201
|
Ozaki T, Nakazawa M, Kudo T, Hirano S, Suzuki K, Ishiguro SI. Protection of Cone Photoreceptor M-Opsin Degradation with 9-Cis-β-Carotene-Rich AlgaDunaliella bardawilinRpe65−/−Mouse Retinal Explant Culture. Curr Eye Res 2014; 39:1221-31. [DOI: 10.3109/02713683.2014.907430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
202
|
Bertolotti E, Neri A, Camparini M, Macaluso C, Marigo V. Stem cells as source for retinal pigment epithelium transplantation. Prog Retin Eye Res 2014; 42:130-44. [PMID: 24933042 DOI: 10.1016/j.preteyeres.2014.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 12/27/2022]
Abstract
Inherited maculopathies, age related macular degeneration and some forms of retinitis pigmentosa are associated with impaired function or loss of the retinal pigment epithelium (RPE). Among potential treatments, transplantation approaches are particularly promising. The arrangement of RPE cells in a well-defined tissue layer makes the RPE amenable to cell or tissue sheet transplantation. Different cell sources have been suggested for RPE transplantation but the development of a clinical protocol faces several obstacles. The source should provide a sufficient number of cells to at least recover the macula area. Secondly, cells should be plastic enough to be able to integrate in the host tissue. Tissue sheets should be considered as well, but the substrate on which RPE cells are cultured needs to be carefully evaluated. Immunogenicity can also be an obstacle for effective transplantation as well as tumorigenicity of not fully differentiated cells. Finally, ethical concerns may represent drawbacks when embryo-derived cells are proposed for RPE transplantation. Here we discuss different cell sources that became available in recent years and their different properties. We also present data on a new source of human RPE. We provide a protocol for RPE differentiation of retinal stem cells derived from adult ciliary bodies of post-mortem donors. We show molecular characterization of the in vitro differentiated RPE tissue and demonstrate its functionality based on a phagocytosis assay. This new source may provide tissue for allogenic transplantation based on best matches through histocompatibility testing.
Collapse
Affiliation(s)
- Evelina Bertolotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Neri
- Ophthalmology, S.Bi.Bi.T. Department, University of Parma, Parma, Italy
| | - Monica Camparini
- Ophthalmology, S.Bi.Bi.T. Department, University of Parma, Parma, Italy
| | - Claudio Macaluso
- Ophthalmology, S.Bi.Bi.T. Department, University of Parma, Parma, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
203
|
Horchani H, Bussières S, Cantin L, Lhor M, Laliberté-Gemme JS, Breton R, Salesse C. Enzymatic activity of Lecithin:retinol acyltransferase: a thermostable and highly active enzyme with a likely mode of interfacial activation. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1128-36. [PMID: 24613493 PMCID: PMC4469483 DOI: 10.1016/j.bbapap.2014.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 01/28/2023]
Abstract
Lecithin:retinol acyltransferase (LRAT) plays a major role in the vertebrate visual cycle. Indeed, it is responsible for the esterification of all-trans retinol into all-trans retinyl esters, which can then be stored in microsomes or further metabolized to produce the chromophore of rhodopsin. In the present study, a detailed characterization of the enzymatic properties of truncated LRAT (tLRAT) has been achieved using in vitro assay conditions. A much larger tLRAT activity has been obtained compared to previous reports and to an enzyme with a similar activity. In addition, tLRAT is able to hydrolyze phospholipids bearing different chain lengths with a preference for micellar aggregated substrates. It therefore presents an interfacial activation property, which is typical of classical phospholipases. Furthermore, given that stability is a very important quality of an enzyme, the influence of different parameters on the activity and stability of tLRAT has thus been studied in detail. For example, storage buffer has a strong effect on tLRAT activity and high enzyme stability has been observed at room temperature. The thermostability of tLRAT has also been investigated using circular dichroism and infrared spectroscopy. A decrease in the activity of tLRAT was observed beyond 70°C, accompanied by a modification of its secondary structure, i.e. a decrease of its α-helical content and the appearance of unordered structures and aggregated β-sheets. Nevertheless, residual activity could still be observed after heating tLRAT up to 100°C. The results of this study highly improved our understanding of this enzyme.
Collapse
Affiliation(s)
- Habib Horchani
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHU de Québec, Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Sylvain Bussières
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHU de Québec, Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Line Cantin
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHU de Québec, Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Mustapha Lhor
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHU de Québec, Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Jean-Sébastien Laliberté-Gemme
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHU de Québec, Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Rock Breton
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHU de Québec, Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Christian Salesse
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHU de Québec, Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada; Regroupement Stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
204
|
Li S, Izumi T, Hu J, Jin HH, Siddiqui AAA, Jacobson SG, Bok D, Jin M. Rescue of enzymatic function for disease-associated RPE65 proteins containing various missense mutations in non-active sites. J Biol Chem 2014; 289:18943-56. [PMID: 24849605 PMCID: PMC4081934 DOI: 10.1074/jbc.m114.552117] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Over 70 different missense mutations, including a dominant mutation, in RPE65 retinoid isomerase are associated with distinct forms of retinal degeneration; however, the disease mechanisms for most of these mutations have not been studied. Although some mutations have been shown to abolish enzyme activity, the molecular mechanisms leading to the loss of enzymatic function and retinal degeneration remain poorly understood. Here we show that the 26 S proteasome non-ATPase regulatory subunit 13 (PSMD13), a newly identified negative regulator of RPE65, plays a critical role in regulating pathogenicity of three mutations (L22P, T101I, and L408P) by mediating rapid degradation of mutated RPE65s via a ubiquitination- and proteasome-dependent non-lysosomal pathway. These mutant RPE65s were misfolded and formed aggregates or high molecular complexes via disulfide bonds. Interaction of PSMD13 with mutant RPE65s promoted degradation of misfolded but not properly folded mutant RPE65s. Many mutations, including L22P, T101I, and L408P, were mapped on non-active sites. Although their activities were very low, these mutant RPE65s were catalytically active and could be significantly rescued at low temperature, whereas mutant RPE65s with a distinct active site mutation could not be rescued under the same conditions. Sodium 4-phenylbutyrate and glycerol displayed a significant synergistic effect on the low temperature rescue of the mutant RPE65s by promoting proper folding, reducing aggregation, and increasing membrane association. Our results suggest that a low temperature eye mask and sodium 4-phenylbutyrate, a United States Food and Drug Administration-approved oral medicine, may provide a promising "protein repair therapy" that can enhance the efficacy of gene therapy by reducing the cytotoxic effect of misfolded mutant RPE65s.
Collapse
Affiliation(s)
- Songhua Li
- From the Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Tadahide Izumi
- Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Jane Hu
- Jules Stein Eye Institute and Department of Neurobiology, University of California, Los Angeles, California 90095
| | - Heather H Jin
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | - Samuel G Jacobson
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dean Bok
- Jules Stein Eye Institute and Department of Neurobiology, University of California, Los Angeles, California 90095
| | - Minghao Jin
- From the Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112,
| |
Collapse
|
205
|
Moran E, Ding L, Wang Z, Cheng R, Chen Q, Moore R, Takahashi Y, Ma JX. Protective and antioxidant effects of PPARα in the ischemic retina. Invest Ophthalmol Vis Sci 2014; 55:4568-76. [PMID: 24825105 DOI: 10.1167/iovs.13-13127] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Previous studies have demonstrated that peroxisome proliferator-activated receptor-alpha (PPARα) agonists have therapeutic effects in diabetic retinopathy, although the mechanism of action remains incompletely understood. The purpose of this study was to evaluate PPARα's protective effects in the ischemic retina, and to delineate its molecular mechanism of action. METHODS For the oxygen-induced retinopathy (OIR) model, wild-type (WT), and PPARα knockout (PPARα(-/-)) mice were exposed to 75% O₂ from postnatal day 7 (P7) to P12 and treated with the PPARα agonist fenofibric acid (Feno-FA) from P12 to P16. At P17, the effects of Feno-FA on retinal glial fibrillary acidic protein (GFAP) expression, apoptotic DNA cleavage, and TUNEL labeling were analyzed. Cultured retinal cells were exposed to CoCl₂ to induce hypoxia, and TUNEL staining and 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein dye were used to measure apoptosis and reactive oxygen species (ROS) generation. Western blotting was used to measure GFAP levels and cell signaling. RESULTS Feno-FA decreased retinal apoptosis and oxidative stress in WT but not PPARα(-/-) OIR mice. Peroxisome proliferator-activated receptor-alpha knockout OIR mice showed increased retinal cell death and glial activation in comparison to WT OIR mice. Feno-FA treatment and PPARα overexpression protected cultured retinal cells from hypoxic cell death and decreased ROS levels. Nuclear hypoxia-inducible factor-α (HIF-1α) and nicotine adenine dinucleotide phosphate oxidase-4 (Nox 4) were increased in OIR retinas and downregulated by Feno-FA in WT but not in PPARα(-/-) mice. CONCLUSIONS Peroxisome proliferator-activated receptor-alpha has a potent antiapoptotic effect in the ischemic retina. This protective effect may be mediated in part through downregulation of HIF-1α/Nox 4 and consequently alleviation of oxidative stress.
Collapse
Affiliation(s)
- Elizabeth Moran
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Lexi Ding
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongxiao Wang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Qian Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Robert Moore
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Yusuke Takahashi
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Jian-xing Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
206
|
Kessler C, Tillman M, Burns ME, Pugh EN. Rhodopsin in the rod surface membrane regenerates more rapidly than bulk rhodopsin in the disc membranes in vivo. J Physiol 2014; 592:2785-97. [PMID: 24801306 DOI: 10.1113/jphysiol.2014.272518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Sustained vertebrate vision requires that opsin chromophores isomerized by light to the all-trans form be replaced with 11-cis retinal to regenerate the visual pigment. We have characterized the early receptor potential (ERP), a component of the electroretinogram arising from photoisomerization-induced charge displacements in plasma membrane visual pigment, and used it to measure pigment bleaching and regeneration in living mice. The mouse ERP was characterized by an outward 'R2' charge displacement with a time constant of 215 μs that discharged through a membrane with an apparent time constant of ∼0.6 ms. After complete bleaching of rhodopsin, the ERP recovered in two phases. The initial, faster phase had a time constant of ∼1 min, accounted for ∼20% of the total, and was not dependent on the level of expression of the retinal pigment epithelium isomerase, Rpe65. The slower, complementary phase had a time constant of 23 min in wild-type (WT) mice (C57Bl/6) and was substantially slowed in Rpe65(+/-) mice. Comparison of the ERPs of a mouse line expressing 150% of the normal level of cone M-opsin with those of WT mice revealed that M-opsin contributed 26% of the total WT ERP in these experiments, with the remaining 74% arising from rhodopsin. Thus, the fast regenerating fraction (20%) corresponds approximately to the fraction of the total ERP independently estimated to arise from M-opsin. Because both phases of the ERP recover substantially faster than previous measurements of bulk rhodopsin regeneration in living mice, we conclude that delivery of the highly hydrophobic 11-cis retinal to the interior of rod photoreceptors appears to be retarded by transit across the cytoplasmic gap between plasma and disc membranes.
