201
|
Kim T, Cho YH. A pumpless cell culture chip with the constant medium perfusion-rate maintained by balanced droplet dispensing. LAB ON A CHIP 2011; 11:1825-30. [PMID: 21487577 DOI: 10.1039/c1lc20234k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This paper presents a pumpless cell culture chip, where a constant-rate medium perfusion is achieved by balanced droplet dispensing. Previous pumpless cell culture chips, where the gravity-driven flow is induced by gradually decreasing the hydraulic-head difference, Δh, between source and drain reservoirs, result in a decreasing perfusion-rate. However, the present pumpless cell culture chip, where autonomous droplet dispensers are integrated on the source reservoirs, results in a constant perfusion-rate using a constant Δh maintained by balanced droplet dispensing between the source-inlet and the drain-outlet. In the experimental study, constant perfusion-rates of 0.1, 0.2, and 0.3 μl min(-1) are obtained by Δh of 38, 76, and 114 mm, respectively. At the constant perfusion-rate (Q=0.2 μl min(-1)), H358 lung cancer cells show the maximum growth-rate of 57.8 ± 21.1% d(-1), which is 1.9 times higher than the 30.2 ± 10.3% d(-1) of the static culture. At a perfusion-rate varying between 0.1-0.3 μl min(-1) (average=0.2 μl min(-1)), however, the H358 cells show a growth-rate of 46.9 ± 8.3% d(-1), which is lower than that of the constant Q of 0.2 μl min(-1). The constant-rate perfusion culture (Q=0.1, 0.2, and 0.3 μl min(-1)) also results in an average cell viability of 89.2%, which is higher than 75.9% of the static culture. This pumpless cell culture chip offers a favorable environment to cells with a high growth-rate and viability, thus having potential for use in cell-based bio-assays.
Collapse
Affiliation(s)
- Taeyoon Kim
- Cell Bench Research Center, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea 305-701
| | | |
Collapse
|
202
|
Elliott N, Lee T, You L, Yuan F. Proliferation behavior of E. coli in a three-dimensional in vitro tumor model. Integr Biol (Camb) 2011; 3:696-705. [PMID: 21556399 DOI: 10.1039/c0ib00137f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Advances in genetic engineering of non-pathogenic Escherichia coli (E. coli) have made this organism an attractive candidate for gene delivery vehicle. However, proliferation and transport behaviors of E. coli in three-dimensional (3D) tumor environment are still unclear. To this end, we developed a novel microfluidics-based tumor model that permitted direct in situ visualization of E. coli in a 3D environment with densely packed tumor cells (B16.F10 or EMT6). The E. coli was engineered to co-express two proteins invasin and mCherry (inv(+)) so that they had the ability to enter mammalian cells and could be visualized via fluorescence microscopy. E. coli expressing mCherry alone (inv(-)) was used as the control counterpart. The inv(-) bacteria proliferated to a higher extent than inv(+) bacteria in both the 3D tumor model and a 2D monolayer culture model. Meanwhile, the proliferation appeared to be tumor cell type dependent since bacteria did not proliferate as well in the EMT6 model compared to the B16.F10 model. These differences in bacterial proliferation were likely to be caused by inhibitors secreted by tumor cells, as suggested by our data from the bacterial-tumor cell monolayer co-culture experiment. The bacterial proliferation provided a driving force for E. coli spreading in the 3D interstitial space of tumors. These findings are useful for researchers to develop novel strategies for improvement of bacteria-mediated oncolysis or gene delivery in cancer treatment.
Collapse
Affiliation(s)
- Nelita Elliott
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
203
|
Yang Y, Kulangara K, Sia J, Wang L, Leong KW. Engineering of a microfluidic cell culture platform embedded with nanoscale features. LAB ON A CHIP 2011; 11:1638-46. [PMID: 21442110 DOI: 10.1039/c0lc00736f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cells residing in a microenvironment interact with the extracellular matrix (ECM) and neighboring cells. The ECM built from biomacromolecules often includes nanotopography. Through the ECM, interstitial flows facilitate transport of nutrients and play an important role in tissue maintenance and pathobiology. To create a microenvironment that can incorporate both nanotopography and flow for studies of cell-matrix interactions, we fabricated microfluidic channels endowed with nanopatterns suitable for dynamic culture. Using polymer thin film technology, we developed a versatile stitching technique to generate a large area of nanopatterned surface and a simple microtransfer assembly technique to assemble polydimethylsiloxane-based microfluidics. The cellular study showed that both nanotopography and fluid shear stress played a significant role in adhesion, spreading, and migration of human mesenchymal stem cells. The orientation and deformation of cytoskeleton and nuclei were regulated through the interplay of these two cues. The nanostructured microfluidic platform provides a useful tool to promote the fundamental understanding of cell-matrix interactions and may be used to regulate the fate of stem cells.
Collapse
Affiliation(s)
- Yong Yang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
204
|
Application of high throughput perfusion micro 3-D cell culture platform for the precise study of cellular responses to extracellular conditions -effect of serum concentrations on the physiology of articular chondrocytes. Biomed Microdevices 2011; 13:131-41. [PMID: 20957436 DOI: 10.1007/s10544-010-9478-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mammalian cells are sensitive to extracellular microenvironments. In order to faithfully explore the physiological responses of cells to extracellular conditions, a steady, homogenous, and three-dimensional (3-D) culture environment is required because it can provide a more quantifiable and biologically-relevant culture condition. To achieve this, this study reports a perfusion micro cell culture platform encompassing 22 microbioreactor units for high throughput 3-D cell culture. The cell culture platform structurally consisting of a plug and a microbioreactor chamber module was simply fabricated by replica molding of polydimethylsiloxane (PDMS) polymer. The platform features in the proposed plug module with multiple molds incorporated, facilitating the preparation of cell encapsulated 3-D hydrogel constructs in a precise and efficient manner. This trait is found particularly useful for high-precision and high-throughput micro 3-D cell culture-based assay. In this study, the real value of the proposed platform to maintain a stable and homogenous culture condition was discussed. Besides, the application of the presented platform for precisely investigating the effect of serum concentration on the metabolic activities and biosynthetic abilities of articular chondrocytes was also demonstrated. As a whole, the proposed device has paved an alternative route to carry out high throughput micro-scale 3-D perfusion cell culture in a simple, cost-effective and precise manner. The promising applications include 3-D cell culture-based high throughput drug or toxicity testing/screening, or other investigations on the cell biology, where the precise quantification of the links between the cellular responses and extracellular conditions is required.
