201
|
Xiong X, Huang Y, Lin C, Liu XY, Lin Y. Recent advances in nanoparticulate biomimetic catalysts for combating bacteria and biofilms. NANOSCALE 2019; 11:22206-22215. [PMID: 31482920 DOI: 10.1039/c9nr05054j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Due to the abuse of antibiotics and the tendency of bacteria to form protective biofilms, the design and development of new efficient agents that can eliminate bacteria and biofilms are still highly desired but remain a great challenge; on the other hand, natural enzymes with unique catalytic characteristics can cause an irreversible damage to the bacteria without inducing drug-resistance in the bacteria. However, the intrinsic drawbacks, such as insufficient stability and high purification cost, of enzymes significantly limit their antimicrobial applications. Therefore, significant research efforts have been devoted towards the development of quality-equivalent or even superior enzyme substitutes with low cost and high stability. In this regard, nanomaterials with extraordinary enzyme-mimetic catalytic activities (termed as nanozymes) are considered as suitable candidates. To date, nanozymes have been proved to be promising materials for combating bacteria and biofilms under mild conditions. In this review, we have summarized the recent progress of nanozymes in this highly active field. The antibacterial mechanisms of nanozymes and the roles of their sizes, morphologies, compositions, surface modifications and microenvironment on their overall performance have been discussed. Moreover, the current challenges and prospects in this research area have been discussed. We believe that nanozymes with unique features and functions can provide a wealth of opportunities via their clinical and industrial applications.
Collapse
Affiliation(s)
- Xueqing Xiong
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
202
|
Zhang R, Zhou Y, Yan X, Fan K. Advances in chiral nanozymes: a review. Mikrochim Acta 2019; 186:782. [DOI: 10.1007/s00604-019-3922-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/12/2019] [Indexed: 02/08/2023]
|
203
|
Meng X, Zare I, Yan X, Fan K. Protein-protected metal nanoclusters: An emerging ultra-small nanozyme. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1602. [PMID: 31724330 DOI: 10.1002/wnan.1602] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
Protein-protected metal nanoclusters (MNCs), typically consisting of several to a hundred metal atoms with a protein outer layer used for protecting clusters from aggregation, are excellent fluorescent labels for biomedical applications due to their extraordinary photoluminescence, facile synthesis and good biocompatibility. Interestingly, many protein-protected MNCs have also been reported to exhibit intrinsic enzyme-like activities, namely peroxidase, oxidase and catalase activities, and are consequently used for biological analysis and environmental treatment. These findings have extended the horizon of protein-protected MNCs' properties as well as their application in various fields. Furthermore, in the field of nanozymes, protein-protected MNCs have emerged as an outstanding new addition. Due to their ultra-small size (<2 nm), they usually have higher catalytic activity, more suitable size for in vivo application, better biocompatibility and photoluminescence in comparison with large size nanozymes. In this review, we will systematically introduce the significant advances in this field and critically discuss the challenges that lie ahead. Ultra-small nanozymes based on protein-protected MNCs are on the verge of attracting great interest across various disciplines and will stimulate research in the fields of nanotechnology and biology. This article is characterized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Xiangqin Meng
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Iman Zare
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Xiyun Yan
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Joint Laboratory of Nanozymes in Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
204
|
Chen C, Zhao D, Jiang Y, Ni P, Zhang C, Wang B, Yang F, Lu Y, Sun J. Logically Regulating Peroxidase-Like Activity of Gold Nanoclusters for Sensing Phosphate-Containing Metabolites and Alkaline Phosphatase Activity. Anal Chem 2019; 91:15017-15024. [DOI: 10.1021/acs.analchem.9b03629] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Dan Zhao
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Pengjuan Ni
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Bo Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Fan Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
205
|
Nanozymes: an emerging field bridging nanotechnology and enzymology. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1543-1546. [DOI: 10.1007/s11427-019-1557-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/08/2019] [Indexed: 01/23/2023]
|
206
|
Wang H, Wan K, Shi X. Recent Advances in Nanozyme Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805368. [PMID: 30589120 DOI: 10.1002/adma.201805368] [Citation(s) in RCA: 430] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/15/2018] [Indexed: 05/21/2023]
Abstract
As a new generation of artificial enzymes, nanozymes have the advantages of high catalytic activity, good stability, low cost, and other unique properties of nanomaterials. Due to their wide range of potential applications, they have become an emerging field bridging nanotechnology and biology, attracting researchers in various fields to design and synthesize highly catalytically active nanozymes. However, the thorough understanding of experimental phenomena and the mechanisms beneath practical applications of nanozymes limits their rapid development. Herein, the progress of experimental and computational research of nanozymes on two issues over the past decade is briefly reviewed: (1) experimental development of new nanozymes mimicking different types of enzymes. This covers their structures and applications ranging from biosensing and bioimaging to therapeutics and environmental protection. (2) The catalytic mechanism proposed by experimental and theoretical study. The challenges and future directions of computational research in this field are also discussed.
Collapse
Affiliation(s)
- Hui Wang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kaiwei Wan
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinghua Shi
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
207
|
|
208
|
Cheng N, Li JC, Liu D, Lin Y, Du D. Single-Atom Nanozyme Based on Nanoengineered Fe-N-C Catalyst with Superior Peroxidase-Like Activity for Ultrasensitive Bioassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901485. [PMID: 31111647 DOI: 10.1002/smll.201901485] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/09/2019] [Indexed: 05/20/2023]
Abstract
Single-atom catalysts are becoming a hot research topic owing to their unique characteristics of maximum specific activity and atomic utilization. Herein, a new single-atom nanozyme (SAN) based on single Fe atoms anchored on N-doped carbons supported on carbon nanotube (CNT/FeNC) is proposed. The CNT/FeNC with robust atomic Fe-Nx moieties is synthesised, showing superior peroxidase-like activity. Furthermore, the CNT/FeNC is used as the signal element in a series of paper-based bioassays for ultrasensitive detection of H2 O2 , glucose, and ascorbic acid. The SAN provides a new type of signal element for developing various biosensing techniques.
Collapse
Affiliation(s)
- Nan Cheng
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Jin-Cheng Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Dong Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
209
|
Niu X, Shi Q, Zhu W, Liu D, Tian H, Fu S, Cheng N, Li S, Smith JN, Du D, Lin Y. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-N x moieties hosted by MOF derived porous carbon. Biosens Bioelectron 2019; 142:111495. [PMID: 31310943 PMCID: PMC8672370 DOI: 10.1016/j.bios.2019.111495] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/21/2023]
Abstract
Due to robustness, easy large-scale preparation and low cost, nanomaterials with enzyme-like characteristics (defined as 'nanozymes') are attracting increasing interest for various applications. However, most of currently developed nanozymes show much lower activity in comparison with natural enzymes, and the deficiency greatly hinders their use in sensing and biomedicine. Single-atom catalysts (SACs) offer the unique feature of maximum atomic utilization, providing a potential pathway to improve the catalytic activity of nanozymes. Herein, we propose a Fe-N-C single-atom nanozyme (SAN) that exhibits unprecedented peroxidase-mimicking activity. The SAN consists of atomically dispersed Fe─Nx moieties hosted by metal-organic frameworks (MOF) derived porous carbon. Thanks to the 100% single-atom active Fe dispersion and the large surface area of the porous support, the Fe-N-C SAN provided a specific activity of 57.76 U mg-1, which was almost at the same level as natural horseradish peroxidase (HRP). Attractively, the SAN presented much better storage stability and robustness against harsh environments. As a proof-of-concept application, highly sensitive biosensing of butyrylcholinesterase (BChE) activity using the Fe-N-C SAN as a substitute for natural HRP was further verified.
