201
|
Abstract
While the research community has accepted the value of rodent models as informative research platforms, there is less awareness of the utility of other small vertebrate and invertebrate animal models. Neuroscience is increasingly turning to smaller, non-rodent models to understand mechanisms related to neuropsychiatric disorders. Although they can never replace clinical research, there is much to be learnt from 'small brains'. In particular, these species can offer flexible genetic 'tool kits' that can be used to explore the expression and function of candidate genes in different brain regions. Very small animals also offer efficiencies with respect to high-throughput screening programs. This review provides a concise overview of the utility of models based on worm, fruit fly, honeybee and zebrafish. Although these species may have small brains, they offer the neuropsychiatric research community opportunities to explore some of the most important research questions in our field.
Collapse
|
202
|
Gould GG. Modified Associative Learning T-Maze Test for Zebrafish (Danio rerio) and Other Small Teleost Fish. NEUROMETHODS 2011. [DOI: 10.1007/978-1-60761-953-6_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
203
|
|
204
|
Champagne DL, Hoefnagels CC, de Kloet RE, Richardson MK. Translating rodent behavioral repertoire to zebrafish (Danio rerio): Relevance for stress research. Behav Brain Res 2010; 214:332-42. [DOI: 10.1016/j.bbr.2010.06.001] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 11/27/2022]
|
205
|
Benner MJ, Drew RE, Hardy RW, Robison BD. Zebrafish (Danio rerio) vary by strain and sex in their behavioral and transcriptional responses to selenium supplementation. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:310-8. [PMID: 20659579 PMCID: PMC3047475 DOI: 10.1016/j.cbpa.2010.07.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 12/23/2022]
Abstract
We used the Nadia, Gaighatta, Scientific Hatcheries, and TM1 zebrafish (Danio rerio) strains to test the hypothesis that variation among populations influences the behavioral and transcriptional responses to selenium supplementation. When fed a diet with control levels of selenium, zebrafish strains differed significantly in behavior, characterized as their mean horizontal and vertical swimming positions within the tank. The four strains also differed in brain expression of selenoprotein P1a (sepp1a), glutathione peroxidase 3 (gpx3), thioredoxin reductase 1 (txnrd1), and tRNA selenocysteine associated protein 1 (secp43). Iodothyronine deiodinase 2 (dio2) did not differ among strains but showed a sex-specific expression pattern. When supplemented with selenium, all strains spent a greater proportion of time near the front of the tank, but the response of vertical swimming depth varied by strain. Selenium supplementation also caused changes in selenoprotein expression in the brain that varied by strain for sepp1a, secp43, and dio2, and varied by strain and sex for txnrd1. Expression of gpx3 was unaffected by selenium. Our data indicate that selenium homeostasis in the brain may be a regulator of behavior in zebrafish, and the strain-specific effects of selenium supplementation suggest that genetic heterogeneity among populations can influence the results of selenium supplementation studies.
Collapse
Affiliation(s)
- Maia J. Benner
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA
| | - Robert E. Drew
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA
| | - Ronald W. Hardy
- Aquaculture Research Institute, Hagerman Fish Culture Experiment Station, University of Idaho, 3059 National Fish Hatchery Road # F, Hagerman, ID 83332-5851, USA
| | - Barrie D. Robison
- Department of Biological Sciences, University of Idaho, Initiative for Bioinformatics in Evolutionary Studies, University of Idaho, Moscow, ID, 83844-3051, USA
| |
Collapse
|
206
|
Antipsychotic drugs prevent the motor hyperactivity induced by psychotomimetic MK-801 in zebrafish (Danio rerio). Behav Brain Res 2010; 214:417-22. [DOI: 10.1016/j.bbr.2010.06.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 06/08/2010] [Accepted: 06/13/2010] [Indexed: 11/17/2022]
|
207
|
Lee Y, Kim D, Kim YH, Lee H, Lee CJ. Improvement of pentylenetetrazol-induced learning deficits by valproic acid in the adult zebrafish. Eur J Pharmacol 2010; 643:225-31. [PMID: 20599908 DOI: 10.1016/j.ejphar.2010.06.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 06/03/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
Abstract
Pentylenetetrazol (PTZ) has been shown to induce seizure-like behavior, learning deficits in passive avoidance response test, and an increase in hsp70 (heat shock protein 70) mRNA expression in the adult zebrafish; PTZ has been increasingly appreciated as an excellent model system for the study of seizures. In this study, we demonstrate that valproic acid (VPA), an antiepileptic drug, suppresses seizure-like behavior and improves learning ability in adult zebrafish treated with PTZ. Pretreatment with VPA significantly reduces rapid involuntary movement and abrupt changes in moving direction in the PTZ-treated zebrafish. PTZ-induced learning impairments were also improved in the zebrafish pretreated with 200 or 500 microM VPA. However, the scopolamine-induced impairments of learning ability were not improved by VPA pretreatment. It is worth noting that while the zebrafish treated with 500 microM VPA for 1-3 weeks learned the passive avoidance response, those treated with 1 or 2mM VPA for 3h didn't. Furthermore, the increased level of hsp70 expression induced by PTZ, a stress marker protein, was significantly reduced in the VPA-pretreated zebrafish brains. Collectively, our data show the antiepileptic effects of VPA in the adult zebrafish, which coincides with reduced hsp70 mRNA expression, rescued learning impairment under PTZ-treated conditions.
Collapse
Affiliation(s)
- Yunkyoung Lee
- Department of Biological Sciences, Institute of Molecular and Cellular Biology, Inha University, Incheon, Republic of Korea
| | | | | | | | | |
Collapse
|
208
|
O'Connor PJ, Herring MP, Caravalho A. Mental Health Benefits of Strength Training in Adults. Am J Lifestyle Med 2010. [DOI: 10.1177/1559827610368771] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This review summarizes evidence from randomized controlled trials to examine whether strength training influences anxiety, chronic pain, cognition, depression, fatigue symptoms, self-esteem, and sleep. The weight of the available evidence supported the conclusion that strength training is associated with reductions in anxiety symptoms among healthy adults (5 trials); reductions in pain intensity among patients with low back pain (5 trials), osteoarthritis (8 trials), and fibromyalgia (4 trials); improvements in cognition among older adults (7 trials); improvements in sleep quality among depressed older adults (2 trials); reductions in symptoms of depression among patients with diagnosed depression (4 trials) and fibromyalgia (2 trials); reductions in fatigue symptoms (10 trials); and improvements in self-esteem (6 trials). The evidence indicates that larger trials with a greater range of patient samples are needed to better estimate the magnitude and the consistency of the relationship between strength training and these mental health outcomes. Plausible social, psychological, and neural mechanisms by which strength training could influence these outcomes rarely have been explored. This review revealed the high-priority research need for animal and human research aimed at better understanding the brain mechanisms underlying mental health changes with strength training.
Collapse
|
209
|
Blaser RE, Koid A, Poliner RM. Context-dependent sensitization to ethanol in zebrafish (Danio rerio). Pharmacol Biochem Behav 2010; 95:278-84. [DOI: 10.1016/j.pbb.2010.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 01/16/2010] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
|
210
|
Kroetz DL, Ahituv N, Burchard EG, Guo S, Sali A, Giacomini KM. Institutional Profile: The University of California Pharmacogenomics Center: at the interface of genomics, biological mechanisms and drug therapy. Pharmacogenomics 2010; 10:1569-76. [PMID: 19842929 DOI: 10.2217/pgs.09.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Pharmacogenomics Center of the University of California, San Francisco (CA, USA) fosters research and educational activities focused on the genomic basis for variation in drug response. Investigators in the Center conduct multidisciplinary and multicenter research on a diverse array of clinically used drugs with the goal of understanding the genetic factors that contribute to variation in therapeutic and adverse drug response. The Center houses the large NIH-supported Pharmacogenomics of Membrane Transporters Project, which is a leader in understanding genetic variation in membrane transporters that are important in clinical drug response. Center investigators study racially and ethnically diverse populations, are pioneers in the education of PharmD, MD and PhD students in pharmacogenomics, and have led the establishment of unique graduate and postdoctoral training programs focused on pharmacogenomics. A key emphasis of the Center is on biological mechanisms with a goal of facilitating the development of safer and more effective medications.
