201
|
Lavan M, Knipp G. Effects of Dendrimer-Like Biopolymers on Physical Stability of Amorphous Solid Dispersions and Drug Permeability Across Caco-2 Cell Monolayers. AAPS PharmSciTech 2018; 19:2459-2471. [PMID: 29869315 DOI: 10.1208/s12249-018-1080-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/16/2018] [Indexed: 11/30/2022] Open
Abstract
The potential applications of dendrimer-like biopolymers (DLB) as stabilizing excipients for amorphous solid dispersion (ASD) of niclosamide, celecoxib, and resveratrol were evaluated based on (1) the formation and physical stability of the ASD and (2) the permeability and flux of the agents across Caco-2 cell monolayers. The evaluation was made by comparing the performance of prototype phytoglycogen derivatives (DLB1, DLB2, and DLB3) with commonly used polymers such as HPMCAS, PVPVA, and Soluplus®. PXRD was used to confirm the formation of the dispersions and detect crystallinity peaks formed during 2- and 4-week storage at 40°C/75% RH. At concentrations below 2 g/mL, the viability of Caco-2 cells remained above 80% for all DLB samples compared to untreated cells in the MTT assay. Permeability studies revealed a repeating pattern in which an increase in the initial concentration (C0) was associated with a concomitant decrease in the apparent permeability (Papp) which we theorize is due to differences in drug-polymer interactions. Niclosamide-DLB1 dispersion had the lowest flux due to a significant reduction in Papp. The high increase in the C0 of celecoxib-DLB2, however, made up for the reduction in the Papp and produced the highest flux values compared to other polymers. Resveratrol-DLB3 had a 5× reduction in Papp, but C0 increased from 25.8 to 176 μg/mL led to a higher flux compared to the crystalline drug without polymer. Collectively, these results provide a "proof-of-concept" basis to demonstrate that DLB excipients have the ability to increase apparent solubility (Solapp), most likely due to drug-binding capacity.
Collapse
|
202
|
miRNA 146a promotes chemotherapy resistance in lung cancer cells by targeting DNA damage inducible transcript 3 (CHOP). Cancer Lett 2018; 428:55-68. [DOI: 10.1016/j.canlet.2018.04.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023]
|
203
|
Mirzayans R, Andrais B, Murray D. Viability Assessment Following Anticancer Treatment Requires Single-Cell Visualization. Cancers (Basel) 2018; 10:cancers10080255. [PMID: 30071623 PMCID: PMC6115892 DOI: 10.3390/cancers10080255] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 12/03/2022] Open
Abstract
A subset of cells within solid tumors become highly enlarged and enter a state of dormancy (sustained proliferation arrest) in response to anticancer treatment. Although dormant cancer cells might be scored as “dead” in conventional preclinical assays, they remain viable, secrete growth-promoting factors, and can give rise to progeny with stem cell-like properties. Furthermore, cancer cells exhibiting features of apoptosis (e.g., caspase-3 activation) following genotoxic stress can undergo a reversal process called anastasis and survive. Consistent with these observations, single-cell analysis of adherent cultures (solid tumor-derived cell lines with differing p53 status) has demonstrated that virtually all cells—irrespective of their size and morphology—that remain adherent to the culture dish for a long time (weeks) after treatment with anticancer agents exhibit the ability to metabolize 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl- tetrazolium bromide (MTT). The purpose of this commentary is to briefly review these findings and discuss the significance of single-cell (versus population averaged) observation methods for assessment of cancer cell viability and metabolic activity.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - Bonnie Andrais
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - David Murray
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
204
|
Mishra A, Chandravanshi LP, Trigun SK, Krishnamurthy S. Ambroxol modulates 6-Hydroxydopamine-induced temporal reduction in Glucocerebrosidase (GCase) enzymatic activity and Parkinson's disease symptoms. Biochem Pharmacol 2018; 155:479-493. [PMID: 30040928 DOI: 10.1016/j.bcp.2018.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/20/2018] [Indexed: 12/26/2022]
Abstract
Reduced glucocerebrosidase (GCase) enzymatic activity is found in sporadic cases of Parkinson's disease making GCase a serious risk factor for PD. GCase gene mutations constitute a major risk factor in early-onset PD but only account for 5-10% cases. Having enough evidence for construct and face validity, 6-OHDA-induced hemiparkinson's model may be useful to assess the GCase-targeting drugs in order to have new leads for treatment of PD. Ambroxol (AMB) is reported to increase GCase activity in different brain-regions. Therefore, we investigated anti-PD like effects of AMB as well as GCase activity in striatal and nigral tissues of rats in hemiparkinson's model. AMB was given a dose of 400 mg/kg per oral twice daily and SEL used as positive control was given in the dose of 10 mg/kg per oral daily from D-4 to D-27 after 6-OHDA administration. 6-OHDA reduced GCase activity in striatal and in a progressive manner in nigral tissues. AMB and SEL attenuated 6-OHDA-induced motor impairments, dopamine (DA) depletion and GCase deficiency. AMB and SEL also ameliorated 6-OHDA-induced mitochondrial dysfunction in terms of MTT reduction, α-synuclein pathology, loss of nigral cells, and intrinsic pathway of apoptosis by modulating cytochrome-C, caspase-9, and caspase-3 expressions. The results suggest that AMB attenuated 6-OHDA-induced GCase deficiency and PD symptoms. Therefore, the regenerative effects of AMB in dopamine toxicity may be due to its effects on GCase activity and mitochondrial function. Results indicate that SEL also has regenerative effect in the 6-OHDA model. Thus, GCase enzymatic activity is likely to be involved in the development of PD symptoms, and 6-OHDA-induced hemiparkinson's model may be used to evaluate compounds targeting GCase activity for management of PD symptoms.
Collapse
Affiliation(s)
- Akanksha Mishra
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Lalit Pratap Chandravanshi
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India.
| |
Collapse
|
205
|
Gao X, Han L, Ding N, Mu Y, Guan P, Hu C, Huang X. Bafilomycin C1 induces G0/G1 cell-cycle arrest and mitochondrial-mediated apoptosis in human hepatocellular cancer SMMC7721 cells. J Antibiot (Tokyo) 2018; 71:808-817. [DOI: 10.1038/s41429-018-0066-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/08/2018] [Accepted: 04/15/2018] [Indexed: 11/09/2022]
|
206
|
Naserzadeh P, Mortazavi SA, Ashtari K, Salimi A, Farokhi M, Pourahmad J. Evaluation of the toxicity effects of silk fibroin on human lymphocytes and monocytes. J Biochem Mol Toxicol 2018; 32:e22056. [PMID: 29719092 DOI: 10.1002/jbt.22056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/29/2018] [Accepted: 03/28/2018] [Indexed: 02/01/2023]
Abstract
Silk fibroin nanoparticles (SFNPs) as a natural polymer have been utilized in biomedical applications such as suture, tissue engineering-based scaffolds, and drug delivery carriers. Since there is little data regarding the toxicity effects on different cells and tissues, we aimed to determine the toxicity mechanisms of SFNPs on human lymphocytes and monocytes based on reliable methods. Our results showed that SFNPs (0.5, 1, and 2 mg/mL) induced oxidative stress via increasing reactive oxygen species production, mitochondrial membrane potential (∆Ψ) collapse, which was correlated to cytochrome c release and Adenosine diphosphate (ADP)/Adenosine tri phosphate (ATP) ratio increase as well as lysosomal as another toxicity mechanism, which led to cytosolic release of lysosomal digestive proteases, phosphor lipases, and apoptosis signaling. Taken together, these data suggested that SFNPs toxicity was associated with mutual mitochondrial/lysosomal cross-talk and oxidative stress on human lymphocytes and monocytes with activated apoptosis signaling.
Collapse
Affiliation(s)
- Parvaneh Naserzadeh
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
207
|
Grela E, Kozłowska J, Grabowiecka A. Current methodology of MTT assay in bacteria - A review. Acta Histochem 2018; 120:303-311. [PMID: 29606555 DOI: 10.1016/j.acthis.2018.03.007] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/24/2018] [Accepted: 03/24/2018] [Indexed: 11/26/2022]
Abstract
The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium assay is a popular tool in estimating the metabolic activity of living cells. The test is based on enzymatic reduction of the lightly colored tetrazolium salt to its formazan of intense purple-blue color, which can be quantified spectrophotometrically. Under properly optimized conditions the obtained absorbance value is directly proportional to the number of living cells. Originally, the MTT assay was devised for use in eukaryotic cells lines and later applied for bacteria and fungi. As the mechanism of MTT reduction was studied in detail mostly considering eukaryotic cells, the lack of information resulted in generating a vast variety of MTT based protocols for bacterial enzymatic activity evaluation. In the presented article the main aspects of the MTT assay applicability in bacterial research were summarized, with special emphasis on sources of inaccuracies and misinterpretation of the test results.
Collapse
|
208
|
Peter B, Ungai-Salanki R, Szabó B, Nagy AG, Szekacs I, Bősze S, Horvath R. High-Resolution Adhesion Kinetics of EGCG-Exposed Tumor Cells on Biomimetic Interfaces: Comparative Monitoring of Cell Viability Using Label-Free Biosensor and Classic End-Point Assays. ACS OMEGA 2018; 3:3882-3891. [PMID: 29732447 PMCID: PMC5928488 DOI: 10.1021/acsomega.7b01902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/05/2018] [Indexed: 05/25/2023]
Abstract
A high-throughput label-free resonant waveguide grating biosensor, the Epic BenchTop, was utilized to in situ monitor the adhesion process of cancer cells on Arg-Gly-Asp tripeptide displaying biomimetic polymer surfaces. Using highly adherent human cervical adenocarcinoma (HeLa) cells as a model system, cell adhesion kinetic data with outstanding temporal resolution were obtained. We found that pre-exposing the cells to various concentrations of the main extract of green tea, the (-)-epigallocatechin gallate (EGCG), largely affected the temporal evolution of the adhesion process. For unexposed and low dosed cells, sigmoid shaped spreading kinetics was recorded. Higher dose of EGCG resulted in a complete absence of the sigmoidal character, and displayed adsorption-like kinetics. By using the first derivatives of the kinetic curves, a simple model was developed to quantify the sigmoidal character and the transition from sigmoidal to adsorption-like kinetics. The calculations showed that the transition happened at EGCG concentration of around 60 μg/mL. Using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide end-point assay, we concluded that EGCG is cytostatic but not cytotoxic. The effect of EGCG was also characterized by flow cytometry. We concluded that, using the introduced label-free methodology, the shape of the cell adhesion kinetic curves can be used to quantify in vitro cell viability in a fast, cost-effective, and highly sensitive manner.