Collapse
Affiliation(s)
- Xiangheng Niu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Qiurong Shi
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Dong Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Hangyu Tian
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Shaofang Fu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Nan Cheng
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Suiqiong Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Jordan N Smith
- Health Impacts & Exposure Science, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
210
|
|
211
|
Chen W, Li S, Wang J, Sun K, Si Y. Metal and metal-oxide nanozymes: bioenzymatic characteristics, catalytic mechanism, and eco-environmental applications. NANOSCALE 2019; 11:15783-15793. [PMID: 31432841 DOI: 10.1039/c9nr04771a] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenolic contaminants (R-OH) are a category of highly toxic organic compounds that are widespread in aquatic ecosystems and can induce carcinogenic risk to wildlife and humans; natural enzymes as green catalysts are capable of step-polymerizing these compounds to produce diverse macromolecular self-coupling products via radical-mediated C-C and C-O-C bonding at either the ortho- or para-carbon position, thereby evading the bioavailability and ecotoxicity of these compounds. Intriguingly, certain artificial metal and metal-oxide nanomaterials are known as nanozymes. They not only possess the unique properties of nanomaterials but also display intrinsic enzyme-mimicking activities. These artificial nanozymes are expected to surmount the shortcomings, such as low stability, easy inactivation, difficult recycling, and high cost, of natural enzymes, thus contributing to eco-environmental restoration. This review highlights the available studies on the enzymatic characteristics and catalytic mechanisms of natural enzymes and artificial metal and metal-oxide nanozymes in the removal and transformation of R-OH. These advances will provide key research directions beneficial to the multifunctional applications of artificial nanozymes in aquatic ecosystems.
Collapse
Affiliation(s)
- Wenjun Chen
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | | | | | | | | |
Collapse
|
212
|
Huang L, Sun DW, Pu H, Wei Q. Development of Nanozymes for Food Quality and Safety Detection: Principles and Recent Applications. Compr Rev Food Sci Food Saf 2019; 18:1496-1513. [PMID: 33336906 DOI: 10.1111/1541-4337.12485] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/10/2019] [Accepted: 06/30/2019] [Indexed: 12/22/2022]
Abstract
The public concerns about agrifood safety call for innovative and reformative analytical techniques to meet the inspection requirements of high sensitivity, specificity, and reproducibility. Enzyme-mimetic nanomaterials or nanozymes, which combine enzyme-like properties with nanoscale features, emerge as an excellent tool for quality and safety detection in the agrifood sector, due to not only their robust capacity in detection but also their attraction in future-oriented exploitations. However, in-depth understanding about the fundamental principles of nanozymes for food quality and safety detection remains limited, which makes their applications largely empirical. This review provides a comprehensive overview of the principles, designs, and applications of nanozyme-based detection technique in the agrifood industry. The discussion mainly involves three mimicking types, that is, peroxidase, oxidase, and catalase-like nanozymes, capable of detecting major agrifood analytes. The current principles and strategies are classified and then discussed in details through discriminating the roles of nanozymes in diverse detection platforms. Thereafter, recent applications of nanozymes in detecting various endogenous ingredients and exogenous contaminants in foods are reviewed, and the outlook of profound developments are explained. Evidenced by the increasing publications, nanozyme-based detection techniques are narrowing the gap to practical-oriented food analytical methods, while some challenges in optimization of nanozymes, diversification of recognition-to-signal manners, and sustainability of methodology need to conquer in the future.
Collapse
Affiliation(s)
- Lunjie Huang
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510641, China.,Academy of Contemporary Food Engineering, South China Univ. of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510641, China.,Academy of Contemporary Food Engineering, South China Univ. of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, Univ. College Dublin, Natl. Univ. of Ireland, Belfield, Dublin 4, Ireland
| | - Hongbin Pu
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510641, China.,Academy of Contemporary Food Engineering, South China Univ. of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qingyi Wei
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510641, China.,Academy of Contemporary Food Engineering, South China Univ. of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| |
Collapse
|
213
|
Abstract
Nanozymes are nanomaterials with intrinsic enzyme-like characteristics that have been booming over the past decade because of their capability to address the limitations of natural enzymes such as low stability, high cost, and difficult storage. Along with the rapid development and ever-deepening understanding of nanoscience and nanotechnology, nanozymes hold promise to serve as direct surrogates of traditional enzymes by mimicking and further engineering the active centers of natural enzymes. In 2007, we reported the first evidence that Fe3O4 nanoparticles (NPs) have intrinsic peroxidase-mimicking activity, and since that time, hundreds of nanomaterials have been found to mimic the catalytic activity of peroxidase, oxidase, catalase, haloperoxidase, glutathione peroxidase, uricase, methane monooxygenase, hydrolase, and superoxide dismutase. Uniquely, a broad variety of nanomaterials have been reported to simultaneously exhibit dual- or multienzyme mimetic activity. For example, Fe3O4 NPs show pH-dependent peroxidase-like and catalase-like activities; Prussian blue NPs simultaneously possess peroxidase-, catalase-, and superoxide dismutase-like activity; and Mn3O4 NPs mimic all three cellular antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxidase. Taking advantage of the physiochemical properties of nanomaterials, nanozymes have shown a broad range of applications from in vitro detection to replacing specific enzymes in living systems. With the emergence of the new concept of "nanozymology", nanozymes have now become an emerging new field connecting nanotechnology and biology. Since the landmark paper on nanozymes was published in 2007, we have extensively explored their catalytic mechanism, established the corresponding standards to quantitatively determine their catalytic activities, and opened up a broad range of applications from biological detection and environmental monitoring to disease diagnosis and biomedicine development. Here we mainly focus on our progress in the systematic design and construction of functionally specific nanozymes, the standardization of nanozyme research, and the exploration of their applications for replacing natural enzymes in living systems. We also show that, by combining the unique physicochemical properties and enzyme-like catalytic activities, nanozymes can offer a variety of multifunctional platforms with a broad of applications from in vitro detection to in vivo monitoring and therapy. For instance, targeting antibody-conjugated ferromagnetic nanozymes simultaneously provide three functions: target capture, magnetic separation, and nanozyme color development for target detection. We finally will address the prospect of nanozyme research to become "nanozymology". We expect that nanozymes with unique physicochemical properties and intrinsic enzyme-mimicking catalytic properties will attract broad interest in both fundamental research and practical applications and offer new opportunities for traditional enzymology.