Collapse
Affiliation(s)
| | - Megan Tillman
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
| | - Marie E Burns
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA, USA Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, USA
| | - Edward N Pugh
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, USA
| |
Collapse
|
207
|
Identification of the 11-cis-specific retinyl-ester synthase in retinal Müller cells as multifunctional O-acyltransferase (MFAT). Proc Natl Acad Sci U S A 2014; 111:7302-7. [PMID: 24799687 DOI: 10.1073/pnas.1319142111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Absorption of a photon by a rhodopsin or cone-opsin pigment isomerizes its 11-cis-retinaldehyde (11-cis-RAL) chromophore to all-trans-retinaldehyde (all-trans-RAL), which dissociates after a brief period of activation. Light sensitivity is restored to the resulting apo-opsin when it recombines with another 11-cis-RAL. Conversion of all-trans-RAL to 11-cis-RAL is carried out by an enzyme pathway called the visual cycle in cells of the retinal pigment epithelium. A second visual cycle is present in Müller cells of the retina. The retinol isomerase for this noncanonical pathway is dihydroceramide desaturase (DES1), which catalyzes equilibrium isomerization of retinol. Because 11-cis-retinol (11-cis-ROL) constitutes only a small fraction of total retinols in an equilibrium mixture, a subsequent step involving selective removal of 11-cis-ROL is required to drive synthesis of 11-cis-retinoids for production of visual chromophore. Selective esterification of 11-cis-ROL is one possibility. Crude homogenates of chicken retinas rapidly convert all-trans-ROL to 11-cis-retinyl esters (11-cis-REs) with minimal formation of other retinyl-ester isomers. This enzymatic activity implies the existence of an 11-cis-specific retinyl-ester synthase in Müller cells. Here, we evaluated multifunctional O-acyltransferase (MFAT) as a candidate for this 11-cis-RE-synthase. MFAT exhibited much higher catalytic efficiency as a synthase of 11-cis-REs versus other retinyl-ester isomers. Further, we show that MFAT is expressed in Müller cells. Finally, homogenates of cells coexpressing DES1 and MFAT catalyzed the conversion of all-trans-ROL to 11-cis-RP, similar to what we observed with chicken-retina homogenates. MFAT is therefore an excellent candidate for the retinyl-ester synthase that cooperates with DES1 to drive synthesis of 11-cis-retinoids by mass action.
Collapse
|
208
|
Sui X, Kiser PD, Che T, Carey PR, Golczak M, Shi W, von Lintig J, Palczewski K. Analysis of carotenoid isomerase activity in a prototypical carotenoid cleavage enzyme, apocarotenoid oxygenase (ACO). J Biol Chem 2014; 289:12286-99. [PMID: 24648526 PMCID: PMC4007427 DOI: 10.1074/jbc.m114.552836] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/19/2014] [Indexed: 11/06/2022] Open
Abstract
Carotenoid cleavage enzymes (CCEs) constitute a group of evolutionarily related proteins that metabolize a variety of carotenoid and non-carotenoid substrates. Typically, these enzymes utilize a non-heme iron center to oxidatively cleave a carbon-carbon double bond of a carotenoid substrate. Some members also isomerize specific double bonds in their substrates to yield cis-apocarotenoid products. The apocarotenoid oxygenase from Synechocystis has been hypothesized to represent one such member of this latter category of CCEs. Here, we developed a novel expression and purification protocol that enabled production of soluble, native ACO in quantities sufficient for high resolution structural and spectroscopic investigation of its catalytic mechanism. High performance liquid chromatography and Raman spectroscopy revealed that ACO exclusively formed all-trans products. We also found that linear polyoxyethylene detergents previously used for ACO crystallization strongly inhibited the apocarotenoid oxygenase activity of the enzyme. We crystallized the native enzyme in the absence of apocarotenoid substrate and found electron density in the active site that was similar in appearance to the density previously attributed to a di-cis-apocarotenoid intermediate. Our results clearly demonstrated that ACO is in fact a non-isomerizing member of the CCE family. These results indicate that careful selection of detergent is critical for the success of structural studies aimed at elucidating structures of CCE-carotenoid/retinoid complexes.
Collapse
Affiliation(s)
- Xuewu Sui
- From the Departments of Pharmacology and
| | | | - Tao Che
- Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965 and
| | - Paul R. Carey
- Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965 and
| | | | - Wuxian Shi
- the Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4988
| | | | | |
Collapse
|
209
|
Kuznetsova AV. Morphological and physiological characteristics of the native retinal pigment epithelium in vertebrate animals and human. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s2079086414020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
210
|
Hamel CP. Gene discovery and prevalence in inherited retinal dystrophies. C R Biol 2014; 337:160-6. [PMID: 24702842 DOI: 10.1016/j.crvi.2013.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 11/30/2022]
Abstract
Inherited retinal dystrophies are Mendelian neurodegenerative conditions classified as pigmentary retinopathies, macular dystrophies and others. Over a 21-year period, from 1990 to 2011, we have screened in Montpellier 107 genes in 609 families and have identified a causal mutation in 68.5% of them. Following a gene candidate approach, we established that RPE65, the isomerohydrolase of the visual cycle, is responsible for severe childhood blindness (Leber congenital amaurosis or early onset retinal dystrophy). In an ongoing study, we screened the genes in a series of 283 families with dominant retinitis pigmentosa and we have estimated that 80% of the families have a mutation in a known gene. A similar study is currently undergoing for autosomal recessive retinitis pigmentosa. Finally, we have identified IMPG1 as a responsible gene for rare cases of macular vitelliform dystrophy with a dominant or recessive inheritance.
Collapse
Affiliation(s)
- Christian P Hamel
- Inserm U.1051, institut des neurosciences de Montpellier, hôpital Saint-Éloi, BP 74103, 80, rue Augustin-Fliche, 34091 Montpellier cedex 5, France.
| |
Collapse
|
211
|
Klein D, Mendes-Madeira A, Schlegel P, Rolling F, Lorenz B, Haverkamp S, Stieger K. Immuno-histochemical analysis of rod and cone reaction to RPE65 deficiency in the inferior and superior canine retina. PLoS One 2014; 9:e86304. [PMID: 24466015 PMCID: PMC3897682 DOI: 10.1371/journal.pone.0086304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/06/2013] [Indexed: 12/18/2022] Open
Abstract
Mutations in the RPE65 gene are associated with autosomal recessive early onset severe retinal dystrophy. Morphological and functional studies indicate early and dramatic loss of rod photoreceptors and early loss of S-cone function, while L and M cones remain initially functional. The Swedish Briard dog is a naturally occurring animal model for this disease. Detailed information about rod and cone reaction to RPE65 deficiency in this model with regard to their location within the retina remains limited. The aim of this study was to analyze morphological parameters of cone and rod viability in young adult RPE65 deficient dogs in different parts of the retina in order to shed light on local disparities in this disease. In retinae of affected dogs, sprouting of rod bipolar cell dendrites and horizontal cell processes was dramatically increased in the inferior peripheral part of affected retinae, while central inferior and both superior parts did not display significantly increased sprouting. This observation was correlated with photoreceptor cell layer thickness. Interestingly, while L/M cone opsin expression was uniformly reduced both in the superior and inferior part of the retina, S-cone opsin expression loss was less severe in the inferior part of the retina. In summary, in retinae of young adult RPE65 deficient dogs, the degree of rod bipolar and horizontal cell sprouting as well as of S-cone opsin expression depends on the location. As the human retinal pigment epithelium (RPE) is pigmented similar to the RPE in the inferior part of the canine retina, and the kinetics of photoreceptor degeneration in humans seems to be similar to what has been observed in the inferior peripheral retina in dogs, this area should be studied in future gene therapy experiments in this model.
Collapse
Affiliation(s)
- Daniela Klein
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Alexandra Mendes-Madeira
- Translational Gene Therapy for Retinal and Neuromuscular Diseases, INSERM UMR 1089, Institut de Recherche Thérapeutique 1, Université de Nantes, Nantes, France
| | - Patrice Schlegel
- Department of Computational Intelligence, Faculty of Mathematics and Computer Science, Philipps University Marburg, Marburg, Germany
| | - Fabienne Rolling
- Translational Gene Therapy for Retinal and Neuromuscular Diseases, INSERM UMR 1089, Institut de Recherche Thérapeutique 1, Université de Nantes, Nantes, France
| | - Birgit Lorenz
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Silke Haverkamp
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Knut Stieger
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
212
|
Muñiz A, Greene WA, Plamper ML, Choi JH, Johnson AJ, Tsin AT, Wang HC. Retinoid uptake, processing, and secretion in human iPS-RPE support the visual cycle. Invest Ophthalmol Vis Sci 2014; 55:198-209. [PMID: 24255038 DOI: 10.1167/iovs.13-11740] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Retinal pigmented epithelium derived from human induced pluripotent stem (iPS) cells (iPS-RPE) may be a source of cells for transplantation. For this reason, it is essential to determine the functional competence of iPS-RPE. One key role of the RPE is uptake and processing of retinoids via the visual cycle. The purpose of this study is to investigate the expression of visual cycle proteins and the functional ability of the visual cycle in iPS-RPE. METHODS iPS-RPE was derived from human iPS cells. Immunocytochemistry, RT-PCR, and Western blot analysis were used to detect expression of RPE genes lecithin-retinol acyl transferase (LRAT), RPE65, cellular retinaldehyde-binding protein (CRALBP), and pigment epithelium-derived factor (PEDF). All-trans retinol was delivered to cultured cells or whole cell homogenate to assess the ability of the iPS-RPE to process retinoids. RESULTS Cultured iPS-RPE expresses visual cycle genes LRAT, CRALBP, and RPE65. After incubation with all-trans retinol, iPS-RPE synthesized up to 2942 ± 551 pmol/mg protein all-trans retinyl esters. Inhibition of LRAT with N-ethylmaleimide (NEM) prevented retinyl ester synthesis. Significantly, after incubation with all-trans retinol, iPS-RPE released 188 ± 88 pmol/mg protein 11-cis retinaldehyde into the culture media. CONCLUSIONS iPS-RPE develops classic RPE characteristics and maintains expression of visual cycle proteins. The results of this study confirm that iPS-RPE possesses the machinery to process retinoids for support of visual pigment regeneration. Inhibition of all-trans retinyl ester accumulation by NEM confirms LRAT is active in iPS-RPE. Finally, the detection of 11-cis retinaldehyde in the culture medium demonstrates the cells' ability to process retinoids through the visual cycle. This study demonstrates expression of key visual cycle machinery and complete visual cycle activity in iPS-RPE.
