201
|
Ryzhavskii BY, Lebed’ko OA, Belolyubskaya DS, Baranova SN. Long-term consequences of prenatal exposure to lead on brain development in rats. ACTA ACUST UNITED AC 2008; 38:145-9. [DOI: 10.1007/s11055-008-0021-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Indexed: 10/22/2022]
|
202
|
Jiang J, Huang Z, Zhao Q, Feng W, Belikova NA, Kagan VE. Interplay between bax, reactive oxygen species production, and cardiolipin oxidation during apoptosis. Biochem Biophys Res Commun 2008; 368:145-50. [PMID: 18211809 DOI: 10.1016/j.bbrc.2008.01.055] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 01/15/2008] [Indexed: 11/16/2022]
Abstract
Bax/Bak activation and cardiolipin peroxidation are essential for cytochrome c release during apoptosis, yet, the link between them remains elusive. We report that sequence of events after exposure of mouse embryonic fibroblast (MEF) cells to actinomycin D followed the order: Bax translocation-->superoxide production-->cardiolipin peroxidation. Genetic ablation of Bax/Bak inhibited actinomycin D induced superoxide production and cardiolipin peroxidation. Rotenone caused robust superoxide generation but did not trigger cardiolipin peroxidation in Bax/Bak double knockout MEF cells. This suggests that, in addition to participating in ROS generation, Bax/Bak play another specific role in cardiolipin oxidation. In isolated mitochondria, recombinant Bax enhanced succinate induced cardiolipin oxidation and cytochrome c release. Mitochondrial peroxidase activity, likely involved in cardiolipin peroxidation, was enhanced upon incubation with recombinant Bax. Thus, cardiolipin peroxidation may be causatively and time-dependently related to Bax/Bak effects on ROS generation and peroxidase activation of cytochrome c.
Collapse
Affiliation(s)
- Jianfei Jiang
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Bridgeside Point, 100 Technology Drive, Suite 350, Pittsburgh, PA 15219, USA
| | | | | | | | | | | |
Collapse
|
203
|
|
204
|
Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 2007; 102:488-96. [PMID: 18096818 DOI: 10.1161/circresaha.107.162800] [Citation(s) in RCA: 554] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is a prominent feature of most cardiovascular diseases. Angiotensin (Ang) II is an important stimulus for atherogenesis and hypertension; however, its effects on mitochondrial function remain unknown. We hypothesized that Ang II could induce mitochondrial oxidative damage that in turn might decrease endothelial nitric oxide (NO.) bioavailability and promote vascular oxidative stress. The effect of Ang II on mitochondrial ROS, mitochondrial respiration, membrane potential, glutathione, and endothelial NO. was studied in isolated mitochondria and intact bovine aortic endothelial cells using electron spin resonance, dihydroethidium high-performance liquid chromatography -based assay, Amplex Red and cationic dye fluorescence. Ang II significantly increased mitochondrial H2O2 production. This increase was blocked by preincubation of intact cells with apocynin (NADPH oxidase inhibitor), uric acid (scavenger of peroxynitrite), chelerythrine (protein kinase C inhibitor), N(G)-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), 5-hydroxydecanoate (mitochondrial ATP-sensitive potassium channels inhibitor), or glibenclamide. Depletion of p22(phox) subunit of NADPH oxidase with small interfering RNA also inhibited Ang II-mediated mitochondrial ROS production. Ang II depleted mitochondrial glutathione, increased state 4 and decreased state 3 respirations, and diminished mitochondrial respiratory control ratio. These responses were attenuated by apocynin, 5-hydroxydecanoate, and glibenclamide. In addition, 5-hydroxydecanoate prevented the Ang II-induced decrease in endothelial NO. and mitochondrial membrane potential. Therefore, Ang II induces mitochondrial dysfunction via a protein kinase C-dependent pathway by activating the endothelial cell NADPH oxidase and formation of peroxynitrite. Furthermore, mitochondrial dysfunction in response to Ang II modulates endothelial NO. and generation, which in turn has ramifications for development of endothelial dysfunction.
Collapse
Affiliation(s)
- Abdulrahman K Doughan
- Division of Cardiology and Department of Medicine, Emory University School of Medicine, 1639 Pierce Dr, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
205
|
Everse J, Coates PW. Neurodegeneration and peroxidases. Neurobiol Aging 2007; 30:1011-25. [PMID: 18053617 DOI: 10.1016/j.neurobiolaging.2007.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/21/2007] [Accepted: 10/13/2007] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases that affect different parts of the central nervous system. However, a review of the literature indicates that certain biochemical reactions involved in neurodegeneration in these three diseases are quite similar and could be partly identical. This article critically examines the similarities and, based on data from our own and other laboratories, proposes a novel explanation for neurodegeneration in these three diseases. We identified about 20 commonalities that exist in the neurodegenerative process of each disease. We hypothesize that there are two enzyme-catalyzed pathways that operate in affected neurons: an oxidative pathway leading to destruction of various neuronal proteins and lipids, and an apoptotic pathway which the body normally uses to remove unwanted and dysfunctional cells. Data from many laboratories indicate that oxidative reactions are primarily responsible for neurodegeneration, whereas apoptosis may well be a secondary response to the presence of neurons that have already been severely damaged by oxidative reactions. Attempts to inhibit apoptosis for the purpose of attenuating progression of these diseases may therefore be only of marginal benefit. Specific oxidative reactions within affected neurons led us to propose that one or more heme peroxidases may be the catalyst(s) involved in oxidation of proteins and lipids. Support for this proposal is provided by the recent finding that amyloi-beta peptide may act as a peroxidase in AD. Possible participation of the peroxidase activity of cytochrome c, herein designated as cytochrome c(px) to distinguish it from yeast cytochrome c peroxidase, is discussed. Of special interest is our recent finding that many compounds that cause attenuation of neurodegeneration are inhibitors of the peroxidase activity of cytochrome c. Several inhibitors were subsequently identified as suicide substrates. Such inhibitors could be ideally suited for targeted clinical approaches aimed at arresting progression of neurodegeneration. Finally, it is possible that immobilized yet still active peroxidase(s) may be present in protein aggregates in AD, PD, and ALS. This activity could be the catalyst for the slow, self-perpetuating and irreversible degeneration of affected neurons that occurs over long periods of time in these neurodegenerative diseases.
