201
|
Brown MV, Ostrowski M, Grzymski JJ, Lauro FM. A trait based perspective on the biogeography of common and abundant marine bacterioplankton clades. Mar Genomics 2014; 15:17-28. [PMID: 24662471 DOI: 10.1016/j.margen.2014.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/08/2014] [Accepted: 03/08/2014] [Indexed: 11/26/2022]
Abstract
Marine microbial communities provide much of the energy upon which all higher trophic levels depend, particularly in open-ocean and oligotrophic systems, and play a pivotal role in biogeochemical cycling. How and why species are distributed in the global oceans, and whether net ecosystem function can be accurately predicted from community composition are fundamental questions for marine scientists. Many of the most abundant clades of marine bacteria, including the Prochlorococcus, Synechococcus, SAR11, SAR86 and Roseobacter, have a very broad, if not a cosmopolitan distribution. However this is not reflected in an underlying genetic identity. Rather, widespread distribution in these organisms is achieved by the existence of closely related but discrete ecotypes that display niche adaptations. Closely related ecotypes display specific nutritional or energy generating mechanisms and are adapted to different physical parameters including temperature, salinity, and hydrostatic pressure. Furthermore, biotic phenomena such as selective grazing and viral loss contribute to the success or failure of ecotypes allowing some to compete effectively in particular marine provinces but not in others. An additional layer of complexity is added by ocean currents and hydrodynamic specificity of water body masses that bound microbial dispersal and immigration. These vary in space and time with respect to intensity and direction, making the definition of large biogeographic provinces problematic. A deterministic theory aimed at understanding how all these factors shape microbial life in the oceans can only proceed through analysis of microbial traits, rather than pure phylogenetic assessments. Trait based approaches seek mechanistic explanations for the observed temporal and spatial patterns. This review will present successful recent advances in phylogenetic and trait based biogeographic analyses in some of the most abundant marine taxa.
Collapse
Affiliation(s)
- Mark V Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Evolution and Ecology Research Center, University of New South Wales, Sydney, Australia
| | - Martin Ostrowski
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Joseph J Grzymski
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, USA
| | - Federico M Lauro
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
202
|
Williamson KE, Harris JV, Green JC, Rahman F, Chambers RM. Stormwater runoff drives viral community composition changes in inland freshwaters. Front Microbiol 2014; 5:105. [PMID: 24672520 PMCID: PMC3954104 DOI: 10.3389/fmicb.2014.00105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/27/2014] [Indexed: 11/30/2022] Open
Abstract
Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities.
Collapse
Affiliation(s)
- Kurt E Williamson
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - Jamie V Harris
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - Jasmin C Green
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - Faraz Rahman
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - Randolph M Chambers
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| |
Collapse
|
203
|
Abundance of broad bacterial taxa in the sargasso sea explained by environmental conditions but not water mass. Appl Environ Microbiol 2014; 80:2786-95. [PMID: 24561593 DOI: 10.1128/aem.00099-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To explore the potential linkage between distribution of marine bacterioplankton groups, environmental conditions, and water mass, we investigated the factors determining the abundance of bacterial taxa across the hydrographically complex Subtropical Convergence Zone in the Sargasso Sea. Based on information from 16S rRNA gene clone libraries from various locations and two depths, abundances of the predominant taxa (eubacteria, Archaea, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and the Roseobacter, SAR11, and SAR86 clades) were quantified by real-time PCR. In addition, the abundances of Synechococcus, Prochlorococcus, and picoalgae were determined by flow cytometry. Linear multiple-regression models determining the relative effects of eight environmental variables and of water mass explained 35 to 86% of the variation in abundance of the quantified taxa, even though only one to three variables were significantly related to any particular taxon's abundance. Most of the variation in abundance was explained by depth and chlorophyll a. The predominant phototrophs, Prochlorococcus and picoalgae, were negatively correlated with phosphate, whereas eubacteria, heterotrophic bacteria, and SAR86 were negatively correlated with nitrite. Water mass showed limited importance for explaining the abundance of the taxonomical groups (significant only for Roseobacter, explaining 14% of the variation). The results suggest the potential for predicting the abundance of broad bacterioplankton groups throughout the Sargasso Sea using only a few environmental parameters.
Collapse
|
204
|
A microarray for assessing transcription from pelagic marine microbial taxa. ISME JOURNAL 2014; 8:1476-91. [PMID: 24477198 DOI: 10.1038/ismej.2014.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 12/16/2013] [Accepted: 12/31/2013] [Indexed: 02/08/2023]
Abstract
Metagenomic approaches have revealed unprecedented genetic diversity within microbial communities across vast expanses of the world's oceans. Linking this genetic diversity with key metabolic and cellular activities of microbial assemblages is a fundamental challenge. Here we report on a collaborative effort to design MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories), a high-density oligonucleotide microarray that targets functional genes of diverse taxa in pelagic and coastal marine microbial communities. MicroTOOLs integrates nucleotide sequence information from disparate data types: genomes, PCR-amplicons, metagenomes, and metatranscriptomes. It targets 19 400 unique sequences over 145 different genes that are relevant to stress responses and microbial metabolism across the three domains of life and viruses. MicroTOOLs was used in a proof-of-concept experiment that compared the functional responses of microbial communities following Fe and P enrichments of surface water samples from the North Pacific Subtropical Gyre. We detected transcription of 68% of the gene targets across major taxonomic groups, and the pattern of transcription indicated relief from Fe limitation and transition to N limitation in some taxa. Prochlorococcus (eHLI), Synechococcus (sub-cluster 5.3) and Alphaproteobacteria SAR11 clade (HIMB59) showed the strongest responses to the Fe enrichment. In addition, members of uncharacterized lineages also responded. The MicroTOOLs microarray provides a robust tool for comprehensive characterization of major functional groups of microbes in the open ocean, and the design can be easily amended for specific environments and research questions.
Collapse
|
205
|
Lekunberri I, Gasol JM, Acinas SG, Gómez-Consarnau L, Crespo BG, Casamayor EO, Massana R, Pedrós-Alió C, Pinhassi J. The phylogenetic and ecological context of cultured and whole genome-sequenced planktonic bacteria from the coastal NW Mediterranean Sea. Syst Appl Microbiol 2014; 37:216-28. [PMID: 24462268 DOI: 10.1016/j.syapm.2013.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 10/25/2022]
Abstract
Microbial isolates are useful models for physiological and ecological studies and can also be used to reassemble genomes from metagenomic analyses. However, the phylogenetic diversity that can be found among cultured marine bacteria may vary significantly depending on the isolation. Therefore, this study describes a set of 136 bacterial isolates obtained by traditional isolation techniques from the Blanes Bay Microbial Observatory, of which seven strains have had the whole genome sequenced. The complete set was compared to a series of environmental sequences obtained by culture-independent techniques (60 DGGE sequences and 303 clone library sequences) previously obtained by molecular methods. In this way, each isolate was placed in both its "ecological" (time of year, nutrient limitation, chlorophyll and temperature values) context or setting, and its "phylogenetic" landscape (i.e. similar organisms that were found by culture-independent techniques, when they were relevant, and when they appeared). Nearly all isolates belonged to the Gammaproteobacteria, Alphaproteobacteria, or the Bacteroidetes (70, 40 and 20 isolates, respectively). Rarefaction analyses showed similar diversity patterns for sequences from isolates and molecular approaches, except for Alphaproteobacteria where cultivation retrieved a higher diversity per unit effort. Approximately 30% of the environmental clones and isolates formed microdiversity clusters constrained at 99% 16S rRNA gene sequence identity, but the pattern was different in Bacteroidetes (less microdiversity) than in the other main groups. Seventeen cases (12.5%) of nearly complete (98-100%) rRNA sequence identity between isolates and environmental sequences were found: nine in the Alphaproteobacteria, five in the Gammaproteobacteria, and three in the Bacteroidetes, indicating that cultivation could be used to obtain at least some organisms representative of the various taxa detected by molecular methods. Collectively, these results illustrated the largely unexplored potential of culturing on standard media for complementing the study of microbial diversity by culture-independent techniques and for obtaining phylogenetically distinct model organisms from natural seawater.
