel lymph node (SLN) concept which is well established in melanoma and breast cancer. The SLN is the first lymph node in the draining nodal basin to receive cancer cells. Patients with a negative SLN biopsy show a significantly lower incidence of distant metastasis, suggesting that the SLN may be the major gateway for cancer metastasis in these cancer types. Second, the discovery and characterization of several biomarkers including VEGF-C, LYVE-1, Podoplanin and Prox-1 have opened new vistas in the understanding of the induction of lymphangiogenesis by cancer cells. Cancer cells must complete multiple steps to invade the lymphatic system, some of which may be enabled by the evolution of new traits during cancer progression. Thus, cancer cells may spread initially through the main gateway of the SLN, from which evolving cancer clones can invade the blood vessels to distant sites. Cancer cells may also enter the blood vessels directly, bypassing the SLN to establish distant metastases. Future studies need to pinpoint the molecules that are used by cancer cells at different stages of metastasis via different routes so that specific therapies can be targeted against these molecules, with the goal of stopping or preventing cancer metastasis.
Collapse
Affiliation(s)
- Stanley P. Leong
- California Pacific Medical Center and Research Institute, San Francisco, CA USA
- University of California, San Francisco, San Francisco, CA USA
| | - Kamila Naxerova
- Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Laura Keller
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlys Witte
- Department of Surgery, Neurosurgery and Pediatrics, University of Arizona College of Medicine-Tucson, Tucson, AZ USA
| |
Collapse
|
206
|
Lee S, Jeong M, Lee S, Lee SH, Choi JS. Mag-spinner: a next-generation Facile, Affordable, Simple, and porTable (FAST) magnetic separation system. NANOSCALE ADVANCES 2022; 4:792-800. [PMID: 36131828 PMCID: PMC9419614 DOI: 10.1039/d1na00791b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/22/2021] [Indexed: 06/02/2023]
Abstract
Mag-spinner, a system in which magnets are combined with a spinner system, is a new type of magnetic separation system for the preprocessing of biological and medical samples. Interference by undesired components restricts the detection accuracy and efficiency. Thus, the development of appropriate separation techniques is required for better detection of the desired targets, to enrich the target analytes and remove the undesired components. The strong response of iron oxide nanoclusters can successfully capture the targets quickly and with high efficiency. As a result, cancer cells can be effectively separated from blood using the developed mag-spinner system. Indeed, this system satisfies the requirements for desirable separation systems, namely (i) fast sorting rates, (ii) high separation efficiency, (iii) the ability to process native biological fluids, (iv) simple operating procedures, (v) low cost, (vi) operational convenience, and (vii) portability. Therefore, this system is widely applicable to sample preparation without limitations on place, cost, and equipment.
Collapse
Affiliation(s)
- Sanghoon Lee
- Dept. of Chemical and Biological Engineering, Hanbat National University 34158 Daejeon Republic of Korea
| | - Miseon Jeong
- Dept. of Chemical and Biological Engineering, Hanbat National University 34158 Daejeon Republic of Korea
| | - Soojin Lee
- Dept. of Microbiology & Molecular Biology, Chungnam National University 34134 Daejeon Republic of Korea
| | - Sang Hun Lee
- Dept. of Chemical and Biological Engineering, Hanbat National University 34158 Daejeon Republic of Korea
| | - Jin-Sil Choi
- Dept. of Chemical and Biological Engineering, Hanbat National University 34158 Daejeon Republic of Korea
| |
Collapse
|
207
|
Lee YT, Sun N, Kim M, Wang JJ, Tran BV, Zhang RY, Qi D, Zhang C, Chen PJ, Sadeghi S, Finn RS, Saab S, Han SHB, Busuttil RW, Pei R, Zhu Y, Tseng HR, You S, Yang JD, Agopian VG. Circulating Tumor Cell-Based Messenger RNA Scoring System for Prognostication of Hepatocellular Carcinoma: Translating Tissue-Based Messenger RNA Profiling Into a Noninvasive Setting. Liver Transpl 2022; 28:200-214. [PMID: 34664394 PMCID: PMC8820407 DOI: 10.1002/lt.26337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
Numerous studies in hepatocellular carcinoma (HCC) have proposed tissue-based gene signatures for individualized prognostic assessments. Here, we develop a novel circulating tumor cell (CTC)-based transcriptomic profiling assay to translate tissue-based messenger RNA (mRNA) signatures into a liquid biopsy setting for noninvasive HCC prognostication. The HCC-CTC mRNA scoring system combines the NanoVelcro CTC Assay for enriching HCC CTCs and the NanoString nCounter platform for quantifying the HCC-CTC Risk Score (RS) panel in enriched HCC CTCs. The prognostic role of the HCC-CTC RS was assessed in The Cancer Genome Atlas (TCGA) HCC cohort (n = 362) and validated in an independent clinical CTC cohort (n = 40). The HCC-CTC RS panel was developed through our integrated data analysis framework of 8 HCC tissue-based gene signatures and identified the top 10 prognostic genes (discoidin domain receptor tyrosine kinase 1 [DDR1], enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase [EHHADH], androgen receptor [AR], lumican [LUM], hydroxysteroid 17-beta dehydrogenase 6[HSD17B6], prostate transmembrane protein, androgen induced 1 [PMEPA1], tsukushi, small leucine rich proteoglycan [TSKU], N-terminal EF-hand calcium binding protein 2 [NECAB2], ladinin 1 [LAD1], solute carrier family 27 member 5 [SLC27A5]) highly expressed in HCC with low expressions in white blood cells. The panel accurately discriminated overall survival in TCGA HCC cohort (hazard ratio [HR], 2.0; 95% confidence interval [CI], 1.4-2.9). The combined use of the scoring system and HCC-CTC RS panel successfully distinguished artificial blood samples spiked with an aggressive HCC cell type, SNU-387, from those spiked with PLC/PRF/5 cells (P = 0.02). In the CTC validation cohort (n = 40), HCC-CTC RS remained an independent predictor of survival (HR, 5.7; 95% CI, 1.5-21.3; P = 0.009) after controlling for Model for End-Stage Liver Disease score, Barcelona Clinic Liver Cancer stage, and CTC enumeration count. Our study demonstrates a novel interdisciplinary approach to translate tissue-based gene signatures into a liquid biopsy setting. This noninvasive approach will allow real-time disease profiling and dynamic prognostication of HCC.
Collapse
Affiliation(s)
- Yi-Te Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Na Sun
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA,Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou, P.R. China
| | - Minhyung Kim
- Division of Cancer Biology and Therapeutics, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jasmine J. Wang
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Benjamin V. Tran
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| | - Ryan Y. Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Dongping Qi
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Ceng Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Pin-Jung Chen
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Saeed Sadeghi
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA,Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Richard S. Finn
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA,Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Sammy Saab
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Steven-Huy B. Han
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Ronald W. Busuttil
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou, P.R. China
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ju Dong Yang
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA,Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA,Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Vatche G. Agopian
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
208
|
He S, Yu S, Wei J, Ding L, Yang X, Wu Y. New horizons in the identification of circulating tumor cells (CTCs): An emerging paradigm shift in cytosensors. Biosens Bioelectron 2022; 203:114043. [PMID: 35121449 DOI: 10.1016/j.bios.2022.114043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/02/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Circulating tumor cells (CTCs) are cancer cells that are shed from a primary tumor into the bloodstream and function as seeds for cancer metastasis at distant locations. Enrichment and identification methods of CTCs in the blood of patients plays an important role in diagnostic assessments and personalized treatments of cancer. However, the current traditional identification methods not only impact the viability of cells, but also cannot determine the type of cancer cells when the disease is unknown. Hence, new methods to identify CTCs are urgently needed. In this context, many advanced and safe technologies have emerged to distinguish between cancer cells and blood cells, and to distinguish specific types of cancer cells. In this review, at first we have briefly discussed recent advances in technologies related to the enrichment of CTCs, which lay a good foundation for the identification of CTCs. Next, we have summarized state-of-the-art technologies to confirm whether a given cell is indeed a tumor cell and determine the type of tumor cell. Finally, the challenges for application and potential directions of the current identification methods in clinical analysis of CTCs have been discussed.
Collapse
Affiliation(s)
- Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinlan Wei
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaonan Yang
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
209
|
Tong T, Zhang J, Zhu X, Hui P, Wang Z, Wu Q, Tang J, Chen H, Tian X. Prognostic Autophagy-Related Model Revealed by Integrating Single-Cell RNA Sequencing Data and Bulk Gene Profiles in Gastric Cancer. Front Cell Dev Biol 2022; 9:729485. [PMID: 35083210 PMCID: PMC8785981 DOI: 10.3389/fcell.2021.729485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Autophagy has been associated with tumor progression, prognosis, and treatment response. However, an autophagy-related model and their clinical significance have not yet been fully elucidated. In the present study, through the integrative analysis of bulk RNA sequencing and single-cell RNA sequencing, an autophagy-related risk model was identified. The model was capable of distinguishing the worse prognosis of patients with gastric cancer (GC), which was validated in TCGA and two independent Gene Expression Omnibus cohorts utilizing the survival analysis, and was also independent of other clinical covariates evaluated by multivariable Cox regression. The clinical value of this model was further assessed using a receiver operating characteristic (ROC) and nomogram analysis. Investigation of single-cell RNA sequencing uncovered that this model might act as an indicator of the dysfunctional characteristics of T cells in the high-risk group. Moreover, the high-risk group exhibited the lower expression of immune checkpoint markers (PDCD1 and CTLA4) than the low-risk group, which indicated the potential predictive power to the current immunotherapy response in patients with GC. In conclusion, this autophagy-associated risk model may be a useful tool for prognostic evaluation and will facilitate the potential application of this model as an indicator of the predictive immune checkpoint biomarkers.