Collapse
Affiliation(s)
- Alberto Muñiz
- Ocular Trauma, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
213
|
Affiliation(s)
| | | | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case
Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106-4965,
United States
| |
Collapse
|
214
|
Bolze CS, Helbling RE, Owen RL, Pearson AR, Pompidor G, Dworkowski F, Fuchs MR, Furrer J, Golczak M, Palczewski K, Cascella M, Stocker A. Human cellular retinaldehyde-binding protein has secondary thermal 9-cis-retinal isomerase activity. J Am Chem Soc 2014; 136:137-46. [PMID: 24328211 PMCID: PMC3936205 DOI: 10.1021/ja411366w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cellular retinaldehyde-binding protein (CRALBP) chaperones 11-cis-retinal to convert opsin receptor molecules into photosensitive retinoid pigments of the eye. We report a thermal secondary isomerase activity of CRALBP when bound to 9-cis-retinal. UV/vis and (1)H NMR spectroscopy were used to characterize the product as 9,13-dicis-retinal. The X-ray structure of the CRALBP mutant R234W:9-cis-retinal complex at 1.9 Å resolution revealed a niche in the binding pocket for 9-cis-aldehyde different from that reported for 11-cis-retinal. Combined computational, kinetic, and structural data lead us to propose an isomerization mechanism catalyzed by a network of buried waters. Our findings highlight a specific role of water molecules in both CRALBP-assisted specificity toward 9-cis-retinal and its thermal isomerase activity yielding 9,13-dicis-retinal. Kinetic data from two point mutants of CRALBP support an essential role of Glu202 as the initial proton donor in this isomerization reaction.
Collapse
Affiliation(s)
- Christin S. Bolze
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Rachel E. Helbling
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Arwen R. Pearson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Guillaume Pompidor
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Florian Dworkowski
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Martin R. Fuchs
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Julien Furrer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| | - Michele Cascella
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Achim Stocker
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
215
|
Receptor interacting protein kinase-mediated necrosis contributes to cone and rod photoreceptor degeneration in the retina lacking interphotoreceptor retinoid-binding protein. J Neurosci 2013; 33:17458-68. [PMID: 24174679 DOI: 10.1523/jneurosci.1380-13.2013] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) secreted by photoreceptors plays a pivotal role in photoreceptor survival with an unknown mechanism. A mutation in the human IRBP has been linked to retinitis pigmentosa, a progressive retinal degenerative disease. Mice lacking IRBP display severe early and progressive photoreceptor degeneration. However, the signaling pathway(s) leading to photoreceptor death in IRBP-deficient mice remains poorly understood. Here, we show that amounts of tumor necrosis factor-α (TNF-α) in the interphotoreceptor matrix and retinas of Irbp(-/-) mice were increased more than 10-fold and fivefold, respectively, compared with those in wild-type mice. Moreover, TNF-α receptor 1, an important membrane death receptor that mediates both programmed apoptosis and necrosis, was also significantly increased in Irbp(-/-) retina, and was colocalized with peanut agglutinin to the Irbp(-/-) cone outer segments. Although these death signaling proteins were increased, the caspase-dependent and independent apoptotic pathways were mildly activated in the Irbp(-/-) retinas, suggesting that other cell death mechanism(s) also contributes to the extensive photoreceptor degeneration in Irbp(-/-) retina. We found that receptor interacting protein 1 and 3 (RIP1 and RIP3) kinases, the intracellular key mediators of TNF-induced cellular necrosis, were elevated at least threefold in the Irbp(-/-) retinas. Moreover, pharmacological inhibition of RIP1 kinase significantly prevented cone and rod photoreceptor degeneration in Irbp(-/-) mice. These results reveal that RIP kinase-mediated necrosis strongly contributes to cone and rod degeneration in Irbp(-/-) mice, implicating the TNF-RIP pathway as a potential therapeutic target to prevent or delay photoreceptor degeneration in patients with retinitis pigmentosa caused by IRBP mutation.
Collapse
|
216
|
Sui X, Kiser PD, von Lintig J, Palczewski K. Structural basis of carotenoid cleavage: from bacteria to mammals. Arch Biochem Biophys 2013; 539:203-13. [PMID: 23827316 PMCID: PMC3818509 DOI: 10.1016/j.abb.2013.06.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
Carotenoids and their metabolic derivatives serve critical functions in both prokaryotic and eukaryotic cells, including pigmentation, photoprotection and photosynthesis as well as cell signaling. These organic compounds are also important for visual function in vertebrate and non-vertebrate organisms. Enzymatic transformations of carotenoids to various apocarotenoid products are catalyzed by a family of evolutionarily conserved, non-heme iron-containing enzymes named carotenoid cleavage oxygenases (CCOs). Studies have revealed that CCOs are critically involved in carotenoid homeostasis and essential for the health of organisms including humans. These enzymes typically display a high degree of regio- and stereo-selectivity, acting on specific positions of the polyene backbone located in their substrates. By oxidatively cleaving and/or isomerizing specific double bonds, CCOs generate a variety of apocarotenoid isomer products. Recent structural studies have helped illuminate the mechanisms by which CCOs mobilize their lipophilic substrates from biological membranes to perform their characteristic double bond cleavage and/or isomerization reactions. In this review, we aim to integrate structural and biochemical information about CCOs to provide insights into their catalytic mechanisms.
Collapse
Affiliation(s)
- Xuewu Sui
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| | - Philip D. Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH 44106-4965, USA
| |
Collapse
|
217
|
Kowatz T, Babino D, Kiser P, Palczewski K, von Lintig J. Characterization of human β,β-carotene-15,15'-monooxygenase (BCMO1) as a soluble monomeric enzyme. Arch Biochem Biophys 2013; 539:214-22. [PMID: 23727499 PMCID: PMC3795993 DOI: 10.1016/j.abb.2013.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 11/19/2022]
Abstract
The formal first step in in vitamin A metabolism is the conversion of its natural precursor β,β-carotene (C40) to retinaldehyde (C20). This reaction is catalyzed by the enzyme β,β-carotene-15,15'-monooxygenase (BCMO1). BCMO1 has been cloned from several vertebrate species, including humans. However, knowledge about this protein's enzymatic and structural properties is scant. Here we expressed human BCMO1 in Spodoptera frugiperda 9 insect cells. Recombinant BCMO1 is a soluble protein that displayed Michaelis-Menten kinetics with a KM of 14 μM for β,β-carotene. Though addition of detergents failed to increase BCMO1 enzymatic activity, short chain aliphatic detergents such as C8E4 and C8E6 decreased enzymatic activity probably by interacting with the substrate binding site. Thus we purified BCMO1 in the absence of detergent. Purified BCMO1 was a monomeric enzymatically active soluble protein that did not require cofactors and displayed a turnover rate of about 8 molecules of β,β-carotene per second. The aqueous solubility of BCMO1 was confirmed in mouse liver and mammalian cells. Establishment of a protocol that yields highly active homogenous BCMO1 is an important step towards clarifying the lipophilic substrate interaction, reaction mechanism and structure of this vitamin A forming enzyme.
Collapse
Affiliation(s)
- Thomas Kowatz
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Darwin Babino
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Philip Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
218
|
Sato S, Fukagawa T, Tachibanaki S, Yamano Y, Wada A, Kawamura S. Substrate specificity and subcellular localization of the aldehyde-alcohol redox-coupling reaction in carp cones. J Biol Chem 2013; 288:36589-97. [PMID: 24217249 DOI: 10.1074/jbc.m113.521153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Our previous study suggested the presence of a novel cone-specific redox reaction that generates 11-cis-retinal from 11-cis-retinol in the carp retina. This reaction is unique in that 1) both 11-cis-retinol and all-trans-retinal were required to produce 11-cis-retinal; 2) together with 11-cis-retinal, all-trans-retinol was produced at a 1:1 ratio; and 3) the addition of enzyme cofactors such as NADP(H) was not necessary. This reaction is probably part of the reactions in a cone-specific retinoid cycle required for cone visual pigment regeneration with the use of 11-cis-retinol supplied from Müller cells. In this study, using purified carp cone membrane preparations, we first confirmed that the reaction is a redox-coupling reaction between retinals and retinols. We further examined the substrate specificity, reaction mechanism, and subcellular localization of this reaction. Oxidation was specific for 11-cis-retinol and 9-cis-retinol. In contrast, reduction showed low specificity: many aldehydes, including all-trans-, 9-cis-, 11-cis-, and 13-cis-retinals and even benzaldehyde, supported the reaction. On the basis of kinetic studies of this reaction (aldehyde-alcohol redox-coupling reaction), we found that formation of a ternary complex of a retinol, an aldehyde, and a postulated enzyme seemed to be necessary, which suggested the presence of both the retinol- and aldehyde-binding sites in this enzyme. A subcellular fractionation study showed that the activity is present almost exclusively in the cone inner segment. These results suggest the presence of an effective production mechanism of 11-cis-retinal in the cone inner segment to regenerate visual pigment.
