201
|
Segatto I, Massarut S, Boyle R, Baldassarre G, Walker D, Belletti B. Preclinical validation of a novel compound targeting p70S6 kinase in breast cancer. Aging (Albany NY) 2017; 8:958-76. [PMID: 27155197 PMCID: PMC4931847 DOI: 10.18632/aging.100954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/20/2016] [Indexed: 11/25/2022]
Abstract
UNLABELLED Breast cancer is a frequent and treatable disease. However, when recurrent, breast cancer often becomes refractory to therapy and progresses into metastatic forms that are typically incurable. Thus, understanding and targeting the critical pathways underlying breast cancer recurrence is urgently needed to eradicate primary disease and achieve better prognosis. Recently, we have demonstrated that the ribosomal protein p70S6K is activated in residual breast cancer cells as a result of post-surgical inflammation and that interfering with its activity in the peri-operative setting strongly suppresses recurrence in a mouse model. In order to develop clinically-exploitable treatments targeting p70S6K, we have tested a newly generated compound, called FS-115. FS-115 potently inhibited p70S6K1 (IC50 35nM) with high selectivity over other AGC kinases or PI3K pathway kinases. In vitro, treatment with FS-115 efficiently blocked p70S6K activity in breast cancer cell lines and impaired colony formation and anchorage independent growth. Pharmacokinetic profiling showed that FS-115 exhibited high oral bioavailability, optimal plasma distribution and high brain penetrance. In nude mice, FS-115 strongly suppressed tumor take-rate and primary tumor growth. Oral dosing with FS-115 in a peri-operative schedule was effective in decreasing local recurrence of breast cancer and a long-term treatment schedule was well tolerated and efficiently suppressed distant metastasis formation. Altogether, we propose that FS-115 might be a good candidate for the treatment of breast cancer patients at high risk to relapse. SUMMARY STATEMENT Our results confirm that inhibition of p70S6K represents a valuable opportunity for restraining loco-regional relapse and metastasis in breast cancer and identify in FS-115 a promising candidate-inhibitor to move from preclinical to clinical treatments.
Collapse
Affiliation(s)
- Ilenia Segatto
- Division of Molecular Oncology, CRO, National Cancer Institute, Aviano 33081, Italy
| | - Samuele Massarut
- Breast Surgery Unit, CRO, National Cancer Institute, Aviano 33081, Italy
| | - Robert Boyle
- Sentinel Oncology Limited, Cambridge, United Kingdom
| | - Gustavo Baldassarre
- Division of Molecular Oncology, CRO, National Cancer Institute, Aviano 33081, Italy
| | - David Walker
- Sentinel Oncology Limited, Cambridge, United Kingdom
| | - Barbara Belletti
- Division of Molecular Oncology, CRO, National Cancer Institute, Aviano 33081, Italy
| |
Collapse
|
202
|
mTOR-Dependent Cell Proliferation in the Brain. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7082696. [PMID: 29259984 PMCID: PMC5702949 DOI: 10.1155/2017/7082696] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/22/2017] [Indexed: 02/08/2023]
Abstract
The mammalian Target of Rapamycin (mTOR) is a molecular complex equipped with kinase activity which controls cell viability being key in the PI3K/PTEN/Akt pathway. mTOR acts by integrating a number of environmental stimuli to regulate cell growth, proliferation, autophagy, and protein synthesis. These effects are based on the modulation of different metabolic pathways. Upregulation of mTOR associates with various pathological conditions, such as obesity, neurodegeneration, and brain tumors. This is the case of high-grade gliomas with a high propensity to proliferation and tissue invasion. Glioblastoma Multiforme (GBM) is a WHO grade IV malignant, aggressive, and lethal glioma. To date, a few treatments are available although the outcome of GBM patients remains poor. Experimental and pathological findings suggest that mTOR upregulation plays a major role in determining an aggressive phenotype, thus determining relapse and chemoresistance. Among several activities, mTOR-induced autophagy suppression is key in GBM malignancy. In this article, we discuss recent evidence about mTOR signaling and its role in normal brain development and pathological conditions, with a special emphasis on its role in GBM.
Collapse
|
203
|
Hyun H, Lee SE, Son YJ, Shin MY, Park YG, Kim EY, Park SP. Cell Synchronization by Rapamycin Improves the Developmental Competence of Porcine SCNT Embryos. Cell Reprogram 2017; 18:195-205. [PMID: 27253629 DOI: 10.1089/cell.2015.0090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cell cycle stage of donor cells influences the success of somatic cell nuclear transfer (SCNT). This study investigated the effects of rapamycin treatment on synchronization of porcine fibroblasts in comparison with control and serum-starved cells, SCNT donor cell viability, and SCNT-derived embryo development. Porcine fibroblasts were treated with 0.1, 1, 10, and 100 μM rapamycin for 1 or 3 days. The proportion of cells in G0/G1 phase was significantly higher among cells treated with 1 μM rapamycin for 3 days (D3-1R) than among control and serum-starved cells (p < 0.05). In comparison with control cells, rapamycin-treated cells exhibited reduced proliferation, similar to serum-starved cells. The viability (as assessed by the MTT assay) of D3-1R-treated cells was good, similar to control cells, showing their quality was maintained. To confirm nutrient regulation by rapamycin treatment, we checked the transcript levels of nutrient transporter genes (SLC2A2, SLC2A4, SLC6A14, and SLC7A1). These levels were significantly lower in D3-1R-treated cells than in control cells (p < 0.01). We performed SCNT with D3-1R-treated cells (SCNT(D3-1R)) to confirm the effect of cell cycle synchronization by rapamycin treatment. Although SCNT(D3-1R) embryos did not have an increased fusion rate, their cleavage and blastocyst formation rates were significantly higher than those of control embryos (p < 0.05). Regarding embryo quality, the numbers of total and apoptotic cells per blastocyst were increased and decreased, respectively, in SCNT(D3-1R) blastocysts. The mRNA levels of developmental (CDX2 and CDH1) and proapoptotic (FAS and CASP3) genes were significantly higher and lower, respectively, in SCNT(D3-1R) blastocysts than in control blastocysts (p < 0.05). These results demonstrate that rapamycin treatment affects the cell cycle synchronization of donor cells and enhances the developmental potential of porcine SCNT embryos.
Collapse
Affiliation(s)
- Hyuk Hyun
- 1 Stem cell Research Center, Jeju National University , Jeju, Jeju Special Self-Governing Province, Korea.,2 Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University , Jeju, Jeju Special Self-Governing Province, Korea
| | - Seung-Eun Lee
- 1 Stem cell Research Center, Jeju National University , Jeju, Jeju Special Self-Governing Province, Korea.,2 Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University , Jeju, Jeju Special Self-Governing Province, Korea
| | - Yeo-Jin Son
- 1 Stem cell Research Center, Jeju National University , Jeju, Jeju Special Self-Governing Province, Korea.,2 Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University , Jeju, Jeju Special Self-Governing Province, Korea
| | - Min-Young Shin
- 1 Stem cell Research Center, Jeju National University , Jeju, Jeju Special Self-Governing Province, Korea.,2 Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University , Jeju, Jeju Special Self-Governing Province, Korea
| | - Yun-Gwi Park
- 1 Stem cell Research Center, Jeju National University , Jeju, Jeju Special Self-Governing Province, Korea.,2 Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University , Jeju, Jeju Special Self-Governing Province, Korea
| | - Eun-Young Kim
- 1 Stem cell Research Center, Jeju National University , Jeju, Jeju Special Self-Governing Province, Korea.,2 Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University , Jeju, Jeju Special Self-Governing Province, Korea.,3 Mirae Cell Bio , Gwangjin-gu, Seoul, Korea
| | - Se-Pill Park
- 1 Stem cell Research Center, Jeju National University , Jeju, Jeju Special Self-Governing Province, Korea.,2 Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University , Jeju, Jeju Special Self-Governing Province, Korea.,3 Mirae Cell Bio , Gwangjin-gu, Seoul, Korea
| |
Collapse
|
204
|
Ahn E, Kumar P, Mukha D, Tzur A, Shlomi T. Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle. Mol Syst Biol 2017; 13:953. [PMID: 29109155 PMCID: PMC5731346 DOI: 10.15252/msb.20177763] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal‐fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse‐chase LC‐MS‐based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine‐derived fluxes: Oxidation of glucose‐derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation.
Collapse
Affiliation(s)
- Eunyong Ahn
- Department of Computer Science, Technion, Haifa, Israel
| | | | | | - Amit Tzur
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Tomer Shlomi
- Department of Computer Science, Technion, Haifa, Israel .,Department of Biology, Technion, Haifa, Israel.,Lokey Center for Life Science and Engineering, Technion, Haifa, Israel
| |
Collapse
|
205
|
Marques-Ramos A, Candeias MM, Menezes J, Lacerda R, Willcocks M, Teixeira A, Locker N, Romão L. Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition. RNA (NEW YORK, N.Y.) 2017; 23:1712-1728. [PMID: 28821580 PMCID: PMC5648038 DOI: 10.1261/rna.063040.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase that integrates cellular signals from the nutrient and energy status to act, namely, on the protein synthesis machinery. While major advances have emerged regarding the regulators and effects of the mTOR signaling pathway, little is known about the regulation of mTOR gene expression. Here, we show that the human mTOR transcript can be translated in a cap-independent manner, and that its 5' untranslated region (UTR) is a highly folded RNA scaffold capable of binding directly to the 40S ribosomal subunit. We further demonstrate that mTOR is able to bypass the cap requirement for translation both in normal and hypoxic conditions. Moreover, our data reveal that the cap-independent translation of mTOR is necessary for its ability to induce cell-cycle progression into S phase. These results suggest a novel regulatory mechanism for mTOR gene expression that integrates the global protein synthesis changes induced by translational inhibitory conditions.
Collapse
Affiliation(s)
- Ana Marques-Ramos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Marco M Candeias
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Juliane Menezes
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Rafaela Lacerda
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Margaret Willcocks
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Alexandre Teixeira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Nicolas Locker
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
206
|
Liu Y, Wei M, Guo H, Shao C, Meng L, Xu W, Wang N, Wang L, Power DM, Hou J, Mahboob S, Cui Z, Yang Y, Li Y, Zhao F, Chen S. Locus Mapping, Molecular Cloning, and Expression Analysis of rps6kb2, a Novel Metamorphosis-Related Gene in Chinese Tongue Sole (Cynoglossus semilaevis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:497-516. [PMID: 28779262 DOI: 10.1007/s10126-017-9769-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Flatfish metamorphosis denotes the extraordinary transformation of a symmetric pelagic larva into an asymmetric benthic juvenile. This unique process involves eye migration, a 90° rotation in posture, and asymmetrical pigmentation for adaptation to a benthic lifestyle. In the present study, we used genetics to map a metamorphosis-related locus (q-10M) in the male linkage group (LG10M), a small interval of 0.9 cM corresponding to a 1.8 M-bp physical area in chromosome 9 in the Chinese tongue sole (Cynoglossus semilaevis). Combined with single-marker analysis, ribosomal protein S6 kinase 2 (rps6kb2) a member of the family of AGC kinases was identified as a novel metamorphosis-related candidate gene. Its expression pattern during metamorphosis was determined by quantitative RT-PCR and whole-mount in situ hybridization analysis. rps6kb2 gene was significantly expressed in metamorphic climax stage larvae and distributed in all the tissues transforming during metamorphosis, including tail, jaw, eye and skin of larvae. The results suggest that rps6kb2 has a general role in tissue transformations during flatfish metamorphosis including tail changes, skull remodeling, eye migration, and asymmetrical pigmentation.