Collapse
Affiliation(s)
- Beatrix Peter
- Doctoral
School of Molecular and Nanotechnologies, Faculty of Information Technology, University of Pannonia, Egyetem utca 10, H-8200 Veszprém, Hungary
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
| | - Rita Ungai-Salanki
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
- Department
of Biological Physics, Eötvös
Loránd University, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary
- CellSorter
Company for Innovations, Erdőalja út 174, H-1037 Budapest, Hungary
| | - Bálint Szabó
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
- Department
of Biological Physics, Eötvös
Loránd University, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary
- CellSorter
Company for Innovations, Erdőalja út 174, H-1037 Budapest, Hungary
| | - Agoston G. Nagy
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE
Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 112, P.O. Box 32, H-1518 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
| |
Collapse
|
209
|
Sharbrough J, Cruise JL, Beetch M, Enright NM, Neiman M. Genetic Variation for Mitochondrial Function in the New Zealand Freshwater Snail Potamopyrgus antipodarum. J Hered 2018; 108:759-768. [PMID: 28460111 DOI: 10.1093/jhered/esx041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/26/2017] [Indexed: 02/04/2023] Open
Abstract
The proteins responsible for mitochondrial function are encoded by 2 different genomes with distinct inheritance regimes, rendering rigorous inference of genotype-phenotype connections intractable for all but a few model systems. Asexual organisms provide a powerful means to address these challenges because offspring produced without recombination inherit both nuclear and mitochondrial genomes from a single parent. As such, these offspring inherit mitonuclear genotypes that are identical to the mitonuclear genotypes of their parents and siblings but different from those of other asexual lineages. Here, we compared mitochondrial function across distinct asexual lineages of Potamopyrgus antipodarum, a New Zealand freshwater snail model for understanding the evolutionary consequences of asexuality. Our analyses revealed substantial phenotypic variation across asexual lineages at 3 levels of biological organization: mitogenomic, organellar, and organismal. These data demonstrate that different asexual lineages have different mitochondrial function phenotypes, likely reflecting heritable variation (i.e., the raw material for evolution) for mitochondrial function in P. antipodarum. The discovery of this variation combined with the methods developed here sets the stage to use P. antipodarum to study central evolutionary questions involving mitochondrial function, including whether mitochondrial mutation accumulation influences the maintenance of sexual reproduction in natural populations.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, University of Iowa, Iowa City, IA.,Department of Biology, Colorado State University, Fort Collins, CO
| | | | - Megan Beetch
- Department of Biology, University of Iowa, Iowa City, IA.,Department of Biology, University of St. Thomas, Saint Paul, MN
| | | | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA
| |
Collapse
|
210
|
Bosio GN, Parisi J, García Einschlag FS, Mártire DO. Imidazole and beta-carotene photoprotection against photodynamic therapy evaluated by synchrotron infrared microscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 195:53-61. [PMID: 29367027 DOI: 10.1016/j.saa.2018.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
In order to better understand the role of β-carotene and imidazole on the Photodynamic Therapy (PDT) mechanism, synchrotron infrared microscopy was used to detect the associated intracellular biochemical modifications following the visible light irradiation of HeLa cells incubated with these compounds as typical hydrophobic and hydrophilic singlet oxygen quenchers, respectively. For this purpose, PDT was performed employing the hydrophilic sensitizer 5,10,15,20-Tetrakis (1-methyl-4-pyridinio) porphyrin tetra (p-toluenesulfonate), TMPyP, and the hydrophobic sensitizer 5-(4-Methoxycarboxyphenyl)-10,15,20-triphenyl-21H,23H-porphyrin. The single cell IR spectra of PDT-treated, PDT plus quencher-treated and control HeLa cells were recorded at the SOLEIL Synchrotron Infrared SMIS beamline targeting specifically the cell nucleus. Principal Component Analysis (PCA) was used to assess the IR spectral changes. PCA revealed that there is a frequency shift of the protein Amide I vibrational band for the assays with the TMPyP sensitizer, indicating changes in the protein secondary structures of the PDT-treated cancer cells compared to the controls. In addition, the scores in those cells treated with both quenchers appear to be similar to the controls indicating a photoprotective effect. Comparative experiments carried out with SKMEL-28 and HaCat cells showed non- significant photoprotective effects of β-carotene and imidazole.
Collapse
Affiliation(s)
- Gabriela N Bosio
- Instituto de Investigaciones Teóricas y Aplicadas, Universidad Nacional de La Plata, Calle 64 y Diagonal 113, CP1900, Argentina.
| | - Julieta Parisi
- Instituto Multidisciplinario de Biologia Celular (IMBICE), CCT-La Plata-CONICET, Camino General Belgrano y 526, B1906APO, La Plata, Argentina
| | - Fernando S García Einschlag
- Instituto de Investigaciones Teóricas y Aplicadas, Universidad Nacional de La Plata, Calle 64 y Diagonal 113, CP1900, Argentina.
| | - Daniel O Mártire
- Instituto de Investigaciones Teóricas y Aplicadas, Universidad Nacional de La Plata, Calle 64 y Diagonal 113, CP1900, Argentina
| |
Collapse
|
211
|
Vicario-de-la-Torre M, Caballo-González M, Vico E, Morales-Fernández L, Arriola-Villalobos P, De Las Heras B, Benítez-Del-Castillo JM, Guzmán M, Millar T, Herrero-Vanrell R, Molina-Martínez IT. Novel Nano-Liposome Formulation for Dry Eyes with Components Similar to the Preocular Tear Film. Polymers (Basel) 2018; 10:E425. [PMID: 30966460 PMCID: PMC6415276 DOI: 10.3390/polym10040425] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/16/2022] Open
Abstract
Dry eye is commonly treated with artificial tears; however, developing artificial tears similar to natural tears is difficult due to the complex nature of tears. We characterized and evaluated a novel artificial tear formulation with components similar to the lipid and aqueous constituents of natural tears. Nano-liposomes, composed in part of phosphatidylcholine, were dispersed in an aqueous solution of bioadhesive sodium hyaluronate. Liposome size, zeta potential, and physicochemical properties of the fresh and stored (4 °C) liposomal formulation were analyzed. In vitro tolerance was tested using human corneal and conjunctival cell lines by exposures of 15 min to 4 h. The tolerance of the liposomal formulation was evaluated in animals (rabbits). The average liposome size was 186.3 ± 7.0 nm, and the zeta potential was negative. The osmolarity of the formulation was 198.6 ± 1.7 mOsm, with a surface tension of 36.5 ± 0.4 mN/m and viscosity of 3.05 ± 0.02 mPa·s. Viability values in the human corneal and conjunctival cell lines were always >80%, even after liposomal formulation storage for 8 weeks. Discomfort and clinical signs after instillation in rabbit eyes were absent. The new formulation, based on phosphatidylcholine-liposomes dispersed in sodium hyaluronate has suitable components and characteristics, including high in vitro cell viability and good in vivo tolerance, to serve as a tear substitute.
Collapse
Affiliation(s)
- Marta Vicario-de-la-Torre
- Pharmaceutical Innovation in Ophthalmology Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain.
| | - María Caballo-González
- Pharmaceutical Innovation in Ophthalmology Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain.
| | - Eva Vico
- Ocular Surface and Inflammation, Ophthalmology Department, San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.
| | - Laura Morales-Fernández
- Ocular Surface and Inflammation, Ophthalmology Department, San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) and the Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.
| | - Pedro Arriola-Villalobos
- Ocular Surface and Inflammation, Ophthalmology Department, San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) and the Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.
| | - Beatriz De Las Heras
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) and the Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.
- Department of Pharmacology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain.
| | - José Manuel Benítez-Del-Castillo
- Ocular Surface and Inflammation, Ophthalmology Department, San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) and the Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.
| | - Manuel Guzmán
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Ctra Madrid-Barcelona, Km 33.6, 28801 Alcalá de Henares, Madrid, Spain.
| | - Thomas Millar
- School of Science and Health, Western Sydney University, Rydalmere Sydney, New South Wales 2116, Australia.
| | - Rocío Herrero-Vanrell
- Pharmaceutical Innovation in Ophthalmology Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain.
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) and the Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.
- Instituto Universitario de Farmacia Industrial (IUFI), Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain.
| | - Irene T Molina-Martínez
- Pharmaceutical Innovation in Ophthalmology Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain.
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) and the Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.
- Instituto Universitario de Farmacia Industrial (IUFI), Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
212
|
Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem 2018; 120:159-167. [PMID: 29496266 DOI: 10.1016/j.acthis.2018.02.005] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 01/11/2023]
Abstract
For many years various tetrazolium salts and their formazan products have been employed in histochemistry and for assessing cell viability. For the latter application, the most widely used are 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and 5-cyano-2,3-di-(p-tolyl)-tetrazolium chloride (CTC) for viability assays of eukaryotic cells and bacteria, respectively. In these cases, the nicotinamide-adenine-dinucleotide (NAD(P)H) coenzyme and dehydrogenases from metabolically active cells reduce tetrazolium salts to strongly colored and lipophilic formazan products, which are then quantified by absorbance (MTT) or fluorescence (CTC). More recently, certain sulfonated tetrazolium, which give rise to water-soluble formazans, have also proved useful for cytotoxicity assays. We describe several aspects of the application of tetrazolium salts and formazans in biomedical cell biology research, mainly regarding formazan-based colorimetric assays, cellular reduction of MTT, and localization and fluorescence of the MTT formazan in lipidic cell structures. In addition, some pharmacological and labeling perspectives of these compounds are also described.
