201
|
Salvucci O, Basik M, Yao L, Bianchi R, Tosato G. Evidence for the involvement of SDF-1 and CXCR4 in the disruption of endothelial cell-branching morphogenesis and angiogenesis by TNF-alpha and IFN-gamma. J Leukoc Biol 2004; 76:217-26. [PMID: 15075355 DOI: 10.1189/jlb.1203609] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vigorous inflammatory responses are associated with tissue damage, particularly when toxic levels of inflammatory cytokines are produced. Despite proangiogenic factors being present early at sites of inflammation, vascular repair occurs toward the end of the inflammatory response, suggesting modulation of the proangiogenic response. Endogenous inhibitors of angiogenesis induced during acute inflammation are poorly characterized. Here, we looked for endothelial cell-derived modulators of angiogenesis that may account for delayed neovascularization during inflammation. Gene profiling of endothelial cells showed that the inflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and interferon-gamma (IFN-gamma) selectively promote expression of the antiangiogenic molecules, IFN-inducible protein-10, monokine induced by IFN-gamma, tryptophanyl-tRNA synthetase, and tissue inhibitor of metalmetalloproteinase-1, and inhibit expression of the proangiogenic molecules, platelet-endothelial cell adhesion molecule-1, vascular endothelial growth factor receptor-2, stromal cell-derived factor-1 (SDF-1), collagen type IV, endothelial cell growth factor-1, and carcinoembryonic antigen-related cell adhesion molecule-1. Reduced endothelial cell expression of SDF-1 protein by TNF-alpha and IFN-gamma disrupts extracellular matrix-dependent endothelial cell tube formation, an in vitro morphogenic process that recapitulates critical steps in angiogenesis. Replacement of SDF-1 onto the endothelial cell surface reconstitutes this morphogenic process. In vivo, TNF-alpha and IFN-gamma inhibit growth factor-induced angiogenesis and SDF-1 expression in endothelial cells. These results demonstrate that SDF-1/CXC chemokine receptor-4 constitutes a TNF-alpha- and IFN-gamma-regulated signaling system that plays a critical role in mediating angiogenesis inhibition by these inflammatory cytokines.
Collapse
Affiliation(s)
- Ombretta Salvucci
- Center for Cancer Research, National Cancer Institute, Building 10, Room 12N226, MSC 1907, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
202
|
Liu J, Shue E, Ewalt KL, Schimmel P. A new gamma-interferon-inducible promoter and splice variants of an anti-angiogenic human tRNA synthetase. Nucleic Acids Res 2004; 32:719-27. [PMID: 14757836 PMCID: PMC373357 DOI: 10.1093/nar/gkh240] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two forms of human tryptophanyl-tRNA synthetase (TrpRS) are produced in vivo through alternative mRNA splicing. The two forms, full-length TrpRS and mini TrpRS, are catalytically active, but are distinguished by the striking anti-proliferative and anti-angiogenic activity specific to mini TrpRS. Here we describe two new splice variants of human TrpRS mRNA. Their production was strongly regulated by gamma-interferon (IFN-gamma), an anti-proliferative cytokine known to stimulate the expression of other anti-angiogenic factors. A new IFN-gamma-sensitive promoter was demonstrated to drive production of these splice variants. In human endothelial cells, both the newly discovered and a previously reported promoter were shown to respond specifically to IFN-gamma and not to other cytokines such as tumor necrosis factor-alpha, transforming growth factor-beta, interleukin-4 or erythropoietin. In addition, both promoters were stimulated by the 'downstream' interferon regulatory factor 1 that, in turn, is known to be regulated by the 'upstream' signal transducer and activator of transcription 1alpha subunit. Thus, the tandem promoters provide a dual system to regulate expression and alternative splicing of human TrpRS in vivo.