Collapse
|
205
|
Krishnan V, Shuman LA, Sosnoski DM, Dhurjati R, Vogler EA, Mastro AM. Dynamic interaction between breast cancer cells and osteoblastic tissue: Comparison of Two- and Three-dimensional cultures. J Cell Physiol 2011; 226:2150-8. [DOI: 10.1002/jcp.22550] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
206
|
Paul D, Saias L, Pedinotti JC, Chabert M, Magnifico S, Pallandre A, De Lambert B, Houdayer C, Brugg B, Peyrin JM, Viovy JL. A "dry and wet hybrid" lithography technique for multilevel replication templates: Applications to microfluidic neuron culture and two-phase global mixing. BIOMICROFLUIDICS 2011; 5:24102. [PMID: 21559239 PMCID: PMC3089645 DOI: 10.1063/1.3569946] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/13/2011] [Indexed: 05/11/2023]
Abstract
A broad range of microfluidic applications, ranging from cell culture to protein crystallization, requires multilevel devices with different heights and feature sizes (from micrometers to millimeters). While state-of-the-art direct-writing techniques have been developed for creating complex three-dimensional shapes, replication molding from a multilevel template is still the preferred method for fast prototyping of microfluidic devices in the laboratory. Here, we report on a "dry and wet hybrid" technique to fabricate multilevel replication molds by combining SU-8 lithography with a dry film resist (Ordyl). We show that the two lithography protocols are chemically compatible with each other. Finally, we demonstrate the hybrid technique in two different microfluidic applications: (1) a neuron culture device with compartmentalization of different elements of a neuron and (2) a two-phase (gas-liquid) global micromixer for fast mixing of a small amount of a viscous liquid into a larger volume of a less viscous liquid.
Collapse
|
207
|
A multishear microfluidic device for quantitative analysis of calcium dynamics in osteoblasts. Biochem Biophys Res Commun 2011; 408:350-5. [PMID: 21514277 DOI: 10.1016/j.bbrc.2011.04.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/08/2011] [Indexed: 02/02/2023]
Abstract
Microfluidics is a convenient platform to study the influences of fluid shear stress on calcium dynamics. Fluidic shear stress has been proven to affect bone cell functions and remodelling. We have developed a microfluidic system which can generate four shear flows in one device as a means to study cytosolic calcium concentration ([Ca(2+)](c)) dynamics of osteoblasts. Four shear forces were achieved by having four cell culture chambers with different widths while resistance correction channels compensated for the overall resistance to allow equal flow distribution towards the chambers. Computational simulation of the local shear stress distribution highlighted the preferred section in the cell chamber to measure the calcium dynamics. Osteoblasts showed an [Ca(2+)](c) increment proportional to the intensity of the shear stress from 0.03 to 0.30 Pa. A delay in response was observed with an activation threshold between 0.03 and 0.06 Pa. With computational modelling, our microfluidic device can offer controllable multishear stresses and perform quantitative comparisons of shear stress-induced intensity change of calcium in osteoblasts.
Collapse
|
208
|
Zervantonakis IK, Kothapalli CR, Chung S, Sudo R, Kamm RD. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. BIOMICROFLUIDICS 2011; 5:13406. [PMID: 21522496 PMCID: PMC3082343 DOI: 10.1063/1.3553237] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/11/2011] [Indexed: 05/04/2023]
Abstract
Microfluidic devices allow for precise control of the cellular and noncellular microenvironment at physiologically relevant length- and time-scales. These devices have been shown to mimic the complex in vivo microenvironment better than conventional in vitro assays, and allow real-time monitoring of homotypic or heterotypic cellular interactions. Microfluidic culture platforms enable new assay designs for culturing multiple different cell populations and∕or tissue specimens under controlled user-defined conditions. Applications include fundamental studies of cell population behaviors, high-throughput drug screening, and tissue engineering. In this review, we summarize recent developments in this field along with studies of heterotypic cell-cell interactions and tissue specimen culture in microfluidic devices from our own laboratory.
Collapse
|
209
|
Wu HW, Lin CC, Lee GB. Stem cells in microfluidics. BIOMICROFLUIDICS 2011; 5:13401. [PMID: 21522491 PMCID: PMC3082338 DOI: 10.1063/1.3528299] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/29/2010] [Indexed: 05/02/2023]
Abstract
Microfluidic techniques have been recently developed for cell-based assays. In microfluidic systems, the objective is for these microenvironments to mimic in vivo surroundings. With advantageous characteristics such as optical transparency and the capability for automating protocols, different types of cells can be cultured, screened, and monitored in real time to systematically investigate their morphology and functions under well-controlled microenvironments in response to various stimuli. Recently, the study of stem cells using microfluidic platforms has attracted considerable interest. Even though stem cells have been studied extensively using bench-top systems, an understanding of their behavior in in vivo-like microenvironments which stimulate cell proliferation and differentiation is still lacking. In this paper, recent cell studies using microfluidic systems are first introduced. The various miniature systems for cell culture, sorting and isolation, and stimulation are then systematically reviewed. The main focus of this review is on papers published in recent years studying stem cells by using microfluidic technology. This review aims to provide experts in microfluidics an overview of various microfluidic systems for stem cell research.
Collapse
Affiliation(s)
- Huei-Wen Wu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|
210
|
Barber RW, Emerson DR. Biomimetic design of artificial micro-vasculatures for tissue engineering. Altern Lab Anim 2011; 38 Suppl 1:67-79. [PMID: 21275485 DOI: 10.1177/026119291003801s02] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the last decade, highly innovative micro-fabrication techniques have been developed that are set to revolutionise the biomedical industry. Fabrication processes, such as photolithography, wet and dry etching, moulding, embossing and lamination, have been developed for a range of biocompatible and biodegradable polymeric materials. One area where these fabrication techniques could play a significant role is in the development of artificial micro-vasculatures for the creation of tissue samples for drug screening and clinical applications. Despite the enormous technological advances in the field of tissue engineering, one of the major challenges is the creation of miniaturised fluid distribution networks to transport nutrients and waste products, in order to sustain the viability of the culture. In recent years, there has been considerable interest in the development of microfluidic manifolds that mimic the hierarchical vascular and parenchymal networks found in nature. This article provides an overview of microfluidic tissue constructs, and also reviews the hydrodynamic scaling laws that underpin the fluid mechanics of vascular systems. It shows how Murray's law, which governs the optimum ratio between the diameters of the parent and daughter branches in biological networks, can be used to design the microfluidic channels in artificial vasculatures. It is shown that it is possible to introduce precise control over the shear stress or residence time in a hierarchical network, in order to aid cell adhesion and enhance the diffusion of nutrients and waste products. Finally, the paper describes the hydrodynamic extensions that are necessary in order to apply Murray's law to the rectangular channels that are often employed in artificial micro-vasculatures.