Collapse
Affiliation(s)
- Johannes Everse
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | |
Collapse
|
206
|
Chowdhury AR, Ghosh I, Datta K. Excessive reactive oxygen species induces apoptosis in fibroblasts: role of mitochondrially accumulated hyaluronic acid binding protein 1 (HABP1/p32/gC1qR). Exp Cell Res 2007; 314:651-67. [PMID: 18166172 DOI: 10.1016/j.yexcr.2007.10.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/11/2007] [Accepted: 10/31/2007] [Indexed: 11/29/2022]
Abstract
Constitutively expressed HABP1 in normal murine fibroblast cell line induces growth perturbation, morphological abnormalities along with initiation of apoptosis. Here, we demonstrate that though HABP1 accumulation started in mitochondria from 48 hr of growth, induction of apoptosis with the release of cytochrome c and apoptosome complex formation occurred only after 60 hr. This mitochondrial dysfunction was due to gradual increase in ROS generation in HABP1 overexpressing cells. Along with ROS generation, increased Ca 2+ influx in mitochondria leading to drop in membrane potential was evident. Interestingly, upon expression of HABP1, the respiratory chain complex I was shown to be significantly inhibited. Electronmicrograph confirmed defective mitochondrial ultrastructure. The reduction in oxidant generation and drop in apoptotic cell population accomplished by disruption of HABP1 expression, corroborating the fact that excess ROS generation in HABP1 overexpressing cells leading to apoptosis was due to mitochondrial HABP1 accumulation.
Collapse
Affiliation(s)
- Anindya Roy Chowdhury
- Biochemistry Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | |
Collapse
|
207
|
Gogvadze V, Zhivotovsky B. Alteration of mitochondrial function and cell sensitization to death. J Bioenerg Biomembr 2007; 39:23-30. [PMID: 17549639 DOI: 10.1007/s10863-006-9054-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Stimulation of cell death is a powerful instrument in the organism's struggle with cancer. Apoptosis represents one mode of cell death. However, in a variety of tumor cells proapoptotic mechanisms are downregulated, or not properly activated, whereas antiapoptotic mechanisms are upregulated. Mitochondria are known as key players in the regulation of apoptotic pathways. Specifically, permeabilization of the mitochondrial outer membrane and subsequent release of proapoptotic proteins from the intermembrane space are viewed as decisive events in the initiation and/or execution of apoptosis. Disruption of mitochondrial functions by anticancer drugs, which induce oxidative stress, inhibit mitochondrial respiration, or uncouple oxidative phosphorylation, can sensitize mitochondria in these cells and facilitate outer membrane permeabilization.
Collapse
Affiliation(s)
- Vladimir Gogvadze
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | | |
Collapse
|
208
|
|
209
|
Andres-Mateos E, Perier C, Zhang L, Blanchard-Fillion B, Greco TM, Thomas B, Ko HS, Sasaki M, Ischiropoulos H, Przedborski S, Dawson TM, Dawson VL. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci U S A 2007; 104:14807-12. [PMID: 17766438 PMCID: PMC1976193 DOI: 10.1073/pnas.0703219104] [Citation(s) in RCA: 373] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative movement disorder. Whereas the majority of PD cases are sporadic, rare genetic defects have been linked to this prevalent movement disorder. Mutations in DJ-1 are associated with autosomal recessive early-onset PD. The exact biochemical function of DJ-1 has remained elusive. Here we report the generation of DJ-1 knockout (KO) mice by targeted deletion of exon 2 and exon 3. There is no observable degeneration of the central dopaminergic pathways, and the mice are anatomically and behaviorally similar to WT mice. Fluorescent Amplex red measurements of H(2)O(2) indicate that isolated mitochondria from young and old DJ-1 KO mice have a 2-fold increase in H(2)O(2). DJ-1 KO mice of 2-3 months of age have a 60% reduction in mitochondrial aconitase activity without compromising other mitochondrial processes. At an early age there are no differences in antioxidant enzymes, but in older mice there is an up-regulation of mitochondrial manganese superoxide dismutase and glutathione peroxidase and a 2-fold increase in mitochondrial glutathione peroxidase activity. Mutational analysis and mass spectrometry reveal that DJ-1 is an atypical peroxiredoxin-like peroxidase that scavenges H(2)O(2) through oxidation of Cys-106. In vivo there is an increase of DJ-1 oxidized at Cys-106 after 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine intoxication of WT mice. Taken together these data indicate that the DJ-1 KO mice have a deficit in scavenging mitochondrial H(2)O(2) due to the physiological function of DJ-1 as an atypical peroxiredoxin-like peroxidase.