Collapse
Affiliation(s)
- Tianying Tong
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Jie Zhang
- Department of Clinical Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Pingping Hui
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhimin Wang
- Department of Emergency, Luwan Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Wu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayin Tang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xianglong Tian
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
210
|
Wang Z, Zhao Y, Shen X, Zhao Y, Zhang Z, Yin H, Zhao X, Liu H, Shi Q. Single-Cell Genomics-Based Molecular Algorithm for Early Cancer Detection. Anal Chem 2022; 94:2607-2614. [PMID: 35077134 DOI: 10.1021/acs.analchem.1c04968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As one of the prime applications of liquid biopsy, the detection of tumor-derived whole cells and molecular markers is enabled in a noninvasive means before symptoms or hints from imaging procedures used for cancer screening. However, liquid biopsy is not a diagnostic test of malignant diseases per se because it fails to establish a definitive cancer diagnosis. Although single-cell genomics provides a genome-wide genetic alternation landscape, it is technologically challenging to confirm cell malignancy of a suspicious cell in body fluids due to unknown technical noise of single-cell sequencing and genomic variation among cancer cells, especially when tumor tissues are unavailable for sequencing as the reference. To address this challenge, we report a molecular algorithm, named scCancerDx, for confirming cell malignancy based on single-cell copy number alternation profiles of suspicious cells from body fluids, leading to a definitive cancer diagnosis. The scCancerDx algorithm has been trained with normal cells and cancer cell lines and validated with single tumor cells disassociated from clinical samples. The established scCancerDx algorithm then validates hexokinase 2 (HK2) as an efficient metabolic function-associated marker of identifying disseminated tumor cells in different body fluids across many cancer types. The HK2-based test, together with scCancerDx, has been investigated for the early detection of bladder cancer (BC) at a preclinical phase by detecting high glycolytic HK2high tumor cells in urine. Early BC detection improves patient prognosis and avoids radical resection for enhancing life quality.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuyang Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiaohan Shen
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yichun Zhao
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ziyuan Zhang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huming Yin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaojun Zhao
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Haitao Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qihui Shi
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China.,International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
211
|
Brylka L, Jähn-Rickert K, Baranowsky A, Neven M, Horn M, Yorgan T, Wikman H, Werner S, Lübke A, Amling M, Busse B, Pantel K, Schinke T. Spine Metastases in Immunocompromised Mice after Intracardiac Injection of MDA-MB-231-SCP2 Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14030556. [PMID: 35158823 PMCID: PMC8833437 DOI: 10.3390/cancers14030556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Breast cancer cells typically metastasize to bone, where their interaction with bone remodeling cell types enhances metastatic outgrowth and osteolytic bone destruction. The respective knowledge is largely based on xenograft models, where human breast cancer cells are injected into immunocompromised mice. Importantly, however, whereas skeletal analyses in these animals are usually restricted to hindlimb bones, human skeletal metastases are far more frequent in the spine. Therefore, our study addressed the question, if breast cancer cells injected into immunocompromised mice would also metastasize to the spine, and if this process is influenced by the amount of trabecular bone. We injected an established breast cancer cell line into immunocompromised mice with or without a transgene causing severe osteoporosis. Importantly, we found more tumor cell clusters of different size in spine sections than in femora, but the presence of the transgene did not affect their spreading and metastatic outgrowth. Abstract Breast cancer cells frequently metastasize to bone, where their interaction with bone remodeling cell types enhances osteolytic bone destruction. Importantly, however, whereas skeletal analyses of xenograft models are usually restricted to hindlimb bones, human skeletal metastases are far more frequent in the spine, where trabecular bone mass is higher compared to femur or tibia. Here, we addressed whether breast cancer cells injected into immunocompromised mice metastasize to the spine and if this process is influenced by the amount of trabecular bone. We also took advantage of mice carrying the Col1a1-Krm2 transgene, which display severe osteoporosis. After crossing this transgene into the immunocompromised NSG background we injected MDA-MB-231-SCP2 breast cancer cells and analyzed their distribution three weeks thereafter. We identified more tumor cells and clusters of different size in spine sections than in femora, which allowed influences on bone remodeling cell types to be analyzed by comparing tumor-free to tumor-burdened areas. Unexpectedly, the Col1a1-Krm2 transgene did not affect spreading and metastatic outgrowth of MDA-MB-231-SCP2 cells, suggesting that bone tumor interactions are more relevant at later stages of metastatic progression.
Collapse
Affiliation(s)
- Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.B.); (K.J.-R.); (A.B.); (M.N.); (T.Y.); (M.A.); (B.B.)
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.B.); (K.J.-R.); (A.B.); (M.N.); (T.Y.); (M.A.); (B.B.)
| | - Anke Baranowsky
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.B.); (K.J.-R.); (A.B.); (M.N.); (T.Y.); (M.A.); (B.B.)
| | - Mona Neven
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.B.); (K.J.-R.); (A.B.); (M.N.); (T.Y.); (M.A.); (B.B.)
| | - Michael Horn
- Mildred Scheel Cancer Career Center, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.B.); (K.J.-R.); (A.B.); (M.N.); (T.Y.); (M.A.); (B.B.)
| | - Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (H.W.); (S.W.)
| | - Stefan Werner
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (H.W.); (S.W.)
| | - Andreas Lübke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.B.); (K.J.-R.); (A.B.); (M.N.); (T.Y.); (M.A.); (B.B.)
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.B.); (K.J.-R.); (A.B.); (M.N.); (T.Y.); (M.A.); (B.B.)
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (H.W.); (S.W.)
- Correspondence: (K.P.); (T.S.); Tel.: +49-40-7410-58057 (T.S.)
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.B.); (K.J.-R.); (A.B.); (M.N.); (T.Y.); (M.A.); (B.B.)
- Correspondence: (K.P.); (T.S.); Tel.: +49-40-7410-58057 (T.S.)
| |
Collapse
|
212
|
Roesler AS, Anderson KS. Beyond Sequencing: Prioritizing and Delivering Neoantigens for Cancer Vaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2410:649-670. [PMID: 34914074 DOI: 10.1007/978-1-0716-1884-4_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neoantigens are tumor-specific proteins and peptides that can be highly immunogenic. Immune-mediated tumor rejection is strongly associated with cytotoxic responses to neoantigen-derived peptides in noncovalent association with self-HLA molecules. Neoantigen-based therapies, such as adoptive T cell transfer, have shown the potential to induce remission of treatment-resistant metastatic disease in select patients. Cancer vaccines are similarly designed to elicit or amplify antigen-specific T cell populations and stimulate directed antitumor immunity, but the selection and prioritization of the neoantigens remains a challenge. Bioinformatic algorithms can predict tumor neoantigens from somatic mutations, insertion-deletions, and other aberrant peptide products, but this often leads to hundreds of potential neoepitopes, all unique for that tumor. Selecting neoantigens for cancer vaccines is complicated by the technical challenges of neoepitope discovery, the diversity of HLA molecules, and intratumoral heterogeneity of passenger mutations leading to immune escape. Despite strong preclinical evidence, few neoantigen cancer vaccines tested in vivo have generated epitope-specific T cell populations, suggesting suboptimal immune system activation. In this chapter, we review factors affecting the prioritization and delivery of candidate neoantigens in the design of therapeutic and preventive cancer vaccines and consider synergism with standard chemotherapies.
Collapse
Affiliation(s)
- Alexander S Roesler
- School of Medicine, Duke University, Durham, NC, USA
- Mayo Clinic, Scottsdale, AZ, USA
| | - Karen S Anderson
- Mayo Clinic, Scottsdale, AZ, USA.
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
213
|
Izutsu R, Osaki M, Nemoto H, Jingu M, Sasaki R, Yoshioka Y, Ochiya T, Okada F. AMIGO2 contained in cancer cell-derived extracellular vesicles enhances the adhesion of liver endothelial cells to cancer cells. Sci Rep 2022; 12:792. [PMID: 35039535 PMCID: PMC8763894 DOI: 10.1038/s41598-021-04662-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023] Open
Abstract
Adhesion of cancer cells to vascular endothelial cells in target organs is an initial step in cancer metastasis. Our previous studies revealed that amphoterin-induced gene and open reading frame 2 (AMIGO2) promotes the adhesion of tumor cells to liver endothelial cells, followed by the formation of liver metastasis in a mouse model. However, the precise mechanism underlying AMIGO2-promoted the adhesion of tumor cells and liver endothelial cells remains unknown. This study was conducted to explore the role of cancer cell-derived AMIGO2-containing extracellular vesicles (EVs) in the adhesion of cancer cells to human hepatic sinusoidal endothelial cells (HHSECs). Western blotting indicated that AMIGO2 was present in EVs from AMIGO2-overexpressing MKN-28 gastric cancer cells. The efficiency of EV incorporation into HHSECs was independent of the AMIGO2 content in EVs. When EV-derived AMIGO2 was internalized in HHSECs, it significantly enhanced the adhesion of HHSECs to gastric (MKN-28 and MKN-74) and colorectal cancer cells (SW480), all of which lacked AMIGO2 expression. Thus, we identified a novel mechanism by which EV-derived AMIGO2 released from AMIGO2-expressing cancer cells stimulates endothelial cell adhesion to different cancer cells for the initiate step of liver metastasis.