Collapse
Affiliation(s)
- Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
211
|
Behavioral measures of anxiety in zebrafish (Danio rerio). Behav Brain Res 2010; 208:56-62. [DOI: 10.1016/j.bbr.2009.11.009] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 10/25/2009] [Accepted: 11/01/2009] [Indexed: 11/24/2022]
|
212
|
Magno LAV, Miranda DM, Neves FS, Pimenta GJ, Mello MP, De Marco LA, Correa H, Romano-Silva MA. Association between AKT1 but not AKTIP genetic variants and increased risk for suicidal behavior in bipolar patients. GENES BRAIN AND BEHAVIOR 2010; 9:411-8. [DOI: 10.1111/j.1601-183x.2010.00571.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
213
|
Abstract
The scototaxis (dark/light preference) protocol is a behavioral model for fish that is being validated to assess the antianxiety effects of pharmacological agents and the behavioral effects of toxic substances, and to investigate the (epi)genetic bases of anxiety-related behavior. Briefly, a fish is placed in a central compartment of a half-black, half-white tank; following habituation, the fish is allowed to explore the tank for 15 min; the number and duration of entries in each compartment (white or black) are recorded by the observer for the whole session. Zebrafish, goldfish, guppies and tilapias (all species that are important in behavioral neurosciences and neuroethology) have been shown to demonstrate a marked preference for the dark compartment. An increase in white compartment activity (duration and/or entries) should reflect antianxiety behavior, whereas an increase in dark compartment activity should reflect anxiety-promoting behavior. When individual animals are exposed to the apparatus on only one occasion, results can be obtained in 20 min per fish.
Collapse
|
214
|
Ouyang SD, Pei YY, Weng SP, Lü L, Yu XQ, He JG. Effective polyethyleneimine-mediated gene transfer into zebrafish cells. Zebrafish 2009; 6:245-51. [PMID: 19761378 DOI: 10.1089/zeb.2009.0589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polyethyleneimine (PEI) has been broadly studied as a leading nonviral gene delivery carrier because of its relatively high transfection efficiency in a wide range of cell types. Here, we report gene transfer in zebrafish cells (ZF4) using PEI as a gene carrier and lipofectamine as a control. Formations of PEI-DNA complexes were characterized by a series of measurements. The particle size of PEI-DNA complexes decreased from 274 to 132 nm, the surface charge gradually increased from -26 to 29 mV, and the cytotoxicity for zebrafish cells was observed with increasing proportion of PEI. Gel retardation assay showed that DNA was completely bound by PEI with a negative-to-positive charge ratio of 4. It was observed by transmission electron microscopy that the morphology of PEI-DNA complexes was spherical with smooth surfaces. Flow cytometry revealed that the optimum transfection efficiency (27%) mediated by PEI was obtained at an negative-to-positive charge ratio of 8, which was higher than that with lipofectamine. Luciferase activity assay confirmed the increase in reporter gene expression probably due to a more efficient formation of complex between DNA and PEI than DNA and lipofectamine. In conclusion, our study demonstrates that PEI may be applied as an effective gene carrier to mediate gene transfer into zebrafish cells.
Collapse
Affiliation(s)
- Sui-Dong Ouyang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
215
|
Abstract
Addictive drugs hijack the human brain's 'reward' systems. A zebrafish model of addiction has recently been used to query changes in gene expression during this process.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Branch, National Institute on Drug Abuse/IRP, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
216
|
Peng J, Wagle M, Mueller T, Mathur P, Lockwood BL, Bretaud S, Guo S. Ethanol-modulated camouflage response screen in zebrafish uncovers a novel role for cAMP and extracellular signal-regulated kinase signaling in behavioral sensitivity to ethanol. J Neurosci 2009; 29:8408-18. [PMID: 19571131 PMCID: PMC2722107 DOI: 10.1523/jneurosci.0714-09.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/11/2009] [Accepted: 05/25/2009] [Indexed: 11/21/2022] Open
Abstract
Ethanol, a widely abused substance, elicits evolutionarily conserved behavioral responses in a concentration-dependent manner in vivo. The molecular mechanisms underlying such behavioral sensitivity to ethanol are poorly understood. While locomotor-based behavioral genetic screening is successful in identifying genes in invertebrate models, such complex behavior-based screening has proven difficult for recovering genes in vertebrates. Here we report a novel and tractable ethanol response in zebrafish. Using this ethanol-modulated camouflage response as a screening assay, we have identified a zebrafish mutant named fantasma (fan), which displays reduced behavioral sensitivity to ethanol. Positional cloning reveals that fan encodes type 5 adenylyl cyclase (AC5). fan/ac5 is required to maintain the phosphorylation of extracellular signal-regulated kinase (ERK) in the forebrain structures, including the telencephalon and hypothalamus. Partial inhibition of phosphorylation of ERK in wild-type zebrafish mimics the reduction in sensitivity to stimulatory effects of ethanol observed in the fan mutant, whereas, strikingly, strong inhibition of phosphorylation of ERK renders a stimulatory dose of ethanol sedating. Since previous studies in Drosophila and mice show a role of cAMP signaling in suppressing behavioral sensitivity to ethanol, our findings reveal a novel, isoform-specific role of AC signaling in promoting ethanol sensitivity, and suggest that the phosphorylation level of the downstream effector ERK is a critical "gatekeeper" of behavioral sensitivity to ethanol.
Collapse
Affiliation(s)
- Jisong Peng
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, California 94143-2811
| | - Mahendra Wagle
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, California 94143-2811
| | - Thomas Mueller
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, California 94143-2811
| | - Priya Mathur
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, California 94143-2811
| | - Brent L. Lockwood
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, California 94143-2811
| | - Sandrine Bretaud
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, California 94143-2811
| | - Su Guo
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, California 94143-2811
| |
Collapse
|
217
|
Seibt KJ, Oliveira RDL, Rico EP, Dias RD, Bogo MR, Bonan CD. Typical and atypical antipsychotics alter acetylcholinesterase activity and ACHE expression in zebrafish (Danio rerio) brain. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:10-5. [PMID: 19444963 DOI: 10.1016/j.cbpc.2009.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Antipsychotic agents are widely used for the treatment of psychotic symptoms in patients with several brain disorders. Antipsychotic drugs principally affect dopamine systems with the newer ones also affecting serotonin, norepinephrine, and histamine systems. Other transmitter systems can be involved with selected antipsychotic drugs but effects on cholinergic system are less known. Considerable evidence has shown that complex interactions between dopaminergic and cholinergic systems are critical for the proper regulation of motor control and memory. These neurotransmitter systems have been studied in zebrafish, which has recently become a focus of neurobehavioral studies. Therefore, we have evaluated the in vitro and in vivo effects of sulpiride, olanzapine, and haloperidol on acetylcholinesterase activity and ache expression pattern in zebrafish brain. For in vitro studies, all drugs were able to promote a decrease on acetylcholinesterase activity. For in vivo studies, olanzapine and sulpiride exposure did not change acetylcholinesterase activity. In contrast, this enzyme activity was significantly increased at 5 and 9 microM haloperidol (29.9% and 20.4%, respectively). Haloperidol exposure was able to increase acetylcholinesterase mRNA transcripts. These findings have suggested that the alterations in zebrafish acetylcholinesterase could reveal molecular mechanisms related to cholinergic signaling induced by antipsychotic treatment.