Collapse
|
213
|
Delrue I, Pan Q, Baczmanska AK, Callens BW, Verdoodt LLM. Determination of the Selection Capacity of Antibiotics for Gene Selection. Biotechnol J 2018; 13:e1700747. [DOI: 10.1002/biot.201700747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/16/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Iris Delrue
- Department of Cell Culture; TOKU-E EU NV; Technologiepark 4 9052 Zwijnaarde Belgium
| | - Qiubao Pan
- Department of Enzyme Optimization for Industrial Microorganisms; TOKU-E Biotech Laboratory Pte Ltd; 1100 Lower Delta Road Singapore 169206e
| | - Anna K. Baczmanska
- Department of Cell Culture; TOKU-E EU NV; Technologiepark 4 9052 Zwijnaarde Belgium
| | - Bram W. Callens
- Department of Cell Culture; TOKU-E EU NV; Technologiepark 4 9052 Zwijnaarde Belgium
| | | |
Collapse
|
214
|
Peeters LHM, Huinink HP, Voogt B, Adan OCG. Oil type and cross-linking influence growth of Aureobasidium melanogenum on vegetable oils as a single carbon source. Microbiologyopen 2018. [PMID: 29527827 PMCID: PMC6291786 DOI: 10.1002/mbo3.605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aureobasidium melanogenum is the main fungus found in a spontaneously formed biofilm on a oil‐treated wood. This dark colored biofilm functions as a protective coating. To better understand biofilm formation, in this study A. melanogenum was cultured on olive oil and raw linseed oil. Metabolic activity and oil conversion were measured. The results show that A. melanogenum is able to grow on linseed oil and olive oil as a single carbon source. The fungus produces the enzyme lipase to convert the oil into fatty acids and glycerol. Metabolic activity and oil conversion were equal on linseed oil and olive oil. The fungus was not able to grow on severe cross‐linked linseed oil, meaning that the degree of cross‐linking of the oil is important for growth of A. melanogenum. Dark coloring of the colony was seen on linseed oil, which might be a stress response on the presence of autoxidation products in linseed oil. The colony on olive oil showed delayed melanin production indicating an inhibitory effect of olive oil on melanin production.
Collapse
Affiliation(s)
- Loes H M Peeters
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hendrik P Huinink
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Benjamin Voogt
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Olaf C G Adan
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
215
|
Chen XY, Li DF, Han JC, Wang B, Dong ZP, Yu LN, Pan ZH, Qu CJ, Chen Y, Sun SG, Zheng QS. Reprogramming induced by isoliquiritigenin diminishes melanoma cachexia through mTORC2-AKT-GSK3β signaling. Oncotarget 2018; 8:34565-34575. [PMID: 28410220 PMCID: PMC5470991 DOI: 10.18632/oncotarget.16655] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/15/2017] [Indexed: 12/27/2022] Open
Abstract
Isoliquiritigenin (ISL), a member of the flavonoids, is known to have anti-tumor activity in vitro and in vivo. The effect of ISL on reprogramming in cancer cells, however, remains elusive. In this study, we investigated the effect of ISL on reprogramming in human melanoma A375 cells. ISL (15 μg/ml) significantly inhibited A375 cell proliferation, anchorage independent cell proliferation and G2/M cell cycle arrest after ISL exposure for 24 h. However, there were no significant changes in apoptosis rate. Terminal differentiation indicators (melanin content, melanogenesis mRNA expression, tyrosinase (TYR) activity) were all up-regulated by ISL treatment. In ISL-treated cells, glucose uptake, lactate levels and mRNA expression levels of GLUT1 and HK2 were significantly decreased, and accompanied by an increase in O2 consumption rate (OCR) and adenosine triphosphate (ATP) deficiency. Protein expression levels of mTORC2-AKT-GSK3β signaling pathway components (mTOR, p-mTOR, RICTOR, p-AKT, p-GSK3β) decreased significantly after ISL treatment. Co-treatment of ISL and the mTOR-specific inhibitor Ku-0063794 had a synergistic effect on the inhibition of proliferation, and increased melanin content and TYR activity. Glucose uptake and lactate levels decreased more significantly than treatment with ISL alone. These findings indicate that ISL induced reprogramming in A375 melanoma cells by activating mTORC2-AKT-GSK3β signaling.
Collapse
Affiliation(s)
- Xiao-Yu Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - De-Fang Li
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Ji-Chun Han
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Bo Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | | | - Li-Na Yu
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Zhao-Hai Pan
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Chuan-Jun Qu
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Ying Chen
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Shi-Guo Sun
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | |
Collapse
|
216
|
Marvin JC, Gallegos SI, Parsaei S, Rodrigues DC. In Vitro Evaluation of Cell Compatibility of Dental Cements Used with Titanium Implant Components. J Prosthodont 2018. [DOI: 10.1111/jopr.12784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Jason C. Marvin
- Department of Bioengineering; University of Texas at Dallas; Richardson TX
| | - Silvia I. Gallegos
- Department of Bioengineering; University of Texas at Dallas; Richardson TX
| | - Shaida Parsaei
- Department of Biological Sciences; University of Texas at Dallas; Richardson TX
| | | |
Collapse
|
217
|
Bahadori A, Moreno-Pescador G, Oddershede LB, Bendix PM. Remotely controlled fusion of selected vesicles and living cells: a key issue review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:032602. [PMID: 29369822 DOI: 10.1088/1361-6633/aa9966] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.
Collapse
Affiliation(s)
- Azra Bahadori
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
218
|
Martin-de-Saavedra MD, Navarro E, Moreno-Ortega AJ, Cunha MP, Buendia I, Hernansanz-Agustín P, León R, Cano-Abad MF, Martínez-Ruiz A, Martínez-Murillo R, Duchen MR, López MG. The APPswe/PS1A246E mutations in an astrocytic cell line leads to increased vulnerability to oxygen and glucose deprivation, Ca2+
dysregulation, and mitochondrial abnormalities. J Neurochem 2018; 145:170-182. [DOI: 10.1111/jnc.14293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/20/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023]
Affiliation(s)
- María Dolores Martin-de-Saavedra
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
- Department of Physiology; Northwestern University Feinberg School of Medicine; Chicago Illinois USA
| | - Elisa Navarro
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
| | - Ana J. Moreno-Ortega
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
- Servicio de Farmacología Clínica; Instituto de Investigación Sanitaria Princesa (IIS-IP); Hospital Universitario de la Princesa; Madrid Spain
| | - Mauricio P. Cunha
- Departamento de Bioquímica; Universidade Federal de Santa Catarina; Florianópolis Brazil
| | - Izaskun Buendia
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
| | - Pablo Hernansanz-Agustín
- Servicio de Inmunología; Instituto de Investigación Sanitaria Princesa (IIS-IP); Hospital Universitario de la Princesa; Madrid Spain
- Departamento de Bioquímica; Facultad de Medicina; Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols; Madrid Spain
| | - Rafael León
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
- Servicio de Farmacología Clínica; Instituto de Investigación Sanitaria Princesa (IIS-IP); Hospital Universitario de la Princesa; Madrid Spain
| | - María F. Cano-Abad
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
- Servicio de Farmacología Clínica; Instituto de Investigación Sanitaria Princesa (IIS-IP); Hospital Universitario de la Princesa; Madrid Spain
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología; Instituto de Investigación Sanitaria Princesa (IIS-IP); Hospital Universitario de la Princesa; Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV); Madrid Spain
| | | | - Michael R. Duchen
- Department of Cell and Developmental Biology; University College London; London UK
| | - Manuela G. López
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
| |
Collapse
|
219
|
Maayah ZH, Levasseur J, Siva Piragasam R, Abdelhamid G, Dyck JRB, Fahlman RP, Siraki AG, El-Kadi AOS. 2-Methoxyestradiol protects against pressure overload-induced left ventricular hypertrophy. Sci Rep 2018; 8:2780. [PMID: 29426916 PMCID: PMC5807528 DOI: 10.1038/s41598-018-20613-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Numerous experimental studies have supported the evidence that 2-methoxyestradiol (2 ME) is a biologically active metabolite that mediates multiple effects on the cardiovascular system, largely independent of the estrogen receptor. 2 ME is a major cytochrome P450 1B1 (CYP1B1) metabolite and has been reported to have vasoprotective and anti-inflammatory actions. However, whether 2 ME would prevent cardiac hypertrophy induced by abdominal aortic constriction (AAC) has not been investigated yet. Therefore, the overall objectives of the present study were to elucidate the potential antihypertrophic effect of 2 ME and explore the mechanism(s) involved. Our results showed that 2 ME significantly inhibited AAC-induced left ventricular hypertrophy using echocardiography. The antihypertrophic effect of 2 ME was associated with a significant inhibition of CYP1B1 and mid-chain hydroxyeicosatetraenoic acids. Based on proteomics data, the protective effect of 2 ME is linked to the induction of antioxidant and anti-inflammatory proteins in addition to the modulation of proteins involved in myocardial energy metabolism. In vitro, 2 ME has shown a direct antihypertrophic effect through mitogen-activated protein kinases- and nuclear factor-κB-dependent mechanisms. The present work shows a strong evidence that 2 ME protects against left ventricular hypertrophy. Our data suggest the potential of repurposing 2 ME as a selective CYP1B1 inhibitor for the treatment of heart failure.
Collapse
Affiliation(s)
- Zaid H Maayah
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Jody Levasseur
- Cardiovascular Research Centre, Department of Pediatrics, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ramanaguru Siva Piragasam
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Ghada Abdelhamid
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Richard P Fahlman
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada.,Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Arno G Siraki
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, T6G 2E1, Canada.
| |
Collapse
|
220
|
Bracalente C, Salguero N, Notcovich C, Müller CB, da Motta LL, Klamt F, Ibañez IL, Durán H. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis. Oncotarget 2018; 7:41142-41153. [PMID: 27206672 PMCID: PMC5173048 DOI: 10.18632/oncotarget.9220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/28/2016] [Indexed: 12/11/2022] Open
Abstract
Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy.