Collapse
Affiliation(s)
- Runa Izutsu
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Chromosomal Engineering Research Center, Tottori University, Yonago, Tottori, Japan.
| | - Hideyuki Nemoto
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Maho Jingu
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Ryo Sasaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Chromosomal Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
214
|
Nishida K, Sekida S, Anada T, Tanaka M. Modulation of Biological Responses of Tumor Cells Adhered to Poly(2-methoxyethyl acrylate) with Increasing Cell Viability under Serum-Free Conditions. ACS Biomater Sci Eng 2022; 8:672-681. [PMID: 35037460 DOI: 10.1021/acsbiomaterials.1c01469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells in body fluids are important biomarkers in cancer diagnosis. The culture of tumor cells isolated from body fluids can provide intrinsic information about tumors and can be used to screen for the best anticancer drugs. However, the culture of primary tumor cells has been hindered by their low viability and difficulties in recapitulating the phenotype of primary tumors in in vitro culture. The culture of tumor cells under serum-free conditions is one of the methodologies to maintain the phenotype and genotype of primary tumors. Poly(2-methoxyethyl acrylate) (PMEA)-coated substrates have been investigated to prolong the proliferation of tumor cells under serum-free conditions. In this study, we investigated the detailed behavior and the mechanism of the increase in tumor cell viability after adherence to PMEA substrates. The blebbing formation of tumor cells on PMEA was attributed not to apoptosis but to the low adhesion strength of cells on PMEA. Moreover, blebbing tumor cells showed amoeboid movement and formed clusters with other cells via N-cadherin, leading to an increase in tumor cell viability. Furthermore, the behaviors of tumor cells adhered to PMEA under serum-free conditions were involved in the activation of the PI3K and Rho-associated protein kinase pathways. Thus, we propose that PMEA would be suitable for the development of devices to cultivate primary tumor cells under serum-free conditions for the label-free diagnosis of cancer.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shogo Sekida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
215
|
Lange T, Valentiner U, Wicklein D, Maar H, Labitzky V, Ahlers AK, Starzonek S, Genduso S, Staffeldt L, Pahlow C, Dück AM, Stürken C, Baranowsky A, Bauer AT, Bulk E, Schwab A, Riecken K, Börnchen C, Kiefmann R, Abraham V, DeLisser HM, Gemoll T, Habermann JK, Block A, Pantel K, Schumacher U. Tumor cell E-selectin ligands determine partialefficacy of bortezomib on spontaneous lung metastasis formation of solid human tumors in vivo. Mol Ther 2022; 30:1536-1552. [PMID: 35031433 PMCID: PMC9077315 DOI: 10.1016/j.ymthe.2022.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022] Open
Abstract
Extravasation of circulating tumor cells (CTCs) is critical for metastasis and is initiated by adhesive interactions between glycoligands on CTCs and E-selectin on endothelia. Here, we show that the clinically approved proteasome inhibitor bortezomib (BZM; Velcade) counteracts the cytokine-dependent induction of E-selectin in the lung mediated by the primary tumor, thereby impairing endothelial adhesion and thus spontaneous lung metastasis in vivo. However, the efficacy of BZM crucially depends on the tumor cells' E-selectin ligands, which determine distinct adhesion patterns. The canonical ligands sialyl-Lewis A (sLeA) and sLeX mediate particularly high-affinity E-selectin binding so that the incomplete E-selectin-reducing effect of BZM is not sufficient to disrupt adhesion or metastasis. In contrast, tumor cells lacking sLeA/X nevertheless bind E-selectin, but with low affinity, so that adhesion and lung metastasis are significantly diminished. Such low-affinity E-selectin ligands apparently consist of sialylated MGAT5 products on CD44. BZM no longer has anti-metastatic activity after CD44 knockdown in sLeA/X-negative tumor cells or E-selectin knockout in mice. sLeA/X can be determined by immunohistochemistry in cancer samples, which might aid patient stratification. These data suggest that BZM might act as a drug for inhibiting extravasation and thus distant metastasis formation in malignancies expressing low-affinity E-selectin ligands.
Collapse
Affiliation(s)
- Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Ursula Valentiner
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Vera Labitzky
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ann-Kristin Ahlers
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sarah Starzonek
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sandra Genduso
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lisa Staffeldt
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Carolin Pahlow
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anna-Maria Dück
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christine Stürken
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alexander T Bauer
- Department of Dermatology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Etmar Bulk
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Börnchen
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Rainer Kiefmann
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Valsamma Abraham
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA
| | - Horace M DeLisser
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA
| | - Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Jens K Habermann
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Andreas Block
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
216
|
Chelakkot C, Yang H, Shin YK. Relevance of Circulating Tumor Cells as Predictive Markers for Cancer Incidence and Relapse. Pharmaceuticals (Basel) 2022; 15:75. [PMID: 35056131 PMCID: PMC8781286 DOI: 10.3390/ph15010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Shedding of cancer cells from the primary site or undetectable bone marrow region into the circulatory system, resulting in clinically overt metastasis or dissemination, is the hallmark of unfavorable invasive cancers. The shed cells remain in circulation until they extravasate to form a secondary metastatic lesion or undergo anoikis. The circulating tumor cells (CTCs) found as single cells or clusters carry a plethora of information, are acknowledged as potential biomarkers for predicting cancer prognosis and cancer progression, and are supposed to play key roles in determining tailored therapies for advanced diseases. With the advent of novel technologies that allow the precise isolation of CTCs, more and more clinical trials are focusing on the prognostic and predictive potential of CTCs. In this review, we summarize the role of CTCs as a predictive marker for cancer incidence, relapse, and response to therapy.
Collapse
Affiliation(s)
- Chaithanya Chelakkot
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Genobio Corp., Seoul 08394, Korea
| | - Hobin Yang
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
| | - Young Kee Shin
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08226, Korea
| |
Collapse
|
217
|
Zhang L, Zhu Y, Wei X, Chen X, Li Y, Zhu Y, Xia J, Huang Y, Huang Y, Wang J, Pang Z. Nanoplateletsomes restrain metastatic tumor formation through decoy and active targeting in a preclinical mouse model. Acta Pharm Sin B 2022; 12:3427-3447. [PMID: 35967283 PMCID: PMC9366539 DOI: 10.1016/j.apsb.2022.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022] Open
Abstract
Platelets buoy up cancer metastasis via arresting cancer cells, enhancing their adhesion, and facilitating their extravasation through the vasculature. When deprived of intracellular and granular contents, platelet decoys could prevent metastatic tumor formation. Inspired by these, we developed nanoplatesomes by fusing platelet membranes with lipid membranes (P-Lipo) to restrain metastatic tumor formation more efficiently. It was shown nanoplateletsomes bound with circulating tumor cells (CTC) efficiently, interfered with CTC arrest by vessel endothelial cells, CTC extravasation through endothelial layers, and epithelial-mesenchymal transition of tumor cells as nanodecoys. More importantly, in the mouse breast tumor metastasis model, nanoplateletsomes could decrease CTC survival in the blood and counteract metastatic tumor growth efficiently by inhibiting the inflammation and suppressing CTC escape. Therefore, nanoplatelesomes might usher in a new avenue to suppress lung metastasis.
Collapse
Affiliation(s)
- Longlong Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Yuefei Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xing Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Yang Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Ying Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yiheng Huang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Institute of Materia Medica, Academy of Chinese and Western Integrative Medicine, Fudan University, Shanghai 201203, China
- Corresponding authors.
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Corresponding authors.
| |
Collapse
|
218
|
|
219
|
Liquid Biopsies: Flowing Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:341-368. [DOI: 10.1007/978-3-031-04039-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
220
|
Bauer AT, Gorzelanny C, Gebhardt C, Pantel K, Schneider SW. Interplay between coagulation and inflammation in cancer: Limitations and therapeutic opportunities. Cancer Treat Rev 2022; 102:102322. [DOI: 10.1016/j.ctrv.2021.102322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
|
221
|
Trevisan França de Lima L, Müller Bark J, Rasheduzzaman M, Ekanayake Weeramange C, Punyadeera C. Saliva as a matrix for measurement of cancer biomarkers. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
222
|
Žvirblytė J, Mažutis L. Microfluidics for Cancer Biomarker Discovery, Research, and Clinical Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:499-524. [DOI: 10.1007/978-3-031-04039-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
223
|
Ruan Q, Yang J, Zou F, Chen X, Zhang Q, Zhao K, Lin X, Zeng X, Yu X, Wu L, Lin S, Zhu Z, Yang C. Single-Cell Digital Microfluidic Mass Spectrometry Platform for Efficient and Multiplex Genotyping of Circulating Tumor Cells. Anal Chem 2021; 94:1108-1117. [PMID: 34964350 DOI: 10.1021/acs.analchem.1c04194] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gene mutation profiling of heterogeneous circulating tumor cells (CTCs) offers comprehensive and real-time molecular information of tumors for targeted therapy guidance, but the lack of efficient and multiplex genotyping techniques for single-CTC analysis greatly hinders its development and clinical application. This paper reports a single-CTC mass spectrometry analysis method for efficient and multiplex mutation profiling based on digital microfluidics. Digital microfluidics affords integrated single-CTC manipulation, from single-CTC isolation to high-performance whole genome amplification, via nanoliter droplet-based wettability trapping and hydrodynamic adjustment of cell distribution. Coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, multiplex mutation information of individual CTCs can be efficiently and accurately identified by the inherent mass differences of different DNA sequences. This platform achieves Kirsten rat sarcoma viral oncogene mutation profiling of heterogeneous CTCs at the single-cell level from cancer patient samples, offering new avenues for genotype profiling of single CTCs and cancer therapy guidance.