Collapse
Affiliation(s)
- Kelly Juliana Seibt
- Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul Avenida Ipiranga, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
218
|
Chen Q, Huang NN, Huang JT, Chen S, Fan J, Li C, Xie FK. Sodium benzoate exposure downregulates the expression of tyrosine hydroxylase and dopamine transporter in dopaminergic neurons in developing zebrafish. ACTA ACUST UNITED AC 2009; 86:85-91. [PMID: 19294673 DOI: 10.1002/bdrb.20187] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Recent data have demonstrated that treatment with sodium benzoate (SB) leads to significant developmental defects in motor neuron axons and neuromuscular junctions in zebrafish larvae, thereby implying that SB can be neurotoxic. This study examined whether SB affects the development of dopaminergic neurons in the zebrafish brain. METHODS Zebrafish embryos were exposed to different concentrations of SB for various durations, during which the survival rates were recorded, the expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the neurons in the ventral diencephalon were detected by in situ hybridization and immunofluorescence, and the locomotor activity of larval zebrafish was measured. RESULTS The survival rates were significantly decreased with the increase of duration and dose of SB-treatment. Compared to untreated clutch mates (untreated controls), treatment with SB significantly downregulated expression of TH and DAT in neurons in the ventral diencephalon of 3-day post-fertilization (dpf) zebrafish embryos in a dose-dependent manner. Furthermore, there was a marked decrease in locomotor activity in zebrafish larvae at 6dpf in response to SB treatment. CONCLUSIONS The results suggest that SB exposure can cause significantly decreased survival rates of zebrafish embryos in a time- and dose-dependent manner and downregulated expression of TH and DAT in dopaminergic neurons in the zebrafish ventral diencephalon, which results in decreased locomotor activity of zebrafish larvae. This study may provide some important information for further elucidating the mechanism underlying SB-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Qian Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | |
Collapse
|
219
|
Guo S. Using zebrafish to assess the impact of drugs on neural development and function. Expert Opin Drug Discov 2009; 4:715-726. [PMID: 19774094 DOI: 10.1517/17460440902988464] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND: Zebrafish is becoming an increasingly attractive model organism for understanding biology and developing therapeutics, because as a vertebrate, it shares considerable similarity with mammals in both genetic compositions and tissue/organ structures, and yet remains accessible to high throughput phenotype-based genetic and small molecule compound screening. OBJECTIVE/METHOD: The focus of this review is on the nervous system, which is arguably the most complex organ and known to be afflicted by more than six hundred disorders in humans. I discuss the past, present, and future of using zebrafish to assess the impact of small molecule drugs on neural development and function, in light of understanding and treating neurodevelopmental disorders such as autism, neurodegenerative disorders including Alzheimer's, Parkinson's, and Hungtington's disease, and neural system dysfunctions such as anxiety/depression and addiction. CONCLUSION: These studies hold promise to reveal fundamental mechanisms governing nervous system development and function, and to facilitate small molecule drug discovery for the many types of neurological disorders.
Collapse
Affiliation(s)
- Su Guo
- Department of Biopharmaceutical Sciences, Programs in Biological Sciences and Human Genetics, Institute for Regenerative Medicine, University of California San Francisco, CA 94143-2811
| |
Collapse
|
220
|
Irons TD, MacPhail RC, Hunter DL, Padilla S. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicol Teratol 2009; 32:84-90. [PMID: 19465114 DOI: 10.1016/j.ntt.2009.04.066] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 03/15/2009] [Accepted: 04/23/2009] [Indexed: 11/25/2022]
Abstract
As part of the development of a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae by assessing the acute effects of prototypic drugs that act on the central nervous system. Initially, we chose ethanol, d-amphetamine, and cocaine, which are known, in mammals, to increase locomotion at low doses and decrease locomotion at higher doses. Wild-type larvae were individually maintained in 96-well microtiter plates at 26 degrees C, under a 14:10 h light:dark cycle, with lights on at 0830 h. At 6 days post-fertilization, ethanol (1-4% v/v), d-amphetamine sulfate (0.1-20.0 microM) or cocaine hydrochloride (0.2-50.0 microM) were administered to the larvae by immersion. Beginning 20 min into the exposure, locomotion was assessed for each animal for 70 min using 10-minute, alternating light (visible light) and dark (infrared light) periods. Low concentrations of ethanol and d-amphetamine increased activity, while higher concentrations of all three drugs decreased activity. Because ethanol effects occurred predominately during the light periods, whereas the d-amphetamine and cocaine effects occurred during the dark periods, alternating lighting conditions proved to be advantageous. These results indicate that zebrafish larvae are sensitive to neuroactive drugs, and their locomotor response is similar to that of mammals.
Collapse
Affiliation(s)
- T D Irons
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
221
|
Abstract
Over recent years, several groundbreaking techniques have been developed that allow for the anatomical description of neurons, and the observation and manipulation of their activity. Combined, these approaches should provide a great leap forward in our understanding of the structure and connectivity of the nervous system and how, as a network of individual neurons, it generates behavior. Zebrafish, given their external development and optical transparency, are an appealing system in which to employ these methods. These traits allow for direct observation of fluorescence in describing anatomy and observing neural activity, and for the manipulation of neurons using a host of light-triggered proteins. Gal4/Upstream Activating Sequence techniques, as they are based on a binary system, allow for the flexible deployment of a range of transgenes in expression patterns of interest. As such, they provide a promising approach for viewing neurons in a variety of ways, each of which can reveal something different about their structure, connectivity, or function. In this study, the author will review recent progress in the development of the Gal4/Upstream Activating Sequence system in zebrafish, feature examples of promising studies to date, and examine how various new technologies can be used in the future to untangle the complex mechanisms by which behavior is generated.
Collapse
Affiliation(s)
- Ethan K Scott
- The University of Queensland, The Queensland Brain Institute, Brisbane, Australia.
| |
Collapse
|
222
|
Brooks JS. The Emergence of Behavioral Testing of Fishes to Measure Toxicological Effects. Toxicol Res 2009; 25:9-15. [PMID: 32038813 PMCID: PMC7006293 DOI: 10.5487/tr.2009.25.1.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 11/21/2008] [Accepted: 01/03/2009] [Indexed: 11/20/2022] Open
Abstract
Historically, research in toxicology has utilized non-human mammalian species, particularly rats and mice, to study in vivo the effects of toxic exposure on physiology and behavior. However, ethical considerations and the overwhelming increase in the number of chemicals to be screened has led to a shift away from in vivo work. The decline in in vivo experimentation has been accompanied by an increase in alternative methods for detecting and predicting detrimental effects: in vitro experimentation and in silico modeling. Yet, these new methodologies can not replace the need for in vivo work on animal physiology and behavior. The development of new, non-mammalian model systems shows great promise in restoring our ability to use behavioral endpoints in toxicological testing. Of these systems, the zebrafish, Danio rerio, is the model organism for which we are accumulating enough knowledge in vivo, in vitro, and in silico to enable us to develop a comprehensive, highthroughput toxicology screening system.