Collapse
Affiliation(s)
| | - Celine Perier
- Department of Neurology, Pathology, and Cell Biology, Columbia University, New York, NY 10032; and
| | - Li Zhang
- *Institute for Cell Engineering
- Department of Neurology
| | - Beatrice Blanchard-Fillion
- Stokes Research Institute and Department of Pharmacology, Children's Hospital of Philadelphia and University of Pennsylvania, 416D Abramson Research Center, 3517 Civic Center Boulevard, Philadelphia, PA 19104-4318
| | - Todd M. Greco
- Stokes Research Institute and Department of Pharmacology, Children's Hospital of Philadelphia and University of Pennsylvania, 416D Abramson Research Center, 3517 Civic Center Boulevard, Philadelphia, PA 19104-4318
| | - Bobby Thomas
- *Institute for Cell Engineering
- Department of Neurology
| | - Han Seok Ko
- *Institute for Cell Engineering
- Department of Neurology
| | | | - Harry Ischiropoulos
- Stokes Research Institute and Department of Pharmacology, Children's Hospital of Philadelphia and University of Pennsylvania, 416D Abramson Research Center, 3517 Civic Center Boulevard, Philadelphia, PA 19104-4318
| | - Serge Przedborski
- Department of Neurology, Pathology, and Cell Biology, Columbia University, New York, NY 10032; and
| | - Ted M. Dawson
- *Institute for Cell Engineering
- Department of Neurology
- Solomon H. Snyder Department of Neuroscience, and
| | - Valina L. Dawson
- *Institute for Cell Engineering
- Department of Neurology
- Solomon H. Snyder Department of Neuroscience, and
- Department of Physiology, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD 21205
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
210
|
Racay P, Tatarkova Z, Drgova A, Kaplan P, Dobrota D. Effect of ischemic preconditioning on mitochondrial dysfunction and mitochondrial p53 translocation after transient global cerebral ischemia in rats. Neurochem Res 2007; 32:1823-32. [PMID: 17661174 DOI: 10.1007/s11064-007-9437-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 04/02/2007] [Indexed: 11/30/2022]
Abstract
Transient global brain ischemia induces dysfunctions of mitochondria including disturbance in mitochondrial protein synthesis and inhibition of respiratory chain complexes. Due to capacity of mitochondria to release apoptogenic proteins, ischemia-induced mitochondrial dysfunction is considered to be a key event coupling cerebral blood flow arrest to neuronal cell death. Ischemic preconditioning (IPC) represents an important phenomenon of adaptation of central nervous system (CNS) to sub-lethal short-term ischemia, which results in increased tolerance of CNS to the lethal ischemia. In this study we have determined the effect of ischemic preconditioning on ischemia/reperfusion-associated inhibition of mitochondrial protein synthesis and activity of mitochondrial respiratory chain complexes I and IV in the hippocampus of rats. Global brain ischemia was induced by 4-vessel occlusion in duration of 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later, 15 min of lethal ischemia was induced. Our results showed that IPC affects ischemia-induced dysfunction of hippocampal mitochondria in two different ways. Repression of mitochondrial translation induced during reperfusion of the ischemic brain is significantly attenuated by IPC. Slight protective effect of IPC was documented for complex IV, but not for complex I. Despite this, protective effect of IPC on ischemia/reperfusion-associated changes in integrity of mitochondrial membrane and membrane proteins were observed. Since IPC exhibited also inhibitory effect on translocation of p53 to mitochondria, our results indicate that IPC affects downstream processes connecting mitochondrial dysfunction to neuronal cell death.
Collapse
Affiliation(s)
- Peter Racay
- Institute of Biochemistry, Jessenius Faculty of Medicine, Comenius University, Mala Hora 4, Martin 03601, Slovak Republic.
| | | | | | | | | |
Collapse
|
211
|
Wang HL, Chou AH, Yeh TH, Li AH, Chen YL, Kuo YL, Tsai SR, Yu ST. PINK1 mutants associated with recessive Parkinson's disease are defective in inhibiting mitochondrial release of cytochrome c. Neurobiol Dis 2007; 28:216-26. [PMID: 17707122 DOI: 10.1016/j.nbd.2007.07.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/02/2007] [Accepted: 07/04/2007] [Indexed: 12/20/2022] Open
Abstract
Mutations in PTEN-induced kinase 1 (PINK1) gene cause recessive familial type 6 of Parkinson's disease (PARK6). We investigated molecular mechanisms underlying PINK1 neuroprotective function and PARK6 mutation-induced loss of PINK1 function. Overexpression of wild-type PINK1 blocked mitochondrial release of apoptogenic cytochrome c, caspase-3 activation and apoptotic cell death induced by proteasome inhibitor MG132. N-terminal truncated PINK1 (NDelta35), which lacks mitochondrial localization sequence, did not block MG132-induced cytochrome c release and cytotoxicity. Despite mitochondrial expression, PARK6 mutant (E240K), (H271Q), (G309D), (L347P), (E417G) and C-terminal truncated (CDelta145) PINK1 failed to inhibit MG132-induced cytochrome c release and caspase-3 activation. Overexpression of wild-type PINK1 blocked cytochrome c release and cell death caused by atractyloside, which opens mitochondrial permeability transition pore (mPTP). PARK6 PINK1 mutants failed to inhibit atractyloside-induced cytochrome c release. These results suggest that PINK1 exerts anti-apoptotic effect by inhibiting the opening of mPTP and that PARK6 mutant PINK1 loses its ability to prevent mPTP opening and cytochrome c release.
Collapse
Affiliation(s)
- Hung-Li Wang
- Department of Physiology, Chang Gung University School of Medicine, Kwei-San, Tao-Yuan, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Koopman WJH, Verkaart S, Visch HJ, van Emst-de Vries S, Nijtmans LGJ, Smeitink JAM, Willems PHGM. Human NADH:ubiquinone oxidoreductase deficiency: radical changes in mitochondrial morphology? Am J Physiol Cell Physiol 2007; 293:C22-9. [PMID: 17428841 DOI: 10.1152/ajpcell.00194.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Malfunction of NADH:ubiquinone oxidoreductase or complex I (CI), the first and largest complex of the mitochondrial oxidative phosphorylation system, has been implicated in a wide variety of human disorders. To demonstrate a quantitative relationship between CI amount and activity and mitochondrial shape and cellular reactive oxygen species (ROS) levels, we recently combined native electrophoresis and confocal and video microscopy of dermal fibroblasts of healthy control subjects and children with isolated CI deficiency. Individual mitochondria appeared fragmented and/or less branched in patient fibroblasts with a severely reduced CI amount and activity (class I), whereas patient cells in which these latter parameters were only moderately reduced displayed a normal mitochondrial morphology (class II). Moreover, cellular ROS levels were significantly more increased in class I compared with class II cells. We propose a mechanism in which a mutation-induced decrease in the cellular amount and activity of CI leads to enhanced ROS levels, which, in turn, induce mitochondrial fragmentation when not appropriately counterbalanced by the cell's antioxidant defense systems.