Collapse
Affiliation(s)
- Qingyu Ruan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jian Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fenxiang Zou
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaofeng Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qianqian Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kaifeng Zhao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoye Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xi Zeng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiyuan Yu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuichao Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
224
|
Spontaneous formation and spatial self-organization of mechanically induced mesenchymal-like cells within geometrically confined cancer cell monolayers. Biomaterials 2021; 281:121337. [PMID: 34979418 DOI: 10.1016/j.biomaterials.2021.121337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/12/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023]
Abstract
There is spatiotemporal heterogeneity in cell phenotypes and mechanical properties in tumor tissues, which is associated with cancer invasion and metastasis. It is well-known that exogenous growth factors like transforming growth factor (TGF)-β, can induce epithelial-mesenchymal transition (EMT)-based phenotypic transformation and the formation of EMT patterning on geometrically confined monolayers with mechanics heterogeneity. In the absence of exogenous TGF-β stimulation, however, whether geometric confinement-caused mechanics heterogeneity of cancer cell monolayers alone can trigger the EMT-based phenotypic heterogeneity still remains mysterious. Here, we develop a micropattern-based cell monolayer model to investigate the regulation of mechanics heterogeneity on the cell phenotypic switch. We reveal that mechanics heterogeneity itself is enough to spontaneously induce the emergence of mesenchymal-like phenotype and asymmetrical activation of TGF-β-SMAD signaling. Spatiotemporal dynamics of patterned cell monolayers with mesenchymal-like phenotypes is essentially regulated by tissue-scale cell behaviors like proliferation, migration as well as heterogeneous cytoskeletal contraction. The inhibition of cell contraction abrogates the asymmetrical TGF-β-SMAD signaling activation level and the emergence of mesenchymal-like phenotype. Our work not only sheds light on the key regulation of mechanics heterogeneity caused by spatially geometric confinement on regional mesenchymal-like phenotype of cancer cell monolayers, but highlights the key role of biophysical/mechanical cues in triggering phenotypic switch.
Collapse
|
225
|
Physical Forces and Transient Nuclear Envelope Rupture during Metastasis: The Key for Success? Cancers (Basel) 2021; 14:cancers14010083. [PMID: 35008251 PMCID: PMC8750110 DOI: 10.3390/cancers14010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/16/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Metastasis is the process that allows the seeding of tumor cells in a new organ. The migration and invasion of cancer cells involves the pulling, pushing, and squeezing of cells through narrow spaces and pores. Tumor cells need to cross several physical barriers, such as layers of basement membranes as well as the endothelium wall during the way in and out of the blood stream, to reach the new organ. The aim of this review is to highlight the role of physical compression in the success of metastasis. We will especially focus on nuclear squeezing and nuclear envelope rupture and explain how they can actively participate in the creation of genomic heterogeneity as well as supporting metastasis growth. Abstract During metastasis, invading tumor cells and circulating tumor cells (CTC) face multiple mechanical challenges during migration through narrow pores and cell squeezing. However, little is known on the importance and consequences of mechanical stress for tumor progression and success in invading a new organ. Recently, several studies have shown that cell constriction can lead to nuclear envelope rupture (NER) during interphase. This loss of proper nuclear compartmentalization has a profound effect on the genome, being a key driver for the genome evolution needed for tumor progression. More than just being a source of genomic alterations, the transient nuclear envelope collapse can also support metastatic growth by several mechanisms involving the innate immune response cGAS/STING pathway. In this review we will describe the importance of the underestimated role of cellular squeezing in the progression of tumorigenesis. We will describe the complexity and difficulty for tumor cells to reach the metastatic site, detail the genomic aberration diversity due to NER, and highlight the importance of the activation of the innate immune pathway on cell survival. Cellular adaptation and nuclear deformation can be the key to the metastasis success in many unsuspected aspects.
Collapse
|
226
|
Kim H, Heo CM, Oh J, Chung HH, Lee EM, Park J, Lee SH, Lee KH, Lee KT, Lee JK, Cho YK, Park JK. Clinical significance of circulating tumor cells after chemotherapy in unresectable pancreatic ductal adenocarcinoma. Transl Oncol 2021; 16:101321. [PMID: 34954457 PMCID: PMC8718659 DOI: 10.1016/j.tranon.2021.101321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/01/2022] Open
Abstract
CTCs can be reliably captured with a microfluidic disc in unresectable PDAC patients. EpCAM/CK and additional Plectin-1 can effectively identify PDAC CTCs. Decreased number of CTCs after chemotherapy is associated with longer survival. The relative change of CTCs after chemotherapy can be a surrogate marker for survival.
Circulating tumor cells (CTCs) have emerged as liquid biopsy biomarker providing non-invasive assessment of cancer progression and biology. We investigated whether longitudinal analysis of CTCs could monitor disease progression, response to chemotherapy, and survival in patients with unresectable pancreatic ductal adenocarcinoma (PDAC). A total of 52 patients with PDAC were prospectively enrolled in this study. Peripheral blood samples were serially collected at the time of diagnosis and after chemotherapy with clinical assessments. CTCs were isolated through a centrifugal microfluidic disc, enumerated with immunostaining against Epithelial cell adhesion molecule (EpCAM), Cytokeratin (CK), Plectin-1 and CD45, and identified by an automated imaging system. One or more CTCs were detected in 84.62% patients with unresectable PDAC at the time of diagnosis. CTC numbers were not statistically different across tumor sizes, location and metastatic sites. The absolute number of CTCs after chemotherapy was inversely related to overall survival (OS), and the decreased number of CTCs after chemotherapy was significantly associated with longer OS in patients with PDAC. Identifying CTCs and monitoring CTC changes after chemotherapy could be a useful prognostic marker for survival in patients with unresectable PDACs.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea; Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul 06351 Republic of Korea
| | - Chan Mi Heo
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Jinmyeong Oh
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Hwe Hoon Chung
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Eun Mi Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Juhee Park
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Se-Hoon Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Kwang Hyuck Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Kyu Taek Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Jong Kyun Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Joo Kyung Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.
| |
Collapse
|
227
|
He L, He F, Feng Y, Wang X, Li Y, Tian Y, Gao A, Zhang P, Qi X, Luo Z, Duan Y. Hybridized nanolayer modified Ω-shaped fiber-optic synergistically enhances localized surface plasma resonance for ultrasensitive cytosensor and efficient photothermal therapy. Biosens Bioelectron 2021; 194:113599. [PMID: 34521011 DOI: 10.1016/j.bios.2021.113599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Inadequate sensitivity and side-effect are the main challenges to develop cytosensors combining with therapeutic potential simultaneously for cancer diagnosis and treatment. Herein, localized surface plasma resonance (LSPR) based on hybridized nanolayer modified Ω-shaped fiber-optic (HN/Ω-FO) was developed to integrate cytosensor and plasmonic photothermal treatment (PPT). On one hand, hybridized nanolayers improve the coverage of nanoparticles and refractive index sensitivity (RIS). Moreover, the hybridized nanoploymers of gold nanorods/gold nanoparticles (AuNRs/AuNPs) also result in intense enhancement in electronic field intensity (I). On the other hand, Ω-shaped fiber-optic (Ω-FO) led to strong bending loss in its bending part. To be specific, a majority of light escaped from fiber will interact with HN. Thus, HN/Ω-FO synergistically enhances the plasmonic, which achieved the goal of ultrasensitive cytosensor and highly-efficient plasmonic photothermal treatment (PPT). The proposed cytosensor exhibits ultrasensitivity for detection of cancer cells with a low limit of detection down to 2.6 cells/mL was realized just in 30 min. HN/Ω-FO-based LSPR exhibits unique characteristics of highly efficient, localized, and geometry-dependent heat distribution, which makes it suitable for PPT to only kill the cancer cells specifically on the surface or surrounding fiber-optic (FO) surface. Thus, HN/Ω-FO provides a new approach to couple cytosensor with PPT, indicating its great potential in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Lu He
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Fan He
- School of Physics, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Yanting Feng
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Xu Wang
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Aihua Gao
- School of Physics, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Pei Zhang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China
| | - Xinyuan Qi
- School of Physics, Northwest University, Xi'an, 710069, Shaanxi, PR China.