Collapse
Affiliation(s)
- Minmin Liang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiyun Yan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
214
|
Fu W, Zhou W, Chu PK, Yu X. Inherent Chemotherapeutic Anti‐Cancer Effects of Low‐Dimensional Nanomaterials. Chemistry 2019; 25:10995-11006. [DOI: 10.1002/chem.201901841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Wen Fu
- Materials Interference CenterShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 P.R. China
- Shenzhen College of Advanced TechnologyUniversity of Chinese Academy of Sciences Shenzhen 518055 P.R. China
| | - Wenhua Zhou
- Materials Interference CenterShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 P.R. China
| | - Paul K. Chu
- Department of Physics and Department of Materials Science and EngineeringCity University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong P.R. China
| | - Xue‐Feng Yu
- Materials Interference CenterShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 P.R. China
| |
Collapse
|
215
|
Mu X, He H, Wang J, Long W, Li Q, Liu H, Gao Y, Ouyang L, Ren Q, Sun S, Wang J, Yang J, Liu Q, Sun Y, Liu C, Zhang XD, Hu W. Carbogenic Nanozyme with Ultrahigh Reactive Nitrogen Species Selectivity for Traumatic Brain Injury. NANO LETTERS 2019; 19:4527-4534. [PMID: 31244237 DOI: 10.1021/acs.nanolett.9b01333] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Reactive oxygen and nitrogen species (RONS), especially reactive nitrogen species (RNS) are intermediate products during incidence of nervous system diseases, showing continuous damage for traumatic brain injury (TBI). Here, we developed a carbogenic nanozyme, which shows an antioxidant activity 12 times higher than ascorbic acid (AA) and behaves as multienzyme mimetics. Importantly, the nanozyme exhibits an ultrahigh scavenging efficiency (∼16 times higher than AA) toward highly active RNS, such as •NO and ONOO- as well as traditional reactive oxygen species (ROS) including O2•-, H2O2, and •OH. In vitro experiments show that neuron cells injured by H2O2 or lipopolysaccharide can be significantly recovered after carbogenic nanozyme treatment via scavenging all kinds of RONS. Moreover, the carbogenic nanozyme can serve as various enzyme mimetics and eliminate the harmful peroxide and glutathione disulfide from injured mice, demonstrating its potential as a therapeutic for acute TBI.
Collapse
Affiliation(s)
- Xiaoyu Mu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Junying Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Number 238, Baidi Road , Tianjin 300192 , China
| | - Qifeng Li
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System , Tianjin Medical University General Hospital , Tianjin 300052 , China
| | - Haile Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Yalong Gao
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System , Tianjin Medical University General Hospital , Tianjin 300052 , China
| | - Lufei Ouyang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Qinjuan Ren
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Si Sun
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Jingya Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Number 238, Baidi Road , Tianjin 300192 , China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-sen University Cancer Center , Guangzhou 510060 , China
| | - Qiang Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Number 238, Baidi Road , Tianjin 300192 , China
| | - Yuanming Sun
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Number 238, Baidi Road , Tianjin 300192 , China
| | - Changlong Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
- Tianjin Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072 , China
| | - Wenping Hu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
- Tianjin Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072 , China
| |
Collapse
|
216
|
Zhang X, Li G, Wu D, Li X, Hu N, Chen J, Chen G, Wu Y. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens Bioelectron 2019; 137:178-198. [DOI: 10.1016/j.bios.2019.04.061] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
217
|
Dong H, Fan Y, Zhang W, Gu N, Zhang Y. Catalytic Mechanisms of Nanozymes and Their Applications in Biomedicine. Bioconjug Chem 2019; 30:1273-1296. [PMID: 30966739 DOI: 10.1021/acs.bioconjchem.9b00171] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The research on nanozymes has increased dramatically in recent years and a new interdiscipline, nanozymology, has emerged. A variety of nanomaterials have been designed to mimic the characteristics of natural enzymes, which connects an important bridge between nanotechnology and biological science. Unlike natural enzymes, the nanoscale properties of nanozymes endow them with the potential to regulate their enzymatic-like activity from different perspectives. The mechanisms behind those methods are intriguing. In this Review, we introduce these mechanisms from the aspects of surface chemistry, surface modification, molecular imprinting, and hybridization and then focus attention on some specific catalytic mechanisms of several representative nanozymes. The applications of nanozymes ranging from bioassay, imaging, to disease therapy are also discussed in detail to prove the fact that the inherent physicochemical properties of nanomaterials not only make nanozymes the analogues of biological enzymes, but also endow them with incomparable advantages and broad prospects in biomedical fields. Finally, four characteristics and some challenges of nanozymes are summarized.
Collapse
Affiliation(s)
- Haijiao Dong
- School of Biological Science and Medical Engineering , Southeast University, State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices , Nanjing , Jiangsu 210096 , P.R. China
| | - Yaoyao Fan
- School of Biological Science and Medical Engineering , Southeast University, State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices , Nanjing , Jiangsu 210096 , P.R. China
| | - Wei Zhang
- School of Biological Science and Medical Engineering , Southeast University, State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices , Nanjing , Jiangsu 210096 , P.R. China.,The Jiangsu Province Research Institute for Clinical Medicine , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , P.R. China
| | - Ning Gu
- School of Biological Science and Medical Engineering , Southeast University, State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices , Nanjing , Jiangsu 210096 , P.R. China
| | - Yu Zhang
- School of Biological Science and Medical Engineering , Southeast University, State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices , Nanjing , Jiangsu 210096 , P.R. China
| |
Collapse
|
218
|
Liu X, Huang D, Lai C, Qin L, Zeng G, Xu P, Li B, Yi H, Zhang M. Peroxidase-Like Activity of Smart Nanomaterials and Their Advanced Application in Colorimetric Glucose Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900133. [PMID: 30908899 DOI: 10.1002/smll.201900133] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Indexed: 05/27/2023]
Abstract
Diabetes is a dominating health issue with 425 million people suffering from the disease worldwide and 4 million deaths each year. To avoid further complications, the diabetic patient blood glucose level should be strictly monitored despite there being no cure for diabetes. Colorimetric biosensing has attracted significant attention because of its low cost, simplicity, and practicality. Recently, some nanomaterials have been found that possess unexpected peroxidase-like activity, and great advances have been made in fabricating colorimetric glucose biosensors based on the peroxidase-like activity of these nanomaterials using glucose oxidase. Compared with natural horseradish peroxidase, the nanomaterials exhibit flexibility in structure design and composition, and have easy separation and storage, high stability, simple preparation, and tunable catalytic activity. To highlight the significant progress in the field of nanomaterial-based peroxidase-like activity, this work discusses the various smart nanomaterials that mimic horseradish peroxidase and its mechanism and development history, and the applications in colorimetric glucose biosensors. Different approaches for tunable peroxidase-like activity of nanomaterials are summarized, such as size, morphology, and shape; surface modification and coating; and metal doping and alloy. Finally, the conclusion and challenges facing peroxidase-like activity of nanomaterials and future directions are discussed.