Collapse
Affiliation(s)
- Candelaria Bracalente
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, C1033AAJ, Argentina
| | - Noelia Salguero
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina
| | - Cintia Notcovich
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina
| | - Carolina B Müller
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035 003, Brasil
| | - Leonardo L da Motta
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035 003, Brasil
| | - Fabio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035 003, Brasil
| | - Irene L Ibañez
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, C1033AAJ, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, C1033AAJ, Argentina.,Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, B1650HMP, Argentina
| |
Collapse
|
221
|
Krotee P, Griner SL, Sawaya MR, Cascio D, Rodriguez JA, Shi D, Philipp S, Murray K, Saelices L, Lee J, Seidler P, Glabe CG, Jiang L, Gonen T, Eisenberg DS. Common fibrillar spines of amyloid-β and human islet amyloid polypeptide revealed by microelectron diffraction and structure-based inhibitors. J Biol Chem 2017; 293:2888-2902. [PMID: 29282295 DOI: 10.1074/jbc.m117.806109] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/18/2017] [Indexed: 01/21/2023] Open
Abstract
Amyloid-β (Aβ) and human islet amyloid polypeptide (hIAPP) aggregate to form amyloid fibrils that deposit in tissues and are associated with Alzheimer's disease (AD) and type II diabetes (T2D), respectively. Individuals with T2D have an increased risk of developing AD, and conversely, AD patients have an increased risk of developing T2D. Evidence suggests that this link between AD and T2D might originate from a structural similarity between aggregates of Aβ and hIAPP. Using the cryoEM method microelectron diffraction, we determined the atomic structures of 11-residue segments from both Aβ and hIAPP, termed Aβ(24-34) WT and hIAPP(19-29) S20G, with 64% sequence similarity. We observed a high degree of structural similarity between their backbone atoms (0.96-Å root mean square deviation). Moreover, fibrils of these segments induced amyloid formation through self- and cross-seeding. Furthermore, inhibitors designed for one segment showed cross-efficacy for full-length Aβ and hIAPP and reduced cytotoxicity of both proteins, although by apparently blocking different cytotoxic mechanisms. The similarity of the atomic structures of Aβ(24-34) WT and hIAPP(19-29) S20G offers a molecular model for cross-seeding between Aβ and hIAPP.
Collapse
Affiliation(s)
- Pascal Krotee
- Howard Hughes Medical Institute, UCLA-United States Department of Energy (DOE) Institute, Departments of Biological Chemistry and Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Sarah L Griner
- Howard Hughes Medical Institute, UCLA-United States Department of Energy (DOE) Institute, Departments of Biological Chemistry and Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Michael R Sawaya
- Howard Hughes Medical Institute, UCLA-United States Department of Energy (DOE) Institute, Departments of Biological Chemistry and Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Duilio Cascio
- Howard Hughes Medical Institute, UCLA-United States Department of Energy (DOE) Institute, Departments of Biological Chemistry and Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Jose A Rodriguez
- Howard Hughes Medical Institute, UCLA-United States Department of Energy (DOE) Institute, Departments of Biological Chemistry and Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Dan Shi
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147
| | - Stephan Philipp
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Kevin Murray
- Howard Hughes Medical Institute, UCLA-United States Department of Energy (DOE) Institute, Departments of Biological Chemistry and Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Lorena Saelices
- Howard Hughes Medical Institute, UCLA-United States Department of Energy (DOE) Institute, Departments of Biological Chemistry and Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Ji Lee
- Howard Hughes Medical Institute, UCLA-United States Department of Energy (DOE) Institute, Departments of Biological Chemistry and Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Paul Seidler
- Howard Hughes Medical Institute, UCLA-United States Department of Energy (DOE) Institute, Departments of Biological Chemistry and Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Charles G Glabe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697; Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Lin Jiang
- Department of Neurology, Molecular Biology Institute, and Brain Research Institute (BRI), David Geffen School of Medicine, UCLA, Los Angeles, California, 90095
| | - Tamir Gonen
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147
| | - David S Eisenberg
- Howard Hughes Medical Institute, UCLA-United States Department of Energy (DOE) Institute, Departments of Biological Chemistry and Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095.
| |
Collapse
|
222
|
Karakaş D, Ari F, Ulukaya E. The MTT viability assay yields strikingly false-positive viabilities although the cells are killed by some plant extracts. Turk J Biol 2017; 41:919-925. [PMID: 30814856 DOI: 10.3906/biy-1703-104] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The MTT assay is one of the often used cell viability/cytotoxicity assays. However, when the methanol extracts of plants are used to test their cytotoxic potential, interference may occur, resulting in false-positive viability results. Therefore, in this study, the reliability of the MTT assay was investigated in the case of plant use. The methanol extracts of three different plants (Hypericum adenotrichum, Salvia kronenburgii, and Pelargonium quercetorum) were tested in breast cancer cell lines (MCF-7 and MDA-MB-231) using the MTT assay and the results were compared to the ATP assay, which is a much more sensitive and reliable assay due to its interference-free feature. Additionally, decreased cell density was confirmed with phase-contrast microscopy and fluorescence staining (Hoechst 33342 dye). Although both of the viability/cytotoxicity assays are considered as metabolic assays, viabilities (in %) in the MTT assay were found to be strikingly higher when compared to the results with the ATP assay. Even in the case of total death, the MTT assay still produced artificial/false increases in viability. The morphology-based evaluation of viability/cytotoxicity by phase-contrast microscopy and Hoechst 33342 staining were greatly compatible with the ATP assay results. Overestimated (false) viabilities in the MTT assay suggests a serious interference between the MTT assay itself and the extracts used. Some ingredients of plants may have reducing activity (like the dehydrogenase activity of the cells) that converts the MTT compound into the colored formazan that is the principle of the assay. Therefore, the MTT assay may not be a suitable assay for some plant extracts, urging great caution when plants are used.
Collapse
Affiliation(s)
- Didem Karakaş
- Department of Medical Biochemistry, Faculty of Medicine, İstinye University , İstanbul , Turkey
| | - Ferda Ari
- Department of Biology, Faculty of Arts and Sciences, Uludağ University , Bursa , Turkey
| | - Engin Ulukaya
- Department of Medical Biochemistry, Faculty of Medicine, İstinye University , İstanbul , Turkey
| |
Collapse
|
223
|
Dhull DK, Kumar A. Tramadol ameliorates behavioural, biochemical, mitochondrial and histological alterations in ICV-STZ-induced sporadic dementia of Alzheimer's type in rats. Inflammopharmacology 2017; 26:925-938. [PMID: 29249049 DOI: 10.1007/s10787-017-0431-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022]
Abstract
Alzheimer disease represents a major public health issue with limited therapeutic interventions. We explored the possibility of therapeutic approach by repurposing of tramadol in a sporadic animal model of Alzheimer's type. Streptozocin (STZ 3 mg/kg; bilaterally) was injected to male SD rats through intracerebroventricular (ICV) route. Drug treatment was started just after streptozocin administration and continued for 3 weeks. The rats were killed on the 21st day following the last behavioral test, and cytoplasmic fractions of the hippocampus and pre-frontal cortex were prepared for the quantification of acetylcholinesterase, oxidative stress parameter, mitochondrial enzymes activity and histological examination. Tramadol (5, 10 and 20 mg/kg, i.p.) was used as a treatment drug, and memantine (10 mg/kg, i.p.) was used as a standard. Tramadol significantly attenuated behavioral, biochemical, mitochondrial and histological alterations at low (5 mg/kg) and intermediate (10 mg/kg) dose, suggesting its neuroprotective potential in ICV-STZ-treated rats. Further, the neuroprotective effect of tramadol (10 mg/kg) was comparable to memantine (10 mg/kg). In conclusion, our results indicate the effectiveness of tramadol in preventing ICV-STZ-induced cognitive impairment as well as mito-oxidative stress. Further, these findings reveal the possibility of MOR agonist as a therapeutic approach for sporadic Alzheimer disease.
Collapse
Affiliation(s)
- Dinesh K Dhull
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
224
|
Acar D, Molina-Martínez IT, Gómez-Ballesteros M, Guzmán-Navarro M, Benítez-Del-Castillo JM, Herrero-Vanrell R. Novel liposome-based and in situ gelling artificial tear formulation for dry eye disease treatment. Cont Lens Anterior Eye 2017; 41:93-96. [PMID: 29223649 DOI: 10.1016/j.clae.2017.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 11/16/2022]
Abstract
PURPOSE Artificial tears are widely used in the treatment of dry eye disease, although current formulations do not closely resemble natural tears. The purpose of this study was the design and characterization of a novel in situ gelling artificial tear formulation, containing both lipid and aqueous components, in order to resemble natural tears and replenish the tear film. METHODS Liposomes, containing phosphatidylcholine, cholesterol, vitamins A and E, were prepared by the thin-film hydration method. The aqueous phase of the formulation was comprised of gellan gum, hydroxypropyl methylcellulose, levocarnitine, electrolytes (sodium chloride and potassium chloride), trehalose, and borates. The artificial tear was characterized in terms of liposome size, pH, surface tension, and viscosity. In vitro tolerance studies were performed in a human epithelial carcinoma cell line (HeLa) and a murine macrophage cell line (J774). In vivo tolerance was assessed in rabbits. RESULTS Liposomes presented a unimodal distribution with a mean size of 200.1 ± 4.4 nm. The resulting surface tension was 53.4 ± 1.1 mN/m (at 33 °C) and the pH was 7.6 ± 0.1. The viscosity of the formulation presented a mean value of 4.0 ± 0.1 mPa s within the shear rate interval of 200-1000 s-1 at 33 °C. Cell viability remained higher than 90% in both cell lines. No discomfort or clinical signs were observed in rabbits. CONCLUSIONS The liposome-based and in situ gelling artificial tear formulation presented good tolerance and suitable properties for topical ophthalmic administration. It may be beneficial in the treatment of dry eye disease.
Collapse
Affiliation(s)
- Duygu Acar
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Irene Teresa Molina-Martínez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) and the Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.
| | - Miguel Gómez-Ballesteros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) and the Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.
| | - Manuel Guzmán-Navarro
- Biomedical Sciences Department, Pharmacy and Pharmaceutical Technology Unit, Faculty of Pharmacy, University of Alcalá, Ctra. de Madrid-Barcelona (Autovía A2) Km. 33,600, 28805 Alcalá de Henares, Madrid, Spain.
| | - José Manuel Benítez-Del-Castillo
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) and the Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain; Ocular Surface and Inflammation Unit, San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.
| | - Rocío Herrero-Vanrell
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) and the Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain.
| |
Collapse
|
225
|
Maayah ZH, Abdelhamid G, Elshenawy OH, El-Sherbeni AA, Althurwi HN, McGinn E, Dawood D, Alammari AH, El-Kadi AOS. The Role of Soluble Epoxide Hydrolase Enzyme on Daunorubicin-Mediated Cardiotoxicity. Cardiovasc Toxicol 2017; 18:268-283. [DOI: 10.1007/s12012-017-9437-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
226
|
Nair RV, Thomas RT, Sankar V, Muhammad H, Dong M, Pillai S. Rapid, Acid-Free Synthesis of High-Quality Graphene Quantum Dots for Aggregation Induced Sensing of Metal Ions and Bioimaging. ACS OMEGA 2017; 2:8051-8061. [PMID: 30023571 PMCID: PMC6045375 DOI: 10.1021/acsomega.7b01262] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/02/2017] [Indexed: 05/03/2023]
Abstract
Graphene quantum dots (GQDs) are zero-dimensional materials that exhibit characteristics of both graphene and quantum dots. Herein, we report a rapid, relatively green, one-pot synthesis of size-tunable GQDs from graphene oxide (GO) by a sonochemical method with intermittent microwave heating, keeping the reaction temperature constant at 90 °C. The GQDs were synthesized by oxidative cutting of GO using KMnO4 as an oxidizing agent within a short span of time (30 min) in an acid-free condition. The synthesized GQDs were of high quality and exhibited good quantum yield (23.8%), high product yield (>75%), and lower cytotoxicity (tested up to 1000 μg/mL). Furthermore, the as-synthesized GQDs were demonstrated as excellent fluorescent probes for bioimaging and label-free sensing of Fe(III) ions, with a detection limit as low as 10 × 10-6 M.