Collapse
Affiliation(s)
- Robert W Barber
- Science and Technology Facilities Council, Daresbury Laboratory, Warrington, UK.
| | | |
Collapse
|
211
|
Purpose-driven biomaterials research in liver-tissue engineering. Trends Biotechnol 2011; 29:110-8. [DOI: 10.1016/j.tibtech.2010.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/18/2010] [Accepted: 10/26/2010] [Indexed: 01/21/2023]
|
212
|
Marimuthu M, Kim S. Microfluidic cell coculture methods for understanding cell biology, analyzing bio/pharmaceuticals, and developing tissue constructs. Anal Biochem 2011; 413:81-9. [PMID: 21354094 DOI: 10.1016/j.ab.2011.02.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/11/2011] [Accepted: 02/18/2011] [Indexed: 02/06/2023]
Affiliation(s)
- Mohana Marimuthu
- College of Bionanotechnology, Kyungwon University, Gyeonggi-Do 461 701, Republic of Korea
| | | |
Collapse
|
213
|
“Artificial micro organs”—a microfluidic device for dielectrophoretic assembly of liver sinusoids. Biomed Microdevices 2011; 13:493-501. [DOI: 10.1007/s10544-011-9517-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
214
|
Hardelauf H, Frimat JP, Stewart JD, Schormann W, Chiang YY, Lampen P, Franzke J, Hengstler JG, Cadenas C, Kunz-Schughart LA, West J. Microarrays for the scalable production of metabolically relevant tumour spheroids: a tool for modulating chemosensitivity traits. LAB ON A CHIP 2011; 11:419-28. [PMID: 21079873 DOI: 10.1039/c0lc00089b] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report the use of thin film poly(dimethylsiloxane) (PDMS) prints for the arrayed mass production of highly uniform 3-D human HT29 colon carcinoma spheroids. The spheroids have an organotypic density and, as determined by 3-axis imaging, were genuinely spherical. Critically, the array density impacts growth kinetics and can be tuned to produce spheroids ranging in diameter from 200 to 550 µm. The diffusive limit of competition for media occurred with a pitch of ≥1250 µm and was used for the optimal array-based culture of large, viable spheroids. During sustained culture mass transfer gradients surrounding and within the spheroids are established, and lead to growth cessation, altered expression patterns and the formation of a central secondary necrosis. These features reflect the microenvironment of avascularised tumours, making the array format well suited for the production of model tumours with defined sizes and thus defined spatio-temporal pathophysiological gradients. Experimental windows, before and after the onset of hypoxia, were identified and used with an enzyme activity-based viability assay to measure the chemosensitivity towards irinotecan. Compared to monolayer cultures, a marked reduction in the drug efficacy towards the different spheroid culture states was observed and attributed to cell cycle arrest, the 3-D character, scale and/or hypoxia factors. In summary, spheroid culture using the array format has great potential to support drug discovery and development, as well as tumour biology research.
Collapse
Affiliation(s)
- Heike Hardelauf
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Grafton MMG, Wang L, Vidi PA, Leary J, Lelièvre SA. Breast on-a-chip: mimicry of the channeling system of the breast for development of theranostics. Integr Biol (Camb) 2011; 3:451-9. [PMID: 21234506 DOI: 10.1039/c0ib00132e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Improved detection and therapy of breast neoplasia might benefit from nanodevices traveling inside mammary ducts. However, the decreasing size of branched mammary ducts prevents access to remote areas of the ductal system using a pressure-driven fluid-based approach. Magnetic field guidance of superparamagnetic submicron particles (SMPs) in a stationary fluid might provide a possible alternative but it is critical to first reproduce the breast ductal system to assess the use of such devices for future therapeutic & diagnostic ("theranostic") purposes. Here we describe the engineering of a portion of a breast ductal system using polydimethylsiloxane (PDMS) microfluidic channels with a total volume of 0.09 μl. A magnet was used to move superparamagnetic/fluorescent SMPs through a static fluid inside the microchannels. Non-neoplastic mammary epithelial S1 cells developed basoapical polarity as a flat monolayer on the PDMS surface when cultured in the presence of laminin 111, and incubation with SMPs did not result in detectable toxicity. Cells could not withstand the fluid pressure if microinjected directly in completed channels. Whereas, they readily covered laminin 111-coated PDMS surfaces when cultured in U-shaped "hemichannels" before completing the channels. This breast-on-chip model represents a critical step towards the mimicry of the tree-like ductal system of the breast for further testing and targeting of SMPs.
Collapse
Affiliation(s)
- Meggie M G Grafton
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-2026, USA
| | | | | | | | | |
Collapse
|
216
|
Microfluidic cell culture chip with multiplexed medium delivery and efficient cell/scaffold loading mechanisms for high-throughput perfusion 3-dimensional cell culture-based assays. Biomed Microdevices 2011; 13:415-30. [DOI: 10.1007/s10544-011-9510-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
217
|
Yeo LY, Chang HC, Chan PPY, Friend JR. Microfluidic devices for bioapplications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:12-48. [PMID: 21072867 DOI: 10.1002/smll.201000946] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Harnessing the ability to precisely and reproducibly actuate fluids and manipulate bioparticles such as DNA, cells, and molecules at the microscale, microfluidics is a powerful tool that is currently revolutionizing chemical and biological analysis by replicating laboratory bench-top technology on a miniature chip-scale device, thus allowing assays to be carried out at a fraction of the time and cost while affording portability and field-use capability. Emerging from a decade of research and development in microfluidic technology are a wide range of promising laboratory and consumer biotechnological applications from microscale genetic and proteomic analysis kits, cell culture and manipulation platforms, biosensors, and pathogen detection systems to point-of-care diagnostic devices, high-throughput combinatorial drug screening platforms, schemes for targeted drug delivery and advanced therapeutics, and novel biomaterials synthesis for tissue engineering. The developments associated with these technological advances along with their respective applications to date are reviewed from a broad perspective and possible future directions that could arise from the current state of the art are discussed.
Collapse
Affiliation(s)
- Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | | | | | | |
Collapse
|
218
|
Ziółkowska K, Kwapiszewski R, Brzózka Z. Microfluidic devices as tools for mimicking the in vivo environment. NEW J CHEM 2011. [DOI: 10.1039/c0nj00709a] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
219
|
|
220
|
van Midwoud PM, Verpoorte E, Groothuis GMM. Microfluidic devices for in vitro studies on liver drug metabolism and toxicity. Integr Biol (Camb) 2011; 3:509-21. [DOI: 10.1039/c0ib00119h] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
221
|
Goral VN, Hsieh YC, Petzold ON, Clark JS, Yuen PK, Faris RA. Perfusion-based microfluidic device for three-dimensional dynamic primary human hepatocyte cell culture in the absence of biological or synthetic matrices or coagulants. LAB ON A CHIP 2010; 10:3380-6. [PMID: 21060907 DOI: 10.1039/c0lc00135j] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We describe a perfusion-based microfluidic device for three-dimensional (3D) dynamic primary human hepatocyte cell culture. The microfluidic device was used to promote and maintain 3D tissue-like cellular morphology and cell-specific functionality of primary human hepatocytes by restoring membrane polarity and hepatocyte transport function in vitro without the addition of biological or synthetic matrices or coagulants. A unique feature of our dynamic cell culture device is the creation of a microenvironment, without the addition of biological or synthetic matrices or coagulants, that promotes the 3D organization of hepatocytes into cord-like structures that exhibit functional membrane polarity as evidenced by the expression of gap junctions and the formation of an extended, functionally active, bile canalicular network.