Collapse
Affiliation(s)
- Janie S. Brooks
- Innovative Drug Research Center for Metabolic and Inflammatory Disease, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 599Gwanangno, Gwanak-gu, Seoul, 151-742 Korea
- Division of Science and Mathematics, Brevard College, Brevard, Brevard, North Carolina 28712 USA
| |
Collapse
|
223
|
A video multitracking system for quantification of individual behavior in a large fish shoal: Advantages and limits. Behav Res Methods 2009; 41:228-235. [DOI: 10.3758/brm.41.1.228] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
224
|
Sun Z, Gitler AD. Discovery and characterization of three novel synuclein genes in zebrafish. Dev Dyn 2009; 237:2490-5. [PMID: 18521955 DOI: 10.1002/dvdy.21569] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The neuronal protein alpha-synuclein has been linked to the pathogenesis of synucleinopathies, a collection of neurodegenerative disorders, including Parkinson's disease. alpha-Synuclein belongs to a family of synuclein genes that includes beta- and gamma-synuclein. However, despite being associated with several fatal human neurodegenerative diseases, little is known about the normal function of synucleins. Here we report the cloning and characterization of three synucleins from zebrafish, sncga, sncgb, and sncb. The sequences of these zebrafish synucleins are very similar to those of the human proteins. We used whole-mount in situ hybridization to analyze their spatial and temporal expression patterns during development. sncgb was expressed exclusively in the notochord, while sncga and sncb were expressed strongly in the nervous system. Our identification of synuclein genes in zebrafish and the characterization of their expression patterns will facilitate future experiments aimed at assessing their functions in normal physiology as well as their role in pathophysiology.
Collapse
Affiliation(s)
- Zhihui Sun
- Department of Cell and Developmental Biology, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
225
|
Cofiel L, Mattioli R. L-histidine enhances learning in stressed zebrafish. Braz J Med Biol Res 2009; 42:128-34. [DOI: 10.1590/s0100-879x2009000100018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 01/19/2009] [Indexed: 11/22/2022] Open
|
226
|
Locomotion in larval zebrafish: Influence of time of day, lighting and ethanol. Neurotoxicology 2008; 30:52-8. [PMID: 18952124 DOI: 10.1016/j.neuro.2008.09.011] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 09/18/2008] [Accepted: 09/18/2008] [Indexed: 11/20/2022]
Abstract
The increasing use of zebrafish (Danio rerio) in developmental research highlights the need for a detailed understanding of their behavior. We studied the locomotion of individual zebrafish larva (6 days post-fertilization) in 96-well microtiter plates. Movement was recorded using a video-tracking system. Time of day results indicated locomotion, tested in darkness (infrared), decreased gradually from early morning to a stable level between 13:00 and 15:30 h. All further studies were conducted in early-to-late afternoon and lasted approximately 1 h. Each study also began with a period of darkness to minimize any unintended stimulation caused by transferring the plates to the recording platform. Locomotion in darkness increased initially to a maximum at 4 min, then decreased steadily to a low level by 20 min. Locomotion during light was initially low and then gradually increased to a stable level after 20 min. When 10-min periods of light and dark were alternated, activity was low in light and high in dark; curiously, activity during alternating dark periods was markedly higher than originally obtained during either extended dark or light. Further experiments explored the variables influencing this alternating pattern of activity. Varying the duration of the initial dark period (10-20 min) did not affect subsequent activity in either light or dark. The activity increase on return to dark was, however, greater following 15 min than 5 min of light. Acute ethanol increased activity at 1 and 2% and severely decreased activity at 4%. One-percent ethanol retarded the transition in activity from dark to light, and the habituation of activity in dark, while 2% ethanol increased activity regardless of lighting condition. Collectively, these results show that locomotion in larval zebrafish can be reliably measured in a 96-well microtiter plate format, and is sensitive to time of day, lighting conditions, and ethanol.
Collapse
|
227
|
Oswald M, Robison B. Strain-specific alteration of zebrafish feeding behavior in response to aversive stimuli. CAN J ZOOL 2008; 86:1085-1094. [PMID: 21379405 PMCID: PMC3048467 DOI: 10.1139/z08-085] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Behavioral management of risk, in which organisms must balance the requirements of obtaining food resources with the risk of predation, has been of considerable interest to ethologists for many years. Although numerous experiments have shown that animals alter their foraging behavior depending on the levels of perceived risk and demand for nutrients, few have considered the role of genetic variation in the trade-off between these variables. We performed a study of four zebrafish (Danio rerio (Hamilton, 1822)) strains to test for genetic variation in foraging behavior and whether this variation affected their response to both aversive stimuli and nutrient restriction. Zebrafish strains differed significantly in their latency to begin foraging from the surface of the water under standard laboratory conditions. Fish fed sooner when nutrients were restricted, although this was only significant in the absence of aversive stimuli. Aversive stimuli caused fish to delay feeding in a strain-specific manner. Strains varied in food intake and specific growth rate, and feeding latency was significantly correlated with food intake. Our results indicate significant genetic variation in foraging behavior and the perception of risk in zebrafish, with a pattern of strain variation consistent with behavioral adaptation to captivity.
Collapse
Affiliation(s)
- M. Oswald
- University of Idaho, Department of Biological Sciences, P.O. Box 443051, Moscow, ID 83844-3051, USA
| | - B.D. Robison
- University of Idaho, Department of Biological Sciences, P.O. Box 443051, Moscow, ID 83844-3051, USA
| |
Collapse
|
228
|
Gerlai R, Ahmad F, Prajapati S. Differences in acute alcohol-induced behavioral responses among zebrafish populations. Alcohol Clin Exp Res 2008; 32:1763-73. [PMID: 18652595 PMCID: PMC2709829 DOI: 10.1111/j.1530-0277.2008.00761.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND With the arsenal of genetic tools available for zebrafish, this species has been successfully used to investigate the genetic aspects of human diseases from developmental disorders to cancer. Interest in the behavior and brain function of zebrafish is also increasing as CNS disorders may be modeled and studied with this species. Alcoholism and alcohol abuse are among the most devastating and costliest diseases. However, the mechanisms of these diseases are not fully understood. Zebrafish has been proposed as a model organism to study such mechanisms. Characterization of alcohol's effects on zebrafish is a necessary step in this research. METHODS Here, we compare the effects of acute alcohol (EtOH) administration on the behavior of zebrafish from 4 distinct laboratory-bred populations using automated as well as observation based behavioral quantification methods. RESULTS Alcohol treatment resulted in significant dose-dependent behavioral changes but the dose-response trajectories differed among zebrafish populations. CONCLUSIONS The results demonstrate for the first time a genetic component in alcohol responses in adult zebrafish and also show the feasibility of high throughput behavioral screening. We discuss the exploration and exploitation of the genetic differences found.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada.
| | | | | |
Collapse
|
229
|
Abstract
The zebrafish, long recognized as a model organism for the analysis of basic developmental processes, is now also emerging as an alternative animal model for human diseases. This review will first provide an overview of the particular characteristics of zebrafish in general and their dopaminergic nervous system in particular. We will then summarize all work undertaken so far to establish zebrafish as a new animal model for movement disorders and will finally emphasize its particular strength - amenability to high throughput in vivo drug screening.