Collapse
Affiliation(s)
- Shinya Sato
- From the Department of Biological Sciences, Graduate School of Science, and
| | | | | | | | | | | |
Collapse
|
219
|
Ugarte M, Osborne NN, Brown LA, Bishop PN. Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol 2013; 58:585-609. [DOI: 10.1016/j.survophthal.2012.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 12/09/2012] [Accepted: 12/11/2012] [Indexed: 12/26/2022]
|
220
|
Kim HJ, Son ED, Jung JY, Choi H, Lee TR, Shin DW. Violet light down-regulates the expression of specific differentiation markers through Rhodopsin in normal human epidermal keratinocytes. PLoS One 2013; 8:e73678. [PMID: 24069221 PMCID: PMC3775733 DOI: 10.1371/journal.pone.0073678] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/19/2013] [Indexed: 01/09/2023] Open
Abstract
Several recent reports have demonstrated that photoreceptors are expressed in human skin. The rod and cone photoreceptor-like proteins are expressed in human skin and rhodopsin, long wavelength-opsin, and short wavelength-opsin are also present in cultured murine melanocytes. Furthermore, the photopigment rhodopsin is expressed in human melanocytes and is involved in ultraviolet A phototransduction which induces early melanin synthesis. In this study, we investigated whether rhodopsin is expressed and plays any physiological roles in the normal human epidermal keratinocytes (NHEKs). We found that rhodopsin was expressed and localized on the plasma membrane in NHEKs, and only violet light among several wavelengths within the visible range significantly increased the expression of rhodopsin mRNA. We further found that rhodopsin over-expression decreased the mRNA expression levels of keratinocyte differentiation markers, such as keratin-1 and keratin-10, and violet light also decreased the mRNA expression levels of keratinocyte differentiation markers and these decreased expression levels were recovered by a rhodopsin-directed siRNA. Moreover, we further demonstrated that violet light significantly decreased the phosphorylation levels of cAMP responsive element-binding protein (CREB) and that it more effectively decreased the phosphorylation of CREB when rhodopsin was over-expressed. In addition, we observed that pertussis toxin, a Gαi protein inhibitor, restored the rhodopsin-induced decrease in the differentiation markers in NHEKs. Taken together, these results suggest that rhodopsin down-regulates the expression levels of specific keratinocyte differentiation markers via the Gαi signaling pathway in NHEKs.
Collapse
Affiliation(s)
- Hyoung-June Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-city, Gyeonggi-do, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon-city, Republic of Korea
| | - Eui Dong Son
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-city, Gyeonggi-do, Republic of Korea
| | - Ji-Yong Jung
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-city, Gyeonggi-do, Republic of Korea
| | - Hyun Choi
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-city, Gyeonggi-do, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-city, Gyeonggi-do, Republic of Korea
- * E-mail: (DWS); (TRL)
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-city, Gyeonggi-do, Republic of Korea
- * E-mail: (DWS); (TRL)
| |
Collapse
|
221
|
Koirala A, Conley SM, Makkia R, Liu Z, Cooper MJ, Sparrow JR, Naash MI. Persistence of non-viral vector mediated RPE65 expression: case for viability as a gene transfer therapy for RPE-based diseases. J Control Release 2013; 172:745-52. [PMID: 24035979 DOI: 10.1016/j.jconrel.2013.08.299] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/22/2013] [Indexed: 11/25/2022]
Abstract
Mutations in the retinal pigment epithelium (RPE) gene RPE65 are associated with multiple blinding diseases including Leber's Congenital Amaurosis (LCA). Our goal has been to develop persistent, effective non-viral genetic therapies to treat this condition. Using precisely engineered DNA vectors and high capacity compacted DNA nanoparticles (NP), we previously demonstrated that both plasmid and NP forms of VMD2-hRPE65-S/MAR improved the disease phenotypes in an rpe65(-/-) model of LCA up to 6 months post-injection (PI), however the duration of this treatment efficacy was not established. Here, we test the ability of these vectors to sustain gene expression and phenotypic improvement for the life of the animal. NPs or naked DNA were subretinally injected in rpe65(-/-) mice at postnatal day (P) 16 and evaluated at 15 months PI. Quantitative real-time PCR (qRT-PCR) and immunofluorescence were performed at PI-15 months and demonstrated appreciable expression of transferred RPE65 (levels were 32% of wild-type [WT] for NPs and 44% of WT for naked DNA). No reduction in expression at the message level was observed from PI-6 month data. Spectral electroretinography (ERG) demonstrated significant improvement in cone ERG amplitudes in treated versus uninjected animals. Most importantly, we also observed reduced fundus autofluorescence in the eyes injected with NP and naked DNA compared to uninjected counterparts. Consistent with these observations, biochemical studies showed a reduction in the accumulation of toxic retinyl esters in treated mice, suggesting that the transferred hRPE65 was functional. These critical results indicate that both NP and uncompacted plasmid VMD2-hRPE65-S/MAR can mediate persistent, long-term improvement in an RPE-associated disease phenotype, and suggest that DNA NPs, which are non-toxic and have a large payload capacity, expand the treatment repertoire available for ocular gene therapy.
Collapse
Affiliation(s)
- Adarsha Koirala
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, BMSB 781, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
222
|
Song D, Dunaief JL. Retinal iron homeostasis in health and disease. Front Aging Neurosci 2013; 5:24. [PMID: 23825457 PMCID: PMC3695389 DOI: 10.3389/fnagi.2013.00024] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/11/2013] [Indexed: 12/21/2022] Open
Abstract
Iron is essential for life, but excess iron can be toxic. As a potent free radical creator, iron generates hydroxyl radicals leading to significant oxidative stress. Since iron is not excreted from the body, it accumulates with age in tissues, including the retina, predisposing to age-related oxidative insult. Both hereditary and acquired retinal diseases are associated with increased iron levels. For example, retinal degenerations have been found in hereditary iron overload disorders, like aceruloplasminemia, Friedreich's ataxia, and pantothenate kinase-associated neurodegeneration. Similarly, mice with targeted mutation of the iron exporter ceruloplasmin and its homolog hephaestin showed age-related retinal iron accumulation and retinal degeneration with features resembling human age-related macular degeneration (AMD). Post mortem AMD eyes have increased levels of iron in retina compared to age-matched healthy donors. Iron accumulation in AMD is likely to result, in part, from inflammation, hypoxia, and oxidative stress, all of which can cause iron dysregulation. Fortunately, it has been demonstrated by in vitro and in vivo studies that iron in the retinal pigment epithelium (RPE) and retina is chelatable. Iron chelation protects photoreceptors and retinal pigment epithelial cells (RPE) in a variety of mouse models. This has therapeutic potential for diminishing iron-induced oxidative damage to prevent or treat AMD.
Collapse
Affiliation(s)
- Delu Song
- The F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania Philadelphia, PA, USA
| | | |
Collapse
|
223
|
Cascella M, Bärfuss S, Stocker A. Cis-retinoids and the chemistry of vision. Arch Biochem Biophys 2013; 539:187-95. [PMID: 23791723 DOI: 10.1016/j.abb.2013.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/04/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022]
Abstract
We discuss here principal biochemical transformations of retinoid molecules in the visual cycle. We focus our analysis on the accumulating evidence of alternate pathways and functional redundancies in the cycle. The efficiency of the visual cycle depends, on one hand, on fast regeneration of the photo-bleached chromophores. On the other hand, it is crucial that the cyclic process should be highly selective to avoid accumulation of byproducts. The state-of-the-art knowledge indicates that single enzymatically active components of the cycle are not strictly selective and may require chaperones to enhance their rates. It appears that protein-protein interactions significantly improve the biological stability of the visual cycle. In particular, synthesis of thermodynamically less stable 11-cis-retinoid conformers is favored by physical interactions of the isomerases present in the retina with cellular retinaldehyde binding protein.
Collapse
Affiliation(s)
- Michele Cascella
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | | | | |
Collapse
|
224
|
Ugarte M, Grime GW, Lord G, Geraki K, Collingwood JF, Finnegan ME, Farnfield H, Merchant M, Bailey MJ, Ward NI, Foster PJ, Bishop PN, Osborne NN. Concentration of various trace elements in the rat retina and their distribution in different structures. Metallomics 2013; 4:1245-54. [PMID: 23093062 DOI: 10.1039/c2mt20157g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the total amount of trace elements in retina from adult male Sprague-Dawley rats (n = 6). Concentration of trace elements within individual retinal areas in frozen sections of the fellow eye was established with the use of two methodologies: (1) particle-induced X-ray emission (PIXE) in combination with 3D depth profiling with Rutherford backscattering spectrometry (RBS) and (2) synchrotron X-ray fluorescence (SXRF) microscopy. The most abundant metal in the retina was zinc, followed by iron and copper. Nickel, manganese, chromium, cobalt, selenium and cadmium were present in very small amounts. The PIXE and SXRF analysis yielded a non-homogenous pattern distribution of metals in the retina. Relatively high levels of zinc were found in the inner part of the photoreceptor inner segments (RIS)/outer limiting membrane (OLM), inner nuclear layer and plexiform layers. Iron was found to accumulate in the retinal pigment epithelium/choroid layer and RIS/OLM. Copper in turn, was localised primarily in the RIS/OLM and plexiform layers. The trace elements iron, copper, and zinc exist in different amounts and locations in the rat retina.
Collapse
Affiliation(s)
- Marta Ugarte
- Centre for Advanced Discovery and Experimental Therapeutics, Institute of Human Development, University of Manchester and Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Fatty acid transport protein 4 (FATP4) prevents light-induced degeneration of cone and rod photoreceptors by inhibiting RPE65 isomerase. J Neurosci 2013; 33:3178-89. [PMID: 23407971 DOI: 10.1523/jneurosci.2428-12.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although rhodopsin is essential for sensing light for vision, it also mediates light-induced apoptosis of photoreceptors in mouse. RPE65, which catalyzes isomerization of all-trans retinyl fatty acid esters to 11-cis-retinol (11cROL) in the visual cycle, controls the rhodopsin regeneration rate and photoreceptor susceptibility to light-induced degeneration. Mutations in RPE65 have been linked to blindness in affected children. Despite such importance, the mechanism that regulates RPE65 function remains unclear. Through unbiased expression screening of a bovine retinal pigment epithelium (RPE) cDNA library, we have identified elongation of very long-chain fatty acids-like 1 (ELOVL1) and fatty acid transport protein 4 (FATP4), which each have very long-chain fatty acid acyl-CoA synthetase (VLCFA-ACS) activity, as negative regulators of RPE65. We found that the VLCFA derivative lignoceroyl (C24:0)-CoA inhibited synthesis of 11cROL, whereas palmitoyl (C16:0)-CoA promoted synthesis of 11cROL. We further found that competition of FATP4 with RPE65 for the substrate of RPE65 was also involved in the mechanisms by which FATP4 inhibits synthesis of 11cROL. FATP4 was predominantly expressed in RPE, and the FATP4-deficient RPE showed significantly higher isomerase activity. Consistent with these results, the regeneration rate of 11-cis-retinaldehyde and the recovery rate for rod light sensitivity were faster in FATP4-deficient mice than wild-type mice. Moreover, FATP4-deficient mice displayed increased accumulation of the cytotoxic all-trans retinaldehyde and hypersusceptibility to light-induced photoreceptor degeneration. Our findings demonstrate that ELOVL1, FATP4, and their products comprise the regulatory elements of RPE65 and play important roles in protecting photoreceptors from degeneration induced by light damage.