Collapse
Affiliation(s)
- Yang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Min Wei
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Hua Guo
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, China
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Liang Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Deborah M Power
- College of Fisheries and Life Science, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, China
| | - Jilun Hou
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Zoology, GC University, Faisalabad, 38000, Pakistan
| | - Zhongkai Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Ministry of Education, Shanghai, 201306, China
| | - Yingming Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yangzhen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fazhen Zhao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Songlin Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
207
|
Shen G, Ren H, Qiu T, Zhang Z, Zhao W, Yu X, Huang J, Tang J, Liang D, Yao Z, Yang Z, Jiang X. Mammalian target of rapamycin as a therapeutic target in osteoporosis. J Cell Physiol 2017; 233:3929-3944. [PMID: 28834576 DOI: 10.1002/jcp.26161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
The mechanistic target of rapamycin (mTOR) plays a key role in sensing and integrating large amounts of environmental cues to regulate organismal growth, homeostasis, and many major cellular processes. Recently, mounting evidences highlight its roles in regulating bone homeostasis, which sheds light on the pathogenesis of osteoporosis. The activation/inhibition of mTOR signaling is reported to positively/negatively regulate bone marrow mesenchymal stem cells (BMSCs)/osteoblasts-mediated bone formation, adipogenic differentiation, osteocytes homeostasis, and osteoclasts-mediated bone resorption, which result in the changes of bone homeostasis, thereby resulting in or protect against osteoporosis. Given the likely importance of mTOR signaling in the pathogenesis of osteoporosis, here we discuss the detailed mechanisms in mTOR machinery and its association with osteoporosis therapy.
Collapse
Affiliation(s)
- Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjing Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhidong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
208
|
Oura K, Tadokoro T, Fujihara S, Morishita A, Chiyo T, Samukawa E, Yamana Y, Fujita K, Sakamoto T, Nomura T, Yoneyama H, Kobara H, Mori H, Iwama H, Okano K, Suzuki Y, Masaki T. Telmisartan inhibits hepatocellular carcinoma cell proliferation in vitro by inducing cell cycle arrest. Oncol Rep 2017; 38:2825-2835. [PMID: 29048654 PMCID: PMC5780034 DOI: 10.3892/or.2017.5977] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and the third leading cause of cancer-related death. Telmisartan, a widely used antihypertensive drug, is an angiotensin II type 1 (AT1) receptor blocker (ARB) that might inhibit cancer cell proliferation, but the mechanisms through which telmisartan affects various cancers remain unknown. The aim of the present study was to evaluate the effects of telmisartan on human HCC and to assess the expression of microRNAs (miRNAs). We studied the effects of telmisartan on HCC cells using the HLF, HLE, HepG2, HuH-7 and PLC/PRF/5 cell lines. In our experiments, telmisartan inhibited the proliferation of HLF, HLE and HepG2 cells, which represent poorly differentiated types of HCC cells. However, HuH-7 and PLC/PRF/5 cells, which represent well-differentiated types of HCC cells, were not sensitive to telmisartan. Telmisartan induced G0/G1 cell cycle arrest of HLF cells by inhibiting the G0-to-G1 cell cycle transition. This blockade was accompanied by a marked decrease in the levels of cyclin D1, cyclin E and other cell cycle-related proteins. Notably, the activity of the AMP-activated protein kinase (AMPK) pathway was increased, and the mammalian target of rapamycin (mTOR) pathway was inhibited by telmisartan treatment. Additionally, telmisartan increased the level of caspase-cleaved cytokeratin 18 (cCK18), partially contributed to the induction of apoptosis in HLF cells and reduced the phosphorylation of ErbB3 in HLF cells. Furthermore, miRNA expression was markedly altered by telmisartan in vitro. In conclusion, telmisartan inhibits human HCC cell proliferation by inducing cell cycle arrest.
Collapse
Affiliation(s)
- Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Taiga Chiyo
- Department of Gastroenterology and Neurology, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Eri Samukawa
- Department of Gastroenterology and Neurology, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Yoshimi Yamana
- Department of Gastroenterology and Neurology, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Teppei Sakamoto
- Department of Gastroenterology and Neurology, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Takako Nomura
- Department of Gastroenterology and Neurology, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Hirohito Mori
- Department of Gastroenterology and Neurology, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Keiichi Okano
- Gastroenterological Surgery, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Yasuyuki Suzuki
- Gastroenterological Surgery, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine/Graduate School of Medicine, Kagawa University, Kagawa 761-0793, Japan
| |
Collapse
|
209
|
Vignali PDA, Barbi J, Pan F. Metabolic Regulation of T Cell Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1011:87-130. [DOI: 10.1007/978-94-024-1170-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
210
|
Rabold K, Netea MG, Adema GJ, Netea-Maier RT. Cellular metabolism of tumor-associated macrophages - functional impact and consequences. FEBS Lett 2017; 591:3022-3041. [PMID: 28771701 DOI: 10.1002/1873-3468.12771] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022]
Abstract
Macrophages are innate immune cells that play a role not only in host defense against infections, but also in the pathophysiology of autoimmune and autoinflammatory disorders, as well as cancer. An important feature of macrophages is their high plasticity, with high ability to adapt to environmental changes by adjusting their cellular metabolism and immunological phenotype. Macrophages are one of the most abundant innate immune cells within the tumor microenvironment that have been associated with tumor growth, metastasis, angiogenesis and poor prognosis. In the context of cancer, however, so far little is known about metabolic changes in macrophages, which have been shown to determine functional fate of the cells in other diseases. Here, we review the current knowledge regarding the cellular metabolism of tumor-associated macrophages (TAMs) and discuss its implications for cell function. Understanding the regulation of the cellular metabolism of TAMs may reveal novel therapeutic targets for treatment of malignancies.
Collapse
Affiliation(s)
- Katrin Rabold
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
211
|
Lehmann S, Bass JJ, Barratt TF, Ali MZ, Szewczyk NJ. Functional phosphatome requirement for protein homeostasis, networked mitochondria, and sarcomere structure in C. elegans muscle. J Cachexia Sarcopenia Muscle 2017; 8:660-672. [PMID: 28508547 PMCID: PMC5566650 DOI: 10.1002/jcsm.12196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/08/2016] [Accepted: 01/26/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Skeletal muscle is central to locomotion and metabolic homeostasis. The laboratory worm Caenorhabditis elegans has been developed into a genomic model for assessing the genes and signals that regulate muscle development and protein degradation. Past work has identified a receptor tyrosine kinase signalling network that combinatorially controls autophagy, nerve signal to muscle to oppose proteasome-based degradation, and extracellular matrix-based signals that control calpain and caspase activation. The last two discoveries were enabled by following up results from a functional genomic screen of known regulators of muscle. Recently, a screen of the kinome requirement for muscle homeostasis identified roughly 40% of kinases as required for C. elegans muscle health; 80 have identified human orthologues and 53 are known to be expressed in skeletal muscle. To complement this kinome screen, here, we screen most of the phosphatases in C. elegans. METHODS RNA interference was used to knockdown phosphatase-encoding genes. Knockdown was first conducted during development with positive results also knocked down only in fully developed adult muscle. Protein homeostasis, mitochondrial structure, and sarcomere structure were assessed using transgenic reporter proteins. Genes identified as being required to prevent protein degradation were also knocked down in conditions that blocked proteasome or autophagic degradation. Genes identified as being required to prevent autophagic degradation were also assessed for autophagic vesicle accumulation using another transgenic reporter. Lastly, bioinformatics were used to look for overlap between kinases and phosphatases required for muscle homeostasis, and the prediction that one phosphatase was required to prevent mitogen-activated protein kinase activation was assessed by western blot. RESULTS A little over half of all phosphatases are each required to prevent abnormal development or maintenance of muscle. Eighty-six of these phosphatases have known human orthologues, 57 of which are known to be expressed in human skeletal muscle. Of the phosphatases required to prevent abnormal muscle protein degradation, roughly half are required to prevent increased autophagy. CONCLUSIONS A significant portion of both the kinome and phosphatome are required for establishing and maintaining C. elegans muscle health. Autophagy appears to be the most commonly triggered form of protein degradation in response to disruption of phosphorylation-based signalling. The results from these screens provide measurable phenotypes for analysing the combined contribution of kinases and phosphatases in a multi-cellular organism and suggest new potential regulators of human skeletal muscle for further analysis.
Collapse
Affiliation(s)
- Susann Lehmann
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Joseph J Bass
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Thomas F Barratt
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Mohammed Z Ali
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Nathaniel J Szewczyk
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| |
Collapse
|
212
|
Abstract
The protein disulfide isomerase (PDI) gene family is a protein family classically characterized by endoplasmic reticulum (ER) localization and isomerase and redox activity. ERp57, a prominent multifunctional member of the PDI family, is detected at various levels in multiple cellular localizations outside of the ER. ERp57 has been functionally linked to a host of physiological processes and numerous studies have demonstrated altered expression and aberrant functionality of ERp57 in association with diverse pathological states. Here, we summarize available knowledge of ERp57's functions in subcellular compartments and the roles of dysregulated ERp57 in various diseases toward an emphasis on the potential utility of therapeutic development of ERp57.