Collapse
Affiliation(s)
- Jianming Liu
- The Skaggs Institute for Chemical Biology and the Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC-379, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
203
|
Kise Y, Lee SW, Park SG, Fukai S, Sengoku T, Ishii R, Yokoyama S, Kim S, Nureki O. A short peptide insertion crucial for angiostatic activity of human tryptophanyl-tRNA synthetase. Nat Struct Mol Biol 2004; 11:149-56. [PMID: 14730354 DOI: 10.1038/nsmb722] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 12/15/2003] [Indexed: 11/08/2022]
Abstract
Human tryptophanyl-tRNA synthetase (TrpRS) is secreted into the extracellular region of vascular endothelial cells. The splice variant form (mini TrpRS) functions in vascular endothelial cell apoptosis as an angiostatic cytokine. In contrast, the closely related human tyrosyl-tRNA synthetase (TyrRS) functions as an angiogenic cytokine in its truncated form (mini TyrRS). Here, we determined the crystal structure of human mini TrpRS at a resolution of 2.3 A and compared the structure with those of prokaryotic TrpRS and human mini TyrRS. Deletion of the tRNA anticodon-binding (TAB) domain insertion, consisting of eight residues in the human TrpRS, abolished the enzyme's apoptotic activity for endothelial cells, whereas its translational catalysis and cell-binding activities remained unchanged. Thus, we have identified the inserted peptide motif that activates the angiostatic signaling.
Collapse
Affiliation(s)
- Yoshiaki Kise
- Department of Biophysics and Biochemistry, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Yang XL, Otero FJ, Skene RJ, McRee DE, Schimmel P, Ribas de Pouplana L. Crystal structures that suggest late development of genetic code components for differentiating aromatic side chains. Proc Natl Acad Sci U S A 2003; 100:15376-80. [PMID: 14671330 PMCID: PMC307575 DOI: 10.1073/pnas.2136794100] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Early forms of the genetic code likely generated "statistical" proteins, with similar side chains occupying the same sequence positions at different ratios. In this scenario, groups of related side chains were treated by aminoacyl-tRNA synthetases as a single molecular species until a discrimination mechanism developed that could separate them. The aromatic amino acids tryptophan, tyrosine, and phenylalanine likely constituted one of these groups. A crystal structure of human tryptophanyl-tRNA synthetase was solved at 2.1 A with a tryptophanyl-adenylate bound at the active site. A cocrystal structure of an active fragment of human tyrosyl-tRNA synthetase with its cognate amino acid analog was also solved at 1.6 A. The two structures enabled active site identifications and provided the information for structure-based sequence alignments of approximately 45 orthologs of each enzyme. Two critical positions shared by all tyrosyl-tRNA synthetases and tryptophanyl-tRNA synthetases for amino acid discrimination were identified. The variations at these two positions and phylogenetic analyses based on the structural information suggest that, in contrast to many other amino acids, discrimination of tyrosine from tryptophan occurred late in the development of the genetic code.
Collapse
Affiliation(s)
- Xiang-Lei Yang
- Departments of Molecular Biology and Chemistry, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
205
|
Yu Y, Liu Y, Shen N, Xu X, Xu F, Jia J, Jin Y, Arnold E, Ding J. Crystal structure of human tryptophanyl-tRNA synthetase catalytic fragment: insights into substrate recognition, tRNA binding, and angiogenesis activity. J Biol Chem 2003; 279:8378-88. [PMID: 14660560 DOI: 10.1074/jbc.m311284200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human tryptophanyl-tRNA synthetase (hTrpRS) produces a full-length and three N terminus-truncated forms through alternative splicing and proteolysis. The shortest fragment that contains the aminoacylation catalytic fragment (T2-hTrpRS) exhibits the most potent angiostatic activity. We report here the crystal structure of T2-hTrpRS at 2.5 A resolution, which was solved using the multi-wavelength anomalous diffraction method. T2-hTrpRS shares a very low sequence homology of 22% with Bacillus stearothermophilus TrpRS (bTrpRS); however, their overall structures are strikingly similar. Structural comparison of T2-hTrpRS with bTrpRS reveals substantial structural differences in the substrate-binding pocket and at the entrance to the pocket that play important roles in substrate binding and tRNA binding. T2-hTrpRS has a wide opening to the active site and adopts a compact conformation similar to the closed conformation of bTrpRS. These results suggest that mammalian and bacterial TrpRSs might use different mechanisms to recognize the substrate. Modeling studies indicate that tRNA binds with the dimeric enzyme and interacts primarily with the connective polypeptide 1 of hTrpRS via its acceptor arm and the alpha-helical domain of hTrpRS via its anticodon loop. Our results also suggest that the angiostatic activity is likely located at the alpha-helical domain, which resembles the short chain cytokines.