Collapse
|
226
|
Wagner AH, Anand VN, Wang WH, Chatterton JE, Sun D, Shepard AR, Jacobson N, Pang IH, Deluca AP, Casavant TL, Scheetz TE, Mullins RF, Braun TA, Clark AF. Exon-level expression profiling of ocular tissues. Exp Eye Res 2013; 111:105-11. [PMID: 23500522 DOI: 10.1016/j.exer.2013.03.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/06/2013] [Accepted: 03/05/2013] [Indexed: 11/25/2022]
Abstract
The normal gene expression profiles of the tissues in the eye are a valuable resource for considering genes likely to be involved with disease processes. We profiled gene expression in ten ocular tissues from human donor eyes using Affymetrix Human Exon 1.0 ST arrays. Ten different tissues were obtained from six different individuals and RNA was pooled. The tissues included: retina, optic nerve head (ONH), optic nerve (ON), ciliary body (CB), trabecular meshwork (TM), sclera, lens, cornea, choroid/retinal pigment epithelium (RPE) and iris. Expression values were compared with publically available Expressed Sequence Tag (EST) and RNA-sequencing resources. Known tissue-specific genes were examined and they demonstrated correspondence of expression with the representative ocular tissues. The estimated gene and exon level abundances are available online at the Ocular Tissue Database.
Collapse
Affiliation(s)
- Alex H Wagner
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Boye SE, Boye SL, Lewin AS, Hauswirth WW. A comprehensive review of retinal gene therapy. Mol Ther 2013; 21:509-19. [PMID: 23358189 DOI: 10.1038/mt.2012.280] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Blindness, although not life threatening, is a debilitating disorder for which few, if any treatments exist. Ocular gene therapies have the potential to profoundly improve the quality of life in patients with inherited retinal disease. As such, tremendous focus has been given to develop such therapies. Several factors make the eye an ideal organ for gene-replacement therapy including its accessibility, immune privilege, small size, compartmentalization, and the existence of a contralateral control. This review will provide a comprehensive summary of (i) existing gene therapy clinical trials for several genetic forms of blindness and (ii) preclinical efficacy and safety studies in a variety of animal models of retinal disease which demonstrate strong potential for clinical application. To be as comprehensive as possible, we include additional proof of concept studies using gene replacement, neurotrophic/neuroprotective, optogenetic, antiangiogenic, or antioxidative stress strategies as well as a description of the current challenges and future directions in the ocular gene therapy field to this review as a supplement.
Collapse
Affiliation(s)
- Shannon E Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA.
| | | | | | | |
Collapse
|
228
|
Gnana-Prakasam JP, Veeranan-Karmegam R, Coothankandaswamy V, Reddy SK, Martin PM, Thangaraju M, Smith SB, Ganapathy V. Loss of Hfe leads to progression of tumor phenotype in primary retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2013; 54:63-71. [PMID: 23169885 DOI: 10.1167/iovs.12-10312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Hemochromatosis is a disorder of iron overload arising mostly from mutations in HFE. HFE is expressed in retinal pigment epithelium (RPE), and Hfe(-/-) mice develop age-related iron accumulation and retinal degeneration associated with RPE hyperproliferation. Here, the mechanism underlying the hyperproliferative phenotype in RPE was investigated. METHODS Cellular senescence was monitored by β-galactosidase activity. Gene expression was monitored by real-time PCR. Survivin was analyzed by Western blot and immunofluorescence. Migration and invasion were monitored using appropriate kits. Glucose transporters (GLUTs) were monitored by 3-O-methyl-D-glucose uptake. Histone deacetylases (HDACs) were studied by monitoring catalytic activity and acetylation status of histones H3/H4. RESULTS Hfe(-/-) RPE cells exhibited slower senescence rate and higher survivin expression than wild type cells. Hfe(-/-) cells migrated faster and showed greater glucose uptake and increased expression of GLUTs. The expression of HDACs and DNA methyltransferase (DNMTs) also was increased. Similarly, RPE cells from hemojuvelin (Hjv)-knockout mice, another model of hemochromatosis, also had increased expression of GLUTs, HDACs, and DNMTs. The expression of Slc5a8 was decreased in Hfe(-/-) RPE cells, but treatment with a DNA methylation inhibitor restored the transporter expression, indicating involvement of DNA methylation in the silencing of Slc5a8 in Hfe(-/-) cells. CONCLUSIONS RPE cells from iron-overloaded mice exhibit several features of tumor cells: decreased senescence, enhanced migration, increased glucose uptake, and elevated levels of HDACs and DNMTs. These features are seen in Hfe(-/-) RPE cells as well as in Hjv(-/-) RPE cells, providing a molecular basis for the hyperproliferative phenotype of Hfe(-/-) and Hjv(-/-) RPE cells.
Collapse
Affiliation(s)
- Jaya P Gnana-Prakasam
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, Georgia 30912, USA.
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Maeda A, Palczewski K. Retinal degeneration in animal models with a defective visual cycle. DRUG DISCOVERY TODAY. DISEASE MODELS 2013; 10:e163-e172. [PMID: 25210527 PMCID: PMC4157753 DOI: 10.1016/j.ddmod.2014.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Continuous generation of visual chromophore through the visual (retinoid) cycle is essential to maintain eyesight and retinal heath. Impairments in this cycle and related pathways adversely affect vision. In this review, we summarize the chemical reactions of vitamin A metabolites involved in the retinoid cycle and describe animal models of associated human diseases. Development of potential therapies for retinal disorders in these animal models is also introduced.
Collapse
Affiliation(s)
- Akiko Maeda
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
230
|
Petersen-Jones SM. Drug and gene therapy of hereditary retinal disease in dog and cat models. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.ddmod.2014.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
231
|
Petrukhin K. Pharmacological inhibition of lipofuscin accumulation in the retina as a therapeutic strategy for dry AMD treatment. ACTA ACUST UNITED AC 2013; 10:e11-e20. [PMID: 25152755 DOI: 10.1016/j.ddstr.2013.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the western world. There is no FDA-approved treatment for the most prevalent dry (atrophic) form of AMD. Photoreceptor degeneration in dry AMD is triggered by abnormalities in the retinal pigment epithelium (RPE). It has been suggested that excessive accumulation of fluorescent lipofuscin pigment in the RPE represents an important pathogenic factor in etiology and progression of dry AMD. Cytotoxic lipofuscin bisretinoids, such as A2E, are formed in the retina in a non-enzymatic way from visual cycle retinoids. Inhibition of toxic bisretinoid production in the retina seems to be a sound treatment strategy for dry AMD. In this review we discuss the following classes of pharmacological treatments inhibiting lipofuscin bisretinoid formation in the retina: direct inhibitors of key visual cycle enzymes, RBP4 antagonists, primary amine-containing aldehyde traps, and deuterated analogs of vitamin A.
Collapse
|
232
|
Abstract
The chromophore of all known visual pigments consists of 11-cis-retinal (derived from either vitamin A1 or A2) or a hydroxylated derivative, bound to a protein (opsin) via a Schiff base. Absorption of a photon results in photoisomerization of the chromophore to all-trans-retinal and conversion of the visual pigment to the signaling form. Regeneration of the 11-cis-retinal occurs in an adjacent tissue and involves several enzymes, several water-soluble retinoid-binding proteins, and intra- and intercellular diffusional processes. Rod photoreceptor cells depend completely on the output of 11-cis-retinal from adjacent retinal pigment epithelial (RPE) cells. Cone photoreceptors cells can use 11-cis-retinal from the RPE and from a second more poorly characterized cycle, which appears to involve adjacent Müller (glial) cells. Recent progress in the characterization of rod and cone visual cycle components and reactions will result in the development of approaches to the amelioration of blinding eye diseases associated with visual cycle defects.
Collapse
Affiliation(s)
- John C Saari
- Department of Ophthalmology and Biochemistry, University of Washington, Seattle, WA 91895, USA.
| |
Collapse
|
233
|
Poliakov E, Gubin AN, Stearn O, Li Y, Campos MM, Gentleman S, Rogozin IB, Redmond TM. Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates. PLoS One 2012; 7:e49975. [PMID: 23209628 PMCID: PMC3507948 DOI: 10.1371/journal.pone.0049975] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/15/2012] [Indexed: 02/02/2023] Open
Abstract
In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65’s substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc.) in the last common ancestor of the jawless and jawed vertebrates.
Collapse
Affiliation(s)
- Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander N. Gubin
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Olivia Stearn
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yan Li
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria Mercedes Campos
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Susan Gentleman
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - T. Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
234
|
Chekroud K, Guillou L, Grégoire S, Ducharme G, Brun E, Cazevieille C, Bretillon L, Hamel CP, Brabet P, Pequignot MO. Fatp1 deficiency affects retinal light response and dark adaptation, and induces age-related alterations. PLoS One 2012; 7:e50231. [PMID: 23166839 PMCID: PMC3500375 DOI: 10.1371/journal.pone.0050231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 10/19/2012] [Indexed: 11/19/2022] Open
Abstract
FATP1 is involved in lipid transport into cells and in intracellular lipid metabolism. We showed previously that this protein interacts with and inhibits the limiting-step isomerase of the visual cycle RPE65. Here, we aimed to analyze the effect of Fatp1-deficiency in vivo on the visual cycle, structure and function, and on retinal aging. Among the Fatp family members, we observed that only Fatp1 and 4 are expressed in the control retina, in both the neuroretina and the retinal pigment epithelium. In the neuroretina, Fatp1 is mostly expressed in photoreceptors. In young adult Fatp1−/− mice, Fatp4 expression was unchanged in retinal pigment epithelium and reduced two-fold in the neuroretina as compared to Fatp1+/+ mice. The Fatp1−/− mice had a preserved retinal structure but a decreased electroretinogram response to light. These mice also displayed a delayed recovery of the b-wave amplitude after bleaching, however, visual cycle speed was unchanged, and both retinal pigment epithelium and photoreceptors presented the same fatty acid pattern compared to controls. In 2 year-old Fatp1−/− mice, transmission electron microscopy studies showed specific abnormalities in the retinas comprising choroid vascularization anomalies and thickening of the Bruch membrane with material deposits, and sometimes local disorganization of the photoreceptor outer segments. These anomalies lead us to speculate that the absence of FATP1 accelerates the aging process.