Collapse
Affiliation(s)
- Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Ronghan Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
213
|
Huang WR, Chi PI, Chiu HC, Hsu JL, Nielsen BL, Liao TL, Liu HJ. Avian reovirus p17 and σA act cooperatively to downregulate Akt by suppressing mTORC2 and CDK2/cyclin A2 and upregulating proteasome PSMB6. Sci Rep 2017; 7:5226. [PMID: 28701787 PMCID: PMC5507987 DOI: 10.1038/s41598-017-05510-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 05/31/2017] [Indexed: 12/19/2022] Open
Abstract
Although we have shown that avian reovirus (ARV) p17-mediated inhibition of Akt leads to induction of autophagy, the precise mechanisms remain largely unknown. This study has identified a specific mechanism by which ARV coordinately regulates the degradation of ribosomal proteins by p17-mediated activation of E3 ligase MDM2 that targets ribosomal proteins and by σA-mediated upregulation of proteasome PSMB6. In addition to downregulating ribosomal proteins, p17 reduces mTORC2 assembly and disrupts mTORC2-robosome association, both of which inactivate mTORC2 leading to inhibition of Akt phosphorylation at S473. Furthermore, we discovered that p17 binds to and inhibits the CDK2/cyclin A2 complex, further inhibiting phosphorylation of Akt S473. The negative effect of p17 on mTORC2 assembly and Akt phosphorylation at S473 is reversed in cells treated with insulin or overexpression of CDK2. The carboxyl terminus of p17 is necessary for interaction with CDK2 and for induction of autophagy. Furthermore, p17-mediated upregulation of LC3-II could be partially reversed by overexpression of CDK2. The present study provides mechanistic insights into cooperation between p17 and σA proteins of ARV to negatively regulate Akt by downregulating complexes of mTORC2 and CDK2/cyclin A2 and upregulating PSMB6, which together induces autophagy and cell cycle arrest and benefits virus replication.
Collapse
Affiliation(s)
- Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Pei-I Chi
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Hung-Chuan Chiu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Tsai-Ling Liao
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan. .,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan. .,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
214
|
Panday A, Gupta A, Srinivasa K, Xiao L, Smith MD, Grove A. DNA damage regulates direct association of TOR kinase with the RNA polymerase II-transcribed HMO1 gene. Mol Biol Cell 2017; 28:2449-2459. [PMID: 28701348 PMCID: PMC5576907 DOI: 10.1091/mbc.e17-01-0024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/05/2017] [Accepted: 07/07/2017] [Indexed: 01/29/2023] Open
Abstract
In yeast, Hmo1p is important for communicating target of rapamycin (TOR) kinase activity to downstream targets. Results show that TOR kinase controls expression of the HMO1 gene and that an important component of this regulation is its direct association with the HMO1 gene. The implications are that TOR kinase may have more elaborate nuclear functions. The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient sufficiency and cellular stress. When mTORC1 is inhibited, protein synthesis is reduced in an intricate process that includes a concerted down-regulation of genes encoding rRNA and ribosomal proteins. The Saccharomyces cerevisiae high-mobility group protein Hmo1p has been implicated in coordinating this response to mTORC1 inhibition. We show here that Tor1p binds directly to the HMO1 gene (but not to genes that are not linked to ribosome biogenesis) and that the presence of Tor1p is associated with activation of gene activity. Persistent induction of DNA double-strand breaks or mTORC1 inhibition by rapamycin results in reduced levels of HMO1 mRNA, but only in the presence of Tor1p. This down-regulation is accompanied by eviction of Ifh1p and recruitment of Crf1p, followed by concerted dissociation of Hmo1p and Tor1p. These findings uncover a novel role for TOR kinase in control of gene activity by direct association with an RNA polymerase II–transcribed gene.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Ashish Gupta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Kavitha Srinivasa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Lijuan Xiao
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Mathew D Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
215
|
Han B, Zhang S, Zeng F, Mao J. Nutritional and reproductive signaling revealed by comparative gene expression analysis in Chrysopa pallens (Rambur) at different nutritional statuses. PLoS One 2017; 12:e0180373. [PMID: 28683101 PMCID: PMC5500325 DOI: 10.1371/journal.pone.0180373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
Background The green lacewing, Chrysopa pallens Rambur, is one of the most important natural predators because of its extensive spectrum of prey and wide distribution. However, what we know about the nutritional and reproductive physiology of this species is very scarce. Results By cDNA amplification and Illumina short-read sequencing, we analyzed transcriptomes of C. pallens female adult under starved and fed conditions. In total, 71236 unigenes were obtained with an average length of 833 bp. Four vitellogenins, three insulin-like peptides and two insulin receptors were annotated. Comparison of gene expression profiles suggested that totally 1501 genes were differentially expressed between the two nutritional statuses. KEGG orthology classification showed that these differentially expression genes (DEGs) were mapped to 241 pathways. In turn, the top 4 are ribosome, protein processing in endoplasmic reticulum, biosynthesis of amino acids and carbon metabolism, indicating a distinct difference in nutritional and reproductive signaling between the two feeding conditions. Conclusions Our study yielded large-scale molecular information relevant to C. pallens nutritional and reproductive signaling, which will contribute to mass rearing and commercial use of this predaceous insect species.
Collapse
Affiliation(s)
- Benfeng Han
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shen Zhang
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanrong Zeng
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianjun Mao
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
216
|
Koga T, Fujimoto S, Kawakami A, Kawabata H, Masaki Y, Kishimoto T, Yoshizaki K. Therapeutic outlook for Castleman’s disease: prospects for the next decade. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1348295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tomohiro Koga
- Unit of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shino Fujimoto
- Division of Hematology and Immunology, Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Atsushi Kawakami
- Unit of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Kawabata
- Division of Hematology and Immunology, Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Yasufumi Masaki
- Division of Hematology and Immunology, Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kazuyuki Yoshizaki
- Department of Organic Fine Chemicals, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
217
|
Figueiredo VC, Markworth JF, Cameron-Smith D. Considerations on mTOR regulation at serine 2448: implications for muscle metabolism studies. Cell Mol Life Sci 2017; 74:2537-2545. [PMID: 28220207 PMCID: PMC11107628 DOI: 10.1007/s00018-017-2481-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 02/03/2023]
Abstract
The mammalian target of rapamycin (mTOR) complex exerts a pivotal role in protein anabolism and cell growth. Despite its importance, few studies adequately address the complexity of phosphorylation of the mTOR protein itself to enable conclusions to be drawn on the extent of kinase activation following this event. In particular, a large number of studies in the skeletal muscle biology field have measured Serine 2448 (Ser2448) phosphorylation as a proxy of mTOR kinase activity. However, the evidence to be described is that Ser2448 is not a measure of mTOR kinase activity nor is a target of AKT activity and instead has inhibitory effects on the kinase that is targeted by the downstream effector p70S6K in a negative feedback loop mechanism, which is evident when revisiting muscle research studies. It is proposed that this residue modification acts as a fine-tuning mechanism that has been gained during vertebrate evolution. In conclusion, it is recommended that Ser2448 is an inadequate measure and that preferential analysis of mTORC1 activation should focus on the downstream and effector proteins, including p70S6K and 4E-BP1, along mTOR protein partners that bind to mTOR protein to form the active complexes 1 and 2.
Collapse
Affiliation(s)
- Vandré Casagrande Figueiredo
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1023, New Zealand
| | - James F Markworth
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1023, New Zealand
| | - David Cameron-Smith
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1023, New Zealand.
| |
Collapse
|
218
|
Knaup KX, Guenther R, Stoeckert J, Monti JM, Eckardt KU, Wiesener MS. HIF is not essential for suppression of experimental tumor growth by mTOR inhibition. J Cancer 2017; 8:1809-1817. [PMID: 28819378 PMCID: PMC5556644 DOI: 10.7150/jca.16486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/23/2017] [Indexed: 01/18/2023] Open
Abstract
The Hypoxia Inducible Transcription Factor (HIF) is the master regulator of cellular response to hypoxic adaptation. Solid tumors inevitably harbour hypoxic regions with subsequent stabilization and activation of HIF and HIF target genes due to poor vascularization and rapid growth. The mammalian target of rapamycin (mTOR) is a global regulator of cellular growth and proliferation, which can also regulate HIF expression independantly of hypoxia via specific activation of cellular translation and transcription. An effective blockade of mTOR results in attenuation of HIF under hypoxic conditions in vitro. This mechanism could enable a simultaneous inhibition of both the mTOR- and the HIF-pathway, resulting in an effective tool for cancer targeting. We set out to analyze the effect of mTOR inhibition and the involvement of mTOR regulation on HIF in vivo in a subcutaneous xenograft model in nude mice. Our results demonstrate that mTOR inhibition in our model leads to a clear reduction in tumor growth of various cellular origins, most likely due to inhibition of cellular proliferation. Moreover, these effects can also be achieved independently of the HIF status of the tumor cells. The HIF levels per se seem to remain unaffected by mTOR inhibition, probably due to the profound hypoxic environment in these threedimensional structures, consequently leading to a strong HIF stabillization. Therefore, treatment of these experimental tumors with mTOR inhibitors is an effective tool to achieve size regression. The involvement of and the effect on HIF in this in vivo setting is nevertheless negligible.
Collapse
Affiliation(s)
- Karl X Knaup
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Regina Guenther
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Johanna Stoeckert
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Juliana M Monti
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michael S Wiesener
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
219
|
Zha GF, Qin HL, Youssif BG, Amjad MW, Raja MAG, Abdelazeem AH, Bukhari SNA. Discovery of potential anticancer multi-targeted ligustrazine based cyclohexanone and oxime analogs overcoming the cancer multidrug resistance. Eur J Med Chem 2017; 135:34-48. [DOI: 10.1016/j.ejmech.2017.04.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 01/09/2023]
|
220
|
Intravitreal itraconazole inhibits laser-induced choroidal neovascularization in rats. PLoS One 2017; 12:e0180482. [PMID: 28666022 PMCID: PMC5493406 DOI: 10.1371/journal.pone.0180482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/15/2017] [Indexed: 11/19/2022] Open
Abstract
Choroidal neovascularization (CNV) is a major cause of severe visual loss in patients with age-related macular degeneration (AMD). Recently, itraconazole has shown potent and dose-dependent inhibition of tumor-associated angiogenesis. We evaluated the anti-angiogenic effect of itraconazole in a rat model of laser-induced CNV. After laser photocoagulation in each eye to cause CNV, right eyes were administered intravitreal injections of itraconazole; left eyes received balanced salt solution (BSS) as controls. On day 14 after laser induction, fluorescein angiography (FA) was used to assess abnormal vascular leakage. Flattened retinal pigment epithelium (RPE)-choroid tissue complex was stained with Alexa Fluor 594-conjugated isolectin B4 to measure the CNV area and volume. Vascular endothelial growth factor receptor 2 (VEGFR2) mRNA and protein expression was determined 1, 4, 7, and 14 days after intravitreal injection by quantitative RT-PCR or Western blot. VEGF levels were analyzed by enzyme-linked immunosorbent assay (ELISA). Intravitreal itraconazole significantly reduced leakage from CNV as assessed by FA and CNV area and volume on flat mounts compared with intravitreal BSS (p = 0.002 for CNV leakage, p<0.001 for CNV area and volume). Quantitative RT-PCR showed significantly lower expression of VEGFR2 mRNA in the RPE-choroid complexes of itraconazole-injected eyes than those of BSS-injected eyes on days 7 and 14 (p = 0.003 and p = 0.006). Western blots indicated that VEGFR2 was downregulated after itraconazole treatment. ELISA showed a significant difference in VEGF level between itraconazole-injected and BSS-injected eyes on days 7 and 14 (p = 0.04 and p = 0.001). Our study demonstrated that intravitreal itraconazole significantly inhibited the development of laser-induced CNV in rats. Itraconazole had anti-angiogenic activity along with the reduction of VEGFR2 and VEGF levels. Itraconazole may prove beneficial for treating CNV as an alternative or adjunct to other therapies.