Collapse
Affiliation(s)
- Laura Flinn
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, UK
| | | | | | | | | |
Collapse
|
230
|
Barros TP, Alderton WK, Reynolds HM, Roach AG, Berghmans S. Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery. Br J Pharmacol 2008; 154:1400-13. [PMID: 18552866 PMCID: PMC2492106 DOI: 10.1038/bjp.2008.249] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 05/23/2008] [Indexed: 12/20/2022] Open
Abstract
The zebrafish is a well-established model organism used in developmental biology. In the last decade, this technology has been extended to the generation of high-value knowledge on safety risks of novel drugs. Indeed, the larval zebrafish appear to combine advantages of whole organism phenotypic assays and those (rapid production of results with minimal resource engagement) of in vitro high-throughput screening techniques. Thus, if appropriately evaluated, it can offer undeniable advantages in drug discovery for identification of target and off-target effects. Here, we review some applications of zebrafish to identify potential safety liabilities, particularly before lead/candidate selection. For instance, zebrafish cardiovascular system can be used to reveal decreases in heart rate and atrial-ventricular dissociation, which may signal human ether-a-go-go-related gene (hERG) channel blockade. Another main area of interest is the CNS, where zebrafish behavioural assays have been and are further being developed into screening platforms for assessment of locomotor activity, convulsant and proconvulsant liability, cognitive impairment, drug dependence potential and impaired visual and auditory functions. Zebrafish also offer interesting possibilities for evaluating effects on bone density and gastrointestinal function. Furthermore, available knowledge of the renal system in larval zebrafish can allow identification of potential safety issues of drug candidates on this often neglected area in early development platforms. Although additional validation is certainly needed, the zebrafish is emerging as a versatile in vivo animal model to identify off-target effects that need investigation and further clarification early in the drug discovery process to reduce the current, high degree of attrition in development.
Collapse
Affiliation(s)
| | | | | | - A G Roach
- Summit (Cambridge) Ltd. Cambridge, UK
| | | |
Collapse
|
231
|
Park E, Lee Y, Kim Y, Lee CJ. Cholinergic modulation of neural activity in the telencephalon of the zebrafish. Neurosci Lett 2008; 439:79-83. [DOI: 10.1016/j.neulet.2008.04.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 04/06/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
|
232
|
Abstract
As the population ages, there is a growing need for effective therapies for the treatment of neurological diseases. A limited number of therapeutics are currently available to improve cognitive function and research is limited by the need for in vivo models. Zebrafish have recently become a focus of neurobehavioral studies since larvae display neuropathological and behavioral phenotypes that are quantifiable and relate to those seen in man. Due to the small size of Zebrafish larvae, assays can be undertaken in 96 well plates and as the larvae can live in as little as 200 mul of fluid, only a few milligrams of compound are needed for screening. Thus in vivo analysis of the effects of compounds can be undertaken at much earlier stages in the drug discovery process. This review will look at the utility of the zebrafish in the study of neurological diseases and its role in improving the throughput of candidate compounds in in vivo screens.
Collapse
Affiliation(s)
- J D Best
- Summit (Cambridge) Ltd., Beach Drive Cambridge, UK
| | | |
Collapse
|
233
|
Chow ESH, Hui MNY, Lin CC, Cheng SH. Cadmium inhibits neurogenesis in zebrafish embryonic brain development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 87:157-169. [PMID: 18342959 DOI: 10.1016/j.aquatox.2008.01.019] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/17/2008] [Accepted: 01/25/2008] [Indexed: 05/26/2023]
Abstract
Cadmium is a non-essential heavy metal found abundantly in the environment. Children of women exposed to cadmium during pregnancy display lower motor and perceptual abilities. High cadmium body burden in children is also related to impaired intelligence and lowered school achievement. However, little is known about the molecular and cellular basis of developmental neurotoxicity in the sensitive early life stages of animals. In this study, we explore neurological deficits caused by cadmium during early embryonic stages in zebrafish by examining regionalization of the neural tube, pattern formation and cell fate determination, commitment of proneural genes and induction of neurogenesis. We show that cadmium-treated embryos developed a smaller head with unclear boundaries between the brain subdivisions, particularly in the mid-hindbrain region. Embryos display normal anterior to posterior regionalization; however, the commitment of neural progenitor cells was affected by cadmium. We observe prominent reductions in the expression of several proneuronal genes including ngn1 in cell clusters, zash1a in the developing optic tectum, and zash1b in the telencephalon and tectum. Cadmium-treated embryos also have fewer differentiated neurons and glia in the facial sensory ganglia as indicated by decreased zn-12 expression. Also, a lower transcription level of neurogenic genes, ngn1 and neuroD, is observed in neurons. Our data suggest that cadmium-induced neurotoxicity can be caused by impaired neurogenesis, resulting in markedly reduced neuronal differentiation and axonogenesis.
Collapse
Affiliation(s)
- Elly Suk Hen Chow
- Division of Biology, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
234
|
Bleakley BH, Eklund AC, Brodie ED. Are designer guppies inbred? Microsatellite variation in five strains of ornamental guppies, Poecilia reticulata, used for behavioral research. Zebrafish 2008; 5:39-48. [PMID: 18361681 DOI: 10.1089/zeb.2007.0513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inbred lines are an important tool of genetic studies of all traits, including behavior. Independently derived strains of ornamental "designer" guppies are readily available and predicted to be inbred; however, little is known about actual levels of inbreeding in any of these strains or whether these lines differ in genetic traits that have not been under strong directional artificial selection. We genotyped five designer strains of guppies known to vary in their responses to predator cues and a wild reference population to determine whether designer strains show evidence of inbreeding and whether the strains differed from each other at five microsatellite loci. The designer strains exhibited lower allelic diversity and observed heterozygosity than the wild population. Observed heterozygosity departed significantly from expected heterozygosity for most markers in all five strains of designer guppies. Inbreeding coefficient (f) comparisons between the wild reference population and the designer strains show considerable inbreeding in the designer strains. F(is) values for the designer strains also provide evidence of inbreeding. Finally, F(st) values indicate that the designer strains differ significantly from each other and the wild population. We therefore concluded that designer guppies are inbred compared to wild populations and differ among strains, making them useful tools for genetic studies of behavioral or life history traits.
Collapse
Affiliation(s)
- Bronwyn H Bleakley
- Department of Biology and the Center for the Integrative Study of Behavior, Indiana University, Bloomington, Indiana, USA.
| | | | | |
Collapse
|
235
|
Best JD, Berghmans S, Hunt JJFG, Clarke SC, Fleming A, Goldsmith P, Roach AG. Non-associative learning in larval zebrafish. Neuropsychopharmacology 2008; 33:1206-15. [PMID: 17581529 DOI: 10.1038/sj.npp.1301489] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Habituation, where a response is reduced when exposed to a continuous stimulus is one of the simplest forms of non-associative learning and has been shown in a number of organisms from sea slugs to rodents. However, very little has been reported in the zebrafish, a model that is gaining popularity for high-throughput compound screens. Furthermore, since most of the studies involving learning and memory in zebrafish have been conducted in adults, we sought to determine if zebrafish larvae could display non-associative learning and whether it could be modulated by compounds identified in previous rodent studies. We demonstrated that zebrafish larvae (7 days post fertilization) exhibit iterative reduction in a startle response to a series of acoustic stimuli. Furthermore, this reduction satisfied criteria for habituation: spontaneous recovery, more rapid reductions in startle to shorter intertrial intervals and dishabituation. We then investigated the pathways mediating this behavior using established compounds in learning and memory. Administration of rolipram (PDE4 inhibitor), donepezil (acetylcholinesterase inhibitor), and memantine (N-methyl-D-aspartic acid (NMDA) receptor antagonist) all increased the acoustic startle response and decreased habituation in the larvae, similar to previous rodent studies. Further studies demonstrated that NMDA blocked the memantine response and the effect of donepezil was blocked by mecamylamine but not atropine suggesting that the donepezil response was mediated by nicotinic rather than muscarinic receptors. Zebrafish larvae possess numerous advantages for medium to high-throughput screening; the model described herein therefore offers the potential to screen for additional compounds for further study on cognition function.