Collapse
Affiliation(s)
- Raji V. Nair
- Functional
Materials, Materials Science and Technology Division, CSIR−National Institute for Interdisciplinary Science and
Technology (NIIST), Thiruvananthapuram, Kerala 695019, India
- Academy
of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Reny Thankam Thomas
- Functional
Materials, Materials Science and Technology Division, CSIR−National Institute for Interdisciplinary Science and
Technology (NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Vandana Sankar
- Agro-Processing
& Technology Division, CSIR−National
Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Hanif Muhammad
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
- Institute
of Fundamental and Frontier Science, University
of Electronic Science and Technology of China, 610054 Chengdu, China
| | - Mingdong Dong
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
- E-mail: (M.D.)
| | - Saju Pillai
- Functional
Materials, Materials Science and Technology Division, CSIR−National Institute for Interdisciplinary Science and
Technology (NIIST), Thiruvananthapuram, Kerala 695019, India
- Academy
of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
- E-mail: (S.P.)
| |
Collapse
|
227
|
Toxic effects of phytol and retinol on human glioblastoma cells are associated with modulation of cholesterol and fatty acid biosynthetic pathways. J Neurooncol 2017; 136:435-443. [PMID: 29159775 DOI: 10.1007/s11060-017-2672-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/11/2017] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor. Genetic mutations may reprogram the metabolism of neoplastic cells. Particularly, alterations in cholesterol and fatty acid biosynthetic pathways may favor biomass synthesis and resistance to therapy. Therefore, compounds that interfere with those pathways, such as phytol (PHY) and retinol (RET), may be appropriate for cytotoxic approaches. We tested the effect of PHY or RET on the viability of human GBM cell lines (U87MG, A172 and T98G). Since the compounds showed a dose-dependent cytotoxic effect, additional analyses were performed with IC50 values. Transcriptome analyses of A172 cells treated with PHY IC50 or RET IC50 revealed down-regulated genes involved in cholesterol and/or fatty acid biosynthetic pathways. Thus, we investigated the expression of proteins required for cholesterol and/or fatty acid synthesis after treating all lineages with PHY IC50 or RET IC50 and comparing them with controls. Sterol regulatory element-binding protein 1 (SREBP-1) expression was reduced by PHY in U87 and T98G cells. However, fatty acid synthase (FAS) protein expression, which is regulated by SREBP-1, was down-regulated in all lineages after both treatments. Moreover, farnesyl-diphosphate farnesyltransferase (FDFT1) levels, a protein associated with cholesterol synthesis, were reduced in all lineages by PHY and in U87MG and A172 cells by RET. Our results suggest that SREBP-1, FAS and FDFT1 are potential target(s) for future in vivo approaches against GBM and support the use of inhibitors of their synthesis, including PHY and RET, for such approaches.
Collapse
|
228
|
Prostaglandin J2 promotes O-GlcNAcylation raising APP processing by α- and β-secretases: relevance to Alzheimer's disease. Neurobiol Aging 2017; 62:130-145. [PMID: 29149631 DOI: 10.1016/j.neurobiolaging.2017.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
Regulation of the amyloid precursor protein (APP) processing by α- and β-secretases is of special interest to Alzheimer's disease (AD), as these proteases prevent or mediate amyloid beta formation, respectively. Neuroinflammation is also implicated in AD. Our data demonstrate that the endogenous mediator of inflammation prostaglandin J2 (PGJ2) promotes full-length APP (FL-APP) processing by α- and β-secretases. The decrease in FL-APP was independent of proteasomal, lysosomal, calpain, caspase, and γ-secretase activities. Moreover, PGJ2-treatment promoted cleavage of secreted APP, specifically sAPPα and sAPPβ, generated by α and β-secretase, respectively. Notably, PGJ2-treatment induced caspase-dependent cleavage of sAPPβ. Mechanistically, PGJ2-treatment selectively diminished mature (O- and N-glycosylated) but not immature (N-glycosylated only) FL-APP. PGJ2-treatment also increased the overall levels of protein O-GlcNAcylation, which occurs within the nucleocytoplasmic compartment. It is known that APP undergoes O-GlcNAcylation and that the latter protects proteins from proteasomal degradation. Our results suggest that by increasing protein O-GlcNAcylation levels, PGJ2 renders mature APP less prone to proteasomal degradation, thus shunting APP toward processing by α- and β-secretases.
Collapse
|
229
|
Fu YJ, Yao HW, Zhu XY, Guo XF, Wang H. A cell surface specific two-photon fluorescent probe for monitoring intercellular transmission of hydrogen sulfide. Anal Chim Acta 2017; 994:1-9. [DOI: 10.1016/j.aca.2017.09.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 02/06/2023]
|
230
|
Shirata C, Kaneko J, Inagaki Y, Kokudo T, Sato M, Kiritani S, Akamatsu N, Arita J, Sakamoto Y, Hasegawa K, Kokudo N. Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress. Sci Rep 2017; 7:13958. [PMID: 29066756 PMCID: PMC5654824 DOI: 10.1038/s41598-017-14401-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022] Open
Abstract
Indocyanine green (ICG) is a photothermal agent, photosensitizer, and fluorescence imaging probe which shows specific accumulation in hepatocellular carcinoma (HCC) cells. We recently developed a photodynamic therapy (PDT) using ICG and near-infrared (NIR) laser as a new anti-cancer treatment for HCC. However, the molecular mechanism underlying this effect needs to be elucidated. HuH-7 cells, a well-differentiated human HCC cell line, were transplanted subcutaneously into BALB/c-nu/nu mice for in vivo experiment. ICG was administered 24 h before NIR irradiation. The irradiation was performed at three tumor locations by 823-nm NIR laser on days 1 and 7. The temperature of HuH-7 xenografts increased to 48.5 °C 3 minutes after ICG-NIR irradiation start. Reactive oxygen species (ROS) production was detected after ICG-NIR irradiation both in vitro and in vivo. There was certain anti-tumor effect and ROS production even under cooling conditions. Repeated NIR irradiation increased the cell toxicity of ICG-NIR therapy; the mean tumor volume on day 9 was significantly smaller after ICG-NIR irradiation compared to tumor without irradiation (87 mm3 vs. 1332 mm3; p = 0.01) in HCC mice xenografts model. ICG-NIR therapy induced apoptosis in HCC cells via a photothermal effect and oxidative stress. Repeated ICG-NIR irradiation enhanced the anti-tumor effect.
Collapse
Affiliation(s)
- Chikara Shirata
- Hepato-Biliary-Pancreatic Surgery Division, and Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junichi Kaneko
- Hepato-Biliary-Pancreatic Surgery Division, and Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Inagaki
- Hepato-Biliary-Pancreatic Surgery Division, and Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kokudo
- Hepato-Biliary-Pancreatic Surgery Division, and Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masumitsu Sato
- Hepato-Biliary-Pancreatic Surgery Division, and Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sho Kiritani
- Hepato-Biliary-Pancreatic Surgery Division, and Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuhisa Akamatsu
- Hepato-Biliary-Pancreatic Surgery Division, and Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junichi Arita
- Hepato-Biliary-Pancreatic Surgery Division, and Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Sakamoto
- Hepato-Biliary-Pancreatic Surgery Division, and Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, and Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norihiro Kokudo
- Hepato-Biliary-Pancreatic Surgery Division, and Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
231
|
Zhang H, Li L, Li M, Huang X, Xie W, Xiang W, Yao P. Combination of betulinic acid and chidamide inhibits acute myeloid leukemia by suppression of the HIF1α pathway and generation of reactive oxygen species. Oncotarget 2017; 8:94743-94758. [PMID: 29212263 PMCID: PMC5706909 DOI: 10.18632/oncotarget.21889] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/24/2017] [Indexed: 12/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disorder of the hematopoietic system with no common genetic “Achilles heel” that can be targeted. Most patients respond well to standard therapy, while a majority relapse, and development of an effective therapy for AML patients is still urgently needed. In this study, we demonstrated that betulinic acid (BA) significantly increased Aryl hydrocarbon receptor (AHR) expression through demethylation on the AHR promoter in AML cells, and the increased AHR expression interacts with and sequesters ARNT, subsequently suppressing hypoxia-inducible factor-1α (HIF1α) pathway. We also found that histone deacetylase inhibitor chidamide (CDM) treatment significantly increased p300 over-acetylation in AML cells with dissociation of p300 with HIF1α, and subsequently suppressed the HIF1α pathway. Further investigation showed that BA/CDM combination additively increased generation of reactive oxygen species (ROS) with DNA damage, apoptosis and mitochondrial dysfunction. Also, BA/CDM combination additively suppressed the HIF1α pathway with decreased VEGF expression. in vivo mice study showed that BA/CDM combination significantly suppressed AML tumor growth, and overexpression of SOD2 and a constitutive HIF1α (HIF1C) completely diminished this effect. We conclude that a BA/CDM combination inhibits AML tumors through ROS over-generation and HIF1α pathway suppression. This is the first time we have shown the potential effect and possible mechanism of BA and CDM on the inhibition of AML tumor growth.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Ling Li
- Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou 570206, P.R. China
| | - Min Li
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Xiaodong Huang
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Wei Xiang
- Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou 570206, P.R. China
| | - Paul Yao
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China.,Department of Pediatrics, Maternal and Child Health Care Hospital of Hainan Province, Haikou 570206, P.R. China.,Institute of Burns, Tongren Hospital of Wuhan University, Wuhan 430060, P.R. China
| |
Collapse
|
232
|
Parisi LR, Li N, Atilla-Gokcumen GE. Very Long Chain Fatty Acids Are Functionally Involved in Necroptosis. Cell Chem Biol 2017; 24:1445-1454.e8. [PMID: 29033315 DOI: 10.1016/j.chembiol.2017.08.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/09/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
Abstract
Necroptosis is a form of regulated cell death that is linked to various human diseases. Distinct membrane-related, thus lipid-dependent, alterations take place during necroptosis. However, little is known about the roles of specific lipids in this process. We used an untargeted LC-MS-based approach to reveal that distinct lipid species are regulated at the molecular level during necroptosis. We found that ceramides and very long chain fatty acids accumulate during this process. Intrigued by the specificity of very long chain fatty acid accumulation, we focused on characterizing their involvement during necroptosis. Biochemical characterizations suggested that activated fatty acid biosynthesis and elongation could be responsible for these accumulations. We further showed that inhibition of fatty acid biosynthesis and depletion of very long chain fatty acids prevented loss of plasma membrane integrity and cell death, strongly suggesting that very long chain fatty acids are functionally involved in necroptosis.