Collapse
Affiliation(s)
- Yadong Yu
- Key Laboratory of Proteomics and State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Ascherman DP. The role of jo-1 in the immunopathogenesis of polymyositis: Current hypotheses. Curr Rheumatol Rep 2003; 5:425-30. [PMID: 14609486 DOI: 10.1007/s11926-003-0052-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polymyositis represents an autoimmune disease in which T cells mediate destruction of muscle cells. Although the precise trigger(s) for this process remain unknown, distinct clinical subsets exist that are characterized by antibodies directed against specific nuclear and cytoplasmic antigens including Jo-1 (histidyl-transfer RNA synthetase). Coupled with a range of genetic and histomorphologic data, the stereotypical serologic response suggests that antigen-specific T cells directed against Jo-1 can promote T cell-mediated cytolysis of muscle cells as well as anti-Jo-1 antibody formation in selected patients with polymyositis. Beyond a previously developed animal model that has demonstrated the capacity of Jo-1 to promote humoral and cell-mediated immune responses leading to myositis, recent studies have revealed the existence of Jo-1-specific T cells in the peripheral blood of patients with Jo-1 antibody-positive polymyositis. Even more striking, investigators have discovered that Jo-1 can serve as a chemokine for immature dendritic cells and T lymphocytes. Collectively, these findings suggest a mechanism by which Jo-1 can bridge the innate and adaptive immune responses, leading to the breakdown of tolerance and autoimmune destruction of muscle.
Collapse
Affiliation(s)
- Dana P Ascherman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, S707 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| |
Collapse
|
207
|
Tzima E, Reader JS, Irani-Tehrani M, Ewalt KL, Schwartz MA, Schimmel P. Biologically active fragment of a human tRNA synthetase inhibits fluid shear stress-activated responses of endothelial cells. Proc Natl Acad Sci U S A 2003; 100:14903-7. [PMID: 14630953 PMCID: PMC299850 DOI: 10.1073/pnas.2436330100] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human tryptophanyl-tRNA synthetase (TrpRS) is active in translation and angiogenesis. In particular, an N-terminally truncated fragment, T2-TrpRS, that is closely related to a natural splice variant is a potent antagonist of vascular endothelial growth factor-induced angiogenesis in several in vivo models. In contrast, full-length native TrpRS is inactive in the same models. However, vascular endothelial growth factor stimulation is only one of many physiological and pathophysiological stimuli to which the vascular endothelium responds. To investigate more broadly the role of T2-TrpRS in vascular homeostasis and pathophysiology, the effect of T2-TrpRS on well characterized endothelial cell (EC) responses to flow-induced fluid shear stress was studied. T2-TrpRS inhibited activation by flow of protein kinase B (Akt), extracellular signal-regulated kinase 1/2, and EC NO synthase and prevented transcription of several shear stress-responsive genes. In addition, T2-TrpRS interfered with the unique ability of ECs to align in the direction of fluid flow. In all of these assays, native TrpRS was inactive, demonstrating that angiogenesis-related activity requires fragment production. These results demonstrate that T2-TrpRS can regulate extracellular signal-activated protein kinase, Akt, and EC NO synthase activation pathways that are associated with angiogenesis, cytoskeletal reorganization, and shear stress-responsive gene expression. Thus, this biological fragment of TrpRS may have a role in the maintenance of vascular homeostasis.
Collapse
Affiliation(s)
- E Tzima
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
208
|
Abstract
An evolutionarily conserved machinery exists for engulfment of apoptotic cells from worm to mammals. New observations suggest that corpse clearance is tightly linked to apoptosis and that dying cells use both recruitment and eat-me signals for phagocyte attraction and recognition.