Collapse
Affiliation(s)
- Jonathan D Best
- DanioLabs Ltd (a wholly owned subsidiary of VASTox plc), Unit 7330, Cambridge Research Park, Cambridge, UK.
| | | | | | | | | | | | | |
Collapse
|
236
|
Tucker B, Lardelli M. A rapid apoptosis assay measuring relative acridine orange fluorescence in zebrafish embryos. Zebrafish 2008; 4:113-6. [PMID: 18041929 DOI: 10.1089/zeb.2007.0508] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability to easily analyze apoptosis is important in studies of molecular cell biology and to evaluate the relative toxicity of different treatments or environments. This is particularly the case when substances such as morpholino oligonucleotides are injected into embryos, as such treatments can cause widespread, complex patterns of apoptosis. Zebrafish embryos are well suited for cell biological and environmental toxicity analyses, but the need remains for a simple method that can analyze levels of apoptosis in a statistically significant number of embryos. Here we present a "group fluorescence" method for rapid, large-scale analysis of relative levels of apoptosis based on densitometric techniques.
Collapse
Affiliation(s)
- Ben Tucker
- ARC Special Research Center for the Molecular Genetics of Development and Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia.
| | | |
Collapse
|
237
|
Nakamura TY, Coetzee WA. Functional and pharmacological characterization of a Shal-related K+ channel subunit in Zebrafish. BMC PHYSIOLOGY 2008; 8:2. [PMID: 18261223 PMCID: PMC2270284 DOI: 10.1186/1472-6793-8-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 02/08/2008] [Indexed: 12/04/2022]
Abstract
Background K+ channels are diverse; both in terms of their function and their molecular composition. Shal subunits were first described in Drosophila. There are three mammalian orthologs, which are members of the Kv4 subfamily. They are involved in neuronal firing patterns as well as control of the cardiac action potential duration. Results Here, we report the biophysical and pharmacological characterization of zShal3, which is the ortholog of the mammalian Kv4.3 subunit, which in mammals is involved in action potential repolarization and gives rise to neuronal A-type K+ currents involved in somatodendretic signal integration. Conclusion We demonstrate that zShal has similar functional and pharmacological characteristics compared to Kv4.3 and it is similarly regulated by pharmacological agents and by the Kv4 accessory subunit, NCS-1.
Collapse
Affiliation(s)
- Tomoe Y Nakamura
- Department of Molecular Physiology, National Cardiovascular Center Research Institute, Osaka, Japan.
| | | |
Collapse
|
238
|
Selected papers on zebrafish and other aquarium fish models. Zebrafish 2008; 1:165-72. [PMID: 18248227 DOI: 10.1089/zeb.2004.1.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
239
|
Mueller T, Wullimann MF, Guo S. Early teleostean basal ganglia development visualized by ZebrafishDlx2a,Lhx6,Lhx7,Tbr2 (eomesa), andGAD67 gene expression. J Comp Neurol 2008; 507:1245-57. [DOI: 10.1002/cne.21604] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
240
|
Mabee PM, Arratia G, Coburn M, Haendel M, Hilton EJ, Lundberg JG, Mayden RL, Rios N, Westerfield M. Connecting evolutionary morphology to genomics using ontologies: a case study from Cypriniformes including zebrafish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:655-68. [PMID: 17599725 DOI: 10.1002/jez.b.21181] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One focus of developmental biology is to understand how genes regulate development, and therefore examining the phenotypic effects of gene mutation is a major emphasis in studies of zebrafish and other model organisms. Genetic change underlies alterations in evolutionary characters, or phenotype, and morphological phylogenies inferred by comparison of these characters. We will utilize both existing and new ontologies to connect the evolutionary anatomy and image database that is being developed in the Cypriniformes Tree of Life project to the Zebrafish Information Network (HYPERLINK "file://localhost/Library/Local%20Settings/Temp/zfin.org" zfin.org) database. Ontologies are controlled vocabularies that formally represent hierarchical relationships among defined biological concepts. If used to recode the free-form text descriptors of anatomical characters, evolutionary character data can become more easily computed, explored, and mined. A shared ontology for homologous modules of the phenotype must be referenced to connect the growing databases in each area in a way that evolutionary questions can be addressed. We present examples that demonstrate the broad utility of this approach.
Collapse
Affiliation(s)
- Paula M Mabee
- Department of Biology, University of South Dakota, Vermillion, South Dakota 57069, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Establishment of the expression system for studying the function of active caspase-3 in zebrafish. Mol Biol Rep 2007; 36:405-13. [PMID: 18080784 DOI: 10.1007/s11033-007-9194-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
Caspase-3, a key molecule in apoptosis, has been extensively studied in cell culture system; however, it has been less well characterized in vivo because certain mediators are required for the proteolytic activation of effector caspases, including caspase-3. In this study, various forms of caspase-3 with the C-terminal GFP tag were inserted into the pCS2+ plasmid, and the expression patterns of caspase-3 proteins were characterized in a zebrafish model system using microinjection of nucleic acids into zebrafish embryos. We have verified that active caspase-3 was generated by its autocatalytic activity under the condition of caspase-2 prodomain (C2P)-caspase-3-GFP overexpression, indicating that the C2P domain is crucial for the activation of caspase-3. We also confirmed that the C2P domain plays an important role in regulating the nuclear localization of the C2P-caspase-3 chimeric protein. We used this expression system to establish an animal model system suitable for the investigation of the functional characteristics of caspase-3 in vivo. Thus, our study provides a useful and specific tool for investigating the molecular mechanisms by which active caspase-3 regulates apoptosis during embryonic development.