Collapse
Affiliation(s)
- Itziar Lekunberri
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain.
| | - Silvia G Acinas
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Laura Gómez-Consarnau
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain; Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Barlastgatan 11, SE-39182 Kalmar, Sweden
| | - Bibiana G Crespo
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Emilio O Casamayor
- Centre d'Estudis Avançats de Blanes - CSIC, Accés a la cala Sant Francesc 14, 17300 Blanes, Catalunya, Spain
| | - Ramon Massana
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Carlos Pedrós-Alió
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Barlastgatan 11, SE-39182 Kalmar, Sweden.
| |
Collapse
|
206
|
Seymour JR. A sea of microbes: the diversity and activity of marine microorganisms. MICROBIOLOGY AUSTRALIA 2014. [DOI: 10.1071/ma14060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
207
|
Hatosy SM, Martiny JBH, Sachdeva R, Steele J, Fuhrman JA, Martiny AC. Beta diversity of marine bacteria depends on temporal scale. Ecology 2013; 94:1898-904. [PMID: 24279260 DOI: 10.1890/12-2125.1] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Factors controlling the spatial distribution of bacterial diversity have been intensely studied, whereas less is known about temporal changes. To address this, we tested whether the mechanisms that underlie bacterial temporal beta-diversity vary across different scales in three marine microbial communities. While seasonal turnover was detected, at least 73% of the community variation occurred at intra-seasonal temporal scales, suggesting that episodic events are important in structuring marine microbial communities. In addition, turnover at different temporal scales appeared to be driven by different factors. Intra-seasonal turnover was significantly correlated to environmental variables such as phosphate and silicate concentrations, while seasonal and interannual turnover were related to nitrate concentration and temporal distance. We observed a strong link between the magnitude of environmental variation and bacterial beta-diversity in different communities. Analogous to spatial biogeography, we found different rates of community changes across temporal scales.
Collapse
Affiliation(s)
- Stephen M Hatosy
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
208
|
Flowers JJ, Cadkin TA, McMahon KD. Seasonal bacterial community dynamics in a full-scale enhanced biological phosphorus removal plant. WATER RESEARCH 2013; 47:7019-31. [PMID: 24200007 PMCID: PMC4520395 DOI: 10.1016/j.watres.2013.07.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/27/2013] [Accepted: 07/04/2013] [Indexed: 05/05/2023]
Abstract
Activated sludge is one of the most abundant and effective wastewater treatment process used to treat wastewater, and has been used in developed countries for nearly a century. In all that time, several hundreds of studies have explored the bacterial communities responsible for treatment, but most studies were based on a handful of samples and did not consider temporal dynamics. In this study, we used the DNA fingerprinting technique called automated ribosomal intergenic spacer region analysis (ARISA) to study bacterial community dynamics over a two-year period in two different treatment trains. We also used quantitative PCR to measure the variation of five phylogenetically-defined clades within the Accumulibacter lineage, which is a model polyphosphate accumulating organism. The total bacterial community exhibited seasonal patterns of change reminiscent of those observed in lakes and oceans. Surprisingly, all five Accumulibacter clades were present throughout the study, and the total Accumulibacter community was relatively stable. However, the abundance of each clade did fluctuate through time. Clade IIA dynamics correlated positively with temperature (ρ = 0.65, p < 0.05) while Clade IA dynamics correlated negatively with temperature (ρ = -0.35, p < 0.05). This relationship with temperature hints at the mechanisms that may be driving the seasonal patterns in overall bacterial community dynamics and provides further evidence for ecological differentiation among clades within the Accumulibacter lineage. This work provides a valuable baseline for activated sludge bacterial community variation.
Collapse
Affiliation(s)
- Jason J Flowers
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105, USA; Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
209
|
Chow CET, Kim DY, Sachdeva R, Caron DA, Fuhrman JA. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME JOURNAL 2013; 8:816-29. [PMID: 24196323 DOI: 10.1038/ismej.2013.199] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/10/2013] [Accepted: 09/26/2013] [Indexed: 01/25/2023]
Abstract
Characterizing ecological relationships between viruses, bacteria and protists in the ocean are critical to understanding ecosystem function, yet these relationships are infrequently investigated together. We evaluated these relationships through microbial association network analysis of samples collected approximately monthly from March 2008 to January 2011 in the surface ocean (0-5 m) at the San Pedro Ocean Time series station. Bacterial, T4-like myoviral and protistan communities were described by Automated Ribosomal Intergenic Spacer Analysis and terminal restriction fragment length polymorphism of the gene encoding the major capsid protein (g23) and 18S ribosomal DNA, respectively. Concurrent shifts in community structure suggested similar timing of responses to environmental and biological parameters. We linked T4-like myoviral, bacterial and protistan operational taxonomic units by local similarity correlations, which were then visualized as association networks. Network links (correlations) potentially represent synergistic and antagonistic relationships such as viral lysis, grazing, competition or other interactions. We found that virus-bacteria relationships were more cross-linked than protist-bacteria relationships, suggestive of increased taxonomic specificity in virus-bacteria relationships. We also found that 80% of bacterial-protist and 74% of bacterial-viral correlations were positive, with the latter suggesting that at monthly and seasonal timescales, viruses may be following their hosts more often than controlling host abundance.
Collapse
Affiliation(s)
- Cheryl-Emiliane T Chow
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Diane Y Kim
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Rohan Sachdeva
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David A Caron
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
210
|
Metatranscriptomic analyses of plankton communities inhabiting surface and subpycnocline waters of the Chesapeake Bay during oxic-anoxic-oxic transitions. Appl Environ Microbiol 2013; 80:328-38. [PMID: 24162577 DOI: 10.1128/aem.02680-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We used metatranscriptomics to study the gene transcription patterns of microbial plankton (0.2 to 64 μm) at a mesohaline station in the Chesapeake Bay under transitions from oxic to anoxic waters in spring and from anoxic to oxic waters in autumn. Samples were collected from surface (i.e., above pycnocline) waters (3 m) and from waters beneath the pycnocline (16 to 22 m) in both 2010 and 2011. Metatranscriptome profiles based on function and potential phylogeny were different between 2010 and 2011 and strongly variable in 2011. This difference in variability corresponded with a highly variable ratio of eukaryotic to bacterial sequences (0.3 to 5.5), reflecting transient algal blooms in 2011 that were absent in 2010. The similarity between metatranscriptomes changed at a lower rate during the transition from oxic to anoxic waters than after the return to oxic conditions. Transcripts related to photosynthesis and low-affinity cytochrome oxidases were significantly higher in shallow than in deep waters, while in deep water genes involved in anaerobic metabolism, particularly sulfate reduction, succinyl coenzyme A (succinyl-CoA)-to-propionyl-CoA conversion, and menaquinone synthesis, were enriched relative to in shallow waters. Expected transitions in metabolism between oxic and anoxic deep waters were reflected in elevated levels of anaerobic respiratory reductases and utilization of propenediol and acetoin. The percentage of archaeal transcripts increased in both years in late summer (from 0.1 to 4.4% of all transcripts in 2010 and from 0.1 to 6.2% in 2011). Denitrification-related genes were expressed in a predicted pattern during the oxic-anoxic transition. Overall, our data suggest that Chesapeake Bay microbial assemblages express gene suites differently in shallow and deep waters and that differences in deep waters reflect variable redox states.
Collapse
|
211
|
Zhu D, Tanabe SH, Yang C, Zhang W, Sun J. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes. PLoS One 2013; 8:e78501. [PMID: 24205246 PMCID: PMC3804488 DOI: 10.1371/journal.pone.0078501] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 09/14/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. METHODOLOGY/PRINCIPAL FINDINGS Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. CONCLUSIONS This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.
Collapse
Affiliation(s)
- Daochen Zhu
- School of Environmental Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- State Key Laboratory of Applied Microbiology in South China (Ministry-Guangdong Province Jointly Breeding Base), Guangdong Institute of Microbiology, Guangzhou, China
| | - Shoko-Hosoi Tanabe
- School of Environmental Science, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Chong Yang
- Department of R&D, Zhenjiang Bio-innova Biotech Co, Ltd., Zhenjiang, Jiangsu, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology in South China (Ministry-Guangdong Province Jointly Breeding Base), Guangdong Institute of Microbiology, Guangzhou, China
| | - Jianzhong Sun
- School of Environmental Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
212
|
Ortmann AC, Ortell N. Changes in free-living bacterial community diversity reflect the magnitude of environmental variability. FEMS Microbiol Ecol 2013; 87:291-301. [DOI: 10.1111/1574-6941.12225] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 09/05/2013] [Accepted: 09/15/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Alice. C. Ortmann
- Department of Marine Sciences; University of South Alabama; Mobile AL USA
- Dauphin Island Sea Lab; Dauphin Island AL USA
| | - Natalie Ortell
- Department of Marine Sciences; University of South Alabama; Mobile AL USA
- Dauphin Island Sea Lab; Dauphin Island AL USA
| |
Collapse
|
213
|
Ferrera I, Borrego CM, Salazar G, Gasol JM. Marked seasonality of aerobic anoxygenic phototrophic bacteria in the coastal NW Mediterranean Sea as revealed by cell abundance, pigment concentration and pyrosequencing of pufM gene. Environ Microbiol 2013; 16:2953-65. [PMID: 24131493 DOI: 10.1111/1462-2920.12278] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/01/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
Abstract
The abundance and diversity of aerobic anoxygenic phototrophs (AAPs) were studied for a year cycle at the Blanes Bay Microbial Observatory (NW Mediterranean) and their potential links to an array of environmental variables were explored. Cell numbers were low in winter and peaked in summer, showing a marked seasonality that positively correlated with day length and light at the surface. Bacteriochlorophyll a concentration, their light-harvesting pigment, was only detected between April and October, and pigment cell quota showed large variations during this period. Pyrosequencing analysis of the pufM gene revealed that the most abundant operational taxonomic units (OTUs) were affiliated to phylogroup K (Gammaproteobacteria) and uncultured phylogroup C, although they were outnumbered by alphaproteobacterial OTUs in spring. Overall, richness was higher in winter than in summer, showing an opposite trend to abundance and day length. Clustering of samples by multivariate analyses showed a clear seasonality that suggests a succession of different AAP subpopulations over time. Temperature, chlorophyll a and day length were the environmental drivers that best explained the distribution of AAP assemblages. These results indicate that AAP bacteria are highly dynamic and undergo seasonal variations in diversity and abundance mostly dictated by environmental conditions as exemplified by light availability.