Collapse
Affiliation(s)
- Laura R Parisi
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Nasi Li
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
233
|
N -ferrocenylpyridazinones and new organic analogues: Synthesis, cyclic voltammetry, DFT analysis and in vitro antiproliferative activity associated with ROS-generation. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
234
|
Mazinani SA, Moradi F, Stuart JA, Yan H. Microwave Irradiation of PC3 Cells at Constant Culture Temperature Alters the Incorporation of BODIPY into Cells and Reduction of MTT. ChemistrySelect 2017. [DOI: 10.1002/slct.201701445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sina Atrin Mazinani
- Department of Chemistry and Centre for Biotechnology; Brock University; 1812 Sir Isaac Brock Way St. Catharines, Ontario L2S 3 A1 Canada
| | - Fereshteh Moradi
- Department of Biological Sciences and Centre for Biotechnology; Brock University; 1812 Sir Isaac Brock Way St. Catharines, Ontario L2S 3 A1 Canada
| | - Jeffrey A. Stuart
- Department of Biological Sciences and Centre for Biotechnology; Brock University; 1812 Sir Isaac Brock Way St. Catharines, Ontario L2S 3 A1 Canada
| | - Hongbin Yan
- Department of Chemistry and Centre for Biotechnology; Brock University; 1812 Sir Isaac Brock Way St. Catharines, Ontario L2S 3 A1 Canada
| |
Collapse
|
235
|
Delogu GL, Pintus F, Mayán L, Matos MJ, Vilar S, Munín J, Fontenla JA, Hripcsak G, Borges F, Viña D. MAO inhibitory activity of bromo-2-phenylbenzofurans: synthesis, in vitro study, and docking calculations. MEDCHEMCOMM 2017; 8:1788-1796. [PMID: 30108888 PMCID: PMC6084085 DOI: 10.1039/c7md00311k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/05/2017] [Indexed: 11/21/2022]
Abstract
Monoamine oxidase (MAO) is an enzyme responsible for metabolism of monoamine neurotransmitters which play an important role in brain development and function. This enzyme exists in two isoforms, and it has been demonstrated that MAO-B activity, but not MAO-A activity, increases with aging. MAO inhibitors show clinical value because besides the monoamine level regulation they reduce the formation of by-products of the MAO catalytic cycle, which are toxic to the brain. A series of 2-phenylbenzofuran derivatives was designed, synthesized and evaluated against hMAO-A and hMAO-B enzymes. A bromine substituent was introduced in the 2-phenyl ring, whereas position 5 or 7 of the benzofuran moiety was substituted with a methyl group. Most of the tested compounds inhibited preferentially MAO-B in a reversible manner, with IC50 values in the low micro or nanomolar range. The 2-(2'-bromophenyl)-5-methylbenzofuran (5) was the most active compound identified (IC50 = 0.20 μM). In addition, none of the studied compounds showed cytotoxic activity against the human neuroblastoma cell line SH-SY5Y. Molecular docking simulations were used to explain the observed hMAO-B structure-activity relationship for this type of compounds.
Collapse
Affiliation(s)
- G L Delogu
- Department of Life Sciences and Environment - Section of Pharmaceutical Sciences - University of Cagliari, 09124 Cagliari, Italy.
| | - F Pintus
- Department of Life Sciences and Environment - Section of Pharmaceutical Sciences - University of Cagliari, 09124 Cagliari, Italy.
| | - L Mayán
- Department of Pharmacology - CIMUS University of Santiago de Compostela Avda Barcelona s/n, Campus Vida, 15782 Santiago de Compostela, Spain.
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M J Matos
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - S Vilar
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Biomedical Informatics, Columbia University, Medical Center of New York, 10032 New York, USA
| | - J Munín
- Department of Pharmacology - CIMUS University of Santiago de Compostela Avda Barcelona s/n, Campus Vida, 15782 Santiago de Compostela, Spain.
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J A Fontenla
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - G Hripcsak
- Department of Biomedical Informatics, Columbia University, Medical Center of New York, 10032 New York, USA
| | - F Borges
- CIQUP/Department of Chemistry and Biochemistry, University of Porto, 4169-007, Portugal
| | - D Viña
- Department of Pharmacology - CIMUS University of Santiago de Compostela Avda Barcelona s/n, Campus Vida, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
236
|
Schwingshackl A, Lopez B, Teng B, Luellen C, Lesage F, Belperio J, Olcese R, Waters CM. Hyperoxia treatment of TREK-1/TREK-2/TRAAK-deficient mice is associated with a reduction in surfactant proteins. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1030-L1046. [PMID: 28839101 DOI: 10.1152/ajplung.00121.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022] Open
Abstract
We previously proposed a role for the two-pore domain potassium (K2P) channel TREK-1 in hyperoxia (HO)-induced lung injury. To determine whether redundancy among the three TREK isoforms (TREK-1, TREK-2, and TRAAK) could protect from HO-induced injury, we now examined the effect of deletion of all three TREK isoforms in a clinically relevant scenario of prolonged HO exposure and mechanical ventilation (MV). We exposed WT and TREK-1/TREK-2/TRAAK-deficient [triple knockout (KO)] mice to either room air, 72-h HO, MV [high and low tidal volume (TV)], or a combination of HO + MV and measured quasistatic lung compliance, bronchoalveolar lavage (BAL) protein concentration, histologic lung injury scores (LIS), cellular apoptosis, and cytokine levels. We determined surfactant gene and protein expression and attempted to prevent HO-induced lung injury by prophylactically administering an exogenous surfactant (Curosurf). HO treatment increased lung injury in triple KO but not WT mice, including an elevated LIS, BAL protein concentration, and markers of apoptosis, decreased lung compliance, and a more proinflammatory cytokine phenotype. MV alone had no effect on lung injury markers. Exposure to HO + MV (low TV) further decreased lung compliance in triple KO but not WT mice, and HO + MV (high TV) was lethal for triple KO mice. In triple KO mice, the HO-induced lung injury was associated with decreased surfactant protein (SP) A and SPC but not SPB and SPD expression. However, these changes could not be explained by alterations in the transcription factors nuclear factor-1 (NF-1), NKX2.1/thyroid transcription factor-1 (TTF-1) or c-jun, or lamellar body levels. Prophylactic Curosurf administration did not improve lung injury scores or compliance in triple KO mice.
Collapse
Affiliation(s)
| | - Benjamin Lopez
- Department of Pediatrics, University of California, Los Angeles, California
| | - Bin Teng
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Charlean Luellen
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Florian Lesage
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Laboratory of Excellence "Ion Channel Science and Therapeutics," Valbonne, France
| | - John Belperio
- Department of Pulmonary and Critical Care, University of California, Los Angeles, California
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, California
| | - Christopher M Waters
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and
| |
Collapse
|
237
|
Kumar S, Mishra A, Krishnamurthy S. Purinergic Antagonism Prevents Mitochondrial Dysfunction and Behavioral Deficits Associated with Dopaminergic Toxicity Induced by 6-OHDA in Rats. Neurochem Res 2017; 42:3414-3430. [PMID: 28836128 DOI: 10.1007/s11064-017-2383-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/01/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022]
Abstract
Purinoceptors are present in neurons, microglia and oligodendrocytes and regulate dopamine (DA) release, striatal-related function and striatal neuronal and DA cells damage. Therefore, purinoceptors may be involved in the pathology of Parkinson's disease (PD) and purinergic antagonism may show neuroprotective effect. The study investigated the role of the non-selective purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2', 4'-disulfonic acid (PPADS) and a selective purinergic receptor P2X7 receptor antagonist Brilliant Blue G (BBG) against 6-OHDA induced dopaminergic neurotoxicity in rats; while adenosine triphosphate (ATP) was used as a P2X receptor agonist. Behavioral parameters like spontaneous motor activity, narrow beam walk, footprint, bar catalepsy, grip strength and rotarod tests were performed to evaluate motor deficits in PD. Striatal DA contents were estimated as neurochemical measures of PD. Mitochondrial studies and oxidative status were assessed to investigate the mechanism of purinergic system antagonists. Involvement of purinergic receptors in apoptosis was assessed by expressing cytochrome-C, caspase-9 and caspase-3. Both the antagonists not only attenuated 6-OHDA induced motor deficits but also protected against 6-OHDA induced DA depletion in the striatum. Oxidative stress, mitochondrial integrity and dysfunction were attenuated by purinergic antagonists. Further, they attenuated mitochondrial-linked apoptosis as observed by a decrease in expression of cytochrome-C, caspase-9 and caspase-3. Therefore, purinoceptor antagonism shows neuroprotective effect in 6-OHDA induced dopamine toxicity through preservation of mitochondrial bioenergetics and anti-apoptotic activities.
Collapse
Affiliation(s)
- Saket Kumar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P., 221 005, India
| | - Akanksha Mishra
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P., 221 005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P., 221 005, India.
| |
Collapse
|
238
|
Costas-Lago MC, Besada P, Rodríguez-Enríquez F, Viña D, Vilar S, Uriarte E, Borges F, Terán C. Synthesis and structure-activity relationship study of novel 3-heteroarylcoumarins based on pyridazine scaffold as selective MAO-B inhibitors. Eur J Med Chem 2017; 139:1-11. [PMID: 28797881 DOI: 10.1016/j.ejmech.2017.07.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022]
Abstract
Compounds of hybrid structure pyridazine-coumarin were discovered as potent, selective and reversible inhibitors of monoamine oxidase B (MAO-B). These compounds were synthesized in good yield following a multistep approach based on Knoevenagel reaction and using as key intermediate pyridazinone 16, which was obtained from maleic anhydride and furan. Compounds 9b and 9d are the most active compounds of these series, with IC50 values in the sub-micromolar range, and lack of cytotoxic effects. Theoretical calculation of ADME properties also suggested a good pharmacokinetic profile for both compounds. Docking simulations provided insights into enzyme inhibitor interactions and allowed us to rationalize the observed structure-activity relationships (SARs).