Collapse
|
242
|
Spence R, Gerlach G, Lawrence C, Smith C. The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc 2007; 83:13-34. [DOI: 10.1111/j.1469-185x.2007.00030.x] [Citation(s) in RCA: 716] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
243
|
Bretaud S, Li Q, Lockwood BL, Kobayashi K, Lin E, Guo S. A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish. Neuroscience 2007; 146:1109-16. [PMID: 17428610 DOI: 10.1016/j.neuroscience.2006.12.073] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Revised: 11/21/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Transparent larval zebrafish offer the opportunity to unravel genetic and neuronal networks underlying behavior in a developing system. In this study, we developed a choice chamber paradigm to measure reward-associated behavior in larval zebrafish. In the chamber where larval zebrafish have a choice of spending their time in either a water- or morphine-containing compartment, larvae that have previously experienced morphine spend significantly more time in the compartment containing morphine. This behavior can be attentuated by pre-treatment with antagonists of the opioid receptor or the dopamine receptor, and furthermore, is impaired in the too few mutant, which has a genetic deficiency in the production of specific groups of dopaminergic and serotonergic neurons in the ventral forebrain. These results uncover a choice behavior for an addictive substance in larval zebrafish that is mediated through central opioid and monoaminergic neurotransmitter systems.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Biogenic Amines/physiology
- Choice Behavior/drug effects
- Chromatography, Liquid
- Cloning, Molecular
- DNA Mutational Analysis
- Dopamine/physiology
- Immunohistochemistry
- In Situ Hybridization
- Larva/physiology
- Mass Spectrometry
- Morphine/pharmacology
- Motor Activity/physiology
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Nerve Net/physiology
- Neurotransmitter Agents/physiology
- Receptors, Odorant/genetics
- Receptors, Odorant/physiology
- Receptors, Opioid/physiology
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
- Reinforcement, Psychology
- Reverse Transcriptase Polymerase Chain Reaction
- Reward
- Signal Transduction/physiology
- Zebrafish/physiology
Collapse
Affiliation(s)
- S Bretaud
- Department of Biopharmaceutical Sciences, University of California, San Francisco, CA 94143-2811, USA
| | | | | | | | | | | |
Collapse
|
244
|
Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Craig CR, Collins AC, Damaj MI, Donny EC, Gardiner PS, Grady SR, Heberlein U, Leonard SS, Levin ED, Lukas RJ, Markou A, Marks MJ, McCallum SE, Parameswaran N, Perkins KA, Picciotto MR, Quik M, Rose JE, Rothenfluh A, Schafer WR, Stolerman IP, Tyndale RF, Wehner JM, Zirger JM. Guidelines on nicotine dose selection for in vivo research. Psychopharmacology (Berl) 2007; 190:269-319. [PMID: 16896961 DOI: 10.1007/s00213-006-0441-0] [Citation(s) in RCA: 645] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 05/09/2006] [Indexed: 01/16/2023]
Abstract
RATIONALE This review provides insight for the judicious selection of nicotine dose ranges and routes of administration for in vivo studies. The literature is replete with reports in which a dosaging regimen chosen for a specific nicotine-mediated response was suboptimal for the species used. In many cases, such discrepancies could be attributed to the complex variables comprising species-specific in vivo responses to acute or chronic nicotine exposure. OBJECTIVES This review capitalizes on the authors' collective decades of in vivo nicotine experimentation to clarify the issues and to identify the variables to be considered in choosing a dosaging regimen. Nicotine dose ranges tolerated by humans and their animal models provide guidelines for experiments intended to extrapolate to human tobacco exposure through cigarette smoking or nicotine replacement therapies. Just as important are the nicotine dosaging regimens used to provide a mechanistic framework for acquisition of drug-taking behavior, dependence, tolerance, or withdrawal in animal models. RESULTS Seven species are addressed: humans, nonhuman primates, rats, mice, Drosophila, Caenorhabditis elegans, and zebrafish. After an overview on nicotine metabolism, each section focuses on an individual species, addressing issues related to genetic background, age, acute vs chronic exposure, route of administration, and behavioral responses. CONCLUSIONS The selected examples of successful dosaging ranges are provided, while emphasizing the necessity of empirically determined dose-response relationships based on the precise parameters and conditions inherent to a specific hypothesis. This review provides a new, experimentally based compilation of species-specific dose selection for studies on the in vivo effects of nicotine.
Collapse
Affiliation(s)
- Shannon G Matta
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 874 Union Avenue, Crowe 115, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Bleakley BH, Martell CM, Brodie ED. Variation in anti-predator behavior among five strains of inbred guppies, Poecilia reticulata. Behav Genet 2007; 36:783-91. [PMID: 16502137 DOI: 10.1007/s10519-005-9044-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 12/29/2005] [Indexed: 10/25/2022]
Abstract
Quantitative genetic studies frequently utilize inbred strains of animals as tools for partitioning the direct and indirect effects of genes from environmental effects in generating an observed phenotype, however, this approach is rarely applied to behavioral studies. Guppies, Poecilia reticulata, perform a set of anti-predator behaviors that may provide an ideal system to study how complex behavioral traits are generated. To assess the utility of ornamental guppies in quantitative genetics studies of behavior, we assayed five morphologically distinct strains of ornamental guppies for response to predator cues and for variation in response among strains. Despite individual variation, all five strains responded to predator cues and differences among strains were found for all assayed behaviors, including measures of boldness and predator avoidance.
Collapse
Affiliation(s)
- Bronwyn H Bleakley
- Department of Biology and the Center for the Integrative Study of Behavior, Indiana University, Bloomington, IN, USA.
| | | | | |
Collapse
|
246
|
Levin ED, Bencan Z, Cerutti DT. Anxiolytic effects of nicotine in zebrafish. Physiol Behav 2007; 90:54-8. [PMID: 17049956 DOI: 10.1016/j.physbeh.2006.08.026] [Citation(s) in RCA: 449] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 08/15/2006] [Accepted: 08/28/2006] [Indexed: 10/23/2022]
Abstract
Anxiolytic effects of nicotine have been documented in studies with rodents and humans. Understanding the neural basis of nicotine-induced anxiolysis can help both with developing better aids for smoking cessation as well as with the potential development of novel nicotinic ligands for treating anxiety. Complementary non-mammalian models may be useful for determining the molecular bases of nicotine effects on neurobehavioral function. The current project examined whether a zebrafish model of anxiety would be sensitive to nicotine. When zebrafish are placed in a novel environment, they dive to the bottom of the tank. In the wild, diving could help to escape predation. We tested the anxiolytic effect of nicotine on the novelty-elicited diving response and subsequent habituation. Zebrafish placed in a novel tank spent the majority of time at the bottom third of the tank during the first minute of a 5-min session and then show a gradual decrease in time spent at the tank bottom. Nicotine treatment at 100 mg/l for 3 min by immersion before testing caused a significant decrease in diving throughout the session, while 50 mg/l was effective during the first minute when the greatest bottom dwelling was seen in controls. Nicotine effects were reversed by the nicotinic antagonist mecamylamine given together with nicotine, but not when administered shortly before the test session after prior nicotine dosing. This implies that the effect of nicotine on diving was due to net stimulation at nicotinic receptors, an effect that is blocked by mecamylamine; and that once invoked, this effect is no longer dependent on continuing activation of nicotinic receptors. The effect of nicotine on diving did not seem to be the result of a general disorientation of the fish. The 100 mg/ml nicotine dose was shown in our earlier study to significantly improve spatial-discrimination learning in zebrafish. Nicotine-induced anxiolytic effects can be modeled in the zebrafish. This preparation will help in the investigation of the molecular bases of this effect.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, USA
| | | | | |
Collapse
|
247
|
Del Giacco L, Sordino P, Pistocchi A, Andreakis N, Tarallo R, Di Benedetto B, Cotelli F. Differential regulation of the zebrafish orthopedia 1 gene during fate determination of diencephalic neurons. BMC DEVELOPMENTAL BIOLOGY 2006; 6:50. [PMID: 17074092 PMCID: PMC1635040 DOI: 10.1186/1471-213x-6-50] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 10/30/2006] [Indexed: 11/10/2022]
Abstract
BACKGROUND The homeodomain transcription factor Orthopedia (Otp) is essential in restricting the fate of multiple classes of secreting neurons in the neuroendocrine hypothalamus of vertebrates. However, there is little information on the intercellular factors that regulate Otp expression during development. RESULTS Here, we identified two otp orthologues in zebrafish (otp1 and otp2) and explored otp1 in the context of the morphogenetic pathways that specify neuroectodermal regions. During forebrain development, otp1 is expressed in anterior groups of diencephalic cells, positioned in the preoptic area (PO) (anterior alar plate) and the posterior tuberculum (PT) (posterior basal plate). The latter structure is characterized by Tyrosine Hydroxylase (TH)-positive cells, suggesting a role for otp1 in the lineage restriction of catecholaminergic (CA) neurons. Disruptions of Hedgehog (HH) and Fibroblast Growth Factor (FGF) pathways point to the ability of SHH protein to trigger otp1 expression in PO presumptive neuroblasts, with the attenuating effect of Dzip1 and FGF8. In addition, our data disclose otp1 as a determinant of CA neurons in the PT, where otp1 activity is strictly dependent on Nodal signaling and it is not responsive to SHH and FGF. CONCLUSION In this study, we pinpoint the evolutionary importance of otp1 transcription factor in cell states of the diencephalon anlage and early neuronal progenitors. Furthermore, our data indicate that morphogenetic mechanisms differentially regulate otp1 expression in alar and basal plates.