Collapse
Affiliation(s)
- Isabel Ferrera
- Department de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, Spain
| | | | | | | |
Collapse
|
214
|
Sharma AK, Becker JW, Ottesen EA, Bryant JA, Duhamel S, Karl DM, Cordero OX, Repeta DJ, DeLong EF. Distinct dissolved organic matter sources induce rapid transcriptional responses in coexisting populations ofProchlorococcus,Pelagibacterand the OM60 clade. Environ Microbiol 2013; 16:2815-30. [DOI: 10.1111/1462-2920.12254] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/26/2013] [Accepted: 08/15/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Adrian K. Sharma
- Departments of Civil and Environmental Engineering and Biological Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| | - Jamie W. Becker
- Department of Marine Chemistry and Geochemistry; Woods Hole Oceanographic Institution; Woods Hole MA 02543 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| | - Elizabeth A. Ottesen
- Departments of Civil and Environmental Engineering and Biological Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Department of Microbiology; University of Georgia; Athens GA 30602 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| | - Jessica A. Bryant
- Departments of Civil and Environmental Engineering and Biological Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| | - Solange Duhamel
- Department of Marine Chemistry and Geochemistry; Woods Hole Oceanographic Institution; Woods Hole MA 02543 USA
- Lamont Doherty Earth Observatory; Columbia University; Palisades NY 10964 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| | - David M. Karl
- Department of Oceanography; School of Ocean and Earth Science and Technology (SOEST); University of Hawaii; Honolulu HI 96822 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| | - Otto X. Cordero
- Departments of Civil and Environmental Engineering and Biological Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Daniel J. Repeta
- Department of Marine Chemistry and Geochemistry; Woods Hole Oceanographic Institution; Woods Hole MA 02543 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| | - Edward F. DeLong
- Departments of Civil and Environmental Engineering and Biological Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Center for Microbial Oceanography: Research and Education (C-MORE); 1950 East-West Road Honolulu HI 96822 USA
| |
Collapse
|
215
|
Newton RJ, Huse SM, Morrison HG, Peake CS, Sogin ML, McLellan SL. Shifts in the microbial community composition of Gulf Coast beaches following beach oiling. PLoS One 2013; 8:e74265. [PMID: 24040219 PMCID: PMC3769389 DOI: 10.1371/journal.pone.0074265] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022] Open
Abstract
Microorganisms associated with coastal sands serve as a natural biofilter, providing essential nutrient recycling in nearshore environments and acting to maintain coastal ecosystem health. Anthropogenic stressors often impact these ecosystems, but little is known about whether these disturbances can be identified through microbial community change. The blowout of the Macondo Prospect reservoir on April 20, 2010, which released oil hydrocarbons into the Gulf of Mexico, presented an opportunity to examine whether microbial community composition might provide a sensitive measure of ecosystem disturbance. Samples were collected on four occasions, beginning in mid-June, during initial beach oiling, until mid-November from surface sand and surf zone waters at seven beaches stretching from Bay St. Louis, MS to St. George Island, FL USA. Oil hydrocarbon measurements and NOAA shoreline assessments indicated little to no impact on the two most eastern beaches (controls). Sequence comparisons of bacterial ribosomal RNA gene hypervariable regions isolated from beach sands located to the east and west of Mobile Bay in Alabama demonstrated that regional drivers account for markedly different bacterial communities. Individual beaches had unique community signatures that persisted over time and exhibited spatial relationships, where community similarity decreased as horizontal distance between samples increased from one to hundreds of meters. In contrast, sequence analyses detected larger temporal and less spatial variation among the water samples. Superimposed upon these beach community distance and time relationships, was increased variability in bacterial community composition from oil hydrocarbon contaminated sands. The increased variability was observed among the core, resident, and transient community members, indicating the occurrence of community-wide impacts rather than solely an overprinting of oil hydrocarbon-degrading bacteria onto otherwise relatively stable sand population structures. Among sequences classified to genus, Alcanivorax, Alteromonas, Marinobacter, Winogradskyella, and Zeaxanthinibacter exhibited the largest relative abundance increases in oiled sands.
Collapse
Affiliation(s)
- Ryan J. Newton
- School of Freshwater Sciences, Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Susan M. Huse
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Hilary G. Morrison
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Colin S. Peake
- School of Freshwater Sciences, Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Mitchell L. Sogin
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Sandra L. McLellan
- School of Freshwater Sciences, Great Lakes WATER Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
216
|
Pagaling E, Strathdee F, Spears BM, Cates ME, Allen RJ, Free A. Community history affects the predictability of microbial ecosystem development. ISME JOURNAL 2013; 8:19-30. [PMID: 23985743 DOI: 10.1038/ismej.2013.150] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 01/10/2023]
Abstract
Microbial communities mediate crucial biogeochemical, biomedical and biotechnological processes, yet our understanding of their assembly, and our ability to control its outcome, remain poor. Existing evidence presents conflicting views on whether microbial ecosystem assembly is predictable, or inherently unpredictable. We address this issue using a well-controlled laboratory model system, in which source microbial communities colonize a pristine environment to form complex, nutrient-cycling ecosystems. When the source communities colonize a novel environment, final community composition and function (as measured by redox potential) are unpredictable, although a signature of the community's previous history is maintained. However, when the source communities are pre-conditioned to their new habitat, community development is more reproducible. This situation contrasts with some studies of communities of macro-organisms, where strong selection under novel environmental conditions leads to reproducible community structure, whereas communities under weaker selection show more variability. Our results suggest that the microbial rare biosphere may have an important role in the predictability of microbial community development, and that pre-conditioning may help to reduce unpredictability in the design of microbial communities for biotechnological applications.
Collapse
Affiliation(s)
- Eulyn Pagaling
- 1] Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK [2] SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Fiona Strathdee
- 1] Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK [2] SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Bryan M Spears
- NERC Centre for Ecology and Hydrology Edinburgh, Penicuik, Midlothian, UK
| | - Michael E Cates
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Rosalind J Allen
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Andrew Free
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
217
|
Giovannelli D, Molari M, d’Errico G, Baldrighi E, Pala C, Manini E. Large-scale distribution and activity of prokaryotes in deep-sea surface sediments of the Mediterranean Sea and the adjacent Atlantic Ocean. PLoS One 2013; 8:e72996. [PMID: 24039667 PMCID: PMC3755984 DOI: 10.1371/journal.pone.0072996] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
The deep-sea represents a substantial portion of the biosphere and has a major influence on carbon cycling and global biogeochemistry. Benthic deep-sea prokaryotes have crucial roles in this ecosystem, with their recycling of organic matter from the photic zone. Despite this, little is known about the large-scale distribution of prokaryotes in the surface deep-sea sediments. To assess the influence of environmental and trophic variables on the large-scale distribution of prokaryotes, we investigated the prokaryotic assemblage composition (Bacteria to Archaea and Euryarchaeota to Crenarchaeota ratio) and activity in the surface deep-sea sediments of the Mediterranean Sea and the adjacent North Atlantic Ocean. Prokaryotic abundance and biomass did not vary significantly across the Mediterranean Sea; however, there were depth-related trends in all areas. The abundance of prokaryotes was positively correlated with the sedimentary concentration of protein, an indicator of the quality and bioavailability of organic matter. Moving eastwards, the Bacteria contribution to the total prokaryotes decreased, which appears to be linked to the more oligotrophic conditions of the Eastern Mediterranean basins. Despite the increased importance of Archaea, the contributions of Crenarchaeota Marine Group I to the total pool was relatively constant across the investigated stations, with the exception of Matapan-Vavilov Deep, in which Euryarchaeota Marine Group II dominated. Overall, our data suggest that deeper areas of the Mediterranean Sea share more similar communities with each other than with shallower sites. Freshness and quality of sedimentary organic matter were identified through Generalized Additive Model analysis as the major factors for describing the variation in the prokaryotic community structure and activity in the surface deep-sea sediments. Longitude was also important in explaining the observed variability, which suggests that the overlying water masses might have a critical role in shaping the benthic communities.