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China.
| |
Collapse
|
228
|
DNM1: A Prognostic Biomarker Associated with Immune Infiltration in Colon Cancer-A Study Based on TCGA Database. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4896106. [PMID: 34888380 PMCID: PMC8651384 DOI: 10.1155/2021/4896106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
Aim The aim of our work was to determine the utility of DNM1 as a biomarker for the diagnosis and prognosis of colon cancer (CC). Methods DNM1 expression variations in CC vs. normal tissues were investigated using The Cancer Genome Atlas (TCGA) database. The association of DNM1 expression levels with the clinicopathological variables in CC prognosis was investigated using logistic regression analyses. Independent prognostic factors for CC were evaluated using univariate and multivariate Cox regression analyses. The correlation between DNM1 expression and immune cell infiltration was estimated using single-sample Gene Set Enrichment Analysis (ssGSEA). Results DNM1 expression in CC tissues was significantly higher than that in normal tissues. High DNM1 expression was significantly correlated with M stage, N stage, perineural invasion and lymphatic invasion and predicted poor prognosis. The univariate analysis highlighted that DNM1 was an independent CC risk factor. Results of ssGSEA showed that DNM1 was linked to several cancer-related pathways, including the neuroactive ligand-receptor interaction, hypertrophic cardiomyopathy, ECM-receptor interaction, dilated cardiomyopathy, and calcium signaling pathway. Moreover, DNM1 expression was positively correlated with the level of infiltration by Neutrophils, Tregs, NK cells, and Macrophages. Conclusion DNM1 has a significant function and has diagnostic and prognostic potential for CC.
Collapse
|
229
|
Zhu S, Sun X, Zeng Y, Song Z, Zhong Y. Problems and prospects of clinical trials of boron neutron capture therapy. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
230
|
Wu F, Huang Y, Yang X, Hu JJ, Lou X, Xia F, Song Y, Jiang L. Tunning Intermolecular Interaction of Peptide-Conjugated AIEgen in Nano-Confined Space for Quantitative Detection of Tumor Marker Secreted from Cells. Anal Chem 2021; 93:16257-16263. [PMID: 34809422 DOI: 10.1021/acs.analchem.1c04422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Determining the expression level of biomarkers is crucial for disease diagnosis. However, the low abundance of biomarkers in the early stage makes the detection extremely difficult by traditional aggregation-induced emission (AIE)-based fluorescent probes. Here, by tuning the intermolecular interaction, a two steps-based MP/NPs-SLIPS sensing system is designed for ultrasensitive detection of the tumor marker matrix metalloproteinase-2 (MMP-2). During the sensing process, aggregation of AIE residual could be intensified through the electrostatic absorption by negatively charged nanoparticles (NPs), as well as the confined space formed by the self-assembly of NPs to photonic crystals (PCs) on slippery lubricant-infused porous substrates (SLIPS). The fluorescent signals obviously increased with a strengthened aggregation degree, which contributes to improved sensitivity. Thus, the limit of detection is decreased to 3.7 ng/mL for MP/NPs-SLIPS sensing system, which could be used for detecting the MMP-2 secreted by tumor cells directly. This strategy also demonstrated its potential applications as high-throughput detection devices and will be of significance for the ultrasensitive analysis of biomarkers.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.,Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| | - Xian Yang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.,Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
231
|
Basu A, Budhraja A, Juwayria, Abhilash D, Gupta I. Novel omics technology driving translational research in precision oncology. ADVANCES IN GENETICS 2021; 108:81-145. [PMID: 34844717 DOI: 10.1016/bs.adgen.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this review, we summarize the current challenges faced by cancer researchers and motivate the use of novel genomics solutions. We follow this up with a comprehensive overview of three recent genomics technologies: liquid biopsy, single-cell RNA sequencing and spatial transcriptomics. We discuss a few representative protocols/assays for each technology along with their strengths, weaknesses, optimal use-cases, and their current stage of clinical deployment by summarizing trial data. We focus on how these technologies help us develop a better understanding of cancer as a rapidly evolving heterogeneous genetic disease that modulates its immediate microenvironment leading to systemic macro-level changes in the patient body. We summarize the review with a flowchart that integrates these three technologies in the existing workflows of clinicians and researchers toward robust detection, accurate diagnosis, and precision oncology.
Collapse
Affiliation(s)
- Anubhav Basu
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Anshul Budhraja
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Juwayria
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Dasari Abhilash
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India.
| |
Collapse
|
232
|
Hu M, Wang Z, Wu Z, Ding P, Pei R, Wang Q, Xing C. Circulating tumor cells in colorectal cancer in the era of precision medicine. J Mol Med (Berl) 2021; 100:197-213. [PMID: 34802071 PMCID: PMC8770420 DOI: 10.1007/s00109-021-02162-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the main causes of cancer-related morbidity and mortality across the globe. Although serum biomarkers such as carcinoembryonic antigen (CEA) and carbohydrate antigen 19–9 (CA-199) have been prevalently used as biomarkers in various cancers, they are neither very sensitive nor highly specific. Repeated tissue biopsies at different times of the disease can be uncomfortable for cancer patients. Additionally, the existence of tumor heterogeneity and the results of local biopsy provide limited information about the overall tumor biology. Against this backdrop, it is necessary to look for reliable and noninvasive biomarkers of CRC. Circulating tumor cells (CTCs), which depart from a primary tumor, enter the bloodstream, and imitate metastasis, have a great potential for precision medicine in patients with CRC. Various efficient CTC isolation platforms have been developed to capture and identify CTCs. The count of CTCs, as well as their biological characteristics and genomic heterogeneity, can be used for the early diagnosis, prognosis, and prediction of treatment response in CRC. This study reviewed the existing CTC isolation techniques and their applications in the clinical diagnosis and treatment of CRC. The study also presented their limitations and provided future research directions.
Collapse
Affiliation(s)
- Mingchao Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.,Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Zhili Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zeen Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Qiang Wang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China.
| | - Chungen Xing
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
233
|
Imodoye SO, Adedokun KA, Muhammed AO, Bello IO, Muhibi MA, Oduola T, Oyenike MA. Understanding the Complex Milieu of Epithelial-Mesenchymal Transition in Cancer Metastasis: New Insight Into the Roles of Transcription Factors. Front Oncol 2021; 11:762817. [PMID: 34868979 PMCID: PMC8636732 DOI: 10.3389/fonc.2021.762817] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a physiological program during which polarised, immobile epithelial cells lose connection with their neighbours and are converted to migratory mesenchymal phenotype. Mechanistically, EMT occurs via a series of genetic and cellular events leading to the repression of epithelial-associated markers and upregulation of mesenchymal-associated markers. EMT is very crucial for many biological processes such as embryogenesis and ontogenesis during human development, and again it plays a significant role in wound healing during a programmed replacement of the damaged tissues. However, this process is often hijacked in pathological conditions such as tumour metastasis, which constitutes the most significant drawback in the fight against cancer, accounting for about 90% of cancer-associated mortality globally. Worse still, metastatic tumours are not only challenging to treat with the available conventional radiotherapy and surgical interventions but also resistant to several cytotoxic agents during treatment, owing to their anatomically diffuse localisation in the body system. As the quest to find an effective method of addressing metastasis in cancer intervention heightens, understanding the molecular interplay involving the signalling pathways, downstream effectors, and their interactions with the EMT would be an important requisite while the challenges of metastasis continue to punctuate. Unfortunately, the molecular underpinnings that govern this process remain to be completely illuminated. However, it is becoming increasingly clear that EMT, which initiates every episode of metastasis, significantly requires some master regulators called EMT transcription factors (EMT-TFs). Thus, this review critically examines the roles of TFs as drivers of molecular rewiring that lead to tumour initiation, progression, EMT, metastasis, and colonisation. In addition, it discusses the interaction of various signalling molecules and effector proteins with these factors. It also provides insight into promising therapeutic targets that may inhibit the metastatic process to overcome the limitation of "undruggable" cancer targets in therapeutic design and upturn the current spate of drug resistance. More so, it extends the discussion from the basic understanding of the EMT binary switch model, and ultimately unveiling the E/M cellular plasticity along a phenotypic spectrum via multiple trans-differentiations. It wraps up on how this knowledge update shapes the diagnostic and clinical approaches that may demand a potential shift in investigative paradigm using novel technologies such as single-cell analyses to improve overall patient survival.
Collapse
Affiliation(s)
- Sikiru O. Imodoye
- Department of Medical Laboratory Science, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Kamoru A. Adedokun
- Department of Oral Pathology, Dental University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Abdurrasheed Ola Muhammed
- Department of Histopathology, School of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ibrahim O. Bello
- Department of Biological Sciences, Southern Illinois University, Edwardsville, IL, United States
| | - Musa A. Muhibi
- Department of Medical Laboratory Science, Faculty of Applied Sciences, Edo State University, Uzairue, Nigeria
| | - Taofeeq Oduola
- Department of Chemical Pathology, School of Medical Laboratory Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Musiliu A. Oyenike
- Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| |
Collapse
|
234
|
Yang J, Cheng S, Zhang N, Jin Y, Wang Y. Liquid biopsy for ovarian cancer using circulating tumor cells: Recent advances on the path to precision medicine. Biochim Biophys Acta Rev Cancer 2021; 1877:188660. [PMID: 34800546 DOI: 10.1016/j.bbcan.2021.188660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 12/30/2022]
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignance worldwide. Considering its metastasis nature, oncologists shift focus towards circulating tumor cells (CTCs), a progenitor that originates from primary tumor and undergoes morphologic/genetic alterations to enter bloodstream and invade nearby tissues. Mountains of evidence suggested that CTCs could provide deep insights into genomic, transcriptomic, and proteomic profiling of OC metastatic cascades. To pave the way for precision medicine, researchers exert great efforts to develop isolation/detection methodologies and construct CTCs-derived propagation platforms, including traditional cell cultures, patient-derived xenografts (PDXs), and organoids. From bench to bedside, CTCs provide minimally-invasive means to inform early diagnosis, predict prognosis, and guide treatment decisions. This review shined a spotlight on biology, detection technologies, and propagation platforms for CTCs. Of note, we also reviewed clinical applications of CTCs in liquid biopsy-based personalized cancer treatment and critically appraised limitations in routine clinical practice on the path to precision medicine.