Collapse
Affiliation(s)
- Luca Del Giacco
- Department of Biology, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Paolo Sordino
- Laboratory of Biochemistry and Molecular Biology, Stazione Zoologica "A. Dohrn", Villa Comunale, Napoli, 80121, Italy
| | - Anna Pistocchi
- Department of Biology, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| | - Nikos Andreakis
- Laboratory of Biochemistry and Molecular Biology, Stazione Zoologica "A. Dohrn", Villa Comunale, Napoli, 80121, Italy
| | - Raffaella Tarallo
- Laboratory of Biochemistry and Molecular Biology, Stazione Zoologica "A. Dohrn", Villa Comunale, Napoli, 80121, Italy
| | - Barbara Di Benedetto
- Department of Biology, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
- GSF National Research Center for Environment and Health, Institute of Developmental Genetics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Franco Cotelli
- Department of Biology, Università degli Studi di Milano, Via Celoria 26, Milano, 20133, Italy
| |
Collapse
|
248
|
Gonzalez-Nuñez V, Marrón Fernández de Velasco E, Arsequell G, Valencia G, Rodríguez RE. Identification of dynorphin a from zebrafish: a comparative study with mammalian dynorphin A. Neuroscience 2006; 144:675-84. [PMID: 17069980 DOI: 10.1016/j.neuroscience.2006.09.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/05/2006] [Accepted: 09/17/2006] [Indexed: 11/24/2022]
Abstract
We report the cloning and molecular characterization of the zfPDYN. The complete open reading frame for this propeptide is comprised in two exons that are localized on chromosome 23. zfPDYN cDNA codes for a polypeptide of 252 amino acids that contains the consensus sequences for four opioid peptides: an Ile-enkephalin, the neo-endorphins, dynorphin A and dynorphin B. Upon comparison between zebrafish (zfDYN A) and mammalian dynorphin A (mDYN A) it has been stated that these two peptides only differ in two amino acids: the Leu(5) is replaced by Met(5) and the Lys(13) by Arg(13). Taking into consideration that mDYN A is able to bind to the three mammalian opioid receptors, we have compared the pharmacological profile of zfDYN A and mDYN A on the zebrafish opioid receptors. By means of radioligand binding techniques, we have established that these two dynorphins bind and activate all of the cloned opioid receptors from zebrafish (delta-, mu- and kappa-like), although with different affinities. zfDYN A and mDYN A displace [(3)H]-diprenorphine binding with K(i) values on the nanomolar range, showing greater affinity for zebrafish opioid receptor (ZFOR) 3 (kappa) receptor. ZFOR1 (delta) and ZFOR4 (delta) present higher affinity for zfDYN A than for mDYN A, while the opposing behavior is observed in ZFOR2 (mu). Functional [(35)S]guanosine 5'-[gamma-thio]triphosphate (GTPgammaS) stimulation experiments indicate that these two peptides fully activate the zebrafish opioid receptors, although the mean effective dose (EC(50)) values obtained for ZFOR2 and ZFOR3 receptors are lower than those seen for ZFOR1 and ZFOR4. A comparative study indicates that mammalian and zebrafish opioid receptors might bind their corresponding dynorphin A in a similar fashion, hence suggesting an important role of the opioid system through the vertebrate evolution.
Collapse
Affiliation(s)
- V Gonzalez-Nuñez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, Avda Alfonso X El Sabio, s/n 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
249
|
Rodriguez-Martin I, Herrero-Turrion MJ, Marron Fdez de Velasco E, Gonzalez-Sarmiento R, Rodriguez RE. Characterization of two duplicate zebrafish Cb2-like cannabinoid receptors. Gene 2006; 389:36-44. [PMID: 17126498 DOI: 10.1016/j.gene.2006.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 09/04/2006] [Accepted: 09/13/2006] [Indexed: 11/29/2022]
Abstract
Several cannabinoid receptors have been detected in many organisms. The best known are CB1, mainly expressed in the central nervous system and CB2 which is almost exclusively expressed in the periphery. Here we report the molecular characterization of two duplicate CB2-like cannabinoid receptors from zebrafish (Danio rerio) (zebrafish Cb2a and zebrafish Cb2b). The amino acid sequences of these receptors present 56% identity with Takifugu rubripes CB2 sequence and 39% with human CB2 sequence and conserve some specific key residues for cannabinoid receptor function. Both duplicate receptors are expressed in peripheral tissues (gills, heart, intestine and muscle), immune tissue (spleen) and also in the central nervous system. Using in situ hybridization techniques zebrafish Cb2 mRNA expression was observed for the first time in the adenohypophysial cells of the rostral pars distalis and proximal pars distalis of the pituitary gland. Given the importance of the existence of duplication of genes in teleosts, the combined analysis of these two new cannabinoid receptors opens a new exciting door to investigate and understand cannabinoid function throughout evolution.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Brain/cytology
- Chromosomes
- Female
- Gene Expression Profiling
- Gene Expression Regulation
- Genes, Duplicate/genetics
- Genome
- Humans
- In Situ Hybridization
- Male
- Molecular Sequence Data
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB2/chemistry
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid/chemistry
- Receptors, Cannabinoid/genetics
- Receptors, Cannabinoid/metabolism
- Zebrafish/genetics
- Zebrafish Proteins/chemistry
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- I Rodriguez-Martin
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Salamanca, Spain; Instituto de Neurociencias de Castilla y Leon (INCYL), Spain
| | | | | | | | | |
Collapse
|
250
|
Cooper JD, Russell C, Mitchison HM. Progress towards understanding disease mechanisms in small vertebrate models of neuronal ceroid lipofuscinosis. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1762:873-89. [PMID: 17023146 DOI: 10.1016/j.bbadis.2006.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/28/2006] [Accepted: 08/02/2006] [Indexed: 02/03/2023]
Abstract
Model systems provide an invaluable tool for investigating the molecular mechanisms underlying the NCLs, devastating neurodegenerative disorders that affect the relatively inaccessible tissues of the central nervous system. These models have enabled the assessment of behavioural, pathological, cellular, and molecular abnormalities, and also allow for development and evaluation of novel therapies. This review highlights the relative advantages of the two available small vertebrate species, the mouse and zebrafish, in modelling NCL disease, summarising how these have been useful in NCL research and their potential for the development and testing of prospective disease treatments. A panel of mouse mutants is available representing all the cloned NCL gene disorders (Cathepsin D, CLN1, CLN2, CLN3, CLN5, CLN6, CLN8). These NCL mice all have progressive neurodegenerative phenotypes that closely resemble the pathology of human NCL. The analysis of these models has highlighted several novel aspects underlying NCL pathogenesis including the selective nature of neurodegeneration, evidence for glial responses that precede neuronal loss and identification of the thalamus as an important pathological target early in disease progression. Studies in mice have also highlighted an unexpected heterogeneity underlying NCL phenotypes, and novel potential NCL-like mouse models have been described including mice with mutations in cathepsins, CLC chloride channels, and other lysosome-related genes. These new models are likely to provide significant new information on the spectrum of NCL disease. Information on NCL mice is available in the NCL Mouse Model Database (). There are homologs of most of the NCL genes in zebrafish, and NCL zebrafish models are currently in development. This model system provides additional advantages to those provided by NCL mouse models including high-throughput mutational, pharmacogenetic and therapeutic technique analyses. Mouse and zebrafish models are an important shared resource for NCL research, offering a unique possibility to dissect disease mechanisms and to develop therapeutic approaches.
Collapse
Affiliation(s)
- Jonathan D Cooper
- Pediatric Storage Disorders Laboratory, Department of Neuroscience, and Centre for the Cellular Basis of Behaviour, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, De Crespigny Park, King's College London, London, UK
| | | | | |
Collapse
|