Collapse
Affiliation(s)
- Kodi S Ravichandran
- Carter Immunology Center and the Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
209
|
Han JM, Kim JY, Kim S. Molecular network and functional implications of macromolecular tRNA synthetase complex. Biochem Biophys Res Commun 2003; 303:985-93. [PMID: 12684031 DOI: 10.1016/s0006-291x(03)00485-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding the complex network and multi-functionality of proteins is one of the main objectives of post-genome research. Aminoacyl-tRNA synthetases (ARSs) are the family of enzymes that are essential for cellular protein synthesis and viability that catalyze the attachment of specific amino acids to their cognate tRNAs. However, a lot of evidence has shown that these enzymes are multi-functional proteins that are involved in diverse cellular processes, such as tRNA processing, RNA splicing and trafficking, rRNA synthesis, apoptosis, angiogenesis, and inflammation. In addition, mammalian ARSs form a macromolecular complex with three auxiliary factors or with the elongation factor complex. Although the functional meaning and physiological significance of these complexes are poorly understood, recent data on the molecular interactions among the components for the multi-ARS complex are beginning to provide insights into the structural organization and cellular functions. In this review, the molecular mechanism for the assembly and functional implications of the multi-ARS complex will be discussed.
Collapse
Affiliation(s)
- Jung Min Han
- Imagene Co. Biotechnology Incubating Center, Golden Helix, Seoul National University, San 56-1, Shillim-dong, Kwanak-Gu, Republic of Korea
| | | | | |
Collapse
|
210
|
Gromov P, Skovgaard GL, Palsdottir H, Gromova I, Østergaard M, Celis JE. Protein profiling of the human epidermis from the elderly reveals up-regulation of a signature of interferon-gamma-induced polypeptides that includes manganese-superoxide dismutase and the p85beta subunit of phosphatidylinositol 3-kinase. Mol Cell Proteomics 2003; 2:70-84. [PMID: 12644569 DOI: 10.1074/mcp.m200051-mcp200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aging of the human skin is a complex process that consists of chronological and extrinsic aging, the latter caused mainly by exposure to ultraviolet radiation (photoaging). Here we present studies in which we have used proteomic profiling technologies and two-dimensional (2D) PAGE database resources to identify proteins whose expression is deregulated in the epidermis of the elderly. Fresh punch biopsies from the forearm of 20 pairs of young and old donors (21-30 and 75-92 years old, respectively) were dissected to yield an epidermal fraction that consisted mainly of differentiated cells. One- to two-mm3 epidermal pieces were labeled with [35S]methionine for 18 h, lysed, and subjected to 2D PAGE (isoelectric focusing and non-equilibrium pH gradient electrophoresis) and phosphorimage autoradiography. Proteins were identified by matching the gels with the master 2D gel image of human keratinocytes (proteomics.cancer.dk). In selected cases 2D PAGE immunoblotting and/or mass spectrometry confirmed the identity. Quantitative analysis of 172 well focused and abundant polypeptides showed that the level of most proteins (148) remains unaffected by the aging process. Twenty-two proteins were consistently deregulated by a factor of 1.5 or more across the 20 sample pairs. Among these we identified a group of six polypeptides (Mx-A, manganese-superoxide dismutase, tryptophanyl-tRNA synthetase, the p85beta subunit of phosphatidylinositol 3-kinase, and proteasomal proteins PA28-alpha and SSP 0107) that is induced by interferon-gamma in primary human keratinocytes and that represents a specific protein signature for the effect of this cytokine. Changes in the expression of the eukaryotic initiation factor 5A, NM23 H2, cyclophilin A, HSP60, annexin I, and plasminogen activator inhibitor 2 were also observed. Two proteins exhibited irregular behavior from individual to individual. Besides arguing for a role of interferon-gamma in the aging process, the biological activities associated with the deregulated proteins support the contention that aging is linked with increased oxidative stress that could lead to apoptosis in vivo.