Collapse
Affiliation(s)
- Jiani Yang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Nan Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Jin
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
235
|
Lenz G, Onzi GR, Lenz LS, Buss JH, Santos JAF, Begnini KR. The Origins of Phenotypic Heterogeneity in Cancer. Cancer Res 2021; 82:3-11. [PMID: 34785576 DOI: 10.1158/0008-5472.can-21-1940] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
Heterogeneity is a pervasive feature of cancer, and understanding the sources and regulatory mechanisms underlying heterogeneity could provide key insights to help improve the diagnosis and treatment of cancer. In this review, we discuss the origin of heterogeneity in the phenotype of individual cancer cells. Genotype-phenotype (G-P) maps are widely used in evolutionary biology to represent the complex interactions of genes and the environment that lead to phenotypes that impact fitness. Here, we present the rationale of an extended G-P (eG-P) map with a cone structure in cancer. The eG-P cone is formed by cells that are similar at the genome layer but gradually increase variability in the epigenome, transcriptome, proteome, metabolome and signalome layers to produce large variability at the phenome layer. Experimental evidence from single-cell -omics analyses supporting the cancer eG-P cone concept is presented, and the impact of epimutations and the interaction of cancer and tumor microenvironmental eG-P cones are integrated with the current understanding of cancer biology. The eG-P cone concept uncovers potential therapeutic strategies to reduce cancer evolution and improve cancer treatment. More methods to study phenotypes in single cells will be key to better understand cancer cell fitness in tumor biology and therapeutics.
Collapse
|
236
|
Yang Y, Li G, Lu Z, Liu Y, Kong J, Liu J. Progression of Prothrombin Induced by Vitamin K Absence-II in Hepatocellular Carcinoma. Front Oncol 2021; 11:726213. [PMID: 34900676 PMCID: PMC8660097 DOI: 10.3389/fonc.2021.726213] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer-related death worldwide. Due to the lack of efficient tools for early detection, asymptomatic HCC patients are diagnosed at an advanced stage, leading to a poor prognosis. To improve survival, serum biomarker prothrombin induced by vitamin K absence-II (PIVKA-II) was under investigation. PIVKA-II is an abnormal protein produced in HCC. The coagulation function was insufficient due to the lack of Gla residues. Elevated PIVKA-II was associated with bad tumor behavior in terms of proliferation, metastasis, and invasion. Three major signaling pathways were proposed to clarify the mechanism. With the advantages including affordability, minimal invasiveness, convenience, and efficiency, PIVKA-II could improve HCC management consisting of four aspects. First, PIVKA-II was an effective and dynamic tool for improving HCC surveillance in high-risk population. Changes in the serum levels of PIVKA-II provided valuable molecular alteration information before imaging discovery. Second, PIVKA-II offered a complementary approach for HCC early detection. Compared to traditional diagnostic approaches, the combination of PIVKA-II and other biomarkers had better performance. Third, PIVKA-II was an indicator for the assessment of response to treatment in HCC. Preoperative assessment was for selecting personalized therapy, and postoperative measurement was for assessing treatment efficacy. Fourth, PIVKA-II was considered as a prognostic predictor for HCC. Patients with elevated PIVKA-II were more likely to develop microvascular invasion, metastasis, and recurrence.
Collapse
Affiliation(s)
- Yang Yang
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guangbing Li
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ziwen Lu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yong Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junjie Kong
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
237
|
He S, Wei J, Ding L, Yang X, Wu Y. State-of-the-arts techniques and current evolving approaches in the separation and detection of circulating tumor cell. Talanta 2021; 239:123024. [PMID: 34952370 DOI: 10.1016/j.talanta.2021.123024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/01/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells that shed from the primary tumor and then enter the circulatory system, a small part of which may evolve into metastatic cancer under appropriate microenvironment conditions. The detection of CTCs is a truly noninvasive, dynamic monitor for disease changes, which has considerable clinical implications in the selection of targeted drugs. However, their inherent rarity and heterogeneity pose significant challenges to their isolation and detection. Even the "gold standard", CellSearch™, suffers from high expenses, low capture efficiency, and the consumption of time. With the advancement of CTCs analysis technologies in recent years, the yield and efficiency of CTCs enrichment have gradually been improved, as well as detection sensitivity. In this review, the isolation and detection strategies of CTCs have been completely described and the potential directions for future research and development have also been highlighted through analyzing the challenges faced by current strategies.
Collapse
Affiliation(s)
- Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jinlan Wei
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaonan Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
238
|
Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design. Pharmaceutics 2021; 13:pharmaceutics13111879. [PMID: 34834295 PMCID: PMC8619417 DOI: 10.3390/pharmaceutics13111879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023] Open
Abstract
Designing optimal (neo)adjuvant therapy is a crucial aspect of the treatment of non-small-cell lung carcinoma (NSCLC). Standard methods of chemotherapy, radiotherapy, and immunotherapy represent effective strategies for treatment. However, in some cases with high metastatic activity and high levels of circulating tumour cells (CTCs), the efficacy of standard treatment methods is insufficient and results in treatment failure and reduced patient survival. CTCs are seen not only as an isolated phenomenon but also a key inherent part of the formation of metastasis and a key factor in cancer death. This review discusses the impact of NSCLC therapy strategies based on a meta-analysis of clinical studies. In addition, possible therapeutic strategies for repression when standard methods fail, such as the administration of low-toxicity natural anticancer agents targeting these phenomena (curcumin and flavonoids), are also discussed. These strategies are presented in the context of key mechanisms of tumour biology with a strong influence on CTC spread and metastasis (mechanisms related to tumour-associated and -infiltrating cells, epithelial–mesenchymal transition, and migration of cancer cells).
Collapse
|
239
|
Payne K, Brooks JM, Taylor GS, Batis N, Noyvert B, Pan Y, Nankivell P, Mehanna H. Immediate Sample Fixation Increases Circulating Tumour Cell (CTC) Capture and Preserves Phenotype in Head and Neck Squamous Cell Carcinoma: Towards a Standardised Approach to Microfluidic CTC Biomarker Discovery. Cancers (Basel) 2021; 13:cancers13215519. [PMID: 34771681 PMCID: PMC8583049 DOI: 10.3390/cancers13215519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Circulating tumour cells (CTCs) have shown potential to act as markers of disease and prognosis in head and neck squamous cell carcinoma (HNSCC). However, there are a number of methods and devices reported to isolate and characterise CTCs. Translating CTC markers to clinical practice, for patient benefit, requires a reliable, reproducible and standardised approach. We report the benefit of the Parsortix microfluidic CTC enrichment platform in HNSCC. We demonstrate consistent cell capture rates between 10 and 100 cells/mL of whole blood. Analysis of gene expression with unfixed cells before and after Parsortix enrichment demonstrated a cell stress response and downregulation of key genes. We highlight the benefit of using a fixative blood collection tube (Transfix) to increase cell capture rate and preserve the CTC marker expression profile. Such evidence is crucial when designing sample processing protocols for large cohort multi-centre clinical trials investigating CTCs in any cancer type. Abstract Introduction: Research demonstrates strong evidence that circulating tumour cells (CTCs) can provide diagnostic and/or prognostic biomarkers in head and neck squamous cell carcinoma (HNSCC) and a potential tool for therapeutic stratification. However, the question still remains as to the optimum method of CTC enrichment and how this can be translated into clinical practice. We aimed to evaluate the Parsortix microfluidic device for CTC enrichment and characterisation in HNSCC, seeking to optimise a sample collection and processing protocol that preserves CTC integrity and phenotype. Method: Spiking experiments of the FaDu and SCC040 HNSCC cell lines were used to determine the Parsortix capture rate of rare “CTC-like” cells. Capture rates of cancer cells spiked into EDTA blood collections tubes (BCTs) were compared to the Transfix fixative BCT and Cytodelics whole blood freezing protocol. The Lexogen Quantseq library preparation was used to profile gene expression of unfixed cells before and after microfluidic enrichment and enriched cell line spiked Transfix blood samples. An antibody panel was optimised to enable immunofluorescence microscopy CTC detection in HNSCC patient Transfix blood samples, using epithelial (EpCAM) and mesenchymal (N-cadherin) CTC markers. Results: Across a spiked cell concentration range of 9–129 cells/mL, Parsortix demonstrated a mean cell capture rate of 53.5% for unfixed cells, with no significant relationship between spiked cell concentration and capture rate. Samples preserved in Transfix BCTs demonstrated significantly increased capture rates at 0 h (time to processing) compared to EDTA BCTs (65.3% vs. 51.0%). Capture rates in Transfix BCTs were maintained at 24 h and 72 h timepoints, but dropped significantly in EDTA BCTs. Gene expression profiling revealed that microfluidic enrichment of unfixed cell lines caused downregulation of RNA processing/binding gene pathways and upregulation of genes involved in cell injury, apoptosis and oxidative stress. RNA was successfully extracted and sequenced from Transfix preserved cells enriched using Parsortix, demonstrating epithelial specific transcripts from spiked cells. In a proof-of-concept cohort of four patients with advanced HNSCC, CTCs were successfully identified and visualised with epithelial and epithelial-mesenchymal phenotypes. Conclusion: We have optimised a protocol for detection of CTCs in HNSCC with the Parsortix microfluidic device, using Transfix BCTs. We report a significant benefit, both in terms of cell capture rates and preserving cell phenotype, for using a fixative BCT- particularly if samples are stored before processing. In the design of large cohort multi-site clinical trials, such data are of paramount importance.