Collapse
Affiliation(s)
- María Carmen Costas-Lago
- Departamento de Química Orgánica and Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain
| | - Pedro Besada
- Departamento de Química Orgánica and Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain
| | - Fernanda Rodríguez-Enríquez
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Viña
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Santiago Vilar
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciencias, Universidade do Porto, 4169-007 Porto, Portugal
| | - Carmen Terán
- Departamento de Química Orgánica and Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
239
|
Chen A, Wang H, Zhang Y, Wang X, Yu L, Xu W, Xu W, Lin Y. Paeoniflorin exerts neuroprotective effects against glutamate‑induced PC12 cellular cytotoxicity by inhibiting apoptosis. Int J Mol Med 2017; 40:825-833. [PMID: 28731183 PMCID: PMC5547935 DOI: 10.3892/ijmm.2017.3076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/03/2017] [Indexed: 11/06/2022] Open
Abstract
Paeoniflorin (PF) is an active ingredient of Radix Paeoniae, which is known to exert neuroprotective effects. However, the mechanims behind the neuroprotective effects of PF are not yet fully understood. The apoptosis of neurons plays an important role in the cerebral ischemia-induced cascade response. This study aimed to investigate neuroprotective effects of PF against glutamate‑induced PC12 cellular cytotoxicity and to determine whether these effects are mediated via the inhibition of apoptosis in vitro and the activity of mitochondrial apoptosis-associated proteins in PC12 cells. Exposure of the PC12 cells to glutamate induced cell morphological changes, significantly decreased cell viability and induced apoptosis, with similar results being observed from the Hoechst 33342 staining and Annexin V/PI staining experiments. Glutamate also increased the lactate dehydrogenase release by the PC12 cells. However, treatment with PF prevented these effects. Furthermore, PF inhibited Bax and Bad expression and increased Bcl-2 and Bcl-xL expression; it also decreased the levels of downstream protein (caspase-3 and caspase-9). Collectively, our results indicate that PF protects PC12 cells against glutamate-induced neurotoxicity possibly through the inhibition of the expression of mitochondrial apoptosis-associated proteins.
Collapse
Affiliation(s)
- Ahong Chen
- College of Pharmacy of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hongyun Wang
- College of Pharmacy of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yuqin Zhang
- College of Pharmacy of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaoying Wang
- College of Pharmacy of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lishuang Yu
- College of Pharmacy of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Wen Xu
- College of Pharmacy of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Wei Xu
- College of Pharmacy of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yu Lin
- College of Pharmacy of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
240
|
Siqueira RL, Maurmann N, Burguêz D, Pereira DP, Rastelli AN, Peitl O, Pranke P, Zanotto ED. Bioactive gel-glasses with distinctly different compositions: Bioactivity, viability of stem cells and antibiofilm effect against Streptococcus mutans. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:233-241. [DOI: 10.1016/j.msec.2017.03.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/23/2016] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
|
241
|
Anti-inflammatory effects of trans -2,3,5,4′-tetrahydroxystilbene 2- O - β -glucopyranoside (THSG) from Polygonum multiflorum (PM) and hypoglycemic effect of cis -THSG enriched PM extract. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
242
|
Surin AM, Sharipov RR, Krasil’nikova IA, Boyarkin DP, Lisina OY, Gorbacheva LR, Avetisyan AV, Pinelis VG. Disruption of functional activity of mitochondria during MTT assay of viability of cultured neurons. BIOCHEMISTRY (MOSCOW) 2017; 82:737-749. [DOI: 10.1134/s0006297917060104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
243
|
Kumar A, Mohanty S, Nandy SB, Gupta S, Khaitan BK, Sharma S, Bhargava B, Airan B. Hair & skin derived progenitor cells: In search of a candidate cell for regenerative medicine. Indian J Med Res 2017; 143:175-83. [PMID: 27121515 PMCID: PMC4859126 DOI: 10.4103/0971-5916.180205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND & OBJECTIVES Skin is an established tissue source for cell based therapy. The hair follicle has been introduced later as a tissue source for cell based therapy. The ease of tissue harvest and multipotent nature of the resident stem cells in skin and hair follicle has promoted basic and clinical research in this area. This study was conducted to evaluate skin stem cells (SSCs) and hair follicle stem cells (HFSCs) as candidate cells appropriate for neuronal and melanocyte lineage differentiation. METHODS In this study, SSCs and hair follicle stem cells (HFSCs) were expanded in vitro by explant culture method and were compared in terms of proliferative potential and stemness; differentiation potential into melanocytes and neuronal lineage. RESULTS SSCs were found to be more proliferative in comparison to HFSCs, however, telomerase activity was more in HFSCs in comparison to SSCs. Capacity to differentiate into two lineages of ectoderm origin (neuronal and melanocyte) was found to be different. HFSCs cells showed more propensities towards melanocyte lineage, whereas SSCs were more inclined towards neuronal lineage. INTERPRETATION & CONCLUSIONS The study showed that SSCs had differential advantage over the HFSCs for neuronal cell differentiation, whereas, the HFSCs were better source for melanocytic differentiation.
Collapse
Affiliation(s)
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
244
|
Parra J, García Páez IH, De Aza AH, Baudin C, Rocío Martín M, Pena P. In vitro study of the proliferation and growth of human fetal osteoblasts on Mg and Si co-substituted tricalcium phosphate ceramics. J Biomed Mater Res A 2017; 105:2266-2275. [PMID: 28426904 DOI: 10.1002/jbm.a.36093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/31/2017] [Accepted: 04/14/2017] [Indexed: 11/11/2022]
Abstract
The objective of this work was to study the feasibility of the solid state sintering, a conventional ceramic processing method, to obtain Mg and Si co-substituted tricalcium phosphate bioceramics and composites containing diopside. A series of new Ca3 (PO4 )2 based ceramics has been prepared from attrition milled mixtures of synthetic Ca3 (PO4 )2 and CaMg(SiO3 )2 powders, isostatically pressed and sintered at 1250-1300°C. Materials containing 0, 1, and 5 wt % of CaMg(SiO3 )2 were constituted by β + α - Ca3 (PO4 )2 solid solutions while the material containing 60 wt % of CaMg(SiO3 )2 was a constituted by β- Ca3 (PO4 )2 and CaMg(SiO3 )2 . The biological responses of the developed ceramics were studied in vitro using human fetal osteoblast cultures. Culture times ranged from 1 to 21 days. The new family of materials promotes the adhesion and proliferation of human osteoblasts cultured onto their surface forming a monolayer and showing a normal morphology. The results of the MTT and Alamar Blue assays showed that the soluble components extracted from the Mg/Si- co-substituted Ca3 (PO4 )2 and the Ca3 (PO4 )2 -CaMg(SiO3 )2 composite were noncytotoxic. The specimens with diopside exhibited a better in vitro behavior which is attributed to the release of Si and Mg ions to the culture medium, enhancing the activity of cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2266-2275, 2017.
Collapse
Affiliation(s)
- Juan Parra
- Unidad de Investigación Clínica y Biopatología Experimental. Unidad Asociada al CSIC. Servicio de Anatomía Patológica. Complejo Asistencial de Ávila. SACYL, Jesús del Gran Poder 42, Ávila, 05002, Spain.,Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
| | - Ismael H García Páez
- Instituto de Cerámica y Vidrio ICV, CSIC. C/Kelsen 5, Madrid, 28049, Spain.,Universidad Francisco de Paula Santander, Ave. Gran Colombia 12E-96B Colsag, San José de Cúcuta, Colombia
| | - Antonio H De Aza
- Instituto de Cerámica y Vidrio ICV, CSIC. C/Kelsen 5, Madrid, 28049, Spain
| | - Carmen Baudin
- Instituto de Cerámica y Vidrio ICV, CSIC. C/Kelsen 5, Madrid, 28049, Spain
| | - M Rocío Martín
- Unidad de Investigación Clínica y Biopatología Experimental. Unidad Asociada al CSIC. Servicio de Anatomía Patológica. Complejo Asistencial de Ávila. SACYL, Jesús del Gran Poder 42, Ávila, 05002, Spain
| | - Pilar Pena
- Instituto de Cerámica y Vidrio ICV, CSIC. C/Kelsen 5, Madrid, 28049, Spain
| |
Collapse
|
245
|
Methylglyoxal-Induced Protection Response and Toxicity: Role of Glutathione Reductase and Thioredoxin Systems. Neurotox Res 2017; 32:340-350. [DOI: 10.1007/s12640-017-9738-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022]
|
246
|
Dolci GS, Rosa HZ, Vey LT, Pase CS, Barcelos RCS, Dias VT, Loebens L, Dalla Vecchia P, Bizzi CA, Baldisserotto B, Burger ME. Could hypoxia acclimation cause morphological changes and protect against Mn-induced oxidative injuries in silver catfish (Rhamdia quelen) even after reoxygenation? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:466-475. [PMID: 28238574 DOI: 10.1016/j.envpol.2017.02.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/08/2017] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
Exposure to hypoxia has shown beneficial adjustments in different species, including silver catfish (Rhamdia quelen), especially in situations of aquatic contamination with pollutants such as manganese (Mn). Considering that hypoxia is seasonal in the natural aquatic environment, we decided to assess whether these adaptive mechanisms could be maintained when reoxygenation is established. Silver catfish acclimated to moderate hypoxia (∼3 mg L-1, 41% O2 saturation) for 10 days and subsequently exposed to Mn (∼8.1 mg L-1) for additional 10 days displayed lower (47%) Mn accumulation in the gills, and it was maintained (62.6%) after reoxygenation, in comparison to normoxia. Oxidative status in the gills allowed us to observe increased reactive species (RS) generation and protein carbonyl (PC) level together with decreased mitochondrial viability induced by Mn under normoxia. Inversely, while hypoxia per se was beneficial on RS generation and PC level, this acclimation was able to minimize Mn toxicity, as observed by the minor increase of RS generation and the minor reduction of mitochondrial viability, together with decreased PC level. Interestingly, after reoxygenation, part of the protective influences observed during hypoxia against Mn toxicity were maintained, as observed through a lower level of PC and higher mitochondrial viability in relation to the group exposed to Mn under normoxia. Only groups exposed to Mn under hypoxia showed increased activity of both catalase (CAT) and Na+/K+-ATPase in the gills, but, while CAT activity remained increased after reoxygenation, Na+/K+-ATPase activity was decreased by Mn, regardless of the oxygen level. Based on these outcomes, it is possible to propose that environment events of moderate hypoxia are able to generate rearrangements in the gills of silver catfish exposed to Mn, whose influence persists after water reoxygenation. These responses may be related to the adaptive development, reducing Mn toxicity to silver catfish. Moderate hypoxia generates rearrangements in the gills of Silver catfish, exerting beneficial and persistent protection against Mn toxicity.