Collapse
Affiliation(s)
- Pavel Gromov
- Department of Medical Biochemistry and Danish Centre for Molecular Gerontology, The University of Aarhus, Ole Worms Allé, build. 170, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
211
|
Jia J, Li B, Jin Y, Wang D. Expression, purification, and characterization of human tyrosyl-tRNA synthetase. Protein Expr Purif 2003; 27:104-8. [PMID: 12509991 DOI: 10.1016/s1046-5928(02)00576-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human tyrosyl-tRNA synthetase is a homodimeric enzyme and each subunit is near 58 KD. It catalyzes the aminoacylation of tRNA(Tyr) by L-tyrosine. The His(6)-tagged human TyrS gene was obtained by RT-PCR from total RNA of human lung giant-cell cancer strain 95 D. It was confirmed by sequencing and cloned into the expression vector pET-24 a (+) to yield pET-24 a (+)-HTyrRS, which was transfected into Escherichia coli BL21-CodonPlus-RIL. The induced-expression level of His(6)-tagged human TyrRS was about 24% of total cell proteins under IPTG inducing. The recombinant protein was conveniently purified in a single step by metal (Ni(2+)) chelate affinity chromatography. About 22.3mg purified enzyme could be obtained from 1L cell culture. The k(cat) value of His(6)-tagged human TyrRS in the second step of tRNA(Tyr) aminoacylation was 1.49 s(-1). The K(m) values of tyrosine and tRNA(Tyr) were 0.3 and 0.9 microM. Six His residues at the C terminus of human TyrRS have little effect on the activities of the enzyme compared with other eukaryotic TyrRSs.
Collapse
Affiliation(s)
- Jie Jia
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR China
| | | | | | | |
Collapse
|
212
|
Cen S, Javanbakht H, Kim S, Shiba K, Craven R, Rein A, Ewalt K, Schimmel P, Musier-Forsyth K, Kleiman L. Retrovirus-specific packaging of aminoacyl-tRNA synthetases with cognate primer tRNAs. J Virol 2002; 76:13111-5. [PMID: 12438642 PMCID: PMC136713 DOI: 10.1128/jvi.76.24.13111-13115.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tRNAs used to prime reverse transcription in human immunodeficiency virus type 1 (HIV-1), Rous sarcoma virus (RSV), and Moloney murine leukemia virus (Mo-MuLV) are, tRNA(Trp), and tRNA(Pro), respectively. Using antibodies to the three cognate human aminoacyl-tRNA synthetases, we found that only lysyl-tRNA synthetase (LysRS) is present in HIV-1, only tryptophanyl-tRNA synthetase (TrpRS) is present in RSV, and neither these two synthetases nor prolyl-tRNA synthetase (ProRS) is present in Mo-MuLV. LysRS and TrpRS are present in HIV-1 and RSV at approximately 25 and 12 molecules/virion, respectively. These results support the hypothesis that, in HIV-1 and RSV, the cognate aminoacyl-tRNA synthetase may be used as the signal for targeting the selective packaging of primer tRNAs into retroviruses. The absence of ProRS in Mo-MuLV is consistent with reports that selective packaging of tRNA(Pro) in this virus is less important for achieving optimum annealing of the primer to Mo-MuLV genomic RNA.
Collapse
Affiliation(s)
- Shan Cen
- Lady Davis Institute for Medical Research and McGill AIDS Center, Jewish General Hospital, McGill University, 3755 Cote Ste-Catherine Road, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Yang XL, Skene RJ, McRee DE, Schimmel P. Crystal structure of a human aminoacyl-tRNA synthetase cytokine. Proc Natl Acad Sci U S A 2002; 99:15369-74. [PMID: 12427973 PMCID: PMC137723 DOI: 10.1073/pnas.242611799] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2002] [Indexed: 11/18/2022] Open
Abstract
The 20 aminoacyl-tRNA synthetases catalyze the first step of protein synthesis and establish the rules of the genetic code through aminoacylation reactions. Biological fragments of two human enzymes, tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, connect protein synthesis to cell-signaling pathways including angiogenesis. Alternative splicing or proteolysis produces these fragments. The proangiogenic N-terminal fragment mini-TyrRS has IL-8-like cytokine activity that, like other CXC cytokines, depends on a Glu-Leu-Arg motif. Point mutations in this motif abolish cytokine activity. The full-length native TyrRS lacks cytokine activity. No structure has been available for any mammalian tRNA synthetase that, in turn, might give insight into why mini-TyrRS and not TyrRS has cytokine activities. Here, the structure of human mini-TyrRS, which contains both the catalytic and the anticodon recognition domain, is reported to a resolution of 1.18 A. The critical Glu-Leu-Arg motif is located on an internal alpha-helix of the catalytic domain, where the guanidino side chain of R is part of a hydrogen-bonding network tethering the anticodon-recognition domain back to the catalytic site. Whereas the catalytic domains of the human and bacterial enzymes superimpose, the spatial disposition of the anticodon recognition domain relative to the catalytic domain is unique in mini-TyrRS relative to the bacterial orthologs. This unique orientation of the anticodon-recognition domain can explain why the fragment mini-TyrRS, and not full-length native TyrRS, is active in cytokine-signaling pathways.