Collapse
Affiliation(s)
- Karl Payne
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.M.B.); (N.B.); (P.N.); (H.M.)
- Correspondence:
| | - Jill M. Brooks
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.M.B.); (N.B.); (P.N.); (H.M.)
| | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK;
| | - Nikolaos Batis
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.M.B.); (N.B.); (P.N.); (H.M.)
| | - Boris Noyvert
- Cancer Research UK Birmingham Centre, University of Birmingham, Birmingham B15 2TT, UK; (B.N.); (Y.P.)
- Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Yi Pan
- Cancer Research UK Birmingham Centre, University of Birmingham, Birmingham B15 2TT, UK; (B.N.); (Y.P.)
- Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul Nankivell
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.M.B.); (N.B.); (P.N.); (H.M.)
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.M.B.); (N.B.); (P.N.); (H.M.)
| |
Collapse
|
240
|
Liu QL, Zhang Z, Wei X, Zhou ZG. Noncoding RNAs in tumor metastasis: molecular and clinical perspectives. Cell Mol Life Sci 2021; 78:6823-6850. [PMID: 34499209 PMCID: PMC11073083 DOI: 10.1007/s00018-021-03929-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Metastasis is the main culprit of cancer-associated mortality and involves a complex and multistage process termed the metastatic cascade, which requires tumor cells to detach from the primary site, intravasate, disseminate in the circulation, extravasate, adapt to the foreign microenvironment, and form organ-specific colonization. Each of these processes has been already studied extensively for molecular mechanisms focused mainly on protein-coding genes. Recently, increasing evidence is pointing towards RNAs without coding potential for proteins, referred to as non-coding RNAs, as regulators in shaping cellular activity. Since those first reports, the detection and characterization of non-coding RNA have explosively thrived and greatly enriched the understanding of the molecular regulatory networks in metastasis. Moreover, a comprehensive description of ncRNA dysregulation will provide new insights into novel tools for the early detection and treatment of metastatic cancer. In this review, we focus on discussion of the emerging role of ncRNAs in governing cancer metastasis and describe step by step how ncRNAs impinge on cancer metastasis. In particular, we highlight the diagnostic and therapeutic applications of ncRNAs in metastatic cancer.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
241
|
Pantel K. Liquid Biopsy: Blood-Based Analyses of ctDNA and CTCs. Clin Chem 2021; 67:1437-1439. [PMID: 34549290 DOI: 10.1093/clinchem/hvab168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/14/2022]
Affiliation(s)
- Klaus Pantel
- Department of Tumor Biology, University Medical, Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
242
|
Openshaw MR, McVeigh TP. Non-invasive Technology Advances in Cancer-A Review of the Advances in the Liquid Biopsy for Endometrial and Ovarian Cancers. Front Digit Health 2021; 2:573010. [PMID: 34713045 PMCID: PMC8521848 DOI: 10.3389/fdgth.2020.573010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
Improving cancer survival rates globally requires improvements in disease detection and monitoring, with the aim of improving early diagnosis and prediction of disease relapse. Traditional means of detecting and monitoring cancers rely largely on imaging and, where possible, blood-based protein biomarkers, many of which are non-specific. Treatments are being improved by identification of inherited and acquired genomic aberrations in tumors, some of which can be targeted by newly developed therapeutic interventions. Treatment of gynecological malignancy is progressively moving toward personalized therapy, as exemplified by application of PARP-inhibition for patients with BRCA-deficient tubo-ovarian cancers, or checkpoint inhibition in patients with mismatch repair-deficient disease. However, the more recent discovery of a group of biomarkers described under the umbrella term of “liquid biopsy” promises significant improvement in our ability to detect and monitor cancers. The term “liquid biopsy” is used to describe an array of tumor-derived material found in blood plasma and other bodily fluids such as ascites, pleural fluid, saliva, and urine. It includes circulating tumors cells (CTCs), circulating nucleic acids including DNA, messenger RNA and micro RNAs, and extracellular vesicles (EVs). In this review, we discuss recent advancements in liquid biopsy for biomarker detection to help in diagnosis, prognosis, and planning of treatment of ovarian and endometrial cancer.
Collapse
Affiliation(s)
- Mark R Openshaw
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Terri P McVeigh
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
243
|
Negative enrichment of circulating tumor cells from unmanipulated whole blood with a 3D printed device. Sci Rep 2021; 11:20583. [PMID: 34663896 PMCID: PMC8523721 DOI: 10.1038/s41598-021-99951-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023] Open
Abstract
Reliable and routine isolation of circulating tumor cells (CTCs) from peripheral blood would allow effective monitoring of the disease and guide the development of personalized treatments. Negative enrichment of CTCs by depleting normal blood cells ensures against a biased selection of a subpopulation and allows the assay to be applied on different tumor types. Here, we report an additively manufactured microfluidic device that can negatively enrich viable CTCs from clinically-relevant volumes of unmanipulated whole blood samples. Our device depletes nucleated blood cells based on their surface antigens and the smaller anucleated cells based on their size. Enriched CTCs are made available off the device in suspension making our technique compatible with standard immunocytochemical, molecular and functional assays. Our device could achieve a ~ 2.34-log depletion by capturing > 99.5% of white blood cells from 10 mL of whole blood while recovering > 90% of spiked tumor cells. Furthermore, we demonstrated the capability of the device to isolate CTCs from blood samples collected from patients (n = 15) with prostate and pancreatic cancers in a pilot study. A universal CTC assay that can differentiate tumor cells from normal blood cells with the specificity of clinically established membrane antigens yet require no label has the potential to enable routine blood-based tumor biopsies at the point-of-care.
Collapse
|
244
|
Li N, Wang B, Li J, Shao Y, Li M, Li J, Kuang P, Liu Z, Sun T, Wu H, Ou W, Wang S. Perioperative circulating tumor DNA as a potential prognostic marker for operable stage I to IIIA non–small cell lung cancer. Cancer 2021; 128:708-718. [DOI: 10.1002/cncr.33985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Ning Li
- Department of Breast Oncology Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Bao‐Xiao Wang
- Department of Otolaryngology, Head and Neck Surgery Sun Yat‐Sen Memorial HospitalSun Yat‐Sen University Guangzhou China
| | - Jian Li
- Department of Diagnostic and Interventional Ultrasound Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Yang Shao
- Nanjing Geneseeq Technology, Inc Nanjing China
- School of Public Health Nanjing Medical University Nanjing China
| | - Ming‐Tian Li
- Department of Operating Center Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Jian‐Jun Li
- Department of Endoscopy Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Peng‐Peng Kuang
- Otorhinolaryngology HospitalFirst Affiliated HospitalSun Yat‐Sen University Guangzhou China
| | - Zui Liu
- Division of Cardiac Surgery Heart Center First Affiliated HospitalSun Yat‐Sen University Guangzhou China
| | - Tian‐Yu Sun
- Department of Thoracic Surgery Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Hui‐Qi Wu
- Department of Thoracic Surgery Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Wei Ou
- Department of Thoracic Surgery Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou China
| | - Si‐Yu Wang
- Department of Thoracic Surgery Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou China
| |
Collapse
|
245
|
Pu W, Shi X, Yu P, Zhang M, Liu Z, Tan L, Han P, Wang Y, Ji D, Gan H, Wei W, Lu Z, Qu N, Hu J, Hu X, Luo Z, Li H, Ji Q, Wang J, Zhang X, Wang YL. Single-cell transcriptomic analysis of the tumor ecosystems underlying initiation and progression of papillary thyroid carcinoma. Nat Commun 2021; 12:6058. [PMID: 34663816 PMCID: PMC8523550 DOI: 10.1038/s41467-021-26343-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023] Open
Abstract
The tumor ecosystem of papillary thyroid carcinoma (PTC) is poorly characterized. Using single-cell RNA sequencing, we profile transcriptomes of 158,577 cells from 11 patients’ paratumors, localized/advanced tumors, initially-treated/recurrent lymph nodes and radioactive iodine (RAI)-refractory distant metastases, covering comprehensive clinical courses of PTC. Our data identifies a “cancer-primed” premalignant thyrocyte population with normal morphology but altered transcriptomes. Along the developmental trajectory, we also discover three phenotypes of malignant thyrocytes (follicular-like, partial-epithelial-mesenchymal-transition-like, dedifferentiation-like), whose composition shapes bulk molecular subtypes, tumor characteristics and RAI responses. Furthermore, we uncover a distinct BRAF-like-B subtype with predominant dedifferentiation-like thyrocytes, enriched cancer-associated fibroblasts, worse prognosis and promising prospect of immunotherapy. Moreover, potential vascular-immune crosstalk in PTC provides theoretical basis for combined anti-angiogenic and immunotherapy. Together, our findings provide insight into the PTC ecosystem that suggests potential prognostic and therapeutic implications. The characterisation of the papillary thyroid carcinoma (PTC) tumour microenvironment remains crucial. Here, the authors perform single-cell RNA sequencing in 11 patients and identify potential opportunities for the use of immunotherapy and its combination with anti-angiogenic therapy in PTC.