Collapse
Affiliation(s)
- Karim Chekroud
- Inserm U1051, Institute for Neurosciences of Montpellier, CHU St Eloi, Montpellier, France
| | - Laurent Guillou
- Inserm U1051, Institute for Neurosciences of Montpellier, CHU St Eloi, Montpellier, France
| | | | - Gilles Ducharme
- CNRS UMR5149, Institut de Mathématiques et de Modélisation de Montpellier, France
| | - Emilie Brun
- Inserm U1051, Institute for Neurosciences of Montpellier, CHU St Eloi, Montpellier, France
| | | | | | - Christian P. Hamel
- Inserm U1051, Institute for Neurosciences of Montpellier, CHU St Eloi, Montpellier, France
| | - Philippe Brabet
- Inserm U1051, Institute for Neurosciences of Montpellier, CHU St Eloi, Montpellier, France
- * E-mail: (MOP); (PB)
| | - Marie O. Pequignot
- Inserm U1051, Institute for Neurosciences of Montpellier, CHU St Eloi, Montpellier, France
- * E-mail: (MOP); (PB)
| |
Collapse
|
235
|
Kaylor JJ, Yuan Q, Cook J, Sarfare S, Makshanoff J, Miu A, Kim A, Kim P, Habib S, Roybal CN, Xu T, Nusinowitz S, Travis GH. Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina. Nat Chem Biol 2012; 9:30-6. [PMID: 23143414 PMCID: PMC3522777 DOI: 10.1038/nchembio.1114] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/05/2012] [Indexed: 11/21/2022]
Abstract
Absorption of a light particle by an opsin-pigment causes photoisomerization of its retinaldehyde chromophore. Restoration of light sensitivity to the resulting apo-opsin requires chemical re-isomerization of the photobleached chromophore. This is carried out by a multistep enzyme pathway called the visual cycle. Accumulating evidence suggests the existence of an alternate visual cycle for regenerating opsins in daylight. Here, we identified dihydroceramide desaturase-1 (DES1) as a retinol isomerase and an excellent candidate for isomerase-2 in this alternate pathway. DES1 is expressed in retinal Müller cells where it co-immunoprecipitates with cellular retinaldehyde binding protein (CRALBP). Adenoviral gene therapy with DES1 partially rescued the biochemical and physiological phenotypes in rpe65 −/− mice lacking isomerohydrolase (isomerase-1). Knockdown of DES1 expression by RNA-interference concordantly reduced isomerase-2 activity in cultured Müller cells. Purified DES1 possessed very high isomerase-2 activity in the presence of appropriate cofactors, suggesting that DES1 by itself is sufficient for isomerase activity.
Collapse
Affiliation(s)
- Joanna J Kaylor
- Jules Stein Eye Institute, University of California, Los Angeles School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Abstract
Vitamin A deficiency is a major public health problem in developing countries. Some studies also implicate a suboptimal vitamin A intake in certain parts of the population of the industrialized world. Provitamin A carotenoids such as β-carotene are the major source for retinoids (vitamin A and its derivatives) in the human diet. However, it is still controversial how much β-carotene intake is required and safe. An important contributor to this uncertainty is the lack of knowledge about the biochemical and molecular basis of β-carotene metabolism. Recently, key players of provitamin A metabolism have been molecularly identified and biochemically characterized. Studies in knockout mouse models showed that intestinal β-carotene absorption and conversion to retinoids is under negative feedback regulation that adapts this process to the actual requirement of vitamin A of the body. These studies also showed that in peripheral tissues a conversion of β-carotene occurs and affects retinoid-dependent physiologic processes. Moreover, these analyses provided a possible explanation for the adverse health effects of carotenoids by showing that a pathologic accumulation of these compounds can induce oxidative stress in mitochondria and cell signaling pathways related to disease. Genetic polymorphisms in identified genes exist in humans and also alter carotenoid homeostasis. Here, the advanced knowledge of β-carotene metabolism is reviewed, which provides a molecular framework for understanding the role of this important micronutrient in health and disease.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
237
|
Tang PH, Kono M, Koutalos Y, Ablonczy Z, Crouch RK. New insights into retinoid metabolism and cycling within the retina. Prog Retin Eye Res 2012; 32:48-63. [PMID: 23063666 DOI: 10.1016/j.preteyeres.2012.09.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 01/05/2023]
Abstract
The retinoid cycle is a series of biochemical reactions within the eye that is responsible for synthesizing the chromophore, 11-cis retinal, for visual function. The chromophore is bound to G-protein coupled receptors, opsins, within rod and cone photoreceptor cells forming the photosensitive visual pigments. Integral to the sustained function of photoreceptors is the continuous generation of chromophore by the retinoid cycle through two separate processes, one that supplies both rods and cones and another that exclusively supplies cones. Recent findings such as RPE65 localization within cones and the pattern of distribution of retinoid metabolites within mouse and human retinas have challenged previous proposed schemes. This review will focus on recent findings regarding the transport of retinoids, the mechanisms by which chromophore is supplied to both rods and cones, and the metabolism of retinoids within the posterior segment of the eye.
Collapse
Affiliation(s)
- Peter H Tang
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
238
|
Gao SQ, Maeda T, Okano K, Palczewski K. A microparticle/hydrogel combination drug-delivery system for sustained release of retinoids. Invest Ophthalmol Vis Sci 2012; 53:6314-23. [PMID: 22918645 PMCID: PMC3465014 DOI: 10.1167/iovs.12-10279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/18/2012] [Accepted: 08/20/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To design and develop a drug-delivery system containing a combination of poly(D,L-lactide-co-glycolide) (PLGA) microparticles and alginate hydrogel for sustained release of retinoids to treat retinal blinding diseases that result from an inadequate supply of retinol and generation of 11-cis-retinal. METHODS To study drug release in vivo, either the drug-loaded microparticle-hydrogel combination was injected subcutaneously or drug-loaded microparticles were injected intravitreally into Lrat(-/-) mice. Orally administered 9-cis-retinoids were used for comparison and drug concentrations in plasma were determined by HPLC. Electroretinography (ERG) and both chemical and histologic analyses were used to evaluate drug effects on visual function and morphology. RESULTS Lrat(-/-) mice demonstrated sustained drug release from the microparticle/hydrogel combination that lasted 4 weeks after subcutaneous injection. Drug concentrations in plasma of the control group treated with the same oral dose rose to higher levels for 6-7 hours but then dropped markedly by 24 hours. Significantly increased ERG responses and a markedly improved retinal pigmented epithelium (RPE)-rod outer segment (ROS) interface were observed after subcutaneous injection of the drug-loaded delivery combination. Intravitreal injection of just 2% of the systemic dose of drug-loaded microparticles provided comparable therapeutic efficacy. CONCLUSIONS Sustained release of therapeutic levels of 9-cis-retinoids was achieved in Lrat(-/-) mice by subcutaneous injection in a microparticle/hydrogel drug-delivery system. Both subcutaneous and intravitreal injections of drug-loaded microparticles into Lrat(-/-) mice improved visual function and retinal structure.
Collapse
Affiliation(s)
| | - Tadao Maeda
- Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Kiichiro Okano
- Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | | |
Collapse
|
239
|
Mowat FM, Breuwer AR, Bartoe JT, Annear MJ, Zhang Z, Smith AJ, Bainbridge JWB, Petersen-Jones SM, Ali RR. RPE65 gene therapy slows cone loss in Rpe65-deficient dogs. Gene Ther 2012; 20:545-55. [PMID: 22951453 DOI: 10.1038/gt.2012.63] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent clinical trials of retinal pigment epithelium gene (RPE65) supplementation therapy in Leber congenital amaurosis type 2 patients have demonstrated improvements in rod and cone function, but it may be some years before the effects of therapy on photoreceptor survival become apparent. The Rpe65-deficient dog is a very useful pre-clinical model in which to test efficacy of therapies, because the dog has a retina with a high degree of similarity to that of humans. In this study, we evaluated the effect of RPE65 gene therapy on photoreceptor survival in order to predict the potential benefit and limitations of therapy in patients. We examined the retinas of Rpe65-deficient dogs after RPE65 gene therapy to evaluate the preservation of rods and cone photoreceptor subtypes. We found that gene therapy preserves both rods and cones. While the moderate loss of rods in the Rpe65-deficient dog retina is slowed by gene therapy, S-cones are lost extensively and gene therapy can prevent that loss, although only within the treated area. Although LM-cones are not lost extensively, cone opsin mislocalization indicates that they are stressed, and this can be partially reversed by gene therapy. Our results suggest that gene therapy may be able to slow cone degeneration in patients if intervention is sufficiently early and also that it is probably important to treat the macula in order to preserve central function.
Collapse
Affiliation(s)
- F M Mowat
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Zheng Q, Ren Y, Tzekov R, Zhang Y, Chen B, Hou J, Zhao C, Zhu J, Zhang Y, Dai X, Ma S, Li J, Pang J, Qu J, Li W. Differential proteomics and functional research following gene therapy in a mouse model of Leber congenital amaurosis. PLoS One 2012; 7:e44855. [PMID: 22953002 PMCID: PMC3432120 DOI: 10.1371/journal.pone.0044855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/08/2012] [Indexed: 11/19/2022] Open
Abstract
Leber congenital amaurosis (LCA) is one of the most severe forms of inherited retinal degeneration and can be caused by mutations in at least 15 different genes. To clarify the proteomic differences in LCA eyes, a cohort of retinal degeneration 12 (rd12) mice, an LCA2 model caused by a mutation in the RPE65 gene, were injected subretinally with an AAV vector (scAAV5-smCBA-hRPE65) in one eye, while the contralateral eye served as a control. Proteomics were compared between untreated rd12 and normal control retinas on P14 and P21, and among treated and untreated rd12 retinas and control retinas on P42. Gene therapy in rd12 mice restored retinal function in treated eyes, which was demonstrated by electroretinography (ERG). Proteomic analysis successfully identified 39 proteins expressed differently among the 3 groups. The expression of 3 proteins involved in regulation of apoptosis and neuroptotection (alpha A crystallin, heat shock protein 70 and peroxiredoxin 6) were investigated further. Immunofluorescence, Western blot and real-time PCR confirmed the quantitative changes in their expression. Furthermore, cell culture studies suggested that peroxiredoxin 6 could act in an antioxidant role in rd12 mice. Our findings support the feasibility of gene therapy in LCA2 patients and support a role for alpha A crystallin, heat shock protein 70 and peroxiredoxin 6 in the pathogenetic mechanisms involved in LCA2 disease process.