Collapse
Affiliation(s)
- Xiang-Lei Yang
- The Skaggs Institute for Chemical Biology, BCC-379, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
214
|
Park SG, Kang YS, Ahn YH, Lee SH, Kim KR, Kim KW, Koh GY, Ko YG, Kim S. Dose-dependent biphasic activity of tRNA synthetase-associating factor, p43, in angiogenesis. J Biol Chem 2002; 277:45243-8. [PMID: 12237313 DOI: 10.1074/jbc.m207934200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian aminoacyl tRNA synthetases form a macromolecular protein complex with three non-enzymatic cofactors. Among these factors, p43 is also secreted to work as a cytokine on endothelial as well as immune cells. Here we investigated the activity of p43 in angiogenesis and determined the related mediators. It promoted the migration of endothelial cells at low dose but induced their apoptosis at high dose. p43 at low concentration activated extracellular signal-regulating kinase, which resulted in the induction and activation of matrix metalloproteinase 9. In contrast, p43 at high concentration activated Jun N-terminal kinase, which mediated apoptosis of endothelial cells. These results suggest that p43 is a novel cytokine playing a dose-dependent biphasic role in angiogenesis.
Collapse
Affiliation(s)
- Sang Gyu Park
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Abstract
Selection of the translational initiation site in most eukaryotic mRNAs appears to occur via a scanning mechanism which predicts that proximity to the 5' end plays a dominant role in identifying the start codon. This "position effect" is seen in cases where a mutation creates an AUG codon upstream from the normal start site and translation shifts to the upstream site. The position effect is evident also in cases where a silent internal AUG codon is activated upon being relocated closer to the 5' end. Two mechanisms for escaping the first-AUG rule--reinitiation and context-dependent leaky scanning--enable downstream AUG codons to be accessed in some mRNAs. Although these mechanisms are not new, many new examples of their use have emerged. Via these escape pathways, the scanning mechanism operates even in extreme cases, such as a plant virus mRNA in which translation initiates from three start sites over a distance of 900 nt. This depends on careful structural arrangements, however, which are rarely present in cellular mRNAs. Understanding the rules for initiation of translation enables understanding of human diseases in which the expression of a critical gene is reduced by mutations that add upstream AUG codons or change the context around the AUG(START) codon. The opposite problem occurs in the case of hereditary thrombocythemia: translational efficiency is increased by mutations that remove or restructure a small upstream open reading frame in thrombopoietin mRNA, and the resulting overproduction of the cytokine causes the disease. This and other examples support the idea that 5' leader sequences are sometimes structured deliberately in a way that constrains scanning in order to prevent harmful overproduction of potent regulatory proteins. The accumulated evidence reveals how the scanning mechanism dictates the pattern of transcription--forcing production of monocistronic mRNAs--and the pattern of translation of eukaryotic cellular and viral genes.