Collapse
Affiliation(s)
- Weilin Pu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiao Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Pengcheng Yu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Meiying Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhiyan Liu
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Licheng Tan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peizhen Han
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Dongmei Ji
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Hualei Gan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhongwu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiaqian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaohua Hu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zaili Luo
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Huajun Li
- Department of Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, 201210, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
246
|
Zhou WM, Yan YY, Guo QR, Ji H, Wang H, Xu TT, Makabel B, Pilarsky C, He G, Yu XY, Zhang JY. Microfluidics applications for high-throughput single cell sequencing. J Nanobiotechnology 2021; 19:312. [PMID: 34635104 PMCID: PMC8507141 DOI: 10.1186/s12951-021-01045-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
The inherent heterogeneity of individual cells in cell populations plays significant roles in disease development and progression, which is critical for disease diagnosis and treatment. Substantial evidences show that the majority of traditional gene profiling methods mask the difference of individual cells. Single cell sequencing can provide data to characterize the inherent heterogeneity of individual cells, and reveal complex and rare cell populations. Different microfluidic technologies have emerged for single cell researches and become the frontiers and hot topics over the past decade. In this review article, we introduce the processes of single cell sequencing, and review the principles of microfluidics for single cell analysis. Also, we discuss the common high-throughput single cell sequencing technologies along with their advantages and disadvantages. Lastly, microfluidics applications in single cell sequencing technology for the diagnosis of cancers and immune system diseases are briefly illustrated.
Collapse
Affiliation(s)
- Wen-Min Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yan-Yan Yan
- School of Medicine, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Qiao-Ru Guo
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hong Ji
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Tian-Tian Xu
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Bolat Makabel
- Xinjiang Institute of Materia Medica, Urumqi, 830004, People's Republic of China
| | - Christian Pilarsky
- Department of Surgery, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Gen He
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
247
|
Fan J, Feng Y, Cheng Y, Wang Z, Zhao H, Galan EA, Liao Q, Cui S, Zhang W, Ma S. Multiplex gene quantification as digital markers for extremely rapid evaluation of chemo-drug sensitivity. PATTERNS 2021; 2:100360. [PMID: 34693378 PMCID: PMC8515010 DOI: 10.1016/j.patter.2021.100360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Current administrations for precision drug uses are limited in evaluation speed. Here, we propose the use of multiplex gene-based digital markers for the extremely rapid personalized prediction of individual sensitivity to cancer drugs. We first screen the transcriptional profiles by applying two to three gene filters and scoring genes by their impact on drug sensitivity and finalize the gene lists by K-nearest neighbors cross-validation. The digital markers are cancer type dependent, are composed of tens to hundreds of gene expressions, and are rapidly quantified by reverse transcription quantitative real-time PCR (qRT-PCR) within 1–3 h after tumor sampling. The area under the receiver operating characteristic curve reached 0.88 when testing the performance of digital markers on organoids derived from colorectal cancer patient tumors. The algorithm and corresponding graphic user interface were developed to demonstrate the promise of digital markers for extremely rapid drug recommendation. Non-targeted multiplex genes are screened as digital markers for drug sensitivity Transcription level cohort of 10s to 100s genes predicts drug sensitivity Digital markers are quantified using qRT-PCR within 1–3 h Digital markers guide extremely rapid chemo-drug uses after patient hospitalization
In clinical cancer medicine, many patients require immediate chemotherapy after hospitalization. Current administrations for precision drug uses are limited in evaluation speed, including genomic sequencing and tumor organoid evaluation. An extremely rapid evaluation protocol is in high demand to realize drug recommendation within a few hours after tumor sampling. In this work, we have proposed an approach for extremely rapid and personalized drug recommendation.
Collapse
Affiliation(s)
- Jiaqi Fan
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China.,Institute for Brain and Cognitive Sciences (THUIBCS), Tsinghua University, Beijing 100084, China
| | - Yilin Feng
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Yifan Cheng
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Zitian Wang
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Haoran Zhao
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Edgar A Galan
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Quanxing Liao
- Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Shuzhong Cui
- Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Weijie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shaohua Ma
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China.,Institute for Brain and Cognitive Sciences (THUIBCS), Tsinghua University, Beijing 100084, China
| |
Collapse
|
248
|
High Serum Levels of Wnt Signaling Antagonist Dickkopf-Related Protein 1 Are Associated with Impaired Overall Survival and Recurrence in Esophageal Cancer Patients. Cancers (Basel) 2021; 13:cancers13194980. [PMID: 34638464 PMCID: PMC8507644 DOI: 10.3390/cancers13194980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary Dickkopf-related protein 1 (DKK1), an antagonist of the canonical Wnt pathway has been the subject of research for many years. Especially in gastrointestinal cancers, research suggests a pivotal role of DKK1. In order to understand the role of DKK1 in esophageal cancer, we analyzed blood samples of esophageal cancer patients for their DKK1 levels and retrospectively analyzed the clinicopathological data. In our study cohort, we observed a negative prognostic role of high DKK1 serum levels with respect to overall survival in esophageal cancer patients. These data may suggest serum DKK1 as a novel biomarker for improved risk stratification and treatment monitoring in esophageal cancer patients. Abstract Dickkopf-related protein 1 (DKK1), an antagonist of the canonical Wnt pathway, has received tremendous attention over the past years as its dysregulation is said to be critically involved in a wide variety of gastrointestinal cancers. However, the potential clinical implications of DKK1 remain poorly understood. Although multimodal treatment options have been implemented over the past years, esophageal cancer (EC) patients still suffer from poor five-year overall survival rates ranging from 15% to 25%. Especially prognostic factors and biomarkers for risk stratification are lacking to choose the most beneficial treatment out of the emerging landscape of different treatment options. In this study, we analyzed the serum DKK1 (S-DKK1) levels of 91 EC patients prior to surgery in a single center study at the University Medical Center Hamburg-Eppendorf by enzyme-linked immunosorbent assay. High levels of S-DKK1 could be especially observed in patients suffering from esophageal adenocarcinoma which may promote the hypothesis of a crucial role of DKK1 in inflammation. S-DKK1 levels of ≥5800 pg/mL were shown to be associated with unfavorable five-year survival rates and the presence of CTCs. Interestingly, significantly lower S-DKK1 levels were detected in patients after neoadjuvant treatment, implying that S-DKK1 may serve as a useful biomarker for treatment monitoring. Multivariate analysis identified S-DKK1 as an independent prognostic marker with respect to overall survival in EC patients with a hazard ratio of 2.23. In conclusion, our data implicate a negative prognostic role of DKK1 with respect to the clinical outcome in EC patients. Further prospective studies should be conducted to implement S-DKK1 into the clinical routine for risk stratification and treatment monitoring.
Collapse
|
249
|
Determinants of renal cell carcinoma invasion and metastatic competence. Nat Commun 2021; 12:5760. [PMID: 34608135 PMCID: PMC8490399 DOI: 10.1038/s41467-021-25918-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023] Open
Abstract
Metastasis is the principal cause of cancer related deaths. Tumor invasion is essential for metastatic spread. However, determinants of invasion are poorly understood. We addressed this knowledge gap by leveraging a unique attribute of kidney cancer. Renal tumors invade into large vessels forming tumor thrombi (TT) that migrate extending sometimes into the heart. Over a decade, we prospectively enrolled 83 ethnically-diverse patients undergoing surgical resection for grossly invasive tumors at UT Southwestern Kidney Cancer Program. In this study, we perform comprehensive histological analyses, integrate multi-region genomic studies, generate in vivo models, and execute functional studies to define tumor invasion and metastatic competence. We find that invasion is not always associated with the most aggressive clone. Driven by immediate early genes, invasion appears to be an opportunistic trait attained by subclones with diverse oncogenomic status in geospatial proximity to vasculature. We show that not all invasive tumors metastasize and identify determinants of metastatic competency. TT associated with metastases are characterized by higher grade, mTOR activation and a particular immune contexture. Moreover, TT grade is a better predictor of metastasis than overall tumor grade, which may have implications for clinical practice.
Collapse
|
250
|
SUN W, SHI Z, QING G. [Advances in materials for circulating tumor cells capture]. Se Pu 2021; 39:1041-1044. [PMID: 34505425 PMCID: PMC9404117 DOI: 10.3724/sp.j.1123.2021.05020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Wenjing SUN
- 1.中国科学院大连化学物理研究所, 辽宁大连 116023
- 2.江南大学药学院, 江苏无锡 214122
| | | | | |
Collapse
|