Collapse
Affiliation(s)
- Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
219
|
Zhang Z, Li Y, Zhang X, Liu J. Molecularly imprinted nanozymes with faster catalytic activity and better specificity. NANOSCALE 2019; 11:4854-4863. [PMID: 30820498 DOI: 10.1039/c8nr09816f] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanozymes are nanomaterials mimicking the activity of natural enzymes, while most nanozymes lack substrate specificity. Molecular imprinting on nanozymes provides a simple solution to this problem, and the catalytic activity is also enhanced. To understand enhanced activity, a surface science approach is taken by dissecting the nanozyme reaction into adsorption of substrates, reaction, and product release. Each step is individually studied using reaction kinetics measurement, dynamic light scattering, UV-vis spectrometry. Enrichment of local substrate concentration due to imprinting is around 8-fold, and increased substrate concentration could contribute to increased activity. Diffusion of the substrate across the imprinted gel layer is studied by a pre-incubation experiment, also highlighting the difference between imprinted and non-imprinted gel layers. The activation energy is measured and a substrate-imprinted sample had the lowest activation energy of 13.8 kJ mol-1. Product release is also improved after imprinting as indicated by isothermal titration calorimetry using samples respectively imprinted with the substrate and the product. This study has rationalized improved activity and specificity of molecularly imprinted nanozymes and may guide further rational design of such materials.
Collapse
Affiliation(s)
- Zijie Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada.
| | | | | | | |
Collapse
|
220
|
Huang Y, Ren J, Qu X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem Rev 2019; 119:4357-4412. [PMID: 30801188 DOI: 10.1021/acs.chemrev.8b00672] [Citation(s) in RCA: 1637] [Impact Index Per Article: 272.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because of the high catalytic activities and substrate specificity, natural enzymes have been widely used in industrial, medical, and biological fields, etc. Although promising, they often suffer from intrinsic shortcomings such as high cost, low operational stability, and difficulties of recycling. To overcome these shortcomings, researchers have been devoted to the exploration of artificial enzyme mimics for a long time. Since the discovery of ferromagnetic nanoparticles with intrinsic horseradish peroxidase-like activity in 2007, a large amount of studies on nanozymes have been constantly emerging in the next decade. Nanozymes are one kind of nanomaterials with enzymatic catalytic properties. Compared with natural enzymes, nanozymes have the advantages such as low cost, high stability and durability, which have been widely used in industrial, medical, and biological fields. A thorough understanding of the possible catalytic mechanisms will contribute to the development of novel and high-efficient nanozymes, and the rational regulations of the activities of nanozymes are of great significance. In this review, we systematically introduce the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years. We also propose the current challenges of nanozymes as well as their future research focus. We anticipate this review may be of significance for the field to understand the properties of nanozymes and the development of novel nanomaterials with enzyme mimicking activities.
Collapse
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China.,College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| |
Collapse
|
221
|
Zhang Q, Li M, Guo C, Jia Z, Wan G, Wang S, Min D. Fe₃O₄Nanoparticles Loaded on Lignin Nanoparticles Applied as a Peroxidase Mimic for the Sensitively Colorimetric Detection of H₂O₂. NANOMATERIALS 2019; 9:nano9020210. [PMID: 30736286 PMCID: PMC6410108 DOI: 10.3390/nano9020210] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022]
Abstract
Lignin is the second largest naturally renewable resource and is primarily a by-product of the pulp and paper industry; however, its inefficient use presents a challenge. In this work, Fe₃O₄ nanoparticles loaded on lignin nanoparticles (Fe₃O₄@LNPs) were prepared by the self-assembly method and it possessed an enhanced peroxidase-like activity. Fe₃O₄@LNPs catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H₂O₂ to generate a blue color, was observable by the naked eye. Under the optimal conditions, Fe₃O₄@LNPs showed the ability of sensitive colorimetric detection of H₂O₂within a range of 5⁻100 μM and the limit of detection was 2 μM. The high catalytic activity of Fe₃O₄@LNPs allows its prospective use in a wide variety of applications, including clinical diagnosis, food safety, and environmental monitoring.
Collapse
Affiliation(s)
- Qingtong Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
- Guangxi Key Lab of Clean Pulp & Papermaking and pollution Control, Nanning 530004, China.
| | - Mingfu Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
- Guangxi Key Lab of Clean Pulp & Papermaking and pollution Control, Nanning 530004, China.
| | - Chenyan Guo
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
- Guangxi Key Lab of Clean Pulp & Papermaking and pollution Control, Nanning 530004, China.
| | - Zhuan Jia
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
- Guangxi Key Lab of Clean Pulp & Papermaking and pollution Control, Nanning 530004, China.
| | - Guangcong Wan
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
- Guangxi Key Lab of Clean Pulp & Papermaking and pollution Control, Nanning 530004, China.
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
- Guangxi Key Lab of Clean Pulp & Papermaking and pollution Control, Nanning 530004, China.
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
- Guangxi Key Lab of Clean Pulp & Papermaking and pollution Control, Nanning 530004, China.
| |
Collapse
|
222
|
High-activity Fe3O4 nanozyme as signal amplifier: A simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay. Biosens Bioelectron 2019; 127:64-71. [DOI: 10.1016/j.bios.2018.11.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/06/2018] [Accepted: 11/27/2018] [Indexed: 11/17/2022]
|
223
|
Jin R, Xing Z, Kong D, Yan X, Liu F, Gao Y, Sun P, Liang X, Lu G. Sensitive colorimetric sensor for point-of-care detection of acetylcholinesterase using cobalt oxyhydroxide nanoflakes. J Mater Chem B 2019; 7:1230-1237. [PMID: 32255162 DOI: 10.1039/c8tb02987c] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Point-of-care monitoring of acetylcholinesterase (AChE) is of significant importance for pesticide poisoning and disease diagnosis because it plays a pivotal role in biological nerve conduction systems. Herein, we designed a colorimetric strategy for the facile and accurate detection of AChE based on tandem catalysis with a multi-enzyme system, which is constituted by cobalt oxyhydroxide nanoflakes (CoOOH NFs) and choline oxidase (CHO). In this sensor, AChE catalytically hydrolyzed acetylcholine (ACh) to produce choline, which was further efficiently oxidized by CHO to yield H2O2. CoOOH NFs, as a nanozyme, efficiently catalyzed 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxTMB with the help of H2O2, accompanied by an enhancement of absorbance intensity. The resulting intensity could be employed as the signal output of the CHO/CoOOH/ACh system in monitoring AChE. Under optimal conditions, the developed sensor possessed a sensitive response to AChE with a detection limit of 33 μU mL-1. Interestingly, the proposed platform was applied to fabricate a paper-based sensor for rapidly recognizing AChE by direct observation with the naked eyes. Combined with a smartphone and ImageJ software, we further developed an image-processing algorithm for the quantitative detection of AChE with highly promising results, which validated the outstanding potential of on-site application in clinical diagnostics and pesticide poisoning.