Collapse
Key Words
- translational control
- aug context
- 5′ untranslated region
- reinitiation
- leaky scanning
- dicistronic mrna
- internal ribosome entry site
- adometdc, s-adenosylmethionine decarboxylase
- a2ar, a2a adenosine receptor
- c/ebp, ccaat/enhancer binding protein
- ctl, cytotoxic t-lymphocyte
- egfp, enhanced green fluorescent protein
- eif, eukaryotic initiation factor
- hiv-1, human immunodeficiency virus 1
- ires, internal ribosome entry site
- lef1, lymphoid enhancer factor-1
- ogp, osteogenic growth peptide
- orf, open reading frame
- r, purine
- tpo, thrombopoietin
- uporf, upstream open reading frame
- utr, untranslated region
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
216
|
Howard OMZ, Dong HF, Yang D, Raben N, Nagaraju K, Rosen A, Casciola-Rosen L, Härtlein M, Kron M, Yang D, Yiadom K, Dwivedi S, Plotz PH, Oppenheim JJ. Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J Exp Med 2002; 196:781-91. [PMID: 12235211 PMCID: PMC2194054 DOI: 10.1084/jem.20020186] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Autoantibodies to histidyl-tRNA synthetase (HisRS) or to alanyl-, asparaginyl-, glycyl-, isoleucyl-, or threonyl-tRNA synthetase occur in approximately 25% of patients with polymyositis or dermatomyositis. We tested the ability of several aminoacyl-tRNA synthetases to induce leukocyte migration. HisRS induced CD4(+) and CD8(+) lymphocytes, interleukin (IL)-2-activated monocytes, and immature dendritic cells (iDCs) to migrate, but not neutrophils, mature DCs, or unstimulated monocytes. An NH(2)-terminal domain, 1-48 HisRS, was chemotactic for lymphocytes and activated monocytes, whereas a deletion mutant, HisRS-M, was inactive. HisRS selectively activated CC chemokine receptor (CCR)5-transfected HEK-293 cells, inducing migration by interacting with extracellular domain three. Furthermore, monoclonal anti-CCR5 blocked HisRS-induced chemotaxis and conversely, HisRS blocked anti-CCR5 binding. Asparaginyl-tRNA synthetase induced migration of lymphocytes, activated monocytes, iDCs, and CCR3-transfected HEK-293 cells. Seryl-tRNA synthetase induced migration of CCR3-transfected cells but not iDCs. Nonautoantigenic aspartyl-tRNA and lysyl-tRNA synthetases were not chemotactic. Thus, autoantigenic aminoacyl-tRNA synthetases, perhaps liberated from damaged muscle cells, may perpetuate the development of myositis by recruiting mononuclear cells that induce innate and adaptive immune responses. Therefore, the selection of a self-molecule as a target for an autoantibody response may be a consequence of the proinflammatory properties of the molecule itself.
Collapse
Affiliation(s)
- O M Zack Howard
- National Cancer Institute, Center for Cancer Research, Laboratory of Molecular Immunoregulation, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Otani A, Kinder K, Ewalt K, Otero FJ, Schimmel P, Friedlander M. Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med 2002; 8:1004-10. [PMID: 12145646 DOI: 10.1038/nm744] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adult bone marrow (BM) contains cells capable of differentiating along hematopoietic (Lin(+)) or non-hematopoietic (Lin(-)) lineages. Lin(-) hematopoietic stem cells (HSCs) have recently been shown to contain a population of endothelial precursor cells (EPCs) capable of forming blood vessels. Here we show that intravitreally injected Lin(-) BM cells selectively target retinal astrocytes, cells that serve as a template for both developmental and injury-associated retinal angiogenesis. When Lin(-) BM cells were injected into neonatal mouse eyes, they extensively and stably incorporated into forming retinal vasculature. When EPC-enriched HSCs were injected into the eyes of neonatal rd/rd mice, whose vasculature ordinarily degenerates with age, they rescued and maintained a normal vasculature. In contrast, normal retinal angiogenesis was inhibited when EPCs expressing a potent angiostatic protein were injected. We have demonstrated that Lin(-) BM cells and astrocytes specifically interact with one another during normal angiogenesis and pathological vascular degeneration in the retina. Selective targeting with Lin(-) HSC may be a useful therapeutic approach for the treatment of many ocular diseases.
Collapse
Affiliation(s)
- Atsushi Otani
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
218
|
Abstract
Over the past few years, there has been a dramatic increase in the identification of anti-angiogenic fragments from larger proteins with unrelated functions. These cryptic anti-angiogenic molecules are largely derived from matrix components such as collagen and fibronectin, as well as from circulating proteins and some intracellular proteins. Here, we discuss the relevance of these developments in terms of their physiological roles and possible therapeutic applications.