Collapse
Affiliation(s)
- Donato Giovannelli
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
- Institute for Marine and Coastal Science - IMCS, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Massimiliano Molari
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Giuseppe d’Errico
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
| | - Elisa Baldrighi
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
| | - Claudia Pala
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
- Department of Bioscience, University of Parma, Parma, Italy
| | - Elena Manini
- Institute for Marine Science - ISMAR, National Research Council of Italy - CNR, Ancona, Italy
- * E-mail:
| |
Collapse
|
218
|
Powell SM, Chapman CC, Bermudes M, Tamplin ML. Dynamics of seawater bacterial communities in a shellfish hatchery. MICROBIAL ECOLOGY 2013; 66:245-256. [PMID: 23354180 DOI: 10.1007/s00248-013-0183-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/09/2013] [Indexed: 06/01/2023]
Abstract
Bacterial disease is a significant issue for larviculture of several species of shellfish, including oysters. One source of bacteria is the seawater used throughout the hatchery. In this study carried out at a commercial oyster hatchery in Tasmania, Australia, the diversity of the bacterial community and its relationship with larval production outcomes were studied over a 2-year period using terminal restriction fragment length polymorphism and tag-encoded pyrosequencing. The bacterial communities were very diverse, dominated by the Alphaproteobacteria, Gammaproteobacteria, Flavobacteria and Cyanobacteria. The communities were highly variable on scales of days, weeks and seasons. The difference between the intake seawater and treated clean seawater used in the hatchery was smaller than the observed temporal differences in the seawater throughout the year. No clear correlation was observed between production outcomes and the overall bacterial community structure. However, one group of Cyanobacterial sequences was more abundant when mass mortality events occurred than when healthy spat were produced although they were always present.
Collapse
Affiliation(s)
- S M Powell
- Australian Seafood Cooperative Research Centre and Tasmanian Institute of Agriculture, University of Tasmania, Private Bay 54, Hobart, TAS, Australia.
| | | | | | | |
Collapse
|
219
|
Temporal variability and coherence of euphotic zone bacterial communities over a decade in the Southern California Bight. ISME JOURNAL 2013; 7:2259-73. [PMID: 23864126 DOI: 10.1038/ismej.2013.122] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 11/08/2022]
Abstract
Time-series are critical to understanding long-term natural variability in the oceans. Bacterial communities in the euphotic zone were investigated for over a decade at the San Pedro Ocean Time-series station (SPOT) off southern California. Community composition was assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and coupled with measurements of oceanographic parameters for the surface ocean (0-5 m) and deep chlorophyll maximum (DCM, average depth ≈ 30 m). SAR11 and cyanobacterial ecotypes comprised typically more than one-third of the measured community; diversity within both was temporally variable, although a few operational taxonomic units (OTUs) were consistently more abundant. Persistent OTUs, mostly Alphaproteobacteria (SAR11 clade), Actinobacteria and Flavobacteria, tended to be abundant, in contrast to many rarer yet intermittent and ephemeral OTUs. Association networks revealed potential niches for key OTUs from SAR11, cyanobacteria, SAR86 and other common clades on the basis of robust correlations. Resilience was evident by the average communities drifting only slightly as years passed. Average Bray-Curtis similarity between any pair of dates was ≈ 40%, with a slight decrease over the decade and obvious near-surface seasonality; communities 8-10 years apart were slightly more different than those 1-4 years apart with the highest rate of change at 0-5 m between communities <4 years apart. The surface exhibited more pronounced seasonality than the DCM. Inter-depth Bray-Curtis similarities repeatedly decreased as the water column stratified each summer. Environmental factors were better predictors of shifts in community composition than months or elapsed time alone; yet, the best predictor was community composition at the other depth (that is, 0-5 m versus DCM).
Collapse
|
220
|
Dinasquet J, Kragh T, Schrøter ML, Søndergaard M, Riemann L. Functional and compositional succession of bacterioplankton in response to a gradient in bioavailable dissolved organic carbon. Environ Microbiol 2013; 15:2616-28. [DOI: 10.1111/1462-2920.12178] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 06/02/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | - Theis Kragh
- Freshwater Biological Laboratory; University of Copenhagen; DK-3400; Hillerød; Denmark
| | | | - Morten Søndergaard
- Freshwater Biological Laboratory; University of Copenhagen; DK-3400; Hillerød; Denmark
| | | |
Collapse
|
221
|
Genome of a SAR116 bacteriophage shows the prevalence of this phage type in the oceans. Proc Natl Acad Sci U S A 2013; 110:12343-8. [PMID: 23798439 DOI: 10.1073/pnas.1219930110] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The abundance, genetic diversity, and crucial ecological and evolutionary roles of marine phages have prompted a large number of metagenomic studies. However, obtaining a thorough understanding of marine phages has been hampered by the low number of phage isolates infecting major bacterial groups other than cyanophages and pelagiphages. Therefore, there is an urgent requirement for the isolation of phages that infect abundant marine bacterial groups. In this study, we isolated and characterized HMO-2011, a phage infecting a bacterium of the SAR116 clade, one of the most abundant marine bacterial lineages. HMO-2011, which infects "Candidatus Puniceispirillum marinum" strain IMCC1322, has an ~55-kb dsDNA genome that harbors many genes with novel features rarely found in cultured organisms, including genes encoding a DNA polymerase with a partial DnaJ central domain and an atypical methanesulfonate monooxygenase. Furthermore, homologs of nearly all HMO-2011 genes were predominantly found in marine metagenomes rather than cultured organisms, suggesting the novelty of HMO-2011 and the prevalence of this phage type in the oceans. A significant number of the viral metagenome sequences obtained from the ocean surface were best assigned to the HMO-2011 genome. The number of reads assigned to HMO-2011 accounted for 10.3%-25.3% of the total reads assigned to viruses in seven viromes from the Pacific and Indian Oceans, making the HMO-2011 genome the most or second-most frequently assigned viral genome. Given its ability to infect the abundant SAR116 clade and its widespread distribution, Puniceispirillum phage HMO-2011 could be an important resource for marine virus research.
Collapse
|
222
|
Du J, Xiao K, Li L, Ding X, Liu H, Lu Y, Zhou S. Temporal and spatial diversity of bacterial communities in coastal waters of the South china sea. PLoS One 2013; 8:e66968. [PMID: 23785512 PMCID: PMC3681761 DOI: 10.1371/journal.pone.0066968] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/14/2013] [Indexed: 01/09/2023] Open
Abstract
Bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems. Temporal and geographical patterns in ocean bacterial communities have been observed in many studies, but the temporal and spatial patterns in the bacterial communities from the South China Sea remained unexplored. To determine the spatiotemporal patterns, we generated 16S rRNA datasets for 15 samples collected from the five regularly distributed sites of the South China Sea in three seasons (spring, summer, winter). A total of 491 representative sequences were analyzed by MOTHUR, yielding 282 operational taxonomic units (OTUs) grouped at 97% stringency. Significant temporal variations of bacterial diversity were observed. Richness and diversity indices indicated that summer samples were the most diverse. The main bacterial group in spring and summer samples was Alphaproteobacteria, followed by Cyanobacteria and Gammaproteobacteria, whereas Cyanobacteria dominated the winter samples. Spatial patterns in the samples were observed that samples collected from the coastal (D151, D221) waters and offshore (D157, D1512, D224) waters clustered separately, the coastal samples harbored more diverse bacterial communities. However, the temporal pattern of the coastal site D151 was contrary to that of the coastal site D221. The LIBSHUFF statistics revealed noticeable differences among the spring, summer and winter libraries collected at five sites. The UPGMA tree showed there were temporal and spatial heterogeneity of bacterial community composition in coastal waters of the South China Sea. The water salinity (P=0.001) contributed significantly to the bacteria-environment relationship. Our results revealed that bacterial community structures were influenced by environmental factors and community-level changes in 16S-based diversity were better explained by spatial patterns than by temporal patterns.