Collapse
Affiliation(s)
- Werner J H Koopman
- Department of Membrane Biochemistry, Radboud University Nijmegen Medical Centre, P.O. Box 9101, NL-6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
213
|
Marella M, Seo BB, Matsuno-Yagi A, Yagi T. Mechanism of cell death caused by complex I defects in a rat dopaminergic cell line. J Biol Chem 2007; 282:24146-56. [PMID: 17581813 DOI: 10.1074/jbc.m701819200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Defects in the proton-translocating NADH-quinone oxidoreductase (complex I) of mammalian mitochondria are linked to neurodegenerative disorders. The mechanism leading to cell death elicited by complex I deficiency remains elusive. We have shown that expression of a rotenone-insensitive yeast NADH-quinone oxidoreductase (Ndi1) can rescue mammalian cells from complex I dysfunction. By using the Ndi1 enzyme, we have investigated the key events in the process of cell death using a rat dopaminergic cell line, PC12. We found that complex I inhibition provokes the following events: 1) activation of specific kinase pathways; 2) release of mitochondrial proapoptotic factors, apoptosis inducing factor, and endonuclease G. AS601245, a kinase inhibitor, exhibited significant protection against these apoptotic events. The traditional caspase pathway does not seems to be involved because caspase 3 activation was not observed. Our data suggest that overproduction of reactive oxygen species (ROS) caused by complex I inhibition is responsible for triggering the kinase activation, for the release of the proapoptotic factors, and then for cell death. Nearly perfect prevention of apoptotic cell death by Ndi1 agrees with our earlier observation that the presence of Ndi1 diminishes rotenone-induced ROS generation from complex I. In fact, this study demonstrated that Ndi1 keeps the redox potential high even in the presence of rotenone. Under these conditions, ROS formation by complex I is known to be minimal. Possible use of our cellular model is discussed with regard to development of therapeutic strategies for neurodegenerative diseases caused by complex I defects.
Collapse
Affiliation(s)
- Mathieu Marella
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
214
|
Singh S, Dikshit M. Apoptotic neuronal death in Parkinson's disease: Involvement of nitric oxide. ACTA ACUST UNITED AC 2007; 54:233-50. [PMID: 17408564 DOI: 10.1016/j.brainresrev.2007.02.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 01/31/2007] [Accepted: 02/02/2007] [Indexed: 12/15/2022]
Abstract
Apoptosis of nigral dopaminergic neurons by various mechanisms is an emerging phenomenon involved in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Both extrinsic and intrinsic pathways seems to be involved in death of nigral neurons, intrinsic pathway however, seems to be more important due to the energy crisis. Apoptosis by intrinsic pathway is executed by several initiators and effector caspases, which have been found activated in PD patients, experimental models as well as in neuronal cultures. Nitric oxide (NO) seems to be a central molecule due to its ability to modulate both pro and antiapoptotic phenomenon. The review focuses on the diverse extrinsic and intrinsic factors, signaling pathways and their modulation by NO leading to the death of dopaminergic neurons.
Collapse
Affiliation(s)
- Sarika Singh
- Division of Toxicology, Central Drug Research Institute, Lucknow-226001, India
| | | |
Collapse
|
215
|
Perier C, Bové J, Wu DC, Dehay B, Choi DK, Jackson-Lewis V, Rathke-Hartlieb S, Bouillet P, Strasser A, Schulz JB, Przedborski S, Vila M. Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson's disease. Proc Natl Acad Sci U S A 2007; 104:8161-6. [PMID: 17483459 PMCID: PMC1876588 DOI: 10.1073/pnas.0609874104] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dysfunction of mitochondrial complex I is associated with a wide spectrum of neurodegenerative disorders, including Parkinson's disease (PD). In rodents, inhibition of complex I leads to degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNpc), as seen in PD, through activation of mitochondria-dependent apoptotic molecular pathways. In this scenario, complex I blockade increases the soluble pool of cytochrome c in the mitochondrial intermembrane space through oxidative mechanisms, whereas activation of pro-cell death protein Bax is actually necessary to trigger neuronal death by permeabilizing the outer mitochondrial membrane and releasing cytochrome c into the cytosol. Activation of Bax after complex I inhibition relies on its transcriptional induction and translocation to the mitochondria. How complex I deficiency leads to Bax activation is currently unknown. Using gene-targeted mice, we show that the tumor suppressor p53 mediates Bax transcriptional induction after PD-related complex I blockade in vivo, but it does not participate in Bax mitochondrial translocation in this model, either by a transcription-independent mechanism or through the induction of BH3-only proteins Puma or Noxa. Instead, Bax mitochondrial translocation in this model relies mainly on the JNK-dependent activation of the BH3-only protein Bim. Targeting either Bax transcriptional induction or Bax mitochondrial translocation results in a marked attenuation of SNpc dopaminergic cell death caused by complex I inhibition. These results provide further insight into the pathogenesis of PD neurodegeneration and identify molecular targets of potential therapeutic significance for this disabling neurological illness.