Collapse
Affiliation(s)
- G S Dolci
- Programa de Pós Graduação em Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - H Z Rosa
- Departamento de Fisiologia e Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - L T Vey
- Programa de Pós Graduação em Bioquímica Toxicológica - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - C S Pase
- Programa de Pós Graduação em Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - R C S Barcelos
- Programa de Pós Graduação em Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - V T Dias
- Programa de Pós Graduação em Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - L Loebens
- Programa de Pós-Graduação em Biodiversidade Animal - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - P Dalla Vecchia
- Programa de Pós-graduação em Química - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - C A Bizzi
- Programa de Pós-graduação em Química - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - B Baldisserotto
- Programa de Pós Graduação em Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil; Departamento de Fisiologia e Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil
| | - M E Burger
- Programa de Pós Graduação em Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil; Departamento de Fisiologia e Farmacologia - UFSM, Universidade Federal de Santa Maria (UFSM), Av. Roraima nº 1000, Cidade Universitária, Camobi, Santa Maria, 97105-900, RS, Brazil.
| |
Collapse
|
247
|
Wei H, Li H, Wan SP, Zeng QT, Cheng LX, Jiang LL, Peng YD. Cardioprotective Effects of Malvidin Against Isoproterenol-Induced Myocardial Infarction in Rats: A Mechanistic Study. Med Sci Monit 2017; 23:2007-2016. [PMID: 28445445 PMCID: PMC5414594 DOI: 10.12659/msm.902196] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Malvidin (alvidin-3-glucoside) is a polyphenol that belongs to the class of natural anthocyanin, which is abundantly found in red wines, colored fruits, and the skin of red grapes. Therefore, the current investigation was intended to evaluate the effect of malvidin against myocardial infarction induced by isoproterenol in the rats. Material/Methods The cardioprotective effects was assessed by determining the effect of malvidin on the activities of endogenous antioxidants – catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH) – and on the levels of lipid peroxidation and serum marker enzymes. The serum levels of IL-6 and TNF-α were also determined using an enzyme-linked immunosorbent assay (ELISA) kit. Result The present study demonstrated a significant cardioprotective effect of malvidin by restoring the defensive activities of endogenous antioxidants – catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH) – and by reducing the levels of lipid peroxidation and serum marker enzymes lactate dehydrogenase (LD) and creatine kinase (CK). Malvidin significantly ameliorated the histopathological changes and impaired mitochondria in the cardiac necrosis stimulated with isoproterenol. Additionally, the results also demonstrated that nuclear translocation of Nrf-2 and subsequent HO-1 expression might be associated with nuclear factor kappa B (NF-κB) pathway activation. Conclusions Our findings suggest that malvidin exerts cardioprotective effects that might be due to possible strong antioxidant and anti-inflammatory activities. Therefore, this study provides the basis for the development of malvidin as a safe and effective treatment of myocardial infarction.
Collapse
Affiliation(s)
- Hui Wei
- Department of Cardiology, The First Peoples Hospital of Tianmen City, Tianmen, Hubei, China (mainland).,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Hui Li
- Department of Cardiology, The First Peoples Hospital of Tianmen City, Tianmen, Hubei, China (mainland)
| | - Shu-Ping Wan
- Department of Cardiology, The First Peoples Hospital of Tianmen City, Tianmen, Hubei, China (mainland)
| | - Qiu-Tang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Long-Xian Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Li-Li Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Yu-Dong Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
248
|
van Gijsel-Bonnello M, Baranger K, Benech P, Rivera S, Khrestchatisky M, de Reggi M, Gharib B. Metabolic changes and inflammation in cultured astrocytes from the 5xFAD mouse model of Alzheimer's disease: Alleviation by pantethine. PLoS One 2017; 12:e0175369. [PMID: 28410378 PMCID: PMC5391924 DOI: 10.1371/journal.pone.0175369] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/26/2017] [Indexed: 12/14/2022] Open
Abstract
Astrocytes play critical roles in central nervous system homeostasis and support of neuronal function. A better knowledge of their response may both help understand the pathophysiology of Alzheimer's disease (AD) and implement new therapeutic strategies. We used the 5xFAD transgenic mouse model of AD (Tg thereafter) to generate astrocyte cultures and investigate the impact of the genotype on metabolic changes and astrocytes activation. Metabolomic analysis showed that Tg astrocytes exhibited changes in the glycolytic pathway and tricarboxylic acid (TCA) cycle, compared to wild type (WT) cells. Tg astrocytes displayed also a prominent basal inflammatory status, with accentuated reactivity and increased expression of the inflammatory cytokine interleukin-1 beta (IL-1β). Compensatory mechanisms were activated in Tg astrocytes, including: i) the hexose monophosphate shunt with the consequent production of reducing species; ii) the induction of hypoxia inducible factor-1 alpha (HIF-1α), known to protect against amyloid-β (Aβ) toxicity. Such events were associated with the expression by Tg astrocytes of human isoforms of both amyloid precursor protein (APP) and presenilin-1 (PS1). Similar metabolic and inflammatory changes were induced in WT astrocytes by exogenous Aβ peptide. Pantethine, the vitamin B5 precursor, known to be neuroprotective and anti-inflammatory, alleviated the pathological pattern in Tg astrocytes as well as WT astrocytes treated with Aß. In conclusion, our data enlighten the dual pathogenic/protective role of astrocytes in AD pathology and the potential protective role of pantethine.
Collapse
Affiliation(s)
| | | | | | | | | | - Max de Reggi
- Aix Marseille Univ, CNRS, NICN, Marseille, France
| | | |
Collapse
|
249
|
Welsh G, Ryder K, Brewster J, Walker C, Mros S, Bekhit AEDA, McConnell M, Carne A. Comparison of bioactive peptides prepared from sheep cheese whey using a food-grade bacterial and a fungal protease preparation. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Grace Welsh
- Department of Biochemistry; University of Otago; PO Box 56 Dunedin New Zealand
| | - Kate Ryder
- Department of Biochemistry; University of Otago; PO Box 56 Dunedin New Zealand
| | - Jodi Brewster
- Department of Biochemistry; University of Otago; PO Box 56 Dunedin New Zealand
| | - Christina Walker
- Department of Biochemistry; University of Otago; PO Box 56 Dunedin New Zealand
| | - Sonya Mros
- Department of Microbiology and Immunology; University of Otago; PO Box 56 Dunedin New Zealand
| | | | - Michelle McConnell
- Department of Microbiology and Immunology; University of Otago; PO Box 56 Dunedin New Zealand
| | - Alan Carne
- Department of Biochemistry; University of Otago; PO Box 56 Dunedin New Zealand
| |
Collapse
|
250
|
Kiprowska MJ, Stepanova A, Todaro DR, Galkin A, Haas A, Wilson SM, Figueiredo-Pereira ME. Neurotoxic mechanisms by which the USP14 inhibitor IU1 depletes ubiquitinated proteins and Tau in rat cerebral cortical neurons: Relevance to Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1157-1170. [PMID: 28372990 DOI: 10.1016/j.bbadis.2017.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
In Alzheimer's disease proteasome activity is reportedly downregulated, thus increasing it could be therapeutically beneficial. The proteasome-associated deubiquitinase USP14 disassembles polyubiquitin-chains, potentially delaying proteasome-dependent protein degradation. We assessed the protective efficacy of inhibiting or downregulating USP14 in rat and mouse (Usp14axJ) neuronal cultures treated with prostaglandin J2 (PGJ2). IU1 concentrations (HIU1>25μM) reported by others to inhibit USP14 and be protective in non-neuronal cells, reduced PGJ2-induced Ub-protein accumulation in neurons. However, HIU1 alone or with PGJ2 is neurotoxic, induces calpain-dependent Tau cleavage, and decreases E1~Ub thioester levels and 26S proteasome assembly, which are energy-dependent processes. We attribute the two latter HIU1 effects to ATP-deficits and mitochondrial Complex I inhibition, as shown herein. These HIU1 effects mimic those of mitochondrial inhibitors in general, thus supporting that ATP-depletion is a major mediator of HIU1-actions. In contrast, low IU1 concentrations (LIU1≤25μM) or USP14 knockdown by siRNA in rat cortical cultures or loss of USP14 in cortical cultures from ataxia (Usp14axJ) mice, failed to prevent PGJ2-induced Ub-protein accumulation. PGJ2 alone induces Ub-protein accumulation and decreases E1~Ub thioester levels. This seemingly paradoxical result may be attributed to PGJ2 inhibiting some deubiquitinases (such as UCH-L1 but not USP14), thus triggering Ub-protein stabilization. Overall, IU1-concentrations that reduce PGJ2-induced accumulation of Ub-proteins are neurotoxic, trigger calpain-mediated Tau cleavage, lower ATP, E1~Ub thioester and E1 protein levels, and reduce proteasome activity. In conclusion, pharmacologically inhibiting (with low or high IU1 concentrations) or genetically down-regulating USP14 fail to enhance proteasomal degradation of Ub-proteins or Tau in neurons.
Collapse
Affiliation(s)
- Magdalena J Kiprowska
- Department of Biological Sciences, Hunter College, Biology and Biochemistry Programs, Graduate Center, The City University of New York, New York, NY 10065, USA
| | - Anna Stepanova
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, United Kingdom; N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dustin R Todaro
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Alexander Galkin
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, United Kingdom; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Arthur Haas
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Scott M Wilson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, Biology and Biochemistry Programs, Graduate Center, The City University of New York, New York, NY 10065, USA.
| |
Collapse
|