Collapse
|
219
|
Kitabatake M, Ali K, Demain A, Sakamoto K, Yokoyama S, Söll D. Indolmycin resistance of Streptomyces coelicolor A3(2) by induced expression of one of its two tryptophanyl-tRNA synthetases. J Biol Chem 2002; 277:23882-7. [PMID: 11970956 DOI: 10.1074/jbc.m202639200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases, a family of enzymes essential for protein synthesis, are promising targets of antimicrobials. Indolmycin, a secondary metabolite of Streptomyces griseus and a selective inhibitor of prokaryotic tryptophanyl-tRNA synthetase (TrpRS), was used to explore the mechanism of inhibition and to explain the resistance of a naturally occurring strain. Streptomyces coelicolor A3(2), an indolmycin-resistant strain, contains two trpS genes encoding distinct TrpRS enzymes. We show that TrpRS1 is indolmycin-resistant in vitro and in vivo, whereas TrpRS2 is sensitive. The lysine (position 9) in the enzyme tryptophan binding site is essential for making TrpRS1 indolmycin-resistant. Replacement of lysine 9 by glutamine, which at this position is conserved in most bacterial TrpRS proteins, abolished the ability of the mutant trpS gene to confer indolmycin resistance in vivo. Molecular modeling suggests that lysine 9 sterically hinders indolmycin binding to the enzyme. Tryptophan recognition (assessed by k(cat)/K(M)) by TrpRS1 is 4-fold lower than that of TrpRS2. Examination of the mRNA for the two enzymes revealed that only TrpRS2 mRNA is constitutively expressed, whereas mRNA for the indolmycin-resistant TrpRS1 enzyme is induced when the cells are exposed to indolmycin.
Collapse
Affiliation(s)
- Makoto Kitabatake
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
220
|
Wakasugi K, Slike BM, Hood J, Ewalt KL, Cheresh DA, Schimmel P. Induction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase. J Biol Chem 2002; 277:20124-6. [PMID: 11956181 DOI: 10.1074/jbc.c200126200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first step of protein synthesis is catalyzed by aminoacyl-tRNA synthetases. In addition, certain mammalian tRNA synthetases link protein synthesis to cytokine signaling pathways. In particular, human tyrosyl-tRNA synthetase (TyrRS) can be split by proteolysis into two fragments having distinct cytokine activities. One of the TyrRS fragments (mini TyrRS) contains features identical to those in CXC chemokines (like interleukin-8) that also act as angiogenic factors. Here mini TyrRS (but not full-length TyrRS) is shown to stimulate chemotaxis of endothelial cells in vitro and stimulate angiogenesis in each of two in vivo animal models. The angiogenic activity of mini TyrRS can be opposed by anti-angiogenic chemokines like IP-10. Thus, a biological fragment of human tyrosyl-tRNA synthetase links protein synthesis to regulation of angiogenesis.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
221
|
|
222
|
Clough J, Milburn J, Owens J, Ramster B. News in brief. Drug Discov Today 2002. [DOI: 10.1016/s1359-6446(02)02210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
223
|
Otani A, Slike BM, Dorrell MI, Hood J, Kinder K, Ewalt KL, Cheresh D, Schimmel P, Friedlander M. A fragment of human TrpRS as a potent antagonist of ocular angiogenesis. Proc Natl Acad Sci U S A 2002; 99:178-83. [PMID: 11773625 PMCID: PMC117535 DOI: 10.1073/pnas.012601899] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pathological angiogenesis contributes directly to profound loss of vision associated with many diseases of the eye. Recent work suggests that human tyrosyl- and tryptophanyl-tRNA synthetases (TrpRS) link protein synthesis to signal transduction pathways including angiogenesis. In this study, we show that a recombinant form of a COOH-terminal fragment of TrpRS is a potent antagonist of vascular endothelial growth factor-induced angiogenesis in a mouse model and of naturally occurring retinal angiogenesis in the neonatal mouse. The angiostatic activity is dose-dependent in both systems. The recombinant fragment is similar in size to one generated naturally by alternative splicing and can be produced by proteolysis of the full-length protein. In contrast, the full-length protein is inactive as an antagonist of angiogenesis. These results suggest that fragments of TrpRS, as naturally occurring and potentially nonimmunogenic anti-angiogenics, can be used for the treatment of neovascular eye diseases.
Collapse
Affiliation(s)
- Atsushi Otani
- Department of Cell Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|