Collapse
Affiliation(s)
- Celine Perier
- *Research Institute-University Hospital Vall d'Hebron, 08035 Barcelona, Spain
- Departments of Neurology and
| | - Jordi Bové
- *Research Institute-University Hospital Vall d'Hebron, 08035 Barcelona, Spain
| | | | - Benjamin Dehay
- *Research Institute-University Hospital Vall d'Hebron, 08035 Barcelona, Spain
| | | | | | - Silvia Rathke-Hartlieb
- Department of Neurodegeneration and Restorative Research, Center of Neurological Medicine and Deutsche Forschungsgemeinschaft (DFG) Research Center Molecular Physiology of the Brain, University of Göttingen, 37073 Göttingen, Germany
| | - Philippe Bouillet
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia; and
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia; and
| | - Jörg B. Schulz
- Department of Neurodegeneration and Restorative Research, Center of Neurological Medicine and Deutsche Forschungsgemeinschaft (DFG) Research Center Molecular Physiology of the Brain, University of Göttingen, 37073 Göttingen, Germany
| | - Serge Przedborski
- Departments of Neurology and
- Pathology and
- Center for Neurobiology and Behavior, Columbia University, New York, NY 10032
- **To whom correspondence may be addressed. E-mail: or
| | - Miquel Vila
- *Research Institute-University Hospital Vall d'Hebron, 08035 Barcelona, Spain
- Departments of Neurology and
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- **To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
216
|
Fisher MA, Oleksiak MF. Convergence and divergence in gene expression among natural populations exposed to pollution. BMC Genomics 2007; 8:108. [PMID: 17459166 PMCID: PMC1868758 DOI: 10.1186/1471-2164-8-108] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 04/25/2007] [Indexed: 11/10/2022] Open
Abstract
Background Natural populations of the teleost fish Fundulus heteroclitus tolerate a broad range of environmental conditions including temperature, salinity, hypoxia and chemical pollutants. Strikingly, populations of Fundulus inhabit and have adapted to highly polluted Superfund sites that are contaminated with persistent toxic chemicals. These natural populations provide a foundation to discover critical gene pathways that have evolved in a complex natural environment in response to environmental stressors. Results We used Fundulus cDNA arrays to compare metabolic gene expression patterns in the brains of individuals among nine populations: three independent, polluted Superfund populations and two genetically similar, reference populations for each Superfund population. We found that up to 17% of metabolic genes have evolved adaptive changes in gene expression in these Superfund populations. Among these genes, two (1.2%) show a conserved response among three polluted populations, suggesting common, independently evolved mechanisms for adaptation to environmental pollution in these natural populations. Conclusion Significant differences among individuals between polluted and reference populations, statistical analyses indicating shared adaptive changes among the Superfund populations, and lack of reduction in gene expression variation suggest that common mechanisms of adaptive resistance to anthropogenic pollutants have evolved independently in multiple Fundulus populations. Among three independent, Superfund populations, two genes have a common response indicating that high selective pressures may favor specific responses.
Collapse
Affiliation(s)
- Marla A Fisher
- Department of Biology, University of Hawai'i, Hilo, 200 W. Kawili St., Hilo, HI 96720, USA
- Department of Environmental and Molecular Toxicology, North Carolina State University, Campus Box 7633, Raleigh, NC 27695-7633 USA
| | - Marjorie F Oleksiak
- Rosenstiel School of Marine & Atmospheric Sciences, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149 USA
- Department of Environmental and Molecular Toxicology, North Carolina State University, Campus Box 7633, Raleigh, NC 27695-7633 USA
| |
Collapse
|
217
|
Lazarou M, McKenzie M, Ohtake A, Thorburn DR, Ryan MT. Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol Cell Biol 2007; 27:4228-37. [PMID: 17438127 PMCID: PMC1900046 DOI: 10.1128/mcb.00074-07] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Complex I of the respiratory chain is composed of at least 45 subunits that assemble together at the mitochondrial inner membrane. Defects in human complex I result in energy generation disorders and are also implicated in Parkinson's disease and altered apoptotic signaling. The assembly of this complex is poorly understood and is complicated by its large size and its regulation by two genomes, with seven subunits encoded by mitochondrial DNA (mtDNA) and the remainder encoded by nuclear genes. Here we analyzed the assembly of a number of mtDNA- and nuclear-gene-encoded subunits into complex I. We found that mtDNA-encoded subunits first assemble into intermediate complexes and require significant chase times for their integration into the holoenzyme. In contrast, a set of newly imported nuclear-gene-encoded subunits integrate with preexisting complex I subunits to form intermediates and/or the fully assembly holoenzyme. One of the intermediate complexes represents a subassembly associated with the chaperone B17.2L. By using isolated patient mitochondria, we show that this subassembly is a productive intermediate in complex I assembly since import of the missing subunit restores complex I assembly. Our studies point to a mechanism of complex I biogenesis involving two complementary processes, (i) synthesis of mtDNA-encoded subunits to seed de novo assembly and (ii) exchange of preexisting subunits with newly imported ones to maintain complex I homeostasis. Subunit exchange may also act as an efficient mechanism to prevent the accumulation of oxidatively damaged subunits that would otherwise be detrimental to mitochondrial oxidative phosphorylation and have the potential to cause disease.
Collapse
Affiliation(s)
- Michael Lazarou
- Department of Biochemistry, La Trobe University, Melbourne, Australia
| | | | | | | | | |
Collapse
|
218
|
Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 2007; 47:143-83. [PMID: 17029566 DOI: 10.1146/annurev.pharmtox.47.120505.105122] [Citation(s) in RCA: 899] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In addition to the established role of the mitochondria in energy metabolism, regulation of cell death has emerged as a second major function of these organelles. This seems to be intimately linked to their generation of reactive oxygen species (ROS), which have been implicated in mtDNA mutations, aging, and cell death. Mitochondrial regulation of apoptosis occurs by mechanisms, which have been conserved through evolution. Thus, many lethal agents target the mitochondria and cause release of cytochrome c and other pro-apoptotic proteins into the cytoplasm. Cytochrome c release is initiated by the dissociation of the hemoprotein from its binding to the inner mitochondrial membrane. Oxidation of cardiolipin reduces cytochrome c binding and increases the level of soluble cytochrome c in the intermembrane space. Subsequent release of the hemoprotein occurs by pore formation mediated by pro-apoptotic Bcl-2 family proteins, or by Ca(2+) and ROS-triggered mitochondrial permeability transition, although the latter pathway might be more closely associated with necrosis. Taken together, these findings have placed the mitochondria in the focus of current cell death research.
Collapse
Affiliation(s)
- Sten Orrenius
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
219
|
Abstract
In addition to the well-established role of the mitochondria in energy metabolism, regulation of cell death has recently emerged as a second major function of these organelles. This, in turn, seems to be intimately linked to their role as the major intracellular source of reactive oxygen species (ROS), which are mainly generated at Complex I and III of the respiratory chain. Excessive ROS production can lead to oxidation of macromolecules and has been implicated in mtDNA mutations, ageing, and cell death. Mitochondria-generated ROS play an important role in the release of cytochrome c and other pro-apoptotic proteins, which can trigger caspase activation and apoptosis. Cytochrome c release occurs by a two-step process that is initiated by the dissociation of the hemoprotein from its binding to cardiolipin, which anchors it to the inner mitochondrial membrane. Oxidation of cardiolipin reduces cytochrome c binding and results in an increased level of "free" cytochrome c in the intermembrane space. Conversely, mitochondrial antioxidant enzymes protect from apoptosis. Hence, there is accumulating evidence supporting a direct link between mitochondria, oxidative stress and cell death.