Collapse
Affiliation(s)
- Jikun Du
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Clinical Laboratory, Shenzhen Shajing Affiliated Hospital of Guangzhou Medical University, Shenzhen, China
| | - Kai Xiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Department of Pharmacology, Guangdong Medical College, Dongguan, China
- * E-mail: (LL); (SZ)
| | - Xian Ding
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Helu Liu
- Department of Clinical Laboratory, Shenzhen Shajing Affiliated Hospital of Guangzhou Medical University, Shenzhen, China
| | - Yongjun Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shining Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail: (LL); (SZ)
| |
Collapse
|
223
|
Determining indicator taxa across spatial and seasonal gradients in the Columbia River coastal margin. ISME JOURNAL 2013; 7:1899-911. [PMID: 23719153 DOI: 10.1038/ismej.2013.79] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/13/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022]
Abstract
Bacterioplankton communities are deeply diverse and highly variable across space and time, but several recent studies demonstrate repeatable and predictable patterns in this diversity. We expanded on previous studies by determining patterns of variability in both individual taxa and bacterial communities across coastal environmental gradients. We surveyed bacterioplankton diversity across the Columbia River coastal margin, USA, using amplicon pyrosequencing of 16S rRNA genes from 596 water samples collected from 2007 to 2010. Our results showed seasonal shifts and annual reassembly of bacterioplankton communities in the freshwater-influenced Columbia River, estuary, and plume, and identified indicator taxa, including species from freshwater SAR11, Oceanospirillales, and Flavobacteria groups, that characterize the changing seasonal conditions in these environments. In the river and estuary, Actinobacteria and Betaproteobacteria indicator taxa correlated strongly with seasonal fluctuations in particulate organic carbon (ρ=-0.664) and residence time (ρ=0.512), respectively. In contrast, seasonal change in communities was not detected in the coastal ocean and varied more with the spatial variability of environmental factors including temperature and dissolved oxygen. Indicator taxa of coastal ocean environments included SAR406 and SUP05 taxa from the deep ocean, and Prochlorococcus and SAR11 taxa from the upper water column. We found that in the Columbia River coastal margin, freshwater-influenced environments were consistent and predictable, whereas coastal ocean community variability was difficult to interpret due to complex physical conditions. This study moves beyond beta-diversity patterns to focus on the occurrence of specific taxa and lends insight into the potential ecological roles these taxa have in coastal ocean environments.
Collapse
|
224
|
Larsen A, Tao Z, Bullard SA, Arias CR. Diversity of the skin microbiota of fishes: evidence for host species specificity. FEMS Microbiol Ecol 2013; 85:483-94. [DOI: 10.1111/1574-6941.12136] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Andrea Larsen
- Department of Fisheries and Allied Aquacultures; Aquatic Microbiology Laboratory; Auburn University; Auburn AL USA
| | - Zhen Tao
- Department of Fisheries and Allied Aquacultures; Aquatic Microbiology Laboratory; Auburn University; Auburn AL USA
| | - Stephen A. Bullard
- Department of Fisheries and Allied Aquacultures; Aquatic Parasitology Laboratory; Auburn University; Auburn AL USA
| | - Covadonga R. Arias
- Department of Fisheries and Allied Aquacultures; Aquatic Microbiology Laboratory; Auburn University; Auburn AL USA
| |
Collapse
|
225
|
Naphthalene biodegradation in temperate and arctic marine microcosms. Biodegradation 2013; 25:111-25. [PMID: 23624724 DOI: 10.1007/s10532-013-9644-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 04/20/2013] [Indexed: 10/26/2022]
Abstract
Naphthalene, the smallest polycyclic aromatic hydrocarbon (PAH), is found in abundance in crude oil, its major source in marine environments. PAH removal occurs via biodegradation, a key process determining their fate in the sea. Adequate estimation of PAH biodegradation rates is essential for environmental risk assessment and response planning using numerical models such as the oil spill contingency and response (OSCAR) model. Using naphthalene as a model compound, biodegradation rate, temperature response and bacterial community composition of seawaters from two climatically different areas (North Sea and Arctic Ocean) were studied and compared. Naphthalene degradation was followed by measuring oxygen consumption in closed bottles using the OxiTop(®) system. Microbial communities of untreated and naphthalene exposed samples were analysed by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and pyrosequencing. Three times higher naphthalene degradation rate coefficients were observed in arctic seawater samples compared to temperate, at all incubation temperatures. Rate coefficients at in situ temperatures were however, similar (0.048 day(-1) for temperate and 0.068 day(-1) for arctic). Naphthalene biodegradation rates decreased with similar Q10 ratios (3.3 and 3.5) in both seawaters. Using the temperature compensation method implemented in the OSCAR model, Q10 = 2, biodegradation in arctic seawater was underestimated when calculated from the measured temperate k1 value, showing that temperature difference alone could not predict biodegradation rates adequately. Temperate and arctic untreated seawater communities were different as revealed by pyrosequencing. Geographic origin of seawater affected the community composition of exposed samples.
Collapse
|
226
|
Shade A, Caporaso JG, Handelsman J, Knight R, Fierer N. A meta-analysis of changes in bacterial and archaeal communities with time. ISME JOURNAL 2013; 7:1493-506. [PMID: 23575374 PMCID: PMC3721121 DOI: 10.1038/ismej.2013.54] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 02/07/2023]
Abstract
Ecologists have long studied the temporal dynamics of plant and animal communities with much less attention paid to the temporal dynamics exhibited by microbial communities. As a result, we do not know if overarching temporal trends exist for microbial communities or if changes in microbial communities are generally predictable with time. Using microbial time series assessed via high-throughput sequencing, we conducted a meta-analysis of temporal dynamics in microbial communities, including 76 sites representing air, aquatic, soil, brewery wastewater treatment, human- and plant-associated microbial biomes. We found that temporal variability in both within- and between-community diversity was consistent among microbial communities from similar environments. Community structure changed systematically with time in less than half of the cases, and the highest rates of change were observed within ranges of 1 day to 1 month for all communities examined. Microbial communities exhibited species–time relationships (STRs), which describe the accumulation of new taxa to a community, similar to those observed previously for plant and animal communities, suggesting that STRs are remarkably consistent across a broad range of taxa. These results highlight that a continued integration of microbial ecology into the broader field of ecology will provide new insight into the temporal patterns of microbial and ‘macro'-bial communities alike.
Collapse
Affiliation(s)
- Ashley Shade
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
227
|
Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. THE ISME JOURNAL 2013; 7:830-8. [PMID: 23235290 PMCID: PMC3603392 DOI: 10.1038/ismej.2012.160] [Citation(s) in RCA: 352] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/24/2012] [Accepted: 11/02/2012] [Indexed: 11/09/2022]
Abstract
A central question in biology is how biodiversity influences ecosystem functioning. Underlying this is the relationship between organismal phylogeny and the presence of specific functional traits. The relationship is complicated by gene loss and convergent evolution, resulting in the polyphyletic distribution of many traits. In microorganisms, lateral gene transfer can further distort the linkage between phylogeny and the presence of specific functional traits. To identify the phylogenetic conservation of specific traits in microorganisms, we developed a new phylogenetic metric-consenTRAIT-to estimate the clade depth where organisms share a trait. We then analyzed the distribution of 89 functional traits across a broad range of Bacteria and Archaea using genotypic and phenotypic data. A total of 93% of the traits were significantly non-randomly distributed, which suggested that vertical inheritance was generally important for the phylogenetic dispersion of functional traits in microorganisms. Further, traits in microbes were associated with a continuum of trait depths (τD), ranging from a few deep to many shallow clades (average τD: 0.101-0.0011 rRNA sequence dissimilarity). Next, we demonstrated that the dispersion and the depth of clades that contain a trait is correlated with the trait's complexity. Specifically, complex traits encoded by many genes like photosynthesis and methanogenesis were found in a few deep clusters, whereas the ability to use simple carbon substrates was highly phylogenetically dispersed. On the basis of these results, we propose a framework for predicting the phylogenetic conservatism of functional traits depending on the complexity of the trait. This framework enables predicting how variation in microbial composition may affect microbially-mediated ecosystem processes as well as linking phylogenetic and trait-based patterns of biogeography.
Collapse
Affiliation(s)
- Adam C Martiny
- Department of Earth System Science, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
228
|
Vergin KL, Beszteri B, Monier A, Thrash JC, Temperton B, Treusch AH, Kilpert F, Worden AZ, Giovannoni SJ. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series Study site by phylogenetic placement of pyrosequences. ISME JOURNAL 2013; 7:1322-32. [PMID: 23466704 DOI: 10.1038/ismej.2013.32] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Advances in next-generation sequencing technologies are providing longer nucleotide sequence reads that contain more information about phylogenetic relationships. We sought to use this information to understand the evolution and ecology of bacterioplankton at our long-term study site in the Western Sargasso Sea. A bioinformatics pipeline called PhyloAssigner was developed to align pyrosequencing reads to a reference multiple sequence alignment of 16S ribosomal RNA (rRNA) genes and assign them phylogenetic positions in a reference tree using a maximum likelihood algorithm. Here, we used this pipeline to investigate the ecologically important SAR11 clade of Alphaproteobacteria. A combined set of 2.7 million pyrosequencing reads from the 16S rRNA V1-V2 regions, representing 9 years at the Bermuda Atlantic Time-series Study (BATS) site, was quality checked and parsed into a comprehensive bacterial tree, yielding 929 036 Alphaproteobacteria reads. Phylogenetic structure within the SAR11 clade was linked to seasonally recurring spatiotemporal patterns. This analysis resolved four new SAR11 ecotypes in addition to five others that had been described previously at BATS. The data support a conclusion reached previously that the SAR11 clade diversified by subdivision of niche space in the ocean water column, but the new data reveal a more complex pattern in which deep branches of the clade diversified repeatedly across depth strata and seasonal regimes. The new data also revealed the presence of an unrecognized clade of Alphaproteobacteria, here named SMA-1 (Sargasso Mesopelagic Alphaproteobacteria, group 1), in the upper mesopelagic zone. The high-resolution phylogenetic analyses performed herein highlight significant, previously unknown, patterns of evolutionary diversification, within perhaps the most widely distributed heterotrophic marine bacterial clade, and strongly links to ecosystem regimes.