Collapse
|
221
|
Tabe Y, Tafuri A, Sekihara K, Yang H, Konopleva M. Inhibition of mTOR kinase as a therapeutic target for acute myeloid leukemia. Expert Opin Ther Targets 2017; 21:705-714. [PMID: 28537457 DOI: 10.1080/14728222.2017.1333600] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML), the most common acute leukemia in adults, remains a therapeutic challenge. The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway is one of the key aberrant intracellular axes involved in AML. Areas covered: mTOR plays a critical role in sensing and responding to environmental determinants such as nutrient availability, stress, and growth factor concentrations; and in modulating key cellular functions such as proliferation, metabolism, and survival. Although abnormalities of mTOR signaling are strongly associated with neoplastic leukemic proliferation, the role of pharmacologic inhibitors of mTOR in the treatment of AML has not been established. Expert opinion: Inhibition of mTOR signaling has in general modest growth-inhibitory effects in preclinical AML models and clinical trials. Yet, combination of allosteric mTOR inhibitors with standard chemotherapy or targeted agents has a greater anti-leukemia efficacy. In turn, dual mTORC1/2 inhibitors, and dual PI3K/mTOR inhibitors show greater activity in pre-clinical AML models. Further, understanding the role of mTOR signaling in stemness of leukemias is important because AML stem cells may become chemoresistant by displaying aberrant signaling molecules, modifying epigenetic mechanisms, and altering the components of the bone marrow microenvironment.
Collapse
Affiliation(s)
- Yoko Tabe
- a Department of Next Generation Hematology Laboratory Medicine , Juntendo University School of Medicine , Tokyo , Japan.,b Section of Molecular Hematology and Therapy, Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Agostino Tafuri
- c Dipartimento di Medicina Clinica e Molecolare , "Sapienza" University of Rome , Rome , Italy
| | - Kazumasa Sekihara
- d Leading Center for the Development and Research of Cancer Medicine , Juntendo University School of Medicine , Tokyo , Japan
| | - Haeun Yang
- d Leading Center for the Development and Research of Cancer Medicine , Juntendo University School of Medicine , Tokyo , Japan
| | - Marina Konopleva
- b Section of Molecular Hematology and Therapy, Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
222
|
Wu X, Wang K, Hua W, Li S, Liu X, Liu W, Song Y, Zhang Y, Shao Z, Yang C. Down-regulation of islet amyloid polypeptide expression induces death of human annulus fibrosus cells via mitochondrial and death receptor pathways. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1479-1491. [PMID: 28433710 DOI: 10.1016/j.bbadis.2017.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 01/07/2023]
Abstract
Islet amyloid polypeptide (IAPP) exerts its biological effects by participating in the regulation of glucose metabolism and cell apoptosis. The main goal of the present study was to investigate the expression of IAPP in degenerated intervertebral disc tissue and IAPP's modulation of extracellular matrix (ECM) catabolic and anabolic genes in human AF cells. We found that the expression of IAPP, the calcitonin receptor, and receptor activity modifying protein decreased considerably in AF cells during the progression of intervertebral disc degeneration (IDD). Meanwhile, transfection with pLV-siIAPP decreased the expression of IAPP and its receptors and reduced glucose uptake and the expression of aggrecan, Col2A1, and BG. Down-regulation of IAPP also induced a significant increase in reactive oxygen species generation in AF cells, along with a decrease in matrix metalloproteinases and an increase in the concentration of cellular Ca2+, ultimately leading to death. Further analysis revealed that siIAPP intervention promoted the release of cytochrome c from mitochondria, resulting in the activation of Caspase-3 and Caspase-9. In contrast, significantly decreased expression of Caspase-3 and Caspase-9 was observed in AF cells transfected with pLV-IAPP. The concentrations of Fas and FasL proteins were significantly decreased in AF cells transfected with PLV-IAPP, while activation of the Fas/FasL system and cell death were induced by siIAPP intervention. Mechanistically, AMPK/Akt-mTOR signaling pathways were involved. In conclusion, down-regulation of IAPP expression induces the death of human AF cells via mitochondrial and death receptor pathways, potentially offering a novel therapeutic target for the treatment of IDD.
Collapse
Affiliation(s)
- Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianzhe Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
223
|
Kaur A, Sharma S. Mammalian target of rapamycin (mTOR) as a potential therapeutic target in various diseases. Inflammopharmacology 2017; 25:293-312. [PMID: 28417246 DOI: 10.1007/s10787-017-0336-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/28/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that belongs to Phosphatidylinositol-3-kinase related kinase superfamily. The signaling pathways of mTOR are integrated through the protein complexes of mTORC1 and mTORC2. mTORC1 controls protein synthesis, cell growth, proliferation, autophagy, cell metabolism, and stress responses, whereas mTORC2 seems to regulate cell survival and polarity. Dysregulation of the mTOR pathway has been implicated in the pathophysiology of a number of disease conditions, including cancer, cardiovascular, neurodegenerative, and various renal diseases. The hyperactivation of the mTOR pathway leads to increase in cell growth and proliferation and also has been documented to stimulate tumor growth. Therefore, investigation of the involvement of mTOR and its downstream pathways in various diseases intensively preoccupied scientific community. The present review is focussed on recent advances in the understanding of the mTOR signaling pathway and its role in health and various diseases.
Collapse
Affiliation(s)
- Avileen Kaur
- Cardiovascular Division, Department of Pharmacology, I. S. F. College of Pharmacy, Moga, Punjab, 142001, India
| | - Saurabh Sharma
- Cardiovascular Division, Department of Pharmacology, I. S. F. College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
224
|
Crowe J, Lumb FE, Harnett MM, Harnett W. Parasite excretory-secretory products and their effects on metabolic syndrome. Parasite Immunol 2017; 39. [PMID: 28066896 DOI: 10.1111/pim.12410] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/05/2017] [Indexed: 12/19/2022]
Abstract
Obesity, one of the main causes of metabolic syndrome (MetS), is an increasingly common health and economic problem worldwide, and one of the major risk factors for developing type 2 diabetes and cardiovascular disease. Chronic, low-grade inflammation is associated with MetS and obesity. A dominant type 2/anti-inflammatory response is required for metabolic homoeostasis within adipose tissue: during obesity, this response is replaced by infiltrating, inflammatory macrophages and T cells. Helminths and certain protozoan parasites are able to manipulate the host immune response towards a TH2 immune phenotype that is beneficial for their survival, and there is emerging data that there is an inverse correlation between the incidence of MetS and helminth infections, suggesting that, as with autoimmune and allergic diseases, helminths may play a protective role against MetS disease. Within this review, we will focus primarily on the excretory-secretory products that the parasites produce to modulate the immune system and discuss their potential use as therapeutics against MetS and its associated pathologies.
Collapse
Affiliation(s)
- J Crowe
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - F E Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - M M Harnett
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - W Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
225
|
Zhao Y, Zhang Y, Li J, Zheng N, Xu X, Yang J, Xia G, Zhang M. MAPK3/1 participates in the activation of primordial follicles through mTORC1-KITL signaling. J Cell Physiol 2017; 233:226-237. [PMID: 28218391 DOI: 10.1002/jcp.25868] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/17/2017] [Indexed: 12/13/2022]
Abstract
The majority of ovarian primordial follicles are preserved in a dormant state to maintain the female reproductive lifespan, and only a few primordial follicles are activated to enter the growing follicle pool in each wave. Recent studies have shown that primordial follicular activation depends on mammalian target of rapamycin complex 1 (mTORC1)-KIT ligand (KITL) signaling in pre-granulosa cells and its receptor (KIT)-phosphoinositol 3 kinase (PI3K) signaling in oocytes. However, the upstream regulator of mTORC1 signaling is unclear. The results of the present study showed that the phosphorylated mitogen-activated protein kinase3/1 (MAPK3/1) protein is expressed in some primordial follicles and all growing follicles. Culture of 3 days post-parturition (dpp) ovaries with the MAPK3/1 signaling inhibitor U0126 significantly reduced the number of activated follicles and was accompanied by dramatically reduced granulosa cell proliferation and increased oocyte apoptosis. Western blot and immunofluorescence analyses showed that U0126 significantly decreased the phosphorylation levels of Tsc2, S6K1, and rpS6 and the expression of KITL, indicating that U0126 inhibits mTORC1-KITL signaling. Furthermore, U0126 decreased the phosphorylation levels of Akt, resulting in a decreased number of oocytes with Foxo3 nuclear export. To further investigate MAPK3/1 signaling in primordial follicle activation, we used phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inhibitor bpV(HOpic) to promote primordial follicle activation. In this model, U0126 also inhibited the activation of primordial follicles and mTORC1 signaling. Thus, these results suggest that MAPK3/1 participates in primordial follicle activation through mTORC1-KITL signaling.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Yu Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jia Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Nana Zheng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Xiaoting Xu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jing Yang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Guoliang Xia
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Meijia Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
226
|
Yamamoto J, Nishio S, Hattanda F, Nakazawa D, Kimura T, Sata M, Makita M, Ishikawa Y, Atsumi T. Branched-chain amino acids enhance cyst development in autosomal dominant polycystic kidney disease. Kidney Int 2017; 92:377-387. [PMID: 28341273 DOI: 10.1016/j.kint.2017.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 02/06/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney and liver cysts. The mammalian target of rapamycin (mTOR) cascade is one of the important pathways regulating cyst growth in ADPKD. Branched-chain amino acids (BCAAs), including leucine, play a crucial role to activate mTOR pathway. Therefore, we administered BCAA dissolved in the drinking water to Pkd1flox/flox:Mx1-Cre (cystic) mice from four to 22 weeks of age after polyinosinic-polycytidylic acid-induced conditional Pkd1 knockout at two weeks of age. The BCAA group showed significantly greater kidney/body weight ratio and higher cystic index in both the kidney and liver compared to the placebo-treated mice. We found that the L-type amino acid transporter 1 that facilitates BCAA entry into cells is strongly expressed in cells lining the cysts. We also found increased cyst-lining cell proliferation and upregulation of mTOR and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways in the BCAA group. In vitro, we cultured renal epithelial cell lines from Pkd1 null mice with or without leucine. Leucine was found to stimulate cell proliferation, as well as activate mTOR and MAPK/ERK pathways in these cells. Thus, BCAA accelerated disease progression by mTOR and MAPK/ERK pathways. Hence, BCAA may be harmful to patients with ADPKD.