Collapse
Affiliation(s)
- Martin Ott
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
220
|
Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 2007; 83:84-92. [PMID: 17239370 DOI: 10.1016/j.yexmp.2006.09.008] [Citation(s) in RCA: 412] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 09/25/2006] [Indexed: 12/21/2022]
Abstract
Since the first mitochondrial dysfunction was described in the 1960s, the medicine has advanced in its understanding the role mitochondria play in health, disease, and aging. A wide range of seemingly unrelated disorders, such as schizophrenia, bipolar disease, dementia, Alzheimer's disease, epilepsy, migraine headaches, strokes, neuropathic pain, Parkinson's disease, ataxia, transient ischemic attack, cardiomyopathy, coronary artery disease, chronic fatigue syndrome, fibromyalgia, retinitis pigmentosa, diabetes, hepatitis C, and primary biliary cirrhosis, have underlying pathophysiological mechanisms in common, namely reactive oxygen species (ROS) production, the accumulation of mitochondrial DNA (mtDNA) damage, resulting in mitochondrial dysfunction. Antioxidant therapies hold promise for improving mitochondrial performance. Physicians seeking systematic treatments for their patients might consider testing urinary organic acids to determine how best to treat them. If in the next 50 years advances in mitochondrial treatments match the immense increase in knowledge about mitochondrial function that has occurred in the last 50 years, mitochondrial diseases and dysfunction will largely be a medical triumph.
Collapse
|
221
|
Calabrese V, Mancuso C, Ravagna A, Perluigi M, Cini C, De Marco C, Butterfield DA, Stella AMG. In vivo induction of heat shock proteins in the substantia nigra following L-DOPA administration is associated with increased activity of mitochondrial complex I and nitrosative stress in rats: regulation by glutathione redox state. J Neurochem 2007; 101:709-17. [PMID: 17241115 DOI: 10.1111/j.1471-4159.2006.04367.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Increasing evidence suggests a critical role for oxidative and nitrosative stress in the pathogenesis of most important neurodegenerative disorders. Parkinson's disease (PD) is a neurodegenerative disease characterized by a severe depletion in number of dopaminergic cells of the substantia nigra (SN). Administration of L-DOPA (LD) is the more effective treatment for patients with PD. However, the vast majority of patients suffer LD-related complications, which represent the major problem in the clinical management of PD. In the present study, LD administration to rats resulted in a significant dose-dependent increase in Hsp70 synthesis which was specific for the SN. The amount of 70 kDa protein increased after 6 h treatment reaching the maximal induction after 24-48 h. Induction of Hsp70 in the SN was associated with a significant increase in constitutive Hsc70 and mitochondrial Hsp60 stress proteins, and with increased expression of mitochondrial complex I whereas no significant changes were found in the activity of complex IV. In the same experimental conditions, a significant decrease in reduced glutathione was observed, which was associated with an increased content of oxidized glutathione content as well as nitric oxide (NO) synthase activity, NO metabolites and nitrotyrosine immunoreactivity. Interestingly, Hsp70 induction, iNOS up-regulation and nitrotyrosine formation have been confirmed also in SN and striatum of rats treated with LD and carbidopa, this latter being an inhibitor of the peripheral DOPA decarboxylase. Our data are in favor of the importance of the heat shock signal pathway as a basic mechanism of defense against neurotoxicity elicited by free radical oxygen and nitrogen species produced in aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Biochemistry and Molecular Biology Section, Faculty of Medicine, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Leinninger GM, Edwards JL, Lipshaw MJ, Feldman EL. Mechanisms of disease: mitochondria as new therapeutic targets in diabetic neuropathy. ACTA ACUST UNITED AC 2006; 2:620-8. [PMID: 17057749 DOI: 10.1038/ncpneuro0320] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 08/16/2006] [Indexed: 12/12/2022]
Abstract
Diabetic neuropathy (DN) is the most common complication of diabetes mellitus, and it imposes a considerable burden on a patient's quality of life and the health-care system. Despite the prevalence and severity of DN, there are no effective treatments. Pathogenetic evidence suggests that DN is marked by degeneration of dorsal root ganglion (DRG) neurons in peripheral nerves, and that DRG mitochondria are particularly affected. DRG mitochondria are especially vulnerable because they are the origin of reactive oxygen species production in the hyperglycemic neuron. Accumulating evidence indicates that neuronal mitochondria are subject to damage at the level of their DNA, and their outer and inner membranes, and also via deregulation of mitochondrial fission and fusion proteins that control mitochondrial shape and number. This Review will survey the mechanisms of mitochondrial degeneration in the pathogenesis of DN, highlighting potential mitochondrial sites for therapeutic intervention.
Collapse
|
223
|
Song Y, Li M, Li JC, Wei EQ. Edaravone protects PC12 cells from ischemic-like injury via attenuating the damage to mitochondria. J Zhejiang Univ Sci B 2006; 7:749-56. [PMID: 16909478 PMCID: PMC1559792 DOI: 10.1631/jzus.2006.b0749] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Edaravone had been validated to effectively protect against ischemic injuries. In this study, we investigated the protective effect of edaravone by observing the effects on anti-apoptosis, regulation of Bcl-2/Bax protein expression and recovering from damage to mitochondria after OGD (oxygen-glucose deprivation)-reperfusion. METHODS Viability of PC12 cells which were injured at different time of OGD injury, was quantified by measuring MTT (2-(4,5-dimethylthia-zol-2-yl)-2,5-diphenyltetrazolium bromide) staining. In addition, PC12 cells' viability was also quantified after their preincubation in different concentration of edaravone for 30 min followed by (OGD). Furthermore, apoptotic population of PC12 cells that reinsulted from OGD-reperfusion with or without preincubation with edaravone was determined by flow cytometer analysis, electron microscope and Hoechst/PI staining. Finally, change of Bcl-2/Bax protein expression was detected by Western blot. RESULTS (1) The viability of PC12 cells decreased with time (1 - 12 h) after OGD. We regarded the model of OGD 2 h, then replacing DMEM (Dulbecco's Modified Eagle's Medium) for another 24 h as an OGD-reperfusion in this research. Furthermore, most PC12 cells were in the state of apoptosis after OGD-reperfusion. (2) The viability of PC12 cells preincubated with edaravone at high concentrations (1, 0.1, 0.01 micromol/L) increased significantly with edaravone protecting PC12 cells from apoptosis after OGD-reperfusion injury. (3) Furthermore, edaravone attenuates the damage of OGD-reperfusion on mitochondria and regulated Bcl-2/Bax protein imbalance expression after OGD-reperfusion. CONCLUSION Neuroprotective effects of edaravone on ischemic or other brain injuries may be partly mediated through inhibition of Bcl-2/Bax apoptotic pathways by recovering from the damage of mitochondria.