Collapse
Affiliation(s)
- Rui Jin
- State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Ding H, Cai Y, Gao L, Liang M, Miao B, Wu H, Liu Y, Xie N, Tang A, Fan K, Yan X, Nie G. Exosome-like Nanozyme Vesicles for H 2O 2-Responsive Catalytic Photoacoustic Imaging of Xenograft Nasopharyngeal Carcinoma. NANO LETTERS 2019; 19:203-209. [PMID: 30539641 DOI: 10.1021/acs.nanolett.8b03709] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photoacoustic imaging (PAI) is an attractive imaging modality, which is promising for clinical cancer diagnosis due to its advantages on deep tissue penetration and fine spatial resolution. However, few tumor catalytic/responsive PAI strategies are developed. Here, we design an exosome-like nanozyme vesicle for in vivo H2O2-responsive PAI of nasopharyngeal carcinoma (NPC). The intrinsic peroxidase-like activity of graphene quantum dot nanozyme (GQDzyme) effectively converts the 2,2'-azino- bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) into its oxidized form in the presence of H2O2. The oxidized ABTS exhibits strong near-infrared (NIR) absorbance, rendering it to be an ideal contrast agent for PAI. Thus, GQDzyme/ABTS nanoparticle is a novel type of catalytic PAI contrast agent, which is sensitive to H2O2 produced from NPC cells. Furthermore, we develop an approach to construct exosome-like nanozyme vesicle via biomimetic functionalization of GQDzyme/ABTS nanoparticle with natural erythrocyte membrane modified with folate acid. In vivo animal experiments demonstrated that this exosome-like nanozyme vesicle effectively accumulated in NPC and selectively triggered catalytic PAI for NPC. In addition, our nanozyme vesicle exhibits excellent biocompatibility and stealth ability for long blood circulation. Together, we demonstrate that GQDzyme/ABTS based exosome-like nanozyme vesicle is an ideal nanoplatform for developing deep-tissue tumor-targeted catalytic PAI in vivo.
Collapse
Affiliation(s)
- Hui Ding
- Institute of Translational Medicine , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center , Shenzhen 518039 , China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
- Department of Otolaryngology , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University , Shenzhen 518039 , China
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080 , China
| | - Yanjuan Cai
- Institute of Translational Medicine , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center , Shenzhen 518039 , China
- Department of Otolaryngology , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University , Shenzhen 518039 , China
| | - Lizeng Gao
- Department of Pharmacology, School of Medicine, Institute of Translational Medicine , Yangzhou University , Yangzhou 225001 , China
| | - Minmin Liang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Beiping Miao
- Institute of Translational Medicine , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center , Shenzhen 518039 , China
- Department of Otolaryngology , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University , Shenzhen 518039 , China
| | - Hanwei Wu
- Institute of Translational Medicine , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center , Shenzhen 518039 , China
- Department of Otolaryngology , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University , Shenzhen 518039 , China
| | - Yang Liu
- Institute of Translational Medicine , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center , Shenzhen 518039 , China
| | - Ni Xie
- Institute of Translational Medicine , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center , Shenzhen 518039 , China
| | - Aifa Tang
- Institute of Translational Medicine , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center , Shenzhen 518039 , China
| | - Kelong Fan
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Guohui Nie
- Institute of Translational Medicine , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center , Shenzhen 518039 , China
- Department of Otolaryngology , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University , Shenzhen 518039 , China
| |
Collapse
|
225
|
Cai X, Wang Z, Zhang H, Li Y, Chen K, Zhao H, Lan M. Carbon-mediated synthesis of shape-controllable manganese phosphate as nanozymes for modulation of superoxide anions in HeLa cells. J Mater Chem B 2019; 7:401-407. [DOI: 10.1039/c8tb02573h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here we present a facile method to fabricate shape-controllable transition metal phosphates by using hollow carbon structures as substrates for superoxide sensing.
Collapse
Affiliation(s)
- Xuan Cai
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Zhenxing Wang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Huanhuan Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yufei Li
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Kaicha Chen
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
226
|
Huang M, Wang H, He D, Jiang P, Zhang Y. Ultrafine and monodispersed iridium nanoparticles supported on nitrogen-functionalized carbon: an efficient oxidase mimic for glutathione colorimetric detection. Chem Commun (Camb) 2019; 55:3634-3637. [DOI: 10.1039/c9cc00279k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ultrafine and monodispersed Ir NPs supported on nitrogen-functionalized carbon served as an efficient oxidase mimic for glutathione colorimetric detection.
Collapse
Affiliation(s)
- Mujia Huang
- Chongqing Key Laboratory of Inorganic Functional Materials
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Hua Wang
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu 610068
- China
| | - Daiping He
- Chongqing Key Laboratory of Inorganic Functional Materials
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Ping Jiang
- Chongqing Key Laboratory of Inorganic Functional Materials
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Yun Zhang
- College of Chemistry and Materials Science
- Sichuan Normal University
- Chengdu 610068
- China
| |
Collapse
|
227
|
Wang Y, Yang J, Zhao Y, Liu J. Intentional hydrolysis to overcome the hydrolysis problem: detection of Ce(iv) by producing oxidase-like nanozymes with F−. Chem Commun (Camb) 2019; 55:13434-13437. [DOI: 10.1039/c9cc06167c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluoride boosts the oxidase-like activity of hydrolyzed Ce(iv) but inhibits the activity of Ce(iv), allowing intentional hydrolysis to be performed for consistent analysis of Ce(iv).
Collapse
Affiliation(s)
- Yawen Wang
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
- Department of Chemistry
| | - Jianzhong Yang
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Yilin Zhao
- Department of Chemistry
- Waterloo Institute for Nanotechnology
- Water Institute
- University of Waterloo
- Ontario
| | - Juewen Liu
- Department of Chemistry
- Waterloo Institute for Nanotechnology
- Water Institute
- University of Waterloo
- Ontario
| |
Collapse
|
228
|
Gao L, Yan X. Nanozymes: Biomedical Applications of Enzymatic Fe3O4 Nanoparticles from In Vitro to In Vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:291-312. [DOI: 10.1007/978-981-13-9791-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
229
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 271.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
230
|
Zhao C, Xiong C, Liu X, Qiao M, Li Z, Yuan T, Wang J, Qu Y, Wang X, Zhou F, Xu Q, Wang S, Chen M, Wang W, Li Y, Yao T, Wu Y, Li Y. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem Commun (Camb) 2019; 55:2285-2288. [DOI: 10.1039/c9cc00199a] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein, we report a heterogeneous single iron atom catalyst exhibiting excellent peroxidase, oxidase and catalase enzyme-like activities (defined as single atom enzymes, SAEs), exceeding those of Fe3O4 nanozymes by a factor of 40.