Collapse
Affiliation(s)
- Junya Yamamoto
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Saori Nishio
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Fumihiko Hattanda
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Daigo Nakazawa
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Michio Sata
- Liver Cancer Research Division, Kurume University, Kurume, Japan
| | - Minoru Makita
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasunobu Ishikawa
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tatsuya Atsumi
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
227
|
Hellsten SV, Eriksson MM, Lekholm E, Arapi V, Perland E, Fredriksson R. The gene expression of the neuronal protein, SLC38A9, changes in mouse brain after in vivo starvation and high-fat diet. PLoS One 2017; 12:e0172917. [PMID: 28235079 PMCID: PMC5325605 DOI: 10.1371/journal.pone.0172917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/03/2017] [Indexed: 11/18/2022] Open
Abstract
SLC38A9 is characterized as a lysosomal component of the amino acid sensing Ragulator-RAG GTPase complex, controlling the mechanistic target of rapamycin complex 1 (mTORC1). Here, immunohistochemistry was used to map SLC38A9 in mouse brain and staining was detected throughout the brain, in cortex, hypothalamus, thalamus, hippocampus, brainstem and cerebellum. More specifically, immunostaining was found in areas known to be involved in amino acid sensing and signaling pathways e.g. piriform cortex and hypothalamus. SLC38A9 immunoreactivity co-localized with both GABAergic and glutamatergic neurons, but not with astrocytes. SLC38A9 play a key role in the mTORC1 pathway, and therefore we performed in vivo starvation and high-fat diet studies, to measure gene expression alterations in specific brain tissues and in larger brain regions. Following starvation, Slc38a9 was upregulated in brainstem and cortex, and in anterior parts of the brain (Bregma 3.2 to -2.1mm). After high-fat diet, Slc38a9 was specifically upregulated in hypothalamus, while overall downregulation was noticed throughout the brain (Bregma 3.2 to -8.6mm).
Collapse
Affiliation(s)
- Sofie V. Hellsten
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology, Uppsala University, Uppsala SE, Sweden
- * E-mail:
| | - Mikaela M. Eriksson
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology, Uppsala University, Uppsala SE, Sweden
| | - Emilia Lekholm
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology, Uppsala University, Uppsala SE, Sweden
| | - Vasiliki Arapi
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology, Uppsala University, Uppsala SE, Sweden
| | - Emelie Perland
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology, Uppsala University, Uppsala SE, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Molecular Neuropharmacology, Uppsala University, Uppsala SE, Sweden
| |
Collapse
|
228
|
Menon D, Salloum D, Bernfeld E, Gorodetsky E, Akselrod A, Frias MA, Sudderth J, Chen PH, DeBerardinis R, Foster DA. Lipid sensing by mTOR complexes via de novo synthesis of phosphatidic acid. J Biol Chem 2017; 292:6303-6311. [PMID: 28223357 DOI: 10.1074/jbc.m116.772988] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Indexed: 11/06/2022] Open
Abstract
mTOR, the mammalian target of rapamycin, integrates growth factor and nutrient signals to promote a transformation from catabolic to anabolic metabolism, cell growth, and cell cycle progression. Phosphatidic acid (PA) interacts with the FK506-binding protein-12-rapamycin-binding (FRB) domain of mTOR, which stabilizes both mTOR complexes: mTORC1 and mTORC2. We report here that mTORC1 and mTORC2 are activated in response to exogenously supplied fatty acids via the de novo synthesis of PA, a central metabolite for membrane phospholipid biosynthesis. We examined the impact of exogenously supplied fatty acids on mTOR in KRas-driven cancer cells, which are programmed to utilize exogenous lipids. The induction of mTOR by oleic acid was dependent upon the enzymes responsible for de novo synthesis of PA. Suppression of the de novo synthesis of PA resulted in G1 cell cycle arrest. Although it has long been appreciated that mTOR is a sensor of amino acids and glucose, this study reveals that mTOR also senses the presence of lipids via production of PA.
Collapse
Affiliation(s)
- Deepak Menon
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,the Biochemistry Program and
| | - Darin Salloum
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,the Biology Program, Graduate Center of the City University of New York, New York, New York 10016
| | - Elyssa Bernfeld
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,the Biochemistry Program and
| | - Elizabeth Gorodetsky
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Alla Akselrod
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Maria A Frias
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Jessica Sudderth
- the Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Pei-Hsuan Chen
- the Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Ralph DeBerardinis
- the Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - David A Foster
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, .,the Biochemistry Program and.,the Biology Program, Graduate Center of the City University of New York, New York, New York 10016.,the Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021
| |
Collapse
|
229
|
mTORC1 and -2 Coordinate Transcriptional and Translational Reprogramming in Resistance to DNA Damage and Replicative Stress in Breast Cancer Cells. Mol Cell Biol 2017; 37:MCB.00577-16. [PMID: 27956700 DOI: 10.1128/mcb.00577-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/02/2016] [Indexed: 01/04/2023] Open
Abstract
mTOR coordinates growth signals with metabolic pathways and protein synthesis and is hyperactivated in many human cancers. mTOR exists in two complexes: mTORC1, which stimulates protein, lipid, and ribosome biosynthesis, and mTORC2, which regulates cytoskeleton functions. While mTOR is known to be involved in the DNA damage response, little is actually known regarding the functions of mTORC1 compared to mTORC2 in this regard or the respective impacts on transcriptional versus translational regulation. We show that mTORC1 and mTORC2 are both required to enact DNA damage repair and cell survival, resulting in increased cancer cell survival during DNA damage. Together mTORC1 and -2 enact coordinated transcription and translation of protective cell cycle and DNA replication, recombination, and repair genes. This coordinated transcriptional-translational response to DNA damage was not impaired by rapalog inhibition of mTORC1 or independent inhibition of mTORC1 or mTORC2 but was blocked by inhibition of mTORC1/2. Only mTORC1/2 inhibition reversed cancer cell resistance to DNA damage and replicative stress and increased tumor cell killing and tumor control by DNA damage therapies in animal models. When combined with DNA damage, inhibition of mTORC1/2 blocked transcriptional induction more strongly than translation of DNA replication, survival, and DNA damage response mRNAs.
Collapse
|
230
|
Reyes R, Wani NA, Ghoshal K, Jacob ST, Motiwala T. Sorafenib and 2-Deoxyglucose Synergistically Inhibit Proliferation of Both Sorafenib-Sensitive and -Resistant HCC Cells by Inhibiting ATP Production. Gene Expr 2017; 17:129-140. [PMID: 27938509 PMCID: PMC5296238 DOI: 10.3727/105221616x693855] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally. Sorafenib is the only first-line systemic drug for advanced HCC, but it has very limited survival benefits because patients treated with sorafenib either suffer from side effects or show disease progression after initial response. Thus, there is an urgent need to develop novel strategies for first-line and second-line therapies. The association between sorafenib resistance and glycolysis prompted us to screen several drugs with known antiglycolytic activity to identify those that will sensitize cells to sorafenib. We demonstrate that the combination of glycolytic inhibitor 2-deoxyglucose (2DG) and sorafenib drastically inhibits viability of sorafenib-sensitive and -resistant cells. However, the combination of other antiglycolytic drugs like lonidamine, gossypol, 3-bromopyruvate, and imatinib with sorafenib does not show synergistic effect. Cell cycle analysis revealed that the combination of 2DG and sorafenib induced cell cycle arrest at G0/G1. Mechanistic investigation suggests that the cell cycle arrest is due to depletion of cellular ATP that activates AMP-activated protein kinase (AMPK), which, in turn, inhibits mammalian target of rapamycin (mTOR) to induce cell cycle arrest. This study provides strong evidence for the therapeutic potential of the combination of sorafenib and 2DG for HCC.
Collapse
Affiliation(s)
- Ryan Reyes
- *Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Nissar A. Wani
- *Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Kalpana Ghoshal
- †Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- ‡Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Samson T. Jacob
- *Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- ‡Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Tasneem Motiwala
- §Department of Biomedical Informatics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
231
|
Ogawa S, Ishimura T, Miyake H, Fujisawa M. Expression profile of mammalian target of rapamycin-related proteins in graft biopsy specimens: Significance for predicting interstitial fibrosis after kidney transplantation. Int J Urol 2017; 24:223-229. [PMID: 28173612 DOI: 10.1111/iju.13287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/15/2016] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To investigate the influence of the expression profile of mammalian target of rapamycin-related proteins on the development of interstitial fibrosis after kidney transplantation. METHODS Immunohistochemical staining was carried out to evaluate the expression of five mammalian target of rapamycin-related proteins (phosphorylated-Akt, Ras homolog enriched in brain, phosphorylated-mammalian target of rapamycin, phosphorylated-p70 ribosomal S6 kinase and phosphorylated-4E binding protein 1) in graft biopsy specimens obtained from 77 patients at 3 months after kidney transplantation. The change of the estimated glomerular filtration rate and the change of the fibrosis index (defined as the change in the percent area of fibrosis on Masson's trichrome-stained sections of biopsy specimens) from 3 months to 3 years after kidney transplantation were determined. RESULTS There was a significant correlation between change of the estimated glomerular filtration and change of the fibrosis index in the 77 patients. Univariate analysis identified expression of phosphorylated-Akt, phosphorylated-mammalian target of rapamycin and phosphorylated-p70 ribosomal S6 kinase, as well as donor type and pre-transplant dialysis duration, as significant predictors of a change of the fibrosis index >10%. However, only phosphorylated-mammalian target of rapamycin expression, phosphorylated-p70 ribosomal S6 kinase expression and donor type were independently associated with a change of the fibrosis index >10% according to multivariate analysis. CONCLUSIONS These findings suggest that mammalian target of rapamycin-related proteins are involved in the development of interstitial fibrosis after kidney transplantation.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Division of Urology, Department of Surgery, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Ishimura
- Division of Urology, Department of Surgery, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideaki Miyake
- Division of Urology, Department of Surgery, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Fujisawa
- Division of Urology, Department of Surgery, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
232
|
Calimeri T, Ferreri AJM. m-TOR inhibitors and their potential role in haematological malignancies. Br J Haematol 2017; 177:684-702. [PMID: 28146265 DOI: 10.1111/bjh.14529] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
It is widely demonstrated that the PI3K-AKT-mTOR signalling is critical in normal myeloid and lymphoid development and function. Thus, it is not strange that this pathway is often deregulated in haematological tumours, providing a strong preclinical rationale for the use of drugs targeting the PI3K-AKT-mTOR axis in haematological malignancies. The main focus of this review is to examine the mammalian target of rapamycin (mTOR, also termed mechanistic target of rapamycin [MTOR]) signalling pathways and to provide a brief overview of rapalogs and second-generation mTOR inhibitors used to target its aberrant activation in cancer treatment. We will also discuss the results obtained with the use of these agents in patients with acute leukaemia, Hodgkin lymphoma, non-Hodgkin lymphomas, multiple myeloma and Waldenström macroglobulinaemia. Ongoing clinical trials in haematological malignancies that are investigating first- and second-generation mTOR inhibitors as single agents and as components of combination regimens are also presented.