Collapse
Affiliation(s)
- Vasiliy N Goral
- Science & Technology, Corning Incorporated, Corning, New York 14831-0001, USA
| | | | | | | | | | | |
Collapse
|
222
|
Wen Y, Zhang X, Yang ST. Microplate-reader compatible perfusion microbioreactor array for modular tissue culture and cytotoxicity assays. Biotechnol Prog 2010; 26:1135-44. [PMID: 20730768 DOI: 10.1002/btpr.423] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One important application of tissue engineering is to provide novel in vitro models for cell-based assays. Perfusion microbioreactor array provides a useful tool for microscale tissue culture in parallel. However, high-throughput data generation has been a challenge. In this study, a 4 x 4 array of perfusion microbioreactors was developed for plate-reader compatible, time-series quantification of cell proliferation, and cytotoxicity assays. The device was built through multilayer soft lithography. Low-cost nonwoven polyethylene terephthalate fibrous matrices were integrated as modular tissue culture scaffolds. Human colon cancer HT-29 cells with stable expression of enhanced green fluorescent protein were cultured in the device with continuous perfusion and reached a cell density over 5 x 10(7) cells/mL. The microbioreactor array was used to test a chemotherapeutic drug 5-FU for its effect on HT-29 cells in continuous perfusion 3D culture. Compared with conventional 2D cytotoxicity assay, significant drug resistance was observed in the 3D perfusion culture.
Collapse
Affiliation(s)
- Yuan Wen
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
223
|
Huang M, Fan S, Xing W, Liu C. Microfluidic cell culture system studies and computational fluid dynamics. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.mcm.2010.01.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
224
|
Barrila J, Radtke AL, Crabbé A, Sarker SF, Herbst-Kralovetz MM, Ott CM, Nickerson CA. Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat Rev Microbiol 2010; 8:791-801. [PMID: 20948552 DOI: 10.1038/nrmicro2423] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Appropriately simulating the three-dimensional (3D) environment in which tissues normally develop and function is crucial for engineering in vitro models that can be used for the meaningful dissection of host-pathogen interactions. This Review highlights how the rotating wall vessel bioreactor has been used to establish 3D hierarchical models that range in complexity from a single cell type to multicellular co-culture models that recapitulate the 3D architecture of tissues observed in vivo. The application of these models to the study of infectious diseases is discussed.
Collapse
Affiliation(s)
- Jennifer Barrila
- Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | |
Collapse
|
225
|
Shamloo A, Heilshorn SC. Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. LAB ON A CHIP 2010; 10:3061-8. [PMID: 20820484 DOI: 10.1039/c005069e] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Endothelial cell (EC) sprouting morphogenesis is a critical step during angiogenesis, the formation of new blood vessels from existing conduits. Here, three-dimensional sprouting morphogenesis was examined using in vitro microfluidic devices that enabled the separate and simultaneous tuning of biomechanical and soluble biochemical stimuli. Quantitative analysis of endothelial sprout formation demonstrated that the ability of vascular endothelial growth factor (VEGF) to regulate stable sprout formation was mediated by the density of the surrounding collagen/fibronectin matrix. The coordinated migration and proliferation of multiple ECs to form stable sprouts were enhanced at intermediate matrix densities (1.2-1.9 mg ml(-1)), while lower densities resulted in uncoordinated migration (0.3-0.7 mg ml(-1)) and higher densities resulted in broad cell clusters that did not elongate (2.7 mg ml(-1)). Within the permissive range of matrix biomechanics, higher density matrices resulted in shorter, thicker, and slower-growing sprouts. The sprouts in higher density matrices also were more likely to polarize towards higher VEGF concentrations, included more cells per cross-sectional area, and demonstrated more stable lumen formation compared to sprouts in lower density matrices. These results quantitatively demonstrate that matrix density mediates VEGF-induced sprout polarization and lumen formation, potentially by regulating the balance between EC migration rate and proliferation rate.
Collapse
Affiliation(s)
- Amir Shamloo
- Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
226
|
Chang R, Emami K, Wu H, Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication 2010; 2:045004. [PMID: 21079286 DOI: 10.1088/1758-5082/2/4/045004] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In their normal in vivo matrix milieu, tissues assume complex well-organized three-dimensional architectures. Therefore, the primary aim in the tissue engineering design process is to fabricate an optimal analog of the in vivo scenario. This challenge can be addressed by applying emerging layered biofabrication approaches in which the precise configuration and composition of cells and bioactive matrix components can recapitulate the well-defined three-dimensional biomimetic microenvironments that promote cell-cell and cell-matrix interactions. Furthermore, the advent of and refinements in microfabricated systems can present physical and chemical cues to cells in a controllable and reproducible fashion unmatched with conventional cultures, resulting in the precise construction of engineered biomimetic microenvironments on the cellular length scale in geometries that are readily parallelized for high throughput in vitro models. As such, the convergence of layered solid freeform fabrication (SFF) technologies along with microfabrication techniques enables the creation of a three-dimensional micro-organ device to serve as an in vitro platform for cell culture, drug screening or to elicit further biological insights, particularly for NASA's interest in a flight-suitable high-fidelity microscale platform to study drug metabolism in space and planetary environments. The proposed model in this paper involves the combinatorial setup of an automated syringe-based, layered direct cell writing bioprinting process with micro-patterning techniques to fabricate a microscale in vitro device housing a chamber of bioprinted three-dimensional liver cell-encapsulated hydrogel-based tissue constructs in defined design patterns that biomimic the cell's natural microenvironment for enhanced biological functionality. In order to assess the structural formability and biological feasibility of such a micro-organ, reproducibly fabricated tissue constructs were biologically characterized for liver cell-specific function. Another key facet of the in vivo microenvironment that was recapitulated with the in vitro system included the necessary dynamic perfusion of the three-dimensional microscale liver analog with cells probed for their collective drug metabolic function and suitability as a drug metabolism model. This paper details the principles and methods that undergird the direct cell writing biofabrication process development and adaptation of microfluidic devices for the creation of a drug screening model, thereby establishing a novel drug metabolism study platform for NASA's interest to adopt a microfluidic microanalytical device with an embedded three-dimensional microscale liver tissue analog to assess drug pharmacokinetic profiles in planetary environments.