Collapse
|
231
|
Wang Y, Li H, Guo L, Jiang Q, Liu F. A cobalt-doped iron oxide nanozyme as a highly active peroxidase for renal tumor catalytic therapy. RSC Adv 2019; 9:18815-18822. [PMID: 35516849 PMCID: PMC9066162 DOI: 10.1039/c8ra05487h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/08/2019] [Indexed: 12/27/2022] Open
Abstract
The Fe3O4 nanozyme, the first reported nanozyme with intrinsic peroxidase-like activity, has been successfully employed for various diagnostic applications. However, only a few studies have been reported on the therapeutic applications of the Fe3O4 nanozyme partly due to its low affinity to the substrate H2O2. Herein, we report a new strategy for improving the peroxidase-like activity and affinity of the Fe3O4 nanozyme to H2O2 to generate reactive oxygen species (ROS) for kidney tumor catalytic therapy. We showed that cobalt-doped Fe3O4 (Co@Fe3O4) nanozymes possessed stronger peroxidase activity and a 100-fold higher affinity to H2O2 than the Fe3O4 nanozymes. The lysosome localization properties of Co@Fe3O4 enable Co@Fe3O4 to catalyze the decomposition of H2O2 at ultralow doses for the generation of ROS bursts to effectively kill human renal tumor cells both in vitro and in vivo. Moreover, our study provides the first evidence that the Co@Fe3O4 nanozyme is a powerful nanozyme for the generation of ROS bursts upon the addition of H2O2 at ultralow doses, presenting a potential novel avenue for tumor nanozyme catalytic therapy. Cobalt dopant in Fe3O4 nanozymes improved their binding affinity to H2O2 and enhanced the tumor catalytic therapy efficacy.![]()
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Nephrology
- China-Japan Union Hospital of Jilin University
- Changchun
- China
| | - Hongjun Li
- The Examination Center
- China-Japan Union Hospital of Jilin University
- Changchun
- China
| | - Lihua Guo
- Department of Nephrology
- China-Japan Union Hospital of Jilin University
- Changchun
- China
| | - Qi Jiang
- Department of Nephrology
- China-Japan Union Hospital of Jilin University
- Changchun
- China
| | - Feng Liu
- Department of Nephrology
- China-Japan Union Hospital of Jilin University
- Changchun
- China
| |
Collapse
|
232
|
Zhu M, Wang M, Qi W, Su R, He Z. Constructing peptide-based artificial hydrolases with customized selectivity. J Mater Chem B 2019. [DOI: 10.1039/c9tb00408d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substrate selectivity of peptide-based artificial enzymes can be customized by combining molecularly imprinted polymers as binding sites with peptide nanofibers as catalytic moieties.
Collapse
Affiliation(s)
- Mingjie Zhu
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Mengfan Wang
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Rongxin Su
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Zhimin He
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| |
Collapse
|
233
|
Zhou Y, Sun H, Xu H, Matysiak S, Ren J, Qu X. Mesoporous Encapsulated Chiral Nanogold for Use in Enantioselective Reactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ya Zhou
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Hanjun Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Hongcheng Xu
- Biophysics ProgramInstitute of Physical Science and TechnologyUniversity of Maryland College Park MD USA
| | - Silvina Matysiak
- Biophysics ProgramInstitute of Physical Science and TechnologyUniversity of Maryland College Park MD USA
- Fischell Department of EngineeringUniversity of Maryland College Park MD USA
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
234
|
Wu D, Hu N, Liu J, Fan G, Li X, Sun J, Dai C, Suo Y, Li G, Wu Y. Ultrasensitive colorimetric sensing strategy based on ascorbic acid triggered remarkable photoactive-nanoperoxidase for signal amplification and its application to α-glucosidase activity detection. Talanta 2018; 190:103-109. [DOI: 10.1016/j.talanta.2018.07.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/22/2018] [Indexed: 01/21/2023]
|
235
|
Zhou Y, Sun H, Xu H, Matysiak S, Ren J, Qu X. Mesoporous Encapsulated Chiral Nanogold for Use in Enantioselective Reactions. Angew Chem Int Ed Engl 2018; 57:16791-16795. [PMID: 30371985 DOI: 10.1002/anie.201811118] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/27/2018] [Indexed: 11/11/2022]
Abstract
Although various nanomaterials have been designed for biocatalysis, few of them can accelerate chemical reactions with high selectivity and stereocontrol, which remains them from being perfect alternatives to nature enzymes. Herein, inspired by the natural enzymes, an enantioselective nanomaterial has been constructed, with gold nanoparticles (AuNPs) as active centers, chiral cysteine (Cys) as selectors for chiral recognition, and expanded mesoporous silica (EMSN) as a skeleton of the artificial enzyme. In the oxidation of chiral 3,4-dihydroxy-phenylalanine (DOPA), the nanozyme with d-Cys shows preference to l-DOPA while the artificial enzyme with l-Cys shows preference to d-DOPA. Subsequent calculation of apparent steady-state kinetic parameters and activation energies together with molecular dynamics (MD) simulations showed that the different affinity precipitated by hydrogen bonding formation between chiral Cys and DOPA is the origin of chiral selectivity.
Collapse
Affiliation(s)
- Ya Zhou
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hanjun Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Hongcheng Xu
- Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Silvina Matysiak
- Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, MD, USA.,Fischell Department of Engineering, University of Maryland, College Park, MD, USA
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
236
|
Komkova MA, Karyakina EE, Karyakin AA. Catalytically Synthesized Prussian Blue Nanoparticles Defeating Natural Enzyme Peroxidase. J Am Chem Soc 2018; 140:11302-11307. [PMID: 30118222 DOI: 10.1021/jacs.8b05223] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We synthesized Prussian Blue (PB) nanoparticles through catalytic reaction involving hydrogen peroxide (H2O2) activation. The resulting nanoparticles display the size-dependent catalytic rate constants in H2O2 reduction, which are significantly improved compared to natural enzyme peroxidase: for PB nanoparticles 200 nm in diameter, the turnover number is 300 times higher; for 570 nm diameter nanoparticles, it is 4 orders of magnitude higher. Comparing to the known peroxidase-like nanozymes, the advantages of the reported PB nanoparticles are their true enzymatic properties: (1) enzymatic specificity (an absence of oxidase-like activity) and (2) an ability to operate in physiological solutions. The ultrahigh activity and enzymatic specificity of the catalytically synthesized PB nanoparticles together with high stability and low cost, obviously peculiar to noble metal free inorganic materials, would allow the substitution of natural and recombinant peroxidases in biotechnology and analytical sciences.