Collapse
Affiliation(s)
| | - Yueping Ren
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Radouil Tzekov
- The Roskamp Institute, Sarasota, Florida, United States of America
| | - Yuanping Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical College, Kunming, China
| | - Bo Chen
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jiangping Hou
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Chunhui Zhao
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Jiali Zhu
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Ying Zhang
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Xufeng Dai
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Shan Ma
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jia Li
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jijing Pang
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jia Qu
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Wensheng Li
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
- Neurobiology-Neurodegeneration and Repair Laboratory, Retinal Cell Biology and Degeneration Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
241
|
Ferrari S, Di Iorio E, Barbaro V, Ponzin D, Sorrentino FS, Parmeggiani F. Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics 2012; 12:238-49. [PMID: 22131869 PMCID: PMC3131731 DOI: 10.2174/138920211795860107] [Citation(s) in RCA: 410] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/28/2011] [Accepted: 04/11/2011] [Indexed: 12/27/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited disorders affecting 1 in 3000-7000 people and characterized by abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium of the retina which lead to progressive visual loss. RP can be inherited in an autosomal dominant, autosomal recessive or X-linked manner. While usually limited to the eye, RP may also occur as part of a syndrome as in the Usher syndrome and Bardet-Biedl syndrome. Over 40 genes have been associated with RP so far, with the majority of them expressed in either the photoreceptors or the retinal pigment epithelium. The tremendous heterogeneity of the disease makes the genetics of RP complicated, thus rendering genotype-phenotype correlations not fully applicable yet. In addition to the multiplicity of mutations, in fact, different mutations in the same gene may cause different diseases. We will here review which genes are involved in the genesis of RP and how mutations can lead to retinal degeneration. In the future, a more thorough analysis of genetic and clinical data together with a better understanding of the genotype-phenotype correlation might allow to reveal important information with respect to the likelihood of disease development and choices of therapy.
Collapse
|
242
|
An S-opsin knock-in mouse (F81Y) reveals a role for the native ligand 11-cis-retinal in cone opsin biosynthesis. J Neurosci 2012; 32:8094-104. [PMID: 22674284 DOI: 10.1523/jneurosci.0131-12.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In absence of their natural ligand, 11-cis-retinal, cone opsin G-protein-coupled receptors fail to traffic normally, a condition associated with photoreceptor degeneration and blindness. We created a mouse with a point mutation (F81Y) in cone S-opsin. As expected, cones with this knock-in mutation respond to light with maximal sensitivity red-shifted from 360 to 420 nm, consistent with an altered interaction between the apoprotein and ligand, 11-cis-retinal. However, cones expressing F81Y S-opsin showed an ∼3-fold reduced absolute sensitivity that was associated with a corresponding reduction in S-opsin protein expression. The reduced S-opsin expression did not arise from decreased S-opsin mRNA or cone degeneration, but rather from enhanced endoplasmic reticulum (ER)-associated degradation of the nascent protein. Exogenously increased 11-cis-retinal restored F81Y S-opsin protein expression to normal levels, suggesting that ligand binding in the ER facilitates proper folding. Immunohistochemistry and electron microscopy of normal retinas showed that Mueller cells, which synthesize a precursor of 11-cis-retinal, are closely adjoined to the cone ER, so they could deliver the ligand to the site of opsin synthesis. Together, these results suggest that the binding of 11-cis-retinal in the ER is important for normal folding during cone opsin biosynthesis.
Collapse
|
243
|
Chander P, Gentleman S, Poliakov E, Redmond TM. Aromatic residues in the substrate cleft of RPE65 protein govern retinol isomerization and modulate its progression. J Biol Chem 2012; 287:30552-9. [PMID: 22745121 DOI: 10.1074/jbc.m112.364596] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we showed that mutating RPE65 residue Phe-103 preferentially produces 13-cis-retinol instead of 11-cis-retinol, supporting a carbocation/radical cation mechanism of retinol isomerization. We asked whether this modulation of specificity can occur with residues other than Phe-103 and what role it plays in substrate binding and isomerization. We modeled the substrate-binding cleft of RPE65 to identify residues lining its surface. Many are phenylalanines and tyrosines, including three Phe residues (Phe-61, Phe-312, and Phe-526) forming an arch-like arrangement astride the cleft and Tyr-338. Also, Phe-418 sits at the neck of the cleft, lending a bend to the volume enclosed by the cleft. All mutations of Phe-61, Phe-312, and Phe-418 result in severely impaired or inactive enzyme. However, mutation of Phe-526 and Tyr-338, like Phe-103, decreases 11-cis-retinol formation, whereas increasing the 13-cis isomer. Significantly, 2 of these 3 residues, Phe-103 and Tyr-338, are located on putatively mobile interstrand loops. We propose that residual densities located in the binding cleft of the RPE65 structure represents a post-cleavage snapshot consistent not only with a fatty acid product, as originally modeled, but also an 11-cis-retinol product. Substrate docking simulations permit 11-cis- or 13-cis-retinyl ester binding in this relatively closed cleft, with the latter favored in F103L, F526A, and Y338A mutant structures, but prohibit binding of all-trans-retinyl ester, suggesting that isomerization occurs early in the temporal sequence, with O-alkyl ester cleavage occurring later. These findings provide insight into the mechanism of isomerization central to the visual cycle.
Collapse
Affiliation(s)
- Preethi Chander
- Laboratory of Retinal Cell and Molecular Biology, NEI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
244
|
Sato K, Ozaki T, Ishiguro SI, Nakazawa M. M-opsin protein degradation is inhibited by MG-132 in Rpe65⁻/⁻ retinal explant culture. Mol Vis 2012; 18:1516-25. [PMID: 22736942 PMCID: PMC3380917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 06/08/2012] [Indexed: 12/05/2022] Open
Abstract
PURPOSE The 65 kDa retinal pigment epithelium-specific protein, RPE65, is an essential enzyme for 11-cis-retinal synthesis in the eye. Mutations of the RPE65 gene in humans result in severe vision loss, and Rpe65(-/-) mice show early cone photoreceptor degeneration. We used an explant culture system to evaluate whether posttranslational downregulation of M-opsin protein in Rpe65(-/-) mice is caused by proteolytic degradation. METHODS The eyes of three-week-old Rpe65(-/-) mice were incubated in culture medium. Western blot analysis was used to evaluate the level of M-opsin protein, and immunofluorescence was used for protein localization. The transcriptional level of M-opsin was evaluated with real-time reverse-transcriptase-PCR. RESULTS Degradation of the M-opsin protein in Rpe65(-/-) mouse retina was inhibited by the proteasome inhibitor MG-132 but not by the lysosomal inhibitor pepstatin A and E64d. 9-cis-retinal, used as an analog of 11-cis-retinal, increased M-opsin protein but did not increase M-opsin mRNA. Moreover, 9-cis-retinal did not change the transcriptional levels of photoreceptor specific genes. CONCLUSIONS Our data suggest that M-opsin protein was degraded through a proteasome pathway and that M-opsin degradation was suppressed with 9-cis-retinal treatment in Rpe65(-/-) mice to some extent.