Collapse
Affiliation(s)
- Teresa Calimeri
- Unit of Lymphoid Malignancies, Department of Onco-Haematology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Andrés J M Ferreri
- Unit of Lymphoid Malignancies, Department of Onco-Haematology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
233
|
Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat Immunol 2017; 18:293-302. [PMID: 28092373 PMCID: PMC5321578 DOI: 10.1038/ni.3655] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
Aggregation of hypertrophic macrophages constitutes the basis of all granulomatous diseases such as tuberculosis or sarcoidosis and is decisive for disease pathogenesis. However, macrophage-intrinsic pathways driving granuloma initiation and maintenance remain elusive. Here we show that activation of the metabolic checkpoint kinase mTORC1 in macrophages by deletion of Tsc2 was sufficient to induce hypertrophy and proliferation resulting in excessive granuloma formation in vivo. TSC2-deficient macrophages formed mTORC1-dependent granulomatous structures in vitro and showed constitutive proliferation mediated by the neo-expression of cyclin-dependent kinase 4 (CDK4). Moreover, mTORC1 promoted metabolic reprogramming via CDK4 towards increased glycolysis, while simultaneously inhibiting NF-κB signaling and apoptosis. Inhibition of mTORC1 induced apoptosis and completely resolved granulomas in myeloid TSC2-deficient mice. In human sarcoidosis patients mTORC1 activation, macrophage proliferation, and glycolysis were identified as hallmarks that correlated with clinical disease progression. Collectively, TSC2 maintains macrophage quiescence and prevents mTORC1-dependent granulomatous disease with clinical implications for sarcoidosis.
Collapse
|
234
|
Feng Y, Wu L. mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival. Biochem Biophys Res Commun 2017; 483:897-903. [PMID: 28082200 DOI: 10.1016/j.bbrc.2017.01.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/08/2017] [Indexed: 11/25/2022]
Abstract
Although mTOR (mammalian target of rapamycin) activation is frequently observed in acute myeloid leukemia (AML) patients, the precise function and the downstream targets of mTOR are poorly understood. Here we revealed that PFKFB3, but not PFKFB1, PFKFB2 nor PFKFB4 was a novel downstream substrate of mTOR signaling pathway as PFKFB3 level was augmented after knocking down TSC2 in THP1 and OCI-AML3 cells. Importantly, PFKFB3 silencing suppressed glycolysis and cell proliferation of TSC2 silencing OCI-AML3 cells and activated apoptosis pathway. These results suggested that mTOR up-regulation of PFKFB3 was essential for AML cells survival. Mechanistically, Rapamycin treatment or Raptor knockdown reduced the expression of PFKFB3 in TSC2 knockdown cells, while Rictor silencing did not have such effect. Furthermore, we also revealed that mTORC1 up-regulated PFKFB3 was dependent on hypoxia-inducible factor 1α (HIF1α), a positive regulator of glycolysis. Moreover, PFKFB3 inhibitor PFK15 and rapamycin synergistically blunted the AML cell proliferation. Taken together, PFKFB3 was a promising drug target in AML patients harboring mTOR hyper-activation.
Collapse
Affiliation(s)
- Yonghuai Feng
- Department of Hematology, Peking University People's Hospital, Beijing, China; Institute of Hematology, Peking University, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| | - Liusong Wu
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| |
Collapse
|
235
|
Hirayama Y, Koizumi S. Hypoxia-independent mechanisms of HIF-1α expression in astrocytes after ischemic preconditioning. Glia 2017; 65:523-530. [PMID: 28063215 DOI: 10.1002/glia.23109] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 11/06/2022]
Abstract
We recently demonstrated that ischemic tolerance was dependent on astrocytes, for which HIF-1α had an essential role. The mild ischemia (preconditioning; PC) increased HIF-1α in a biphasic pattern, that is, a quick and transient increase in neurons, followed by a slow and sustained increase in astrocytes. However, mechanisms underlying such temporal difference in HIF-1α increase remain totally unknown. Here, we show that unlike a hypoxia-dependent mechanism in neurons, astrocytes increase HIF-1α via a novel hypoxia-independent but P2X7-dependent mechanism. Using a middle cerebral artery occlusion (MCAO) model of mice, we found that the PC (a 15-min MCAO period)-evoked increase in HIF-1α in neurons was quick and transient (from 1 to 3 days after PC), but that in astrocytes was slow-onset and long-lasting (from 3 days to at least 2 weeks after PC). The neuronal HIF-1α increase was dependent on inhibition of PHD2, an oxygen-dependent HIF-1α degrading enzyme, whereas astrocytic one was independent of PHD2. Astrocytes even do not possess this enzyme. Instead, they produced a sustained increase in P2X7 receptors, activation of which resulted in HIF-1α increase. The hypoxia-independent but P2X7-receptor-dependent mechanism could allow astrocytes to cause long-lasting HIF-1α expression, thereby leading to induction of ischemic tolerance efficiently. GLIA 2017;65:523-530.
Collapse
Affiliation(s)
- Yuri Hirayama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan.,Department of Liaison Academy, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|
236
|
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci Ther 2017; 23:5-22. [PMID: 27873462 PMCID: PMC6492703 DOI: 10.1111/cns.12655] [Citation(s) in RCA: 370] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and characterized by the progressive degeneration of the function and structure of the central nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of their high energy requirements, neurons are especially vulnerable to injury and death from dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die because they can no longer produce enough energy. Several lines of pathological and physiological evidence reveal that impaired mitochondrial function and dynamics play crucial roles in aging and pathogenesis of neurodegenerative diseases. As mitochondria are the major intracellular organelles that regulate both cell survival and death, they are highly considered as a potential target for pharmacological-based therapies. The purpose of this review was to present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) and the importance of mitochondrial biogenesis as a potential novel therapeutic target for their treatment. Likewise, we highlight a concise overview of the key roles of mitochondrial electron transport chain (ETC.) complexes as well as mitochondrial biogenesis regulators regarding those diseases.
Collapse
Affiliation(s)
- Mojtaba Golpich
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Elham Amini
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Zahurin Mohamed
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Raymond Azman Ali
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | | | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
237
|
Patel D, Salloum D, Saqcena M, Chatterjee A, Mroz V, Ohh M, Foster DA. A Late G1 Lipid Checkpoint That Is Dysregulated in Clear Cell Renal Carcinoma Cells. J Biol Chem 2016; 292:936-944. [PMID: 27956548 DOI: 10.1074/jbc.m116.757864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Lipids are important nutrients that proliferating cells require to maintain energy homeostasis as well as to build plasma membranes for newly synthesized cells. Previously, we identified nutrient-sensing checkpoints that exist in the latter part of the G1 phase of the cell cycle that are dependent upon essential amino acids, Gln, and finally, a checkpoint mediated by mammalian target of rapamycin (mTOR), which integrates signals from both nutrients and growth factors. In this study, we have identified and temporally mapped a lipid-mediated G1 checkpoint. This checkpoint is located after the Gln checkpoint and before the mTOR-mediated cell cycle checkpoint. Intriguingly, clear cell renal cell carcinoma cells (ccRCC) have a dysregulated lipid-mediated checkpoint due in part to defective phosphatase and tensin homologue (PTEN). When deprived of lipids, instead of arresting in G1, these cells continue to cycle and utilize lipid droplets as a source of lipids. Lipid droplets have been known to maintain endoplasmic reticulum homeostasis and prevent cytotoxic endoplasmic reticulum stress in ccRCC. Dysregulation of the lipid-mediated checkpoint forces these cells to utilize lipid droplets, which could potentially lead to therapeutic opportunities that exploit this property of ccRCC.
Collapse
Affiliation(s)
- Deven Patel
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,the Biochemistry Program and
| | - Darin Salloum
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,Biology Program, Graduate Center of the City University of New York, New York, New York 10016
| | - Mahesh Saqcena
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,the Biochemistry Program and
| | - Amrita Chatterjee
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.,Biology Program, Graduate Center of the City University of New York, New York, New York 10016
| | - Victoria Mroz
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Michael Ohh
- the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David A Foster
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, .,the Biochemistry Program and.,Biology Program, Graduate Center of the City University of New York, New York, New York 10016.,the Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, and
| |
Collapse
|
238
|
Ma F, Zhou Z, Li N, Zheng L, Wu C, Niu B, Tang F, He X, Li G, Hua J. Lin28a promotes self-renewal and proliferation of dairy goat spermatogonial stem cells (SSCs) through regulation of mTOR and PI3K/AKT. Sci Rep 2016; 6:38805. [PMID: 27941834 PMCID: PMC5150521 DOI: 10.1038/srep38805] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/15/2016] [Indexed: 12/14/2022] Open
Abstract
Lin28a is a conserved RNA-binding protein that plays an important role in development, pluripotency, stemness maintenance, proliferation and self-renewal. Early studies showed that Lin28a serves as a marker of spermatogonial stem cells (SSCs) and promotes the proliferation capacity of mouse SSCs. However, there is little information about Lin28a in livestock SSCs. In this study, we cloned Capra hircus Lin28a CDS and found that it is evolutionarily conserved. Lin28a is widely expressed in different tissues of Capra hircus, but is expressed at a high level in the testis. Lin28a is specifically located in the cytoplasm of Capra hircus spermatogonial stem cells and may also be a marker of dairy goat spermatogonial stem cells. Lin28a promoted proliferation and maintained the self-renewal of GmGSCs-I-SB in vivo and in vitro. Lin28a-overexpressing GmGSCs-I-SB showed an enhanced proliferation rate, which might be due to increased PCNA expression. Moreover, Lin28a maintained the self-renewal of GmGSCs-I-SB by up-regulating the expression of OCT4, SOX2, GFRA1, PLZF and ETV5. Furthermore, we found that Lin28a may activate the AKT, ERK, and mTOR signaling pathways to promote the proliferation and maintain the self-renewal of GmGSCs-I-SB.