Collapse
Affiliation(s)
- Kevin L Vergin
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Needham DM, Chow CET, Cram JA, Sachdeva R, Parada A, Fuhrman JA. Short-term observations of marine bacterial and viral communities: patterns, connections and resilience. ISME JOURNAL 2013; 7:1274-85. [PMID: 23446831 DOI: 10.1038/ismej.2013.19] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Observation of short-term temporal variation in bacterial and viral communities is important for understanding patterns of aquatic microbial diversity. We collected surface seawater once daily for 38 consecutive days with seven more samples interspersed over 40 more days at one location ∼2 km from Santa Catalina Island, California. Bacterial communities were analyzed by automated ribosomal intergenic spacer analysis (ARISA) and viral communities were analyzed by terminal restriction fragment length polymorphism (TRFLP) of the conserved T4-like myoviral gene encoding the major capsid protein (g23). Common bacterial and viral taxa were consistently dominant, and relatively few displayed dramatic increases/decreases or 'boom/bust' patterns that might be expected from dynamic predator-prey interactions. Association network analysis showed most significant covariations (associations) occurred among bacterial taxa or among viral taxa and there were several modular (highly-interconnected) associations (P≤0.005). Associations observed between bacteria and viruses (P≤0.005) occurred with a median time lag of 2 days. Regression of all pairwise Bray-Curtis similarities between samples indicated a rate of bacterial community change that slows from 2.1%-0.18% per day over a week to 2 months; the rate stays around 0.4% per day for viruses. Our interpretation is that, over the scale of days, individual bacterial and viral OTUs can be dynamic and patterned; resulting in statistical associations regarded as potential ecological interactions. However, over the scale of weeks, average bacterial community variation is slower, suggesting that there is strong community-level ecological resilience, that is, a tendency to converge towards a 'mean' microbial community set by longer-term controlling factors.
Collapse
Affiliation(s)
- David M Needham
- University of Southern California, Department of Biological Sciences, Los Angeles, CA 90089, USA.
| | | | | | | | | | | |
Collapse
|
230
|
Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME JOURNAL 2013; 7:1200-10. [PMID: 23389106 DOI: 10.1038/ismej.2013.1] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with <10% organic matter, while Proteobacteria dominated higher-organic matter soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future.
Collapse
|
231
|
Schöttner S, Hoffmann F, Cárdenas P, Rapp HT, Boetius A, Ramette A. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS One 2013; 8:e55505. [PMID: 23393586 PMCID: PMC3564759 DOI: 10.1371/journal.pone.0055505] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/24/2012] [Indexed: 01/06/2023] Open
Abstract
Cold-water coral reefs are known to locally enhance the diversity of deep-sea fauna as well as of microbes. Sponges are among the most diverse faunal groups in these ecosystems, and many of them host large abundances of microbes in their tissues. In this study, twelve sponge species from three cold-water coral reefs off Norway were investigated for the relationship between sponge phylogenetic classification (species and family level), as well as sponge type (high versus low microbial abundance), and the diversity of sponge-associated bacterial communities, taking also geographic location and water depth into account. Community analysis by Automated Ribosomal Intergenic Spacer Analysis (ARISA) showed that as many as 345 (79%) of the 437 different bacterial operational taxonomic units (OTUs) detected in the dataset were shared between sponges and sediments, while only 70 (16%) appeared purely sponge-associated. Furthermore, changes in bacterial community structure were significantly related to sponge species (63% of explained community variation), sponge family (52%) or sponge type (30%), whereas mesoscale geographic distances and water depth showed comparatively small effects (<5% each). In addition, a highly significant, positive relationship between bacterial community dissimilarity and sponge phylogenetic distance was observed within the ancient family of the Geodiidae. Overall, the high diversity of sponges in cold-water coral reefs, combined with the observed sponge-related variation in bacterial community structure, support the idea that sponges represent heterogeneous, yet structured microbial habitats that contribute significantly to enhancing bacterial diversity in deep-sea ecosystems.
Collapse
Affiliation(s)
- Sandra Schöttner
- HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | | | | | | |
Collapse
|
232
|
Lau SCK, Zhang R, Brodie EL, Piceno YM, Andersen G, Liu WT. Biogeography of bacterioplankton in the tropical seawaters of Singapore. FEMS Microbiol Ecol 2013; 84:259-69. [PMID: 23237658 DOI: 10.1111/1574-6941.12057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 12/07/2012] [Accepted: 12/08/2012] [Indexed: 01/05/2023] Open
Abstract
Knowledge about the biogeography of marine bacterioplankton on the global scale in general and in Southeast Asia in particular has been scarce. This study investigated the biogeography of bacterioplankton community in Singapore seawaters. Twelve stations around Singapore island were sampled on different schedules over 1 year. Using PCR-DNA fingerprinting, DNA cloning and sequencing, and microarray hybridization of the 16S rRNA genes, we observed clear spatial variations of bacterioplankton diversity within the small area of the Singapore seas. Water samples collected from the Singapore Strait (south) throughout the year were dominated by DNA sequences affiliated with Cyanobacteria and Alphaproteobacteria that were believed to be associated with the influx of water from the open seas in Southeast Asia. On the contrary, water in the relatively polluted Johor Strait (north) were dominated by Betaproteobacteria, Gammaproteobacteria, and Bacteroidetes and that were presumably associated with river discharge and the relatively eutrophic conditions of the waterway. Bacterioplankton diversity was temporally stable, except for the episodic surge of Pseudoalteromonas, associated with algal blooms. Overall, these results provide valuable insights into the diversity of bacterioplankton communities in Singapore seas and the possible influences of hydrological conditions and anthropogenic activities on the dynamics of the communities.
Collapse
Affiliation(s)
- Stanley C K Lau
- Division of Environmental Science and Engineering, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
233
|
Bowers RM, Clements N, Emerson JB, Wiedinmyer C, Hannigan MP, Fierer N. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:12097-106. [PMID: 24083487 DOI: 10.1021/es402970s] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bacteria and fungi are ubiquitous throughout the Earth's lower atmosphere where they often represent an important component of atmospheric aerosols with the potential to impact human health and atmospheric dynamics. However, the diversity, composition, and spatiotemporal dynamics of these airborne microbes remain poorly understood. We performed a comprehensive analysis of airborne microbes across two aerosol size fractions at urban and rural sites in the Colorado Front Range over a 14-month period. Coarse (PM10-2.5) and fine (PM2.5) particulate matter samples were collected at weekly intervals with both bacterial and fungal diversity assessed via high-throughput sequencing. The diversity and composition of the airborne communities varied across the sites, between the two size fractions, and over time. Bacteria were the dominant type of bioaerosol in the collected air samples, while fungi and plants (pollen) made up the remainder, with the relative abundances of fungi peaking during the spring and summer months. As bacteria made up the majority of bioaerosol particles, we analyzed the bacterial communities in greater detail using a bacterial-specific 16S rRNA gene sequencing approach. Overall, bacterial taxonomic richness and the relative abundances of specific bacterial taxa exhibited significant patterns of seasonality. Likewise, airborne bacterial communities varied significantly between sites and across aerosol size fractions. Source-tracking analyses indicate that soils and leaves represented important sources of bacteria to the near-surface atmosphere across all locations with cow fecal bacteria also representing an important source of bioaerosols at the more rural sites during early fall and early spring. Together, these data suggest that a complex set of environmental factors, including changes in atmospheric conditions and shifts in the relative importance of available microbial sources, act to control the composition of microbial bioaerosols in rural and urban environments.
Collapse
Affiliation(s)
- Robert M Bowers
- Department of Ecology and Evolutionary Biology, University of Colorado , UCB 334, Boulder, Colorado 80309, United States
| | | | | | | | | | | |
Collapse
|
234
|
Campbell BJ, Kirchman DL. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. THE ISME JOURNAL 2013; 7:210-20. [PMID: 22895159 PMCID: PMC3526181 DOI: 10.1038/ismej.2012.93] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 02/01/2023]
Abstract
Very little is known about growth rates of individual bacterial taxa and how they respond to environmental flux. Here, we characterized bacterial community diversity, structure and the relative abundance of 16S rRNA and 16S rRNA genes (rDNA) using pyrosequencing along the salinity gradient in the Delaware Bay. Indices of diversity, evenness, structure and growth rates of the surface bacterial community significantly varied along the transect, reflecting active mixing between the freshwater and marine ends of the estuary. There was no positive correlation between relative abundances of 16S rRNA and rDNA for the entire bacterial community, suggesting that abundance of bacteria does not necessarily reflect potential growth rate or activity. However, for almost half of the individual taxa, 16S rRNA positively correlated with rDNA, suggesting that activity did follow abundance in these cases. The positive relationship between 16S rRNA and rDNA was less in the whole water community than for free-living taxa, indicating that the two communities differed in activity. The 16S rRNA:rDNA ratios of some typically marine taxa reflected differences in light, nutrient concentrations and other environmental factors along the estuarine gradient. The ratios of individual freshwater taxa declined as salinity increased, whereas the 16S rRNA:rDNA ratios of only some typical marine bacteria increased as salinity increased. These data suggest that physical and other bottom-up factors differentially affect growth rates, but not necessarily abundance of individual taxa in this highly variable environment.