Collapse
Affiliation(s)
- Robert Chang
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
227
|
Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 2010; 136:473-8. [PMID: 20967331 DOI: 10.1039/c0an00609b] [Citation(s) in RCA: 669] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Culture of cells as three-dimensional (3D) aggregates can enhance in vitro tests for basic biological research as well as for therapeutics development. Such 3D culture models, however, are often more complicated, cumbersome, and expensive than two-dimensional (2D) cultures. This paper describes a 384-well format hanging drop culture plate that makes spheroid formation, culture, and subsequent drug testing on the obtained 3D cellular constructs as straightforward to perform and adapt to existing high-throughput screening (HTS) instruments as conventional 2D cultures. Using this platform, we show that drugs with different modes of action produce distinct responses in the physiological 3D cell spheroids compared to conventional 2D cell monolayers. Specifically, the anticancer drug 5-fluorouracil (5-FU) has higher anti-proliferative effects on 2D cultures whereas the hypoxia activated drug commonly referred to as tirapazamine (TPZ) are more effective against 3D cultures. The multiplexed 3D hanging drop culture and testing plate provides an efficient way to obtain biological insights that are often lost in 2D platforms.
Collapse
Affiliation(s)
- Yi-Chung Tung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
228
|
Schütte J, Freudigmann C, Benz K, Böttger J, Gebhardt R, Stelzle M. A method for patterned in situ biofunctionalization in injection-molded microfluidic devices. LAB ON A CHIP 2010; 10:2551-2558. [PMID: 20676423 DOI: 10.1039/c005307d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We developed a method to modify the surface in injection molded polymer microdevices prior to bonding and to pattern biomolecules in the completed microsystem in situ by a sequence of simple perfusion steps directly before utilization of the device. This method is compatible with production technology such as injection molding and bonding processes currently employed in the fabrication of polymer microsystems. It solves the problem of the inherent incompatibility of biomolecules with microfabrication technology as it allows for the biofunctionalization step to be performed after completion of the microsystem. Injection molded cyclic olefin copolymer (COC) microfluidic chips were modified by irradiating the surface with UV-light at lambda = 185 nm. This results in the formation of stable acidic groups which were further modified by binding of the extracellular matrix protein collagen type I. Non-irradiated surfaces were modified by binding of Pluronic® F-127 to become non-adhesive. Density of acid groups decreases to 50% within 45 days and to 25% within 19 weeks after irradiation. However, even then the remaining density of functional groups was shown to be sufficient to bind proteins and promote cell adhesion. Selective adhesion of primary hepatocytes on surfaces patterned by UV-irradiation and a biofunctional coating with collagen type I were demonstrated in injection molded microsystems.
Collapse
Affiliation(s)
- Julia Schütte
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, D-72770 Reutlingen, Germany
| | | | | | | | | | | |
Collapse
|
229
|
Chen MCW, Gupta M, Cheung KC. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Biomed Microdevices 2010; 12:647-54. [PMID: 20237849 DOI: 10.1007/s10544-010-9417-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We demonstrate a microfluidic system for long-term tumor cell culture and drug testing. Three-dimensional cell culture is critical in characterizing anticancer treatments since it may provide a better model than monolayer culture of tumor cells. Breast tumor cells were encapsulated within alginate which was gelled in situ within the microchannels. Tumor spheroid formation was observed several days after cell seeding, and various concentrations of doxorubicin were applied to the encapsulated cell aggregates. Drug effects on cell viability and proliferation were measured. In future, hydrogel-based microfluidic devices can comprise part of systems which replace labor intensive screening platforms currently implemented in the laboratory, and they address a need for improving preclinical testing of cancer cell sensitivity to anti-cancer drugs.
Collapse
Affiliation(s)
- Michael C W Chen
- Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
230
|
Yu L, Chen MCW, Cheung KC. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. LAB ON A CHIP 2010; 10:2424-32. [PMID: 20694216 DOI: 10.1039/c004590j] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since it may provide a better model than monolayer culture of tumor cells. Moreover, continuous dynamic perfusion allows the establishment of long term cell culture and subsequent multicellular spheroid formation. A droplet-based microfluidic system was used to form alginate beads with entrapped breast tumor cells. After gelation, the alginate beads were trapped in microsieve structures for cell culture in a continuous perfusion system. The alginate environment permitted cell proliferation and the formation of multicellular spheroids was observed. The dose-dependent response of the tumor spheroids to doxorubicin, and anticancer drug, showed multicellular resistance compared to conventional monolayer culture. The microsieve structures maintain constant location of each bead in the same position throughout the device seeding process, cell proliferation and spheroid formation, treatment with drug, and imaging, permitting temporal and spatial tracking.
Collapse
Affiliation(s)
- Linfen Yu
- University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
231
|
Yeon JH, Na D, Park JK. Hepatotoxicity assay using human hepatocytes trapped in microholes of a microfluidic device. Electrophoresis 2010; 31:3167-74. [DOI: 10.1002/elps.201000122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
232
|
Paguirigan AL, Puccinelli JP, Su X, Beebe DJ. Expanding the available assays: adapting and validating In-Cell Westerns in microfluidic devices for cell-based assays. Assay Drug Dev Technol 2010; 8:591-601. [PMID: 20658945 DOI: 10.1089/adt.2010.0274] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Microfluidic methods for cellular studies can significantly reduce costs due to reduced reagent and biological specimen requirements compared with many traditional culture techniques. However, current types of readouts are limited and this lack of suitable readouts for microfluidic cultures has significantly hindered the application of microfluidics for cell-based assays. The In-Cell Western (ICW) technique uses quantitative immunocytochemistry and a laser scanner to provide an in situ measure of protein quantities in cells grown in microfluidic channels of arbitrary geometries. The use of ICWs in microfluidic channels was validated by a detailed comparison with current macroscale methods and shown to have excellent correlation. Transforming growth factor-β-induced epithelial-to-mesenchymal transition of an epithelial cell line was used as an example for further validation of the technique as a readout for soluble-factor-based assays performed in high-throughput microfluidic channels. The use of passive pumping for sample delivery and laser scanning for analysis opens the door to high-throughput quantitative microfluidic cell-based assays that integrate seamlessly with existing high-throughput infrastructure.