Collapse
Affiliation(s)
- Fanglin Ma
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Zhe Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Chongyang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Bowen Niu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Furong Tang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| |
Collapse
|
239
|
Cheng K, Hao M. Metformin Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition via PKM2 Relative-mTOR/p70s6k Signaling Pathway in Cervical Carcinoma Cells. Int J Mol Sci 2016; 17:E2000. [PMID: 27916907 PMCID: PMC5187800 DOI: 10.3390/ijms17122000] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/19/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) plays a prominent role in tumorigenesis. Metformin exerts antitumorigenic effects in various cancers. This study investigated the mechanisms of metformin in TGF-β1-induced Epithelial-to-mesenchymal transition (EMT) in cervical carcinoma cells. METHODS cells were cultured with 10 ng/mL TGF-β1 to induce EMT and treated with or without metformin. Cell viability was evaluated by CCK-8 (Cell Counting Kit 8, CCK-8) assay; apoptosis were analyzed by flow cytometry; cell migration was evaluated by wound-healing assay. Western blotting was performed to detect E-cadherin, vimentin, signal transducer and activator of transcription 3 (STAT3), snail family transcriptional repressor 2 (SNAIL2), phosphorylation of p70s6k (p-p70s6k) and -Pyruvate kinase M2 (PKM2) Results: TGF-β1 promoted proliferation and migration, and it attenuated apoptosis compared with cells treated with metformin with or without TGF-β1 in cervical carcinoma cells. Moreover, metformin partially abolished TGF-β1-induced EMT cell proliferation and reversed TGF-β1-induced EMT. In addition, the anti-EMT effects of metformin could be partially in accord with rapamycin, a specific mTOR inhibitor. Metformin decreased the p-p70s6k expression and the blockade of mTOR/p70s6k signaling decreased PKM2 expression. CONCLUSION Metformin abolishes TGF-β1-induced EMT in cervical carcinoma cells by inhibiting mTOR/p70s6k signaling to down-regulate PKM2 expression. Our study provides a novel mechanistic insight into the anti-tumor effects of metformin.
Collapse
Affiliation(s)
- Keyan Cheng
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan 030000, China.
| | - Min Hao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan 030000, China.
| |
Collapse
|
240
|
Qin C, Qiu K, Sun W, Jiao N, Zhang X, Che L, Zhao H, Shen H, Yin J. A proteomic adaptation of small intestinal mucosa in response to dietary protein limitation. Sci Rep 2016; 6:36888. [PMID: 27841298 PMCID: PMC5107940 DOI: 10.1038/srep36888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/21/2016] [Indexed: 12/14/2022] Open
Abstract
Dietary protein limitation (PL) is not only beneficial to human health but also applied to minimize nitrogen excretion in livestock production. However, the impact of PL on intestinal physiology is largely unknown. In this study, we identified 5275 quantitative proteins using a porcine model in which pigs suffered PL. A total of 202 proteins |log2 fold-change| > 1 were taken as differentially expressed proteins and subjected to functional and pathway enrichment analysis to reveal proteomic alterations of the jejunal mucosa. Combining with the results of western blotting analysis, we found that protein/carbohydrate digestion, intestinal mucosal tight junction and cell adhesion molecules, and the immune response to foreign antigens were increased in the jejunal mucosa of the pigs upon PL. In contrast, amino acid transport, innate and auto immunity, as well as cell proliferation and apoptosis were reduced. In addition, the expression of functional proteins that involved in DNA replication, transcription and mRNA splicing as well as translation were altered in the jejunal mucosa in response to PL. Furthermore, PL may reduce amino acid transport and cell proliferation through the depression of mTOR pathway. This study provides new insights into the molecular mechanisms underlying the small intestinal response to PL.
Collapse
Affiliation(s)
- Chunfu Qin
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Kai Qiu
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Wenjuan Sun
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Ning Jiao
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Xin Zhang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Lianqiang Che
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 625099, P. R. China
| | - Haiyi Zhao
- Genecreate Biological Engineering Co., Ltd., National Bio-industry Base, Wuhan, 430075, P. R. China
| | - Hexiao Shen
- Genecreate Biological Engineering Co., Ltd., National Bio-industry Base, Wuhan, 430075, P. R. China
| | - Jingdong Yin
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
241
|
Yang H, Xiong X, Wang X, Li T, Yin Y. Effects of weaning on intestinal crypt epithelial cells in piglets. Sci Rep 2016; 6:36939. [PMID: 27830738 PMCID: PMC5103268 DOI: 10.1038/srep36939] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023] Open
Abstract
Intestinal epithelial cells in the crypt proliferate in piglets in response to weaning. However, the underlying mechanism has been unclear. We examined 40 piglets from eight litters (five piglets per litter) that were weaned at the age of 14 d, and one piglet from each litter was randomly selected for closer investigation. Based on the distended intestinal sac method, we isolated crypt epithelial cells from the mid-jejunum on Days 0, 1, 3, 5, and 7 post-weaning. Protein expression was analyzed using either isobaric tags for relative and absolute quantification or western blotting. Proteins related to the cell cycle, organization of the cellular macromolecular complex subunit, localization of cellular macromolecules, Golgi vesicle transport, fatty acid metabolism, oxidative phosphorylation, and translational initiation were mainly down-regulated, while those involved in glycolysis, cell cycle arrest, protein catabolism, and cellular amino acid metabolism were up-regulated. The amount of proteins active in the mTOR signaling pathway was generally decreased over time. These results indicate that weaning influences energy metabolism, cellular macromolecule organization and localization, and protein metabolism, thereby affecting the proliferation of intestinal epithelial cells in weaned piglets. Moreover, those cellular processes are possibly controlled by that signaling pathway.
Collapse
Affiliation(s)
- Huansheng Yang
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Xia Xiong
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Xiaocheng Wang
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Tiejun Li
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yulong Yin
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| |
Collapse
|
242
|
Callari M, Guffanti A, Soldà G, Merlino G, Fina E, Brini E, Moles A, Cappelletti V, Daidone MG. In-depth characterization of breast cancer tumor-promoting cell transcriptome by RNA sequencing and microarrays. Oncotarget 2016; 7:976-94. [PMID: 26556871 PMCID: PMC4808046 DOI: 10.18632/oncotarget.5810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023] Open
Abstract
Numerous studies have reported the existence of tumor-promoting cells (TPC) with self-renewal potential and a relevant role in drug resistance. However, pathways and modifications involved in the maintenance of such tumor subpopulations are still only partially understood. Sequencing-based approaches offer the opportunity for a detailed study of TPC including their transcriptome modulation. Using microarrays and RNA sequencing approaches, we compared the transcriptional profiles of parental MCF7 breast cancer cells with MCF7-derived TPC (i.e. MCFS). Data were explored using different bioinformatic approaches, and major findings were experimentally validated. The different analytical pipelines (Lifescope and Cufflinks based) yielded similar although not identical results. RNA sequencing data partially overlapped microarray results and displayed a higher dynamic range, although overall the two approaches concordantly predicted pathway modifications. Several biological functions were altered in TPC, ranging from production of inflammatory cytokines (i.e., IL-8 and MCP-1) to proliferation and response to steroid hormones. More than 300 non-coding RNAs were defined as differentially expressed, and 2,471 potential splicing events were identified. A consensus signature of genes up-regulated in TPC was derived and was found to be significantly associated with insensitivity to fulvestrant in a public breast cancer patient dataset. Overall, we obtained a detailed portrait of the transcriptome of a breast cancer TPC line, highlighted the role of non-coding RNAs and differential splicing, and identified a gene signature with a potential as a context-specific biomarker in patients receiving endocrine treatment.
Collapse
Affiliation(s)
- Maurizio Callari
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Giuseppe Merlino
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emanuela Fina
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | - Vera Cappelletti
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Grazia Daidone
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
243
|
Kwon Y, Cha J, Chiang J, Tran G, Giaever G, Nislow C, Hur JS, Kwak YS. A chemogenomic approach to understand the antifungal action of Lichen-derived vulpinic acid. J Appl Microbiol 2016; 121:1580-1591. [DOI: 10.1111/jam.13300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/15/2016] [Accepted: 09/11/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Y. Kwon
- Division of Applied Life Science; Gyeongsang National University; Jinju Korea
| | - J. Cha
- Department of Plant Medicine and Institute of Agriculture & Life Science; Gyeongsang National University; Jinju Korea
| | - J. Chiang
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - G. Tran
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - G. Giaever
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - C. Nislow
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - J.-S. Hur
- Korean Lichen Research Institute; Suncheon National University; Suncheon Korea
| | - Y.-S. Kwak
- Department of Plant Medicine and Institute of Agriculture & Life Science; Gyeongsang National University; Jinju Korea
| |
Collapse
|
244
|
Ignácio ZM, Réus GZ, Arent CO, Abelaira HM, Pitcher MR, Quevedo J. New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. Br J Clin Pharmacol 2016; 82:1280-1290. [PMID: 26613210 PMCID: PMC5061805 DOI: 10.1111/bcp.12845] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 02/07/2023] Open
Abstract
Despite the revolution in recent decades regarding monoamine involvement in the management of major depressive disorder (MDD), the biological mechanisms underlying this psychiatric disorder are still poorly understood. Currently available treatments require long time courses to establish antidepressant response and a significant percentage of people are refractory to single drug or combination drug treatment. These issues, and recent findings demonstrating the involvement of synaptic plasticity in the pathophysiological mechanisms of MDD, are encouraging researchers to explore the molecular mechanisms underlying psychiatric disease in more depth. The discovery of the rapid antidepressant effect exerted by glutamatergic and cholinergic agents highlights the mammalian target of rapamycin (mTOR) pathway as a critical pathway that contributes to the efficacy of these pharmacological agents in clinical and pre-clinical research. The mTOR pathway is a downstream intracellular signal that transmits information after the direct activation of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) and neurotrophic factor receptors. Activation of these receptors is hypothesized to be one of the major axes involved in the synthesis of synaptogenic proteins underlying synaptic plasticity and critical to both the rapid and delayed effects exerted by classic antidepressants. This review focuses on the involvement of mTOR in the pathophysiology of depression and on molecular mechanisms involved in the activity of emerging and classic antidepressant agents.
Collapse
Affiliation(s)
- Zuleide M Ignácio
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
- Laboratory of Physiology, Pharmacology, Pathology and Psychopathology, Campus Chapeco, Federal University of South Frontier, Chapeco, Santa Catarina, Brazil
| | - Gislaine Z Réus
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil.
| | - Camila O Arent
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Helena M Abelaira
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Meagan R Pitcher
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
245
|
Inositol polyphosphates intersect with signaling and metabolic networks via two distinct mechanisms. Proc Natl Acad Sci U S A 2016; 113:E6757-E6765. [PMID: 27791083 DOI: 10.1073/pnas.1606853113] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inositol-based signaling molecules are central eukaryotic messengers and include the highly phosphorylated, diffusible inositol polyphosphates (InsPs) and inositol pyrophosphates (PP-InsPs). Despite the essential cellular regulatory functions of InsPs and PP-InsPs (including telomere maintenance, phosphate sensing, cell migration, and insulin secretion), the majority of their protein targets remain unknown. Here, the development of InsP and PP-InsP affinity reagents is described to comprehensively annotate the interactome of these messenger molecules. By using the reagents as bait, >150 putative protein targets were discovered from a eukaryotic cell lysate (Saccharomyces cerevisiae). Gene Ontology analysis of the binding partners revealed a significant overrepresentation of proteins involved in nucleotide metabolism, glucose metabolism, ribosome biogenesis, and phosphorylation-based signal transduction pathways. Notably, we isolated and characterized additional substrates of protein pyrophosphorylation, a unique posttranslational modification mediated by the PP-InsPs. Our findings not only demonstrate that the PP-InsPs provide a central line of communication between signaling and metabolic networks, but also highlight the unusual ability of these molecules to access two distinct modes of action.