Collapse
Affiliation(s)
- Ying Song
- Department of Cellular Biology, School of Medicine, Zhejiang University, Hangzhou 310031, China
| | - Meng Li
- Department of Cellular Biology, School of Medicine, Zhejiang University, Hangzhou 310031, China
| | - Ji-cheng Li
- Department of Cellular Biology, School of Medicine, Zhejiang University, Hangzhou 310031, China
| | - Er-qing Wei
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310031, China
- †E-mail:
| |
Collapse
|
224
|
Saldaña M, Bonastre M, Aguilar E, Marin C. Differential nigral expression of Bcl-2 protein family in chronically haloperidol and clozapine-treated rats: role in neurotoxicity and stereotyped behavior. Exp Neurol 2006; 203:302-8. [PMID: 17069804 DOI: 10.1016/j.expneurol.2006.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 08/09/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Tardive dyskinesia (TD) is a syndrome characterized by repetitive involuntary movements induced by the administration of typical neuroleptics such as haloperidol. TD generally persists after haloperidol withdrawal indicating that haloperidol produces long-lasting changes in brain function. In contrast to the typicals, atypical medications, such as clozapine, have very low rates of TD. The mechanisms underlying drug-induced TD are poorly understood. We have investigated the role of nigral expression of the bcl-2 family of proteins on haloperidol-induced neurotoxicity. Rats were treated for 21 days with the following drugs: haloperidol (1 mg/kg), clozapine (1 mg/kg) or saline. After a 3-day washout period, apomorphine-induced stereotyped behavior was scored. Western blotting was performed to evaluate the nigral expression of the dopamine transporter (DAT), bax, bcl-x(L) and bcl-2 proteins. Haloperidol administration, but not clozapine, increased stereotyped behavior (p<0.01) in association with a decrease in striatal DAT expression (p<0.05). Haloperidol and clozapine treatment significantly decreased the nigral expression of bax (p<0.05, p<0.01, respectively). Neither treatment modified bcx(L) expression. Haloperidol increased (p<0.05), whereas clozapine did not significantly modify the nigral expression of bcl-2. Our results suggest that the increase in bcl-2 expression in the haloperidol-treated animals might be a compensatory mechanism that may reflect cellular damage induced by haloperidol in the dopaminergic neurons in the pars compacta of the substantia nigra.
Collapse
Affiliation(s)
- M Saldaña
- Laboratori de Neurologia Experimental, Fundació Clínic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | |
Collapse
|
225
|
Gogvadze V, Orrenius S. Mitochondrial regulation of apoptotic cell death. Chem Biol Interact 2006; 163:4-14. [PMID: 16730343 DOI: 10.1016/j.cbi.2006.04.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/03/2006] [Accepted: 04/06/2006] [Indexed: 01/17/2023]
Abstract
Mitochondria play a decisive role in the regulation of both apoptotic and necrotic cell death. Permeabilization of the outer mitochondrial membrane and subsequent release of intermembrane space proteins are important features of both models of cell death. The mechanisms by which these proteins are released depend presumably on cell type and the nature of stimuli. Of the mechanisms involved, mitochondrial permeability transition appears to be associated mainly with necrosis, whereas the release of caspase activating proteins during early apoptosis is regulated primarily by the Bcl-2 family of proteins. However, there is increasing evidence for interaction and co-operation between these two mechanisms. The multiple mechanisms of mitochondrial permeabilization may explain diversities in the response of mitochondria to numerous apoptotic stimuli in different types of cells.
Collapse
Affiliation(s)
- Vladimir Gogvadze
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
226
|
Liu B. Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson's disease. AAPS JOURNAL 2006; 8:E606-21. [PMID: 17025278 PMCID: PMC2668934 DOI: 10.1208/aapsj080369] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a debilitating movement disorder resulting from a progressive degeneration of the nigrostriatal dopaminergic pathway and depletion of neurotransmitter dopamine in the striatum. Molecular cloning studies have identified nearly a dozen genes or loci that are associated with small clusters of mostly early onset and genetic forms of PD. The etiology of the vast majority of PD cases remains unknown, and the precise molecular and biochemical processes governing the selective and progressive degeneration of the nigrostriatal dopaminergic pathway are poorly understood. Current drug therapies for PD are symptomatic and appear to bear little effect on the progressive neurodegenerative process. Studies of postmortem PD brains and various cellular and animal models of PD in the last 2 decades strongly suggest that the generation of pro-inflammatory and neurotoxic factors by the resident brain immune cells, microglia, plays a prominent role in mediating the progressive neurodegenerative process. This review discusses literature supporting the possibility of modulating the activity of microglia as a neuroprotective strategy for the treatment of PD.