Collapse
Affiliation(s)
- Amy L Paguirigan
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| | | | | | | |
Collapse
|
233
|
Liu L, Loutherback K, Liao D, Yeater D, Lambert G, Estévez-Torres A, Sturm JC, Getzenberg RH, Austin RH. A microfluidic device for continuous cancer cell culture and passage with hydrodynamic forces. LAB ON A CHIP 2010; 10:1807-13. [PMID: 20424729 PMCID: PMC3248645 DOI: 10.1039/c003509b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We demonstrate a novel and robust microfluidic chip with combined functions of continuous culture and output of PC-3 prostate cancer cells. With digital controls, polydimethylsiloxane (PDMS) flexible diaphragms are able to apply hydrodynamic shear forces on cultures, detaching a fraction of attached cancer cells from the surface for output while leaving others for reuse in subsequent cultures. The fractions of detached cells and remaining cells can be precisely controlled. The system has not only the advantages of small size, high cell culture efficiency, and digital control, but also of simple fabrication at low cost, easy operation and robust performance. The chip performs 9 passages during 30 days of continuous culture and shows promise as a durable design suitable for long-term cell output.
Collapse
Affiliation(s)
- Liyu Liu
- Dept. of Physics, Princeton University, NJ, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, NJ, USA
| | - Kevin Loutherback
- Dept. of Electrical Engineering, Princeton University, NJ, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, NJ, USA
| | - David Liao
- Dept. of Physics, Princeton University, NJ, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, NJ, USA
| | - David Yeater
- Dept. of Urology, Oncology, Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, MD, USA
| | - Guillaume Lambert
- Dept. of Physics, Princeton University, NJ, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, NJ, USA
| | - André Estévez-Torres
- Dept. of Physics, Princeton University, NJ, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, NJ, USA
| | - James C. Sturm
- Dept. of Electrical Engineering, Princeton University, NJ, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, NJ, USA
| | - Robert H. Getzenberg
- Dept. of Urology, Oncology, Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, MD, USA
| | - Robert H. Austin
- Dept. of Physics, Princeton University, NJ, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, NJ, USA
| |
Collapse
|
234
|
Zheng MH, Ye C, Braddock M, Chen YP. Liver tissue engineering: promises and prospects of new technology. Cytotherapy 2010; 12:349-60. [PMID: 20053145 DOI: 10.3109/14653240903479655] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Today, many patients suffer from acute liver failure and hepatoma. This is an area of high unmet clinical need as these conditions are associated with very high mortality. There is an urgent need to develop techniques that will enable liver tissue engineering or generate a bioartificial liver, which will maintain or improve liver function or offer the possibility of liver replacement. Liver tissue engineering is an innovative way of constructing an implantable liver and has the potential to alleviate the shortage of organ donors for orthotopic liver transplantation. In this review we describe, from an engineering perspective, progress in the field of liver tissue engineering, including three main aspects involving cell sources, scaffolds and vascularization.
Collapse
Affiliation(s)
- Ming-Hua Zheng
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | | | | | | |
Collapse
|
235
|
Preparation of arrays of cell spheroids and spheroid-monolayer cocultures within a microfluidic device. J Biosci Bioeng 2010; 110:572-6. [PMID: 20591731 DOI: 10.1016/j.jbiosc.2010.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/12/2010] [Accepted: 05/26/2010] [Indexed: 12/14/2022]
Abstract
This study describes a novel method for generation of an array of three-dimensional (3D) multicellular spheroids within a microchannel in patterned cultures containing one or multiple cell types. This method uses a unique property of a cross-linked albumin coated surface in which the surface can be switched from non-adhesive to cell adhesive upon electrostatic adsorption of a polycation. Introduction of a solution containing albumin and a cross-linking agent into a microchannel with an array of microwells caused the entire surface, with the exception of the interior of the microwells, to become coated with the cross-linked albumin layer. Cells that were seeded within the microchannel did not adhere to the surface of the microchannel and became entrapped in the microwells. HepG2 cells seeded in the microwells formed 3D spheroids with controlled sizes and shapes depending upon the dimensions of the microwells. When the albumin coated surface was subsequently exposed to an aqueous solution containing poly(ethyleneimine) (PEI), adhesion of secondary cells, fibroblasts, occurred in the regions surrounding the arrayed spheroids. This coculture system can be coupled with spatially controlled fluids such as gradients and focused flow generators for various biological and tissue engineering applications.
Collapse
|
236
|
Chung S, Sudo R, Vickerman V, Zervantonakis IK, Kamm RD. Microfluidic platforms for studies of angiogenesis, cell migration, and cell-cell interactions. Sixth International Bio-Fluid Mechanics Symposium and Workshop March 28-30, 2008 Pasadena, California. Ann Biomed Eng 2010; 38:1164-77. [PMID: 20336839 DOI: 10.1007/s10439-010-9899-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent advances in microfluidic technologies have opened the door for creating more realistic in vitro cell culture methods that replicate many aspects of the true in vivo microenvironment. These new designs (i) provide enormous flexibility in controlling the critical biochemical and biomechanical factors that influence cell behavior, (ii) allow for the introduction of multiple cell types in a single system, (iii) provide for the establishment of biochemical gradients in two- or three-dimensional geometries, and (iv) allow for high quality, time-lapse imaging. Here, some of the recent developments are reviewed, with a focus on studies from our own laboratory in three separate areas: angiogenesis, cell migration in the context of tumor cell-endothelial interactions, and liver tissue engineering.
Collapse
Affiliation(s)
- Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Korea
| | | | | | | | | |
Collapse
|
237
|
Abstract
We present optimal perfusion conditions for the growth of primary mouse embryonic fibroblasts (mEFs) and mouse embryonic stem cells (mESCs) using a microfluidic perfusion culture system. In an effort to balance nutrient renewal while ensuring the presence of cell secreted factors, we found that the optimal perfusion rate for culturing primary embryonic fibroblasts (mEFs) in our experimental setting is 10 nL/min with an average flow velocity 0.55 microm/s in the microchannel. Primary mEFs may have a greater dependence on cell secreted factors when compared to their immortalized counterpart 3T3 fibroblasts cultured under similar conditions. Both the seeding density and the perfusion rate are critical for the proliferation of primary cells. A week long cultivation of mEFs and mESCs using the microculture system exhibited similar morphology and viability to those grown in a petri dish. Both mEFs and mESCs were analyzed using fluorescence immunoassays to determine their proliferative status and protein expression. Our results demonstrate that a perfusion-based microculture environment is capable of supporting the highly proliferative status of pluripotent embryonic stem cells.