Collapse
Affiliation(s)
- Barbara J Campbell
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA.
| | | |
Collapse
|
235
|
Paganin P, Chiarini L, Bevivino A, Dalmastri C, Farcomeni A, Izzo G, Signorini A, Varrone C, Tabacchioni S. Vertical distribution of bacterioplankton in Lake Averno in relation to water chemistry. FEMS Microbiol Ecol 2012; 84:176-88. [DOI: 10.1111/1574-6941.12048] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/24/2012] [Accepted: 11/22/2012] [Indexed: 11/26/2022] Open
Affiliation(s)
- Patrizia Paganin
- ENEA C. R. Casaccia; Technical Unit for Sustainable Development and Innovation of Agroindustrial System; Rome; Italy
| | - Luigi Chiarini
- ENEA C. R. Casaccia; Technical Unit for Sustainable Development and Innovation of Agroindustrial System; Rome; Italy
| | - Annamaria Bevivino
- ENEA C. R. Casaccia; Technical Unit for Sustainable Development and Innovation of Agroindustrial System; Rome; Italy
| | - Claudia Dalmastri
- ENEA C. R. Casaccia; Technical Unit for Sustainable Development and Innovation of Agroindustrial System; Rome; Italy
| | - Alessio Farcomeni
- Department of Public Health and Infectious Diseases; Statistics Section; Sapienza - University of Rome; Rome; Italy
| | - Giulio Izzo
- ENEA C. R. Casaccia; Technical Unit for Renewable Energy Resources; Rome; Italy
| | - Antonella Signorini
- ENEA C. R. Casaccia; Technical Unit for Renewable Energy Resources; Rome; Italy
| | - Cristiano Varrone
- ENEA C. R. Casaccia; Technical Unit for Renewable Energy Resources; Rome; Italy
| | - Silvia Tabacchioni
- ENEA C. R. Casaccia; Technical Unit for Sustainable Development and Innovation of Agroindustrial System; Rome; Italy
| |
Collapse
|
236
|
Marston MF, Taylor S, Sme N, Parsons RJ, Noyes TJE, Martiny JBH. Marine cyanophages exhibit local and regional biogeography. Environ Microbiol 2012; 15:1452-63. [PMID: 23279166 DOI: 10.1111/1462-2920.12062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022]
Abstract
Biogeographic patterns have been demonstrated for a wide range of microorganisms. Nevertheless, the biogeography of marine viruses has been slower to emerge. Here we investigate biogeographic patterns of marine cyanophages that infect Synechococcus sp. WH7803 across multiple spatial and temporal scales. We compared cyanophage myoviral communities from nine coastal sites in Southern New England (SNE), USA, one site in Long Island NY, and four sites from Bermuda's inshore waters by assaying cyanophage isolates using the myoviral g43 DNA polymerase gene. Cyanophage community composition varied temporally at each of the sites. Further, 6 years of sampling at one Narragansett Bay site revealed annual seasonal variations in community composition, driven by the seasonal reoccurrence of specific viral taxa. Although the four Bermuda communities were similar to one another, they were significantly different than the North American coastal communities, with almost no overlap of taxa between the two regions. Among the SNE sites, cyanophage community composition also varied significantly and was correlated with the body of water sampled (e.g. Narragansett Bay, Cape Cod Bay, Vineyard Sound), although here, the same viral taxa were found at multiple sites. This study demonstrates that marine cyanophages display striking seasonal and spatial biogeographic patterns.
Collapse
Affiliation(s)
- Marcia F Marston
- Department of Biology and Marine Biology, Roger Williams University, Bristol, RI 02809, USA.
| | | | | | | | | | | |
Collapse
|
237
|
Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, Huber DH, Langenheder S, Lennon JT, Martiny JBH, Matulich KL, Schmidt TM, Handelsman J. Fundamentals of microbial community resistance and resilience. Front Microbiol 2012; 3:417. [PMID: 23267351 PMCID: PMC3525951 DOI: 10.3389/fmicb.2012.00417] [Citation(s) in RCA: 839] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/19/2012] [Indexed: 12/20/2022] Open
Abstract
Microbial communities are at the heart of all ecosystems, and yet microbial community behavior in disturbed environments remains difficult to measure and predict. Understanding the drivers of microbial community stability, including resistance (insensitivity to disturbance) and resilience (the rate of recovery after disturbance) is important for predicting community response to disturbance. Here, we provide an overview of the concepts of stability that are relevant for microbial communities. First, we highlight insights from ecology that are useful for defining and measuring stability. To determine whether general disturbance responses exist for microbial communities, we next examine representative studies from the literature that investigated community responses to press (long-term) and pulse (short-term) disturbances in a variety of habitats. Then we discuss the biological features of individual microorganisms, of microbial populations, and of microbial communities that may govern overall community stability. We conclude with thoughts about the unique insights that systems perspectives – informed by meta-omics data – may provide about microbial community stability.
Collapse
Affiliation(s)
- Ashley Shade
- Department of Molecular, Cellular and Developmental Biology, Yale University New Haven, CT, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
In situ transplant analysis of free-living bacteria in a lotic ecosystem. Res Microbiol 2012; 164:262-9. [PMID: 23257177 DOI: 10.1016/j.resmic.2012.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/05/2012] [Indexed: 11/24/2022]
Abstract
The Yarqon is a slow-flowing Mediterranean stream with three ecologically distinct sections, with varying abiotic conditions and anthropogenic influences. We used the Yarqon as a test habitat to study the effect of flow on microbial communities. Stream water samples from three distinct abiotic conditions: "clean", "human-impacted" and "brackish" sections were incubated in situ in dialysis bags at each of these sections for approximately 73 h. The samples were retrieved and analyzed by ARISA (automated ribosomal internal spacer analysis) and viable counts. Diversity estimates showed that free-living assemblages from the middle human-impacted section increased in diversity, while assemblages from the upper-clean section decreased in diversity unless planted in their site of origin. Samples originating from the brackish western section decreased in diversity wherever they were incubated. The ARISA profiles of the samples usually grouped by origin rather than by incubation location, implying that the rate of change of the free-living bacterial assemblages due to the shift in environment is relatively slow. Nevertheless, introducing free-living bacteria from the human-impacted section into the freshwater section resulted in a profile more similar to the latter, indicating a profound niche influence on these microbial assemblages.
Collapse
|
239
|
Reed HE, Martiny JBH. Microbial composition affects the functioning of estuarine sediments. ISME JOURNAL 2012; 7:868-79. [PMID: 23235294 DOI: 10.1038/ismej.2012.154] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although microorganisms largely drive many ecosystem processes, the relationship between microbial composition and their functioning remains unclear. To tease apart the effects of composition and the environment directly, microbial composition must be manipulated and maintained, ideally in a natural ecosystem. In this study, we aimed to test whether variability in microbial composition affects functional processes in a field setting, by reciprocally transplanting riverbed sediments between low- and high-salinity locations along the Nonesuch River (Maine, USA). We placed the sediments into microbial 'cages' to prevent the migration of microorganisms, while allowing the sediments to experience the abiotic conditions of the surroundings. We performed two experiments, short- (1 week) and long-term (7 weeks) reciprocal transplants, after which we assayed a variety of functional processes in the cages. In both experiments, we examined the composition of bacteria generally (targeting the 16S rDNA gene) and sulfate-reducing bacteria (SRB) specifically (targeting the dsrAB gene) using terminal restriction fragment length polymorphism (T-RFLP). In the short-term experiment, sediment processes (CO2 production, CH4 flux, nitrification and enzyme activities) depended on both the sediment's origin (reflecting differences in microbial composition between salt and freshwater sediments) and the surrounding environment. In the long-term experiment, general bacterial composition (but not SRB composition) shifted in response to their new environment, and this composition was significantly correlated with sediment functioning. Further, sediment origin had a diminished effect, relative to the short-term experiment, on sediment processes. Overall, this study provides direct evidence that microbial composition directly affects functional processes in these sediments.