Collapse
Affiliation(s)
- Bin Liu
- Department of Pharmacodynamics, College of Pharmacy, the McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
227
|
Coon KD, Valla J, Szelinger S, Schneider LE, Niedzielko TL, Brown KM, Pearson JV, Halperin R, Dunckley T, Papassotiropoulos A, Caselli RJ, Reiman EM, Stephan DA. Quantitation of heteroplasmy of mtDNA sequence variants identified in a population of AD patients and controls by array-based resequencing. Mitochondrion 2006; 6:194-210. [PMID: 16920408 DOI: 10.1016/j.mito.2006.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 06/30/2006] [Accepted: 07/13/2006] [Indexed: 01/03/2023]
Abstract
The role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD) has been well documented. Though evidence for the role of mitochondria in AD seems incontrovertible, the impact of mitochondrial DNA (mtDNA) mutations in AD etiology remains controversial. Though mutations in mitochondrially encoded genes have repeatedly been implicated in the pathogenesis of AD, many of these studies have been plagued by lack of replication as well as potential contamination of nuclear-encoded mitochondrial pseudogenes. To assess the role of mtDNA mutations in the pathogenesis of AD, while avoiding the pitfalls of nuclear-encoded mitochondrial pseudogenes encountered in previous investigations and showcasing the benefits of a novel resequencing technology, we sequenced the entire coding region (15,452 bp) of mtDNA from 19 extremely well-characterized AD patients and 18 age-matched, unaffected controls utilizing a new, reliable, high-throughput array-based resequencing technique, the Human MitoChip. High-throughput, array-based DNA resequencing of the entire mtDNA coding region from platelets of 37 subjects revealed the presence of 208 loci displaying a total of 917 sequence variants. There were no statistically significant differences in overall mutational burden between cases and controls, however, 265 independent sites of statistically significant change between cases and controls were identified. Changed sites were found in genes associated with complexes I (30.2%), III (3.0%), IV (33.2%), and V (9.1%) as well as tRNA (10.6%) and rRNA (14.0%). Despite their statistical significance, the subtle nature of the observed changes makes it difficult to determine whether they represent true functional variants involved in AD etiology or merely naturally occurring dissimilarity. Regardless, this study demonstrates the tremendous value of this novel mtDNA resequencing platform, which avoids the pitfalls of erroneously amplifying nuclear-encoded mtDNA pseudogenes, and our proposed analysis paradigm, which utilizes the availability of raw signal intensity values for each of the four potential alleles to facilitate quantitative estimates of mtDNA heteroplasmy. This information provides a potential new target for burgeoning diagnostics and therapeutics that could truly assist those suffering from this devastating disorder.
Collapse
Affiliation(s)
- Keith D Coon
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Neuzil J, Wang XF, Dong LF, Low P, Ralph SJ. Molecular mechanism of 'mitocan'-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett 2006; 580:5125-9. [PMID: 16979626 DOI: 10.1016/j.febslet.2006.05.072] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 05/29/2006] [Accepted: 05/31/2006] [Indexed: 12/28/2022]
Abstract
Mitochondria have emerged recently as effective targets for novel anti-cancer drugs referred to as 'mitocans'. We propose that the molecular mechanism of induction of apoptosis by mitocans, as exemplified by the drug alpha-tocopheryl succinate, involves generation of reactive oxygen species (ROS). ROS then mediate the formation of disufide bridges between cytosolic Bax monomers, resulting in the formation of mitochondrial outer membrane channels. ROS also cause oxidation of cardiolipin, triggering the release of cytochrome c and its translocation via the activated Bax channels. This model may provide a general mechanism for the action of inducers of apoptosis and anticancer drugs, mitocans, targeting mitochondria via ROS production.
Collapse
Affiliation(s)
- Jiri Neuzil
- Apoptosis Research Group, School of Medical Science, Griffith University, Southport, Qld, Australia.
| | | | | | | | | |
Collapse
|
229
|
Michel PP, Ruberg M, Hirsch E. Dopaminergic neurons reduced to silence by oxidative stress: an early step in the death cascade in Parkinson's disease? Sci Signal 2006; 2006:pe19. [PMID: 16639033 DOI: 10.1126/stke.3322006pe19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that is most often sporadic, but in some cases it can be inherited as a simple Mendelian trait. The most important pathological feature of the disease is the death of brainstem dopaminergic neurons in the substantia nigra, which leads to characteristic motor symptoms. The etiology of PD remains unknown, but mitochondrial dysfunction and oxidative stress may contribute actively to the underlying pathomechanism. New studies suggest that K(ATP) channel activation may represent a downstream effector of these two cellular anomalies.
Collapse
Affiliation(s)
- Patrick P Michel
- INSERM U679, Experimental Neurology and Therapeutics, 75013 Paris, France.
| | | | | |
Collapse
|
230
|
Heath-Engel HM, Shore GC. Mitochondrial membrane dynamics, cristae remodelling and apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:549-60. [PMID: 16574258 DOI: 10.1016/j.bbamcr.2006.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 12/31/2022]
Abstract
Mitochondria form a highly dynamic reticular network in living cells, and undergo continuous fusion/fission events and changes in ultrastructural architecture. Although significant progress has been made in elucidating the molecular events underlying these processes, their relevance to normal cell function remains largely unexplored. Emerging evidence, however, suggests an important role for mitochondrial dynamics in cellular apoptosis. The mitochondria is at the core of the intrinsic apoptosis pathway, and provides a reservoir for protein factors that induce caspase activation and chromosome fragmentation. Additionally, mitochondria modulate Ca2+ homeostasis and are a source of various metabolites, including reactive oxygen species, that have the potential to function as second messengers in response to apoptotic stimuli. One of the mitochondrial factors required for activation of caspases in most intrinsic apoptotic pathways, cytochrome c, is largely sequestered within the intracristae compartment, and must migrate into the boundary intermembrane space in order to allow passage across the outer membrane to the cytosol. Recent evidence argues that inner mitochondrial membrane dynamics regulate this process. Here, we review the contribution of mitochondrial dynamics to the intrinsic apoptosis pathway, with emphasis on the inner membrane.
Collapse
Affiliation(s)
- Hannah M Heath-Engel
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montreal, Quebec, 3655 Promenade Sir William Osler, Canada H3G 1Y6
| | | |
Collapse
|
231
|
Is the cause of Parkinson's disease environmental or hereditary? Evidence from twin studies. Biochim Biophys Acta Mol Basis Dis 2003; 1842:1282-94. [PMID: 12442672 DOI: 10.1016/j.bbadis.2013.09.007] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022]
|