Collapse
Affiliation(s)
- Maria A Komkova
- Chemistry faculty of M.V. Lomonosov Moscow State University , 119991 , Moscow , Russia
| | - Elena E Karyakina
- Chemistry faculty of M.V. Lomonosov Moscow State University , 119991 , Moscow , Russia
| | - Arkady A Karyakin
- Chemistry faculty of M.V. Lomonosov Moscow State University , 119991 , Moscow , Russia
| |
Collapse
|
237
|
Ma X, Zhang L, Xia M, Zhang X, Zhang Y. Catalytic degradation of organophosphorous nerve agent simulants by polymer beads@graphene oxide with organophosphorus hydrolase-like activity based on rational design of functional bimetallic nuclear ligand. JOURNAL OF HAZARDOUS MATERIALS 2018; 355:65-73. [PMID: 29775879 DOI: 10.1016/j.jhazmat.2018.04.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/22/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
The degradation of organophosphorous nerve agents is of primary concern due to the severe toxicity of these agents. Based on the active center of organophosphorus hydrolase (OPH), a bimetallic nuclear ligand, (5-vinyl-1,3-phenylene)bis(di(1H-imidazol-2-yl) methanol) (VPIM), was designed and synthesized, which contains four imidazole groups to mimic the four histidines at OPH active center. By grafting VPIM on graphene oxide (GO) surface via polymerization, the VPIM-polymer beads@GO was produced. The obtained OPH mimics has an impressive activity in dephosphorylation reactions (turnover frequency (TOF) towards paraoxon: 2.3 s-1). The synergistic catalytic effect of the bimetallic Zn2+ nuclear center and carboxyl groups on surface of GO possibly contributes to the high hydrolysis on organophosphate substrate. Thus, a biomimetic catalyst for efficient degradation of some organophosphorous nerve agent simulants, such as paraoxon and chlorpyrifos, was prepared by constructing catalytic active sites. The proposed mechanism and general synthetic strategy open new avenues for the engineering of functional GOs for biomimetic catalysts.
Collapse
Affiliation(s)
- Xuejuan Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Changan West Road 620, 710119, Xi'an, China; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China
| | - Lin Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Changan West Road 620, 710119, Xi'an, China; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China
| | - Mengfan Xia
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Changan West Road 620, 710119, Xi'an, China; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China
| | - Xiaohong Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Changan West Road 620, 710119, Xi'an, China; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China
| | - Yaodong Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Changan West Road 620, 710119, Xi'an, China; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Changan West Road 620, 710119, Xi'an, China.
| |
Collapse
|
238
|
Enhancing the peroxidase-like activity of ficin via heme binding and colorimetric detection for uric acid. Talanta 2018; 185:433-438. [DOI: 10.1016/j.talanta.2018.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 12/19/2022]
|
239
|
Wu J, Li S, Wei H. Integrated nanozymes: facile preparation and biomedical applications. Chem Commun (Camb) 2018; 54:6520-6530. [PMID: 29564455 DOI: 10.1039/c8cc01202d] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, integrated nanozymes (INAzymes) have been developed by encapsulating two or more different biocatalysts (e.g., natural oxidases and peroxidase mimics) together within confined frameworks. On the one hand, with the assistance of natural enzymes, INAzymes are capable of specifically recognizing targets. On the other hand, nanoscale confinement brought about by integration significantly enhances the cascade reaction efficiency. In this Feature Article, we highlight the newly developed INAzymes, covering from synthetic strategies to versatile applications in biodetection and therapeutics. Moreover, it is predicted that INAzymes with superior activities, specificity, and stability will enrich the research of nanozymes and pave new ways in designing multifunctional nanozymes.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China. and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China. and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
240
|
Jiang J, He C, Wang S, Jiang H, Li J, Li L. Recyclable ferromagnetic chitosan nanozyme for decomposing phenol. Carbohydr Polym 2018; 198:348-353. [PMID: 30093010 DOI: 10.1016/j.carbpol.2018.06.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/20/2018] [Accepted: 06/14/2018] [Indexed: 12/27/2022]
Abstract
Decomposing phenol and phenolic compounds to purify the environment is a focus of social attention. The use of ferromagnetic nanoparticles (MNP) to degrade phenol and phenolic compounds possesses many advantages and has received extensive attention. However, the unsatisfied catalyst activity and stability of MNP hamper its industrial applications. To improve MNP's properties, a ferromagnetic chitosan nanozyme (MNP@CTS) was synthesized via an improved hydrothermal method and molecular self-assembly technology. Its particle size was 11.76 nm, polydispersity index (PDI) was 0.073, surface zeta potential was 40.34 mV, saturation magnetization value was 35.28 emu g-1 and coercivity value was 17.56 Oe. The catalytic condition was extensively optimized among a range of pH and temperature, as well as initial concentrations of the substrate and H2O2, and MNP@CTS removed over 95% phenol from an aqueous solution within 5 h under the optimum conditions. Moreover, MNP@CTS was stable and could be regenerated for reuse for at least ten rounds. Thus, our findings open up a wide spectrum and lay a foundation of environmental friendly applications of MNP@CTS, showing several attractive features, such as easy preparation, low cost, excellent catalytic activity, good stability and reusability.
Collapse
Affiliation(s)
- Jianfang Jiang
- School of Pharmacy, Zunyi Medical College, Zunyi, Guizhou, 563006, PR China.
| | - Chunyang He
- School of Pharmacy, Zunyi Medical College, Zunyi, Guizhou, 563006, PR China
| | - Sen Wang
- School of Pharmacy, Zunyi Medical College, Zunyi, Guizhou, 563006, PR China
| | - Hao Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Jida Li
- School of Pharmacy, Zunyi Medical College, Zunyi, Guizhou, 563006, PR China
| | - Linshan Li
- School of Pharmacy, Zunyi Medical College, Zunyi, Guizhou, 563006, PR China
| |
Collapse
|
241
|
Zhang Q, Zhang J, Gavathiotis E. ICBS 2017 in Shanghai-Illuminating Life with Chemical Innovation. ACS Chem Biol 2018; 13:1111-1122. [PMID: 29677443 PMCID: PMC6855916 DOI: 10.1021/acschembio.8b00220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Albert Einstein College of Medicine, New York 10461, United States
| |
Collapse
|
242
|
Hu L, Liao H, Feng L, Wang M, Fu W. Accelerating the Peroxidase-Like Activity of Gold Nanoclusters at Neutral pH for Colorimetric Detection of Heparin and Heparinase Activity. Anal Chem 2018; 90:6247-6252. [DOI: 10.1021/acs.analchem.8b00885] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Hong Liao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
243
|
Sang Y, Huang Y, Li W, Ren J, Qu X. Bioinspired Design of Fe3+
-Doped Mesoporous Carbon Nanospheres for Enhanced Nanozyme Activity. Chemistry 2018; 24:7259-7263. [DOI: 10.1002/chem.201801010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Yanjuan Sang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Science and Technology of China; Hefei Anhui 230026 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Wei Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| |
Collapse
|
244
|
Wu J, Qin K, Yuan D, Tan J, Qin L, Zhang X, Wei H. Rational Design of Au@Pt Multibranched Nanostructures as Bifunctional Nanozymes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12954-12959. [PMID: 29577720 DOI: 10.1021/acsami.7b17945] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One of the current challenges in nanozyme-based nanotechnology is the utilization of multifunctionalities in one material. In this regard, Au@Pt nanoparticles (NPs) with excellent enzyme-mimicking activities due to the Pt shell and unique surface plasmon resonance features from the Au core have attracted enormous research interest. However, the unique surface plasmon resonance features from the Au core have not been widely utilized. The practical problem of the optical-damping nature of Pt hinders the research into the combination of Au@Pt NPs' enzyme-mimicking properties with their surface-enhanced Raman scattering (SERS) activities. Herein, we rationally tuned the Pt amount to achieve Au@Pt NPs with simultaneous plasmonic and enzyme-mimicking activities. The results showed that Au@Pt NPs with 2.5% Pt produced the highest Raman signal in 2 min, which benefited from the remarkably accelerated catalytic oxidation of 3,3',5,5'-tetramethylbenzidine with the decorated Pt and strong electric field retained from the Au core for SERS. This study not only demonstrates the great promise of combining bimetallic nanomaterials' multiple functionalities but also provides rational guidelines to design high-performance nanozymes for potential biomedical applications.