Collapse
Affiliation(s)
- Kota Sato
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan,Department of Biochemistry and Biotechnology, Division of Cell Technology, Hirosaki University Faculty of Agriculture and Life Science, Hirosaki, Aomori, Japan
| | - Taku Ozaki
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan,Department of Biochemistry and Biotechnology, Division of Cell Technology, Hirosaki University Faculty of Agriculture and Life Science, Hirosaki, Aomori, Japan
| | - Sei-ichi Ishiguro
- Department of Biochemistry and Biotechnology, Division of Cell Technology, Hirosaki University Faculty of Agriculture and Life Science, Hirosaki, Aomori, Japan
| | - Mitsuru Nakazawa
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
245
|
Zhang T, Baehr W, Fu Y. Chemical chaperone TUDCA preserves cone photoreceptors in a mouse model of Leber congenital amaurosis. Invest Ophthalmol Vis Sci 2012; 53:3349-56. [PMID: 22531707 DOI: 10.1167/iovs.12-9851] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Mutations in either retinoid isomerase (RPE65) or lecithin-retinol acyltransferase (LRAT) lead to Leber congenital amaurosis (LCA). By using the Lrat(-/-) mouse model, previous studies have shown that the rapid cone degeneration in LCA was caused by endoplasmic reticulum (ER) stress induced by S-opsin aggregation. The purpose of this study is to examine the efficacy of an ER chemical chaperone, tauroursodeoxycholic acid (TUDCA), in preserving cones in the Lrat(-/-) model. METHODS Lrat(-/-) mice were systemically administered with TUDCA and vehicle (0.15 M NaHCO(3)) every 3 days from P9 to P28. Cone cell survival was determined by counting cone cells on flat-mounted retinas. The expression and subcellular localization of cone-specific proteins were analyzed by western blotting and immunohistochemistry, respectively. RESULTS TUDCA treatment reduced ER stress and apoptosis in Lrat(-/-) retina. It significantly slowed down cone degeneration in Lrat(-/-) mice, resulting in a ∼3-fold increase in cone density in the ventral and central retina as compared with the vehicle-treated mice at P28. Furthermore, TUDCA promoted the degradation of cone membrane-associated proteins by enhancing the ER-associated protein degradation pathway. CONCLUSIONS Systemic injection of TUDCA is effective in reducing ER stress, preventing apoptosis, and preserving cones in Lrat(-/-) mice. TUDCA has the potential to lead to the development of a new class of therapeutic drugs for treating LCA.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Ophthalmology & Visual Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
246
|
Chucair-Elliott AJ, Elliott MH, Wang J, Moiseyev GP, Ma JX, Politi LE, Rotstein NP, Akira S, Uematsu S, Ash JD. Leukemia inhibitory factor coordinates the down-regulation of the visual cycle in the retina and retinal-pigmented epithelium. J Biol Chem 2012; 287:24092-102. [PMID: 22645143 DOI: 10.1074/jbc.m112.378240] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukemia inhibitory factor (LIF), an interleukin-6 family neurocytokine, is up-regulated in response to different types of retinal stress and has neuroprotective activity through activation of the gp130 receptor/STAT3 pathway. We observed that LIF induces rapid, robust, and sustained activation of STAT3 in both the retina and retinal pigmented epithelium (RPE). Here, we tested whether LIF-induced STAT3 activation within the RPE can down-regulate RPE65, the central enzyme in the visual cycle that provides the 11-cis-retinal chromophore to photoreceptors in vivo. We generated conditional knock-out mice to specifically delete STAT3 or gp130 in RPE, retina, or both RPE and retina. After intravitreal injection of LIF, we analyzed the expression levels of visual cycle genes and proteins, isomerase activity of RPE65, levels of rhodopsin protein, and the rates of dark adaptation and rhodopsin regeneration. We found that RPE65 protein levels and isomerase activity were reduced and recovery of bleachable rhodopsin was delayed in LIF-injected eyes. In mice with functional gp130/STAT3 signaling in the retina, rhodopsin protein was also reduced by LIF. However, the LIF-induced down-regulation of RPE65 required a functional gp130/STAT3 cascade intrinsic to RPE. Our data demonstrate that a single cytokine, LIF, can simultaneously and independently affect both RPE and photoreceptors through the same signaling cascade to reduce the generation and utilization of 11-cis-retinal.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Chen C, Thompson DA, Koutalos Y. Reduction of all-trans-retinal in vertebrate rod photoreceptors requires the combined action of RDH8 and RDH12. J Biol Chem 2012; 287:24662-70. [PMID: 22621924 DOI: 10.1074/jbc.m112.354514] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vertebrate rod cells, retinoid dehydrogenases/reductases (RDHs) are critical for reducing the reactive aldehyde all-trans-retinal that is released by photoactivated rhodopsin, to all-trans-retinol (vitamin A). Previous studies have shown that RDH8 localizes to photoreceptor outer segments and is a strong candidate for performing this role. However, RDH12 function in the photoreceptor inner segments is also key, because loss of function mutations cause retinal degeneration in some forms of Leber congenital amaurosis. To investigate the in vivo roles of RDH8 and RDH12, we used fluorescence imaging to examine all-trans-retinol production in single isolated rod cells from wild-type mice and knock-out mice lacking either one or both RDHs. Outer segments of rods deficient in Rdh8 failed to reduce all-trans-retinal, but those deficient in Rdh12 were unaffected. Following exposure to light, a leak of retinoids from outer to inner segments was detected in rods from both wild-type and knock-out mice. In cells lacking Rdh8 or Rdh12, this leak was mainly all-trans-retinal. Wild-type rods incubated with all-trans-retinal reduced moderate loads of retinal within the cell interior, but this ability was lost by cells deficient in Rdh8 or Rdh12. Our findings are consistent with localization of RDH8 to the outer segment where it provides most of the activity needed to reduce all-trans-retinal generated by the light response. In contrast, RDH12 in inner segments can protect vital cell organelles against aldehyde toxicity caused by an intracellular leak of all-trans-retinal, as well as other aldehydes originating both inside and outside the cell.
Collapse
Affiliation(s)
- Chunhe Chen
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
248
|
Takahashi Y, Moiseyev G, Nikolaeva O, Ma JX. Identification of the key residues determining the product specificity of isomerohydrolase. Biochemistry 2012; 51:4217-25. [PMID: 22512451 DOI: 10.1021/bi300144n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The efficient recycling of the chromophore of visual pigments, 11-cis-retinal, through the retinoid visual cycle is an essential process for maintaining normal vision. RPE65 is the isomerohydrolase in retinal pigment epithelium and generates predominantly 11-cis-retinol (11cROL) and a minor amount of 13-cis-retinol (13cROL), from all-trans-retinyl ester (atRE). We recently identified and characterized novel homologues of RPE65, RPE65c, and 13-cis-isomerohydrolase (13cIMH), which are expressed in the zebrafish inner retina and brain, respectively. Although these two homologues have 97% identical amino acid sequences, they exhibit distinct product specificities. Under the same assay conditions, RPE65c generated predominantly 11cROL, similar to RPE65, while 13cIMH generated exclusively 13cROL from atRE substrate. To study the impacts of the key residues determining the isomerization product specificity of RPE65, we replaced candidate residues by site-directed mutagenesis in RPE65c and 13cIMH. Point mutations at residues Tyr58, Phe103, and Leu133 in RPE65c resulted in significantly altered isomerization product specificities. In particular, our results showed that residue 58 is a primary determinant of isomerization specificity, because the Y58N mutation in RPE65c and its reciprocal N58Y mutation in 13cIMH completely reversed the respective enzyme isomerization product specificities. These findings will contribute to the elucidation of molecular mechanisms underlying the isomerization reaction catalyzed by RPE65.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of Medicine Endocrinology, Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
249
|
Wang H, Cui X, Gu Q, Chen Y, Zhou J, Kuang Y, Wang Z, Xu X. Retinol dehydrogenase 13 protects the mouse retina from acute light damage. Mol Vis 2012; 18:1021-30. [PMID: 22605914 PMCID: PMC3351414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/19/2012] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To investigate whether retinol dehydrogenase 13 (RDH13) can protect the retina from acute light-induced damage. METHODS We generated Rdh13 knockout mice using molecular biologic methods and assessed the associated morphological and functional changes under room-light conditions by hematoxylin-eosin (H&E), transmission electron microscopy (TEM), and scotopic electroretinography. Then, the light-damage model was established by exposure to diffuse white light (3,000 lx) for 48 h. Twenty-four h after light exposure, H&E was used for the histological evaluation. The thickness of the outer-plus-inner-segment and the outer nuclear layer was measured on sections parallel to the vertical meridian of the eye. An electroretinography test was performed to assess the functional change. Furthermore, the impairment of mitochondria was detected by TEM. Finally, the expression of cytochrome c (CytC) and other apoptosis-related proteins was detected by western blot. RESULTS We found that there was no obvious difference in phenotype or function between Rdh13 knockout and wild-type mice. In Rdh13(-/-) mice subjected to intense light exposure, the photoreceptor outer-plus-inner-segment and outer nuclear layer were dramatically shorter, and the amplitudes of a- and b-waves under scotopic conditions were significantly attenuated. Distinctly swollen mitochondria with disrupted cristae were observed in the photoreceptor inner segments of Rdh13(-/-) mice. Increased expression levels of CytC, CytC-responsive apoptosis proteinase activating factor-1 (Apaf-1) and caspases 3, and other mitochondria apoptosis-related genes (nuclear factor-kappa B P65 [P65] and B-cell lymphoma 2-associated X protein [Bax]) were observed in Rdh13(-/-) mice. CONCLUSIONS Rdh13 can protect the retina against acute light-induced retinopathy. The mechanism may involve inhibition of the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Ophthalmology, Shanghai First People's Hospital, Affiliate of Shanghai Jiaotong University, Shanghai, PR China
| | - Xiaofang Cui
- Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Qing Gu
- Department of Ophthalmology, Shanghai First People's Hospital, Affiliate of Shanghai Jiaotong University, Shanghai, PR China
| | - Yan Chen
- Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Jia Zhou
- Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Ying Kuang
- Shanghai Research Center for Model Organisms, Shanghai, PR China
| | - Zhugang Wang
- Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiaotong University School of Medicine, Shanghai, PR China,Shanghai Research Center for Model Organisms, Shanghai, PR China
| | - Xun Xu
- Department of Ophthalmology, Shanghai First People's Hospital, Affiliate of Shanghai Jiaotong University, Shanghai, PR China
| |
Collapse
|
250
|
Xu F, Dong Q, Liu L, Li H, Liang X, Jiang R, Sui R, Dong F. Novel RPE65 mutations associated with Leber congenital amaurosis in Chinese patients. Mol Vis 2012; 18:744-50. [PMID: 22509104 PMCID: PMC3324356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 03/23/2012] [Indexed: 10/31/2022] Open
Abstract
PURPOSE Retinal pigment epithelium-specific protein 65 kDa (RPE65) plays an essential role in vitamin A metabolism necessary for synthesizing the visual pigment 11-cis-retinal chromophore. Mutations in RPE65 cause the childhood blindness disorder known as Leber congenital amaurosis (LCA), as well as autosomal recessive retinitis pigmentosa (RP). The purpose of this study was to identify RPE65 mutations in Chinese patients with LCA, determine the prevalence of RPE65 mutations in this cohort, and assess the clinical features of those patients with RPE65 mutations. METHODS Detailed ocular examinations were performed, and genomic DNA was isolated with standard methods for genetic diagnosis. All 14 exons of RPE65 were amplified with PCR and screened for mutation with direct DNA sequencing. Two hundred unrelated healthy Chinese subjects were screened to exclude nonpathogenic polymorphisms. Multiple alignments of eight eukaryotic RPE65 orthologs were performed. RESULTS A total of 101 LCA patients, drawn from 100 unrelated families, were selected for mutation screening in the RPE65 gene. Compound heterozygous missense mutations Leu67Arg and Tyr368Cys were identified in two affected sisters and segregated with their family. Four previously reported polymorphisms were identified in this study. No other disease-related mutation was detected. The frequency spectrum of variations in the RPE65 gene was estimated to be 1% (1/100) in this cohort of Chinese patients with LCA. The two patients showed classical signs of LCA with relatively preserved central vision and retinal structure. CONCLUSIONS The RPE65 mutation is a rare cause of LCA in the Chinese population. Compound heterozygous missense mutations Leu67Arg and Tyr368Cys are related to a relatively mild LCA phenotype. Genetic characterization of patients with RPE65 mutations is important for future rational therapies.
Collapse
Affiliation(s)
- Fei Xu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiang Dong
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China,Taishan Medical College, Beijing, China
| | - Liang Liu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaofang Liang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China,Ocular Genetic Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ruxin Jiang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China,Ocular Genetic Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fangtian Dong
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|