Collapse
Affiliation(s)
- Max Villa
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | |
Collapse
|
238
|
Gao D, Wei H, Guo GS, Lin JM. Microfluidic Cell Culture and Metabolism Detection with Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometer. Anal Chem 2010; 82:5679-85. [DOI: 10.1021/ac101370p] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dan Gao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China, and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huibin Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China, and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guang-Sheng Guo
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China, and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jin-Ming Lin
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China, and State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
239
|
Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 2010; 100:59-74. [PMID: 20533556 DOI: 10.1002/jps.22257] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/04/2010] [Indexed: 12/12/2022]
Abstract
The use of animal models in drug discovery studies presents issues with feasibility and ethical concerns. To address these limitations, in vitro tissue models have been developed to provide a means for systematic, repetitive, and quantitative investigation of drugs. By eliminating or reducing the need for animal subjects, these models can serve as platforms for more tightly controlled, high-throughput screening of drugs and for pharmacokinetic and pharmacodynamic analyses of drugs. The focus of this review is three-dimensional (3D) tissue models that can capture cell-cell and cell-matrix interactions. Compared to the 2D culture of cell monolayers, 3D models more closely mimic native tissues since the cellular microenvironment established in the 3D models often plays a significant role in disease progression and cellular responses to drugs. A growing body of research has been published in the literature, which highlights the benefits of the 3D in vitro models of various tissues. This review provides an overview of some successful 3D in vitro models that have been developed to mimic liver, breast, cardiac, muscle, bone, and corneal tissues as well as malignant tissues in solid tumors.
Collapse
Affiliation(s)
- Nelita T Elliott
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, PO Box 90281, Durham, North Carolina 27708, USA
| | | |
Collapse
|
240
|
Krause S, Maffini MV, Soto AM, Sonnenschein C. The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures. BMC Cancer 2010; 10:263. [PMID: 20529269 PMCID: PMC2897802 DOI: 10.1186/1471-2407-10-263] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 06/07/2010] [Indexed: 02/08/2023] Open
Abstract
Background Stromal-epithelial interactions mediate breast development, and the initiation and progression of breast cancer. In the present study, we developed 3-dimensional (3D) in vitro models to study breast cancer tissue organization and the role of the microenvironment in phenotypic determination. Methods The human breast cancer MCF7 cells were grown alone or co-cultured with primary human breast fibroblasts. Cells were embedded in matrices containing either type I collagen or a combination of reconstituted basement membrane proteins and type I collagen. The cultures were carried out for up to 6 weeks. For every time point (1-6 weeks), the gels were fixed and processed for histology, and whole-mounted for confocal microscopy evaluation. The epithelial structures were characterized utilizing immunohistochemical techniques; their area and proliferation index were measured using computerized morphometric analysis. Statistical differences between groups were analyzed by ANOVA, Dunnett's T3 post-hoc test and chi-square. Results Most of the MCF7 cells grown alone within a collagen matrix died during the first two weeks; those that survived organized into large, round and solid clusters. The presence of fibroblasts in collagen gels reduced MCF7 cell death, induced cell polarity, and the formation of round and elongated epithelial structures containing a lumen. The addition of reconstituted basement membrane to collagen gels by itself had also survival and organizational effects on the MCF7 cells. Regardless of the presence of fibroblasts, the MCF7 cells both polarized and formed a lumen. The addition of fibroblasts to the gel containing reconstituted basement membrane and collagen induced the formation of elongated structures. Conclusions Our results indicate that a matrix containing both type I collagen and reconstituted basement membrane, and the presence of normal breast fibroblasts constitute the minimal permissive microenvironment to induce near-complete tumor phenotype reversion. These human breast 3D tissue morphogenesis models promise to become reliable tools for studying tissue interactions, therapeutic screening and drug target validation.
Collapse
Affiliation(s)
- Silva Krause
- Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
241
|
Carstens C, Elbracht R, Gärtner C, Becker H. Opportunities and limits of cell-based assay miniaturization in drug discovery. Expert Opin Drug Discov 2010; 5:673-9. [DOI: 10.1517/17460441.2010.488264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
242
|
Meng Q. Three-dimensional culture of hepatocytes for prediction of drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2010; 6:733-46. [DOI: 10.1517/17425251003674356] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
243
|
C/EBPα down-regulation is associated with reduced hepatic cellular viability during hypoxia in vitro and in vivo. ACTA ACUST UNITED AC 2010; 63:307-10. [PMID: 20219337 DOI: 10.1016/j.etp.2010.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/05/2010] [Accepted: 02/15/2010] [Indexed: 11/22/2022]
Abstract
C/EBPα transcription factor is a key regulator in liver biology and was preliminarily shown to be down-regulated in hypoxic primary rat hepatocytes. The aim of this study was to explore the possible association between C/EBPα expression level and hepatocyte viability in both the in-vitro cultured hypoxic rat primary hepatocytes and two models of acute liver hypoxia induced by carbon tetrachloride or Fas antibody. C/EBPα mRNA was significantly down-regulated under hypoxic conditions both in vitro and in vivo, which was paralleled by a similar decrease in hepatocyte viability and partially reversed by 3D matrix and dexamethasone. These results suggested that C/EBPα down-regulation may be one mechanism of reduced hepatocyte viability in these settings.
Collapse
|
244
|
Liu T, Li C, Li H, Zeng S, Qin J, Lin B. A microfluidic device for characterizing the invasion of cancer cells in 3-D matrix. Electrophoresis 2010; 30:4285-91. [PMID: 20013914 DOI: 10.1002/elps.200900289] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A microfluidic device was developed for the study of directed invasion of cancer cells in 3-D matrix with concentration gradient. This device consists of two parallel perfusion channels connected by two cell culture chambers. To mimic extracellular matrix (ECM), gelled basement membrane extract (BME) was used to support 3-D distribution of breast cancer cells (MCF7) in cell culture chambers. A stable linear concentration gradient of epidermal growth factor (EGF) was generated across the chambers by continuous perfusion. Using the device, we investigated MCF7 cell invasion induced by different concentrations of EGF in 3-D matrix. It was found that cancer cells responded to EGF stimulation with forming cellular protrusions and migrating towards high EGF concentration. We further investigated the anti-invasion effect of GM 6001, a matrix metalloproteinase inhibitor. We identified that matrix metalloproteinase inhibition repressed both cellular protrusion formation and cell migration in 3-D matrix. These findings suggest that EGF is able to induce MCF7 cell invasion in 3-D extracellular matrix and this effect is dependent on proteolytic activity. This device is relatively simple to construct and operate. It should be a useful platform for elucidating the mechanism of cancer invasion and screening anti-invasion drugs for cancer therapy.