Collapse
|
245
|
Lin T, Qin Y, Huang Y, Yang R, Hou L, Ye F, Zhao S. A label-free fluorescence assay for hydrogen peroxide and glucose based on the bifunctional MIL-53(Fe) nanozyme. Chem Commun (Camb) 2018; 54:1762-1765. [PMID: 29380827 DOI: 10.1039/c7cc09819g] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A label-free nanozyme MIL-53(Fe) with the dual-function of catalyzing and emitting fluorescence was utilized for turn-on fluorescence detection of hydrogen peroxide and glucose. The proposed strategy provides a cost-effective, safe and sensitive method for the design and development of multiple enzyme cascade assays for various biomolecules.
Collapse
Affiliation(s)
- Tianran Lin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin 541004, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
246
|
Visual detection of cyanide ions by membrane-based nanozyme assay. Biosens Bioelectron 2018; 102:510-517. [DOI: 10.1016/j.bios.2017.11.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023]
|
247
|
Huang XL. Hydrolysis of Phosphate Esters Catalyzed by Inorganic Iron Oxide Nanoparticles Acting as Biocatalysts. ASTROBIOLOGY 2018; 18:294-310. [PMID: 29489387 DOI: 10.1089/ast.2016.1628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phosphorus ester hydrolysis is one of the key chemical processes in biological systems, including signaling, free-energy transaction, protein synthesis, and maintaining the integrity of genetic material. Hydrolysis of this otherwise kinetically stable phosphoester and/or phosphoanhydride bond is induced by enzymes such as purple acid phosphatase. Here, I report that, as in previously reported aged inorganic iron ion solutions, the iron oxide nanoparticles in the solution, which are trapped in a dialysis membrane tube filled with the various iron oxides, significantly promote the hydrolysis of the various phosphate esters, including the inorganic polyphosphates, with enzyme-like kinetics. This observation, along with those of recent studies of iron oxide, vanadium pentoxide, and molybdenum trioxide nanoparticles that behave as mimics of peroxidase, bromoperoxidase, and sulfite oxidase, respectively, indicates that the oxo-metal bond in the oxide nanoparticles is critical for the function of these corresponding natural metalloproteins. These inorganic biocatalysts challenge the traditional concept of replicator-first scenarios and support the metabolism-first hypothesis. As biocatalysts, these inorganic nanoparticles with enzyme-like activity may work in natural terrestrial environments and likely were at work in early Earth environments as well. They may have played an important role in the C, H, O, S, and P metabolic pathway with regard to the emergence and early evolution of life. Key Words: Enzyme-Hydrolysis-Iron oxide-Nanoparticles-Origin of life-Phosphate ester. Astrobiology 18, 294-310.
Collapse
|
248
|
Lopez-Tejedor D, Benavente R, Palomo JM. Iron nanostructured catalysts: design and applications. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02259j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review is focused on the recent advances in the design of iron nanostructures and their catalytic applications.
Collapse
Affiliation(s)
| | - Rocio Benavente
- Department of Biocatalysis
- Institute of Catalysis (CSIC)
- 28049 Madrid
- Spain
| | - Jose M. Palomo
- Department of Biocatalysis
- Institute of Catalysis (CSIC)
- 28049 Madrid
- Spain
| |
Collapse
|
249
|
Li D, Liu B, Huang PJJ, Zhang Z, Liu J. Highly active fluorogenic oxidase-mimicking NiO nanozymes. Chem Commun (Camb) 2018; 54:12519-12522. [DOI: 10.1039/c8cc07062h] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NiO nanoparticles can quickly catalyze oxidation of Amplex red to produce fluorescent products for intracellular imaging, much more efficiently than other types of tested nanozymes.
Collapse
Affiliation(s)
- Dai Li
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University
- Changsha
- China
- Department of Chemistry, University of Waterloo, Waterloo
- Ontario
| | - Biwu Liu
- Department of Chemistry, University of Waterloo, Waterloo
- Ontario
- Canada
| | | | - Zijie Zhang
- Department of Chemistry, University of Waterloo, Waterloo
- Ontario
- Canada
| | - Juewen Liu
- Department of Chemistry, University of Waterloo, Waterloo
- Ontario
- Canada
| |
Collapse
|
250
|
Yang H, Xiao J, Shi J, Shu T, Su L, Lu Q, Zhang X. A dual-cell device designed as an oxidase mimic and its use for the study of oxidase-like nanozymes. Chem Commun (Camb) 2018; 54:818-820. [DOI: 10.1039/c7cc08992a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A dual-cell device has been designed as an oxidase-like mimic with the oxidation of 3,3′,5,5′-tetramethylbenzidine as a model reaction.
Collapse
Affiliation(s)
- Hankun Yang
- Beijing Advanced Innovation Center of Materials Genome Engineering
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- University of Science and Technology Beijing
- Beijing 100083
| | - Jingyu Xiao
- Beijing Advanced Innovation Center of Materials Genome Engineering
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- University of Science and Technology Beijing
- Beijing 100083
| | - Junpeng Shi
- Beijing Advanced Innovation Center of Materials Genome Engineering
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- University of Science and Technology Beijing
- Beijing 100083
| | - Tong Shu
- Beijing Advanced Innovation Center of Materials Genome Engineering
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- University of Science and Technology Beijing
- Beijing 100083
| | - Lei Su
- Beijing Advanced Innovation Center of Materials Genome Engineering
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- University of Science and Technology Beijing
- Beijing 100083
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering
- University of Calgary
- Calgary
- Canada
| | - Xueji Zhang
- Beijing Advanced Innovation Center of Materials Genome Engineering
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- University of Science and Technology Beijing
- Beijing 100083
| |
Collapse
|