Collapse
|
246
|
Harada M, Benito J, Yamamoto S, Kaur S, Arslan D, Ramirez S, Jacamo R, Platanias L, Matsushita H, Fujimura T, Kazuno S, Kojima K, Tabe Y, Konopleva M. The novel combination of dual mTOR inhibitor AZD2014 and pan-PIM inhibitor AZD1208 inhibits growth in acute myeloid leukemia via HSF pathway suppression. Oncotarget 2016; 6:37930-47. [PMID: 26473447 PMCID: PMC4741975 DOI: 10.18632/oncotarget.6122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/26/2015] [Indexed: 11/25/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) signaling is a critical pathway in the biology of acute myeloid leukemia (AML). Proviral integration site for moloney murine leukemia virus (PIM) serine/threonine kinase signaling takes part in various pathways exerting tumorigenic properties. We hypothesized that the combination of a PIM kinase inhibitor with an mTOR inhibitor might have complementary growth-inhibitory effects against AML. The simultaneous inhibition of the PIM kinase by pan-PIM inhibitor AZD1208 and of mTOR by selective mTORC1/2 dual inhibitor AZD2014 exerted anticancer properties in AML cell lines and in cells derived from primary AML samples with or without supportive stromal cell co-culture, leading to suppressed proliferation and increased apoptosis. The combination of AZD1208 and AZD2014 rapidly activated AMPKα, a negative regulator of translation machinery through mTORC1/2 signaling in AML cells; profoundly inhibited AKT and 4EBP1 activation; and suppressed polysome formation. Inhibition of both mTOR and PIM counteracted induction of heat-shock family proteins, uncovering the master negative regulation of heat shock factor 1 (HSF1), the dominant transcription factor controlling cellular stress responses. The novel combination of the dual mTOR inhibitor and pan-PIM inhibitor synergistically inhibited AML growth by effectively reducing protein synthesis through heat shock factor pathway suppression.
Collapse
Affiliation(s)
- Masako Harada
- Research Institute for Environmental and Gender Specific Medicine, Juntendo University of Medicine, Tokyo, Japan.,Department of Laboratory Medicine, Juntendo University of Medicine, Tokyo, Japan
| | - Juliana Benito
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shinichi Yamamoto
- Department of Laboratory Medicine, Juntendo University of Medicine, Tokyo, Japan
| | - Surinder Kaur
- Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois, USA
| | - Dirim Arslan
- Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois, USA
| | - Santiago Ramirez
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rodrigo Jacamo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leonidas Platanias
- Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois, USA
| | - Hiromichi Matsushita
- Department of Laboratory Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Tsutomu Fujimura
- BioMedical Research Center, Juntendo University of Medicine, Tokyo, Japan.,Laboratory of Bioanalytical Chemistry, Tohoku Pharmaceutical University, Miyagi, Japan
| | - Saiko Kazuno
- BioMedical Research Center, Juntendo University of Medicine, Tokyo, Japan
| | - Kensuke Kojima
- Hematology, Respiratory Medicine and Oncology, Department of Medicine, Saga University, Saga, Japan
| | - Yoko Tabe
- Department of Laboratory Medicine, Juntendo University of Medicine, Tokyo, Japan.,Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
247
|
Chang CW, Abhinav K, Di Cara F, Panagakou I, Vass S, Heck MMS. A role for the metalloprotease invadolysin in insulin signaling and adipogenesis. Biol Chem 2016; 398:373-393. [PMID: 27622830 DOI: 10.1515/hsz-2016-0226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/04/2016] [Indexed: 01/24/2023]
Abstract
Invadolysin is a novel metalloprotease conserved amongst metazoans that is essential for life in Drosophila. We previously showed that invadolysin was essential for the cell cycle and cell migration, linking to metabolism through a role in lipid storage and interaction with mitochondrial proteins. In this study we demonstrate that invadolysin mutants exhibit increased autophagy and decreased glycogen storage - suggestive of a role for invadolysin in insulin signaling in Drosophila. Consistent with this, effectors of insulin signaling were decreased in invadolysin mutants. In addition, we discovered that invadolysin was deposited on newly synthesized lipid droplets in a PKC-dependent manner. We examined two in vitro models of adipogenesis for the expression and localization of invadolysin. The level of invadolysin increased during both murine 3T3-L1 and human Simpson-Golabi-Behmel syndrome (SGBS), adipogenesis. Invadolysin displayed a dynamic localization to lipid droplets over the course of adipogenesis, which may be due to the differential expression of distinct invadolysin variants. Pharmacological inhibition of adipogenesis abrogated the increase in invadolysin. In summary, our results on in vivo and in vitro systems highlight an important role for invadolysin in insulin signaling and adipogenesis.
Collapse
|
248
|
Bhattacharjee N, Barma S, Konwar N, Dewanjee S, Manna P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update. Eur J Pharmacol 2016; 791:8-24. [PMID: 27568833 DOI: 10.1016/j.ejphar.2016.08.022] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 02/09/2023]
Abstract
Diabetic nephropathy (DN), a chronic complication of diabetes, is charecterized by glomerular hypertrophy, proteinuria, decreased glomerular filtration, and renal fibrosis resulting in the loss of renal function. Although the exact cause of DN remains unclear, several mechanisms have been postulated, such as hyperglycemia-induced renal hyper filtration and renal injury, AGEs-induced increased oxidative stress, activated PKC-induced increased production of cytokines, chemokines, and different inflammatory and apoptotic signals. Among various factors, oxidative stress has been suggested to play a major role underlying the onset and propagation of DN. It triggers several signaling pathways involved in DN, like AGEs, PKC cascade, JAK/STAT signaling, MAPK, mTOR, and SMAD. Oxidative stress-induced activation of both inflammatory and apoptotic signals are two major problems in the pathogenesis of DN. The FDA approved pharmacotherapeutic agents affecting against polyol pathway principally include anti-oxidants, like α-lipoic acid, vitamin E, and vitamin C. Kremezin and benfotiamine are the FDA approved AGEs inhibitors, another therapeutic target against DN. Ruboxistaurin, telmizartan, rapamycin, fenofibrate, aliskiren, and manidipine are some FDA approved pharmacotherapeutics effective against DN via diverse mechanisms. Beside this, some therapeutic agents are still waiting for FDA approval and few drugs without FDA approval are also prescribed in some countries for the management of DN. Despite the medications available in the market to treat DN, the involvement of multiple mechanisms makes it difficult to choose an optimum therapeutic agent. Therefore, much research is required to find out new therapeutic agent/strategies for an adequate pharmacotherapy of DN.
Collapse
Affiliation(s)
- Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India
| | - Sujata Barma
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India
| | - Nandita Konwar
- Biological Science and Technology Division, CSIR-NEIST, Jorhat, Assam 785006, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Prasenjit Manna
- Biological Science and Technology Division, CSIR-NEIST, Jorhat, Assam 785006, India.
| |
Collapse
|
249
|
Pan H, Xu LH, Huang MY, Zha QB, Zhao GX, Hou XF, Shi ZJ, Lin QR, Ouyang DY, He XH. Piperine metabolically regulates peritoneal resident macrophages to potentiate their functions against bacterial infection. Oncotarget 2016; 6:32468-83. [PMID: 26439699 PMCID: PMC4741706 DOI: 10.18632/oncotarget.5957] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/12/2015] [Indexed: 11/25/2022] Open
Abstract
Pepper, a daily-used seasoning for promoting appetite, is widely used in folk medicine for treating gastrointestinal diseases. Piperine is the major alkaloid in pepper and possesses a wide range of pharmacological activities. However, the mechanism for linking metabolic and medicinal activities of piperine remains unknown. Here we report that piperine robustly boosts mTORC1 activity by recruiting more system L1 amino acid transporter (SLC7A5/SLC3A2) to the cell membrane, thus promoting amino acid metabolism. Piperine-induced increase of mTORC1 activity in resident peritoneal macrophages (pMΦs) is correlated with enhanced production of IL-6 and TNF-α upon LPS stimulation. Such an enhancement of cytokine production could be abrogated by inhibitors of the mTOR signaling pathway, indicating mTOR's action in this process. Moreover, piperine treatment protected resident pMΦs from bacterium-induced apoptosis and disappearance, and increased their bacterial phagocytic ability. Consequently, piperine administration conferred mice resistance against bacterial infection and even sepsis. Our data highlight that piperine has the capacity to metabolically reprogram peritoneal resident macrophages to fortify their innate functions against bacterial infection.
Collapse
Affiliation(s)
- Hao Pan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mei-Yun Huang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Gao-Xiang Zhao
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao-Feng Hou
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiu-Ru Lin
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
250
|
Schipany K, Rosner M, Ionce L, Hengstschläger M, Kovacic B. eIF3 controls cell size independently of S6K1-activity. Oncotarget 2016; 6:24361-75. [PMID: 26172298 PMCID: PMC4695191 DOI: 10.18632/oncotarget.4458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/19/2015] [Indexed: 12/16/2022] Open
Abstract
All multicellular organisms require a life-long regulation of the number and the size of cells, which build up their organs. mTOR acts as a signaling nodule for the regulation of protein synthesis and growth. To activate the translational cascade, mTOR phosphorylates S6 kinase (S6K1), which is liberated from the eIF3-complex and mobilized for activation of its downstream targets. How S6K1 regulates cell size remains unclear. Here, we challenged cell size control through S6K1 by specifically depleting its binding partner eIF3 in normal and transformed cell lines. We show that loss of eIF3 leads to a massive reduction of cell size and cell number accompanied with an unexpected increase in S6K1-activity. The hyperactive S6K1-signaling was rapamycin-sensitive, suggesting an upstream mTOR-regulation. A selective S6K1 inhibitor (PF-4708671) was unable to interfere with the reduced size, despite efficiently inhibiting S6K1-activity. Restoration of eIF3 expression recovered size defects, without affecting the p-S6 levels. We further show that two, yet uncharacterized, cancer-associated mutations in the eIF3-complex, have the capacity to recover from reduced size phenotype, suggesting a possible role for eIF3 in regulating cancer cell size. Collectively, our results uncover a role for eIF3-complex in maintenance of normal and neoplastic cell size - independent of S6K1-signaling.
Collapse
Affiliation(s)
- Katharina Schipany
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Margit Rosner
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Loredana Ionce
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Boris Kovacic
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|