Collapse
Affiliation(s)
- Tingjiao Liu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, P. R. China
| | | | | | | | | | | |
Collapse
|
245
|
Feng ZQ, Chu XH, Huang NP, Leach MK, Wang G, Wang YC, Ding YT, Gu ZZ. Rat hepatocyte aggregate formation on discrete aligned nanofibers of type-I collagen-coated poly(L-lactic acid). Biomaterials 2010; 31:3604-12. [PMID: 20149442 DOI: 10.1016/j.biomaterials.2010.01.080] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 01/14/2010] [Indexed: 11/17/2022]
Abstract
Primary hepatocytes cultured in three dimensional tissue constructs composed of multicellular aggregates maintain normal differentiated cellular function in vitro while cultured monolayers do not. Here, we report a technique to induce hepatocyte aggregate formation using type-I collagen-coated poly(L-lactic acid) (PLLA) discrete aligned nanofibers (disAFs) by providing limited cell-substrate adhesion strength and restricting cell migration to uniaxial movement. Kinetics of aggregate formation, morphology and biochemical activities of rat hepatocyte aggregates were tested over a 15 day culture period. Evidence was provided that physical cues from disAFs quickly induced the formation of aggregates. After 3 days in culture, 88.3% of free hepatocytes on disAFs were incorporated into aggregates with an average diameter of 61 +/- 18 microm. Hepatocyte aggregates formed on disAFs displayed excellent cell retention, cell activity and stable functional expression in terms of albumin secretion, urea synthesis and phase I and II (CYP1A and UGT) metabolic enzyme activity compared to monolayer culture of hepatocytes on tissue culture plastic (TCP) with type-I collagen as well as on meshes of type-I collagen-coated PLLA random nanofibers (meshRFs). These results suggest that disAFs may be a suitable method to maintain large-scale hepatic cultures with high activity for tissue engineering research and potential therapeutic applications, such as bioartificial liver devices.
Collapse
Affiliation(s)
- Zhang-Qi Feng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Velve-Casquillas G, Le Berre M, Piel M, Tran PT. Microfluidic tools for cell biological research. NANO TODAY 2010; 5:28-47. [PMID: 21152269 PMCID: PMC2998071 DOI: 10.1016/j.nantod.2009.12.001] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microfluidic technology is creating powerful tools for cell biologists to control the complete cellular microenvironment, leading to new questions and new discoveries. We review here the basic concepts and methodologies in designing microfluidic devices, and their diverse cell biological applications.
Collapse
Affiliation(s)
| | | | | | - Phong T. Tran
- Institut Curie, UMR 144 CNRS, Paris 75005, France
- University of Pennsylvania, Cell and Developmental Biology, Philadelphia, PA 19104, USA
| |
Collapse
|
247
|
Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 2010; 148:3-15. [PMID: 20097238 DOI: 10.1016/j.jbiotec.2010.01.012] [Citation(s) in RCA: 1175] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 01/06/2010] [Indexed: 01/09/2023]
Abstract
The present article highlights the rationale, potential and flexibility of tumor spheroid mono- and cocultures for implementation into state of the art anti-cancer therapy test platforms. Unlike classical monolayer-based models, spheroids strikingly mirror the 3D cellular context and therapeutically relevant pathophysiological gradients of in vivo tumors. Some concepts for standardization and automation of spheroid culturing, monitoring and analysis are discussed, and the challenges to define the most convenient analytical endpoints for therapy testing are outlined. The potential of spheroids to contribute to either the elimination of poor drug candidates at the pre-animal and pre-clinical state or the identification of promising drugs that would fail in classical 2D cell assays is emphasised. Microtechnologies, in the form of micropatterning and microfluidics, are also discussed and offer the exciting prospect of standardized spheroid mass production to tackle high-throughput screening applications within the context of traditional laboratory settings. The extension towards more sophisticated spheroid coculture models which more closely reflect heterologous tumor tissues composed of tumor and various stromal cell types is also covered. Examples are given with particular emphasis on tumor-immune cell cocultures and their usefulness for testing novel immunotherapeutic treatment strategies. Finally, tumor cell heterogeneity and the extraordinary possibilities of putative cancer stem/tumor-initiating cell populations that can be maintained and expanded in sphere-forming assays are introduced. The relevance of the cancer stem cell hypothesis for cancer cure is highlighted, with the respective sphere cultures being envisioned as an integral tool for next generation drug development offensives.
Collapse
|
248
|
Domansky K, Inman W, Serdy J, Dash A, Lim MHM, Griffith LG. Perfused multiwell plate for 3D liver tissue engineering. LAB ON A CHIP 2010; 10:51-8. [PMID: 20024050 PMCID: PMC3972823 DOI: 10.1039/b913221j] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In vitro models that capture the complexity of in vivo tissue and organ behaviors in a scalable and easy-to-use format are desirable for drug discovery. To address this, we have developed a bioreactor that fosters maintenance of 3D tissue cultures under constant perfusion and we have integrated multiple bioreactors into an array in a multiwell plate format. All bioreactors are fluidically isolated from each other. Each bioreactor in the array contains a scaffold that supports formation of hundreds of 3D microscale tissue units. The tissue units are perfused with cell culture medium circulated within the bioreactor by integrated pneumatic diaphragm micropumps. Electronic controls for the pumps are kept outside the incubator and connected to the perfused multiwell by pneumatic lines. The docking design and open-well bioreactor layout make handling perfused multiwell plates similar to using standard multiwell tissue culture plates. A model of oxygen consumption and transport in the circulating culture medium was used to predict appropriate operating parameters for primary liver cultures. Oxygen concentrations at key locations in the system were then measured as a function of flow rate and time after initiation of culture to determine oxygen consumption rates. After seven days of culture, tissue formed from cells seeded in the perfused multiwell reactor remained functionally viable as assessed by immunostaining for hepatocyte and liver sinusoidal endothelial cell (LSEC) phenotypic markers.
Collapse
Affiliation(s)
- Karel Domansky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Walker Inman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James Serdy
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ajit Dash
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew H. M. Lim
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Linda G. Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
249
|
Chung S, Sudo R, Zervantonakis IK, Rimchala T, Kamm RD. Surface-treatment-induced three-dimensional capillary morphogenesis in a microfluidic platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:4863-7. [PMID: 21049511 DOI: 10.1002/adma.200901727] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Seok Chung
- School of Mechanical Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Korea
| | | | | | | | | |
Collapse
|
250
|
Cell culture on MEMS platforms: a review. Int J Mol Sci 2009; 10:5411-5441. [PMID: 20054478 PMCID: PMC2802002 DOI: 10.3390/ijms10125411] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/13/2009] [Accepted: 12/16/2009] [Indexed: 01/09/2023] Open
Abstract
Microfabricated systems provide an excellent platform for the culture of cells, and are an extremely useful tool for the investigation of cellular responses to various stimuli. Advantages offered over traditional methods include cost-effectiveness, controllability, low volume, high resolution, and sensitivity. Both biocompatible and bio-incompatible materials have been developed for use in these applications. Biocompatible materials such as PMMA or PLGA can be used directly for cell culture. However, for bio-incompatible materials such as silicon or PDMS, additional steps need to be taken to render these materials more suitable for cell adhesion and maintenance. This review describes multiple surface modification strategies to improve the biocompatibility of MEMS materials. Basic concepts of cell-biomaterial interactions, such as protein adsorption and cell adhesion are covered. Finally, the applications of these MEMS materials in Tissue Engineering are presented.
Collapse
|