Collapse
Affiliation(s)
- Heather E Reed
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
240
|
A combined sequence-based and fragment-based characterization of microbial eukaryote assemblages provides taxonomic context for the Terminal Restriction Fragment Length Polymorphism (T-RFLP) method. J Microbiol Methods 2012; 91:527-36. [DOI: 10.1016/j.mimet.2012.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 11/19/2022]
|
241
|
Szabo G, Preheim SP, Kauffman KM, David LA, Shapiro J, Alm EJ, Polz MF. Reproducibility of Vibrionaceae population structure in coastal bacterioplankton. ISME JOURNAL 2012. [PMID: 23178668 DOI: 10.1038/ismej.2012.134] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
How reproducibly microbial populations assemble in the wild remains poorly understood. Here, we assess evidence for ecological specialization and predictability of fine-scale population structure and habitat association in coastal ocean Vibrionaceae across years. We compare Vibrionaceae lifestyles in the bacterioplankton (combinations of free-living, particle, or zooplankton associations) measured using the same sampling scheme in 2006 and 2009 to assess whether the same groups show the same environmental association year after year. This reveals complex dynamics with populations falling primarily into two categories: (i) nearly equally represented in each of the two samplings and (ii) highly skewed, often to an extent that they appear exclusive to one or the other sampling times. Importantly, populations recovered at the same abundance in both samplings occupied highly similar habitats suggesting predictable and robust environmental association while skewed abundances of some populations may be triggered by shifts in ecological conditions. The latter is supported by difference in the composition of large eukaryotic plankton between years, with samples in 2006 being dominated by copepods, and those in 2009 by diatoms. Overall, the comparison supports highly predictable population-habitat linkage but highlights the fact that complex, and often unmeasured, environmental dynamics in habitat occurrence may have strong effects on population dynamics.
Collapse
Affiliation(s)
- Gitta Szabo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
| | | | | | | | | | | | | |
Collapse
|
242
|
Carini P, Steindler L, Beszteri S, Giovannoni SJ. Nutrient requirements for growth of the extreme oligotroph 'Candidatus Pelagibacter ubique' HTCC1062 on a defined medium. ISME JOURNAL 2012; 7:592-602. [PMID: 23096402 DOI: 10.1038/ismej.2012.122] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chemoheterotrophic marine bacteria of the SAR11 clade are Earth's most abundant organisms. Following the first cultivation of a SAR11 bacterium, 'Candidatus Pelagibacter ubique' strain HTCC1062 (Ca. P. ubique) in 2002, unusual nutritional requirements were identified for reduced sulfur compounds and glycine or serine. These requirements were linked to genome streamlining resulting from selection for efficient resource utilization in nutrient-limited ocean habitats. Here we report the first successful cultivation of Ca. P. ubique on a defined artificial seawater medium (AMS1), and an additional requirement for pyruvate or pyruvate precursors. Optimal growth was observed with the collective addition of inorganic macro- and micronutrients, vitamins, methionine, glycine and pyruvate. Methionine served as the sole sulfur source but methionine and glycine were not sufficient to support growth. Optimal cell yields were obtained when the stoichiometry between glycine and pyruvate was 1:4, and incomplete cell division was observed in cultures starved for pyruvate. Glucose and oxaloacetate could fully replace pyruvate, but not acetate, taurine or a variety of tricarboxylic acid cycle intermediates. Moreover, both glycine betaine and serine could substitute for glycine. Interestingly, glycolate partially restored growth in the absence of glycine. We propose that this is the result of the use of glycolate, a product of phytoplankton metabolism, as both a carbon source for respiration and as a precursor to glycine. These findings are important because they provide support for the hypothesis that some micro-organisms are challenging to cultivate because of unusual nutrient requirements caused by streamlining selection and gene loss. Our findings also illustrate unusual metabolic rearrangements that adapt these cells to extreme oligotrophy, and underscore the challenge of reconstructing metabolism from genome sequences in organisms that have non-canonical metabolic pathways.
Collapse
Affiliation(s)
- Paul Carini
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
243
|
Evaluation of two approaches for assessing the genetic similarity of virioplankton populations as defined by genome size. Appl Environ Microbiol 2012; 78:8773-83. [PMID: 23064328 DOI: 10.1128/aem.02432-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Viral production estimates show that virioplankton communities turn over rapidly in aquatic ecosystems. Thus, it is likely that the genetic identity of viral populations comprising the virioplankton also change over temporal and spatial scales, reflecting shifts in viral-host interactions. However, there are few approaches that can provide data on the genotypic identity of viral populations at low cost and with the sample throughput necessary to assess dynamic changes in the virioplankton. This study examined two of these approaches-T4-like major capsid protein (g23) gene polymorphism and randomly amplified polymorphic DNA-PCR (RAPD-PCR) fingerprinting-to ask how well each technique could track differences in virioplankton populations over time and geographic location. Seasonal changes in overall virioplankton composition were apparent from pulsed-field gel electrophoresis (PFGE) analysis. T4-like phages containing similar g23 proteins were found within both small- and large-genome populations, including populations from different geographic locations and times. The surprising occurrence of T4-like g23 within small genomic groups (23 to 64 kb) indicated that the genome size range of T4-like phages may be broader than previously believed. In contrast, RAPD-PCR fingerprinting detected high genotypic similarity within PFGE bands from the same location, time, and genome size class without the requirement for DNA sequencing. Unlike g23 polymorphism, RAPD-PCR fingerprints showed a greater temporal than geographic variation. Thus, while polymorphism in a viral signature gene, such as g23, can be a powerful tool for inferring evolutionary relationships, the degree to which this approach can capture fine-scale variability within virioplankton populations is less clear.
Collapse
|
244
|
Krause E, Wichels A, Giménez L, Lunau M, Schilhabel MB, Gerdts G. Small changes in pH have direct effects on marine bacterial community composition: a microcosm approach. PLoS One 2012; 7:e47035. [PMID: 23071704 PMCID: PMC3469576 DOI: 10.1371/journal.pone.0047035] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 09/07/2012] [Indexed: 11/18/2022] Open
Abstract
As the atmospheric CO(2) concentration rises, more CO(2) will dissolve in the oceans, leading to a reduction in pH. Effects of ocean acidification on bacterial communities have mainly been studied in biologically complex systems, in which indirect effects, mediated through food web interactions, come into play. These approaches come close to nature but suffer from low replication and neglect seasonality. To comprehensively investigate direct pH effects, we conducted highly-replicated laboratory acidification experiments with the natural bacterial community from Helgoland Roads (North Sea). Seasonal variability was accounted for by repeating the experiment four times (spring, summer, autumn, winter). Three dilution approaches were used to select for different ecological strategies, i.e. fast-growing or low-nutrient adapted bacteria. The pH levels investigated were in situ seawater pH (8.15-8.22), pH 7.82 and pH 7.67, representing the present-day situation and two acidification scenarios projected for the North Sea for the year 2100. In all seasons, both automated ribosomal intergenic spacer analysis and 16S ribosomal amplicon pyrosequencing revealed pH-dependent community shifts for two of the dilution approaches. Bacteria susceptible to changes in pH were different members of Gammaproteobacteria, Flavobacteriaceae, Rhodobacteraceae, Campylobacteraceae and further less abundant groups. Their specific response to reduced pH was often context-dependent. Bacterial abundance was not influenced by pH. Our findings suggest that already moderate changes in pH have the potential to cause compositional shifts, depending on the community assembly and environmental factors. By identifying pH-susceptible groups, this study provides insights for more directed, in-depth community analyses in large-scale and long-term experiments.
Collapse
Affiliation(s)
- Evamaria Krause
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, Germany.
| | | | | | | | | | | |
Collapse
|
245
|
Kara EL, Hanson PC, Hu YH, Winslow L, McMahon KD. A decade of seasonal dynamics and co-occurrences within freshwater bacterioplankton communities from eutrophic Lake Mendota, WI, USA. ISME JOURNAL 2012; 7:680-4. [PMID: 23051691 DOI: 10.1038/ismej.2012.118] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With an unprecedented decade-long time series from a temperate eutrophic lake, we analyzed bacterial and environmental co-occurrence networks to gain insight into seasonal dynamics at the community level. We found that (1) bacterial co-occurrence networks were non-random, (2) season explained the network complexity and (3) co-occurrence network complexity was negatively correlated with the underlying community diversity across different seasons. Network complexity was not related to the variance of associated environmental factors. Temperature and productivity may drive changes in diversity across seasons in temperate aquatic systems, much as they control diversity across latitude. While the implications of bacterioplankton network structure on ecosystem function are still largely unknown, network analysis, in conjunction with traditional multivariate techniques, continues to increase our understanding of bacterioplankton temporal dynamics.
Collapse
Affiliation(s)
- Emily L Kara
- Civil and Environmental Engineering Department, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
246
|
Diversity across Seasons of Culturable Pseudomonas from a Desiccation Lagoon in Cuatro Cienegas, Mexico. Int J Microbiol 2012; 2012:201389. [PMID: 23093963 PMCID: PMC3474248 DOI: 10.1155/2012/201389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/15/2012] [Indexed: 11/17/2022] Open
Abstract
Cuatro Cienegas basin (CCB) is a biodiversity reservoir within the Chihuahuan desert that includes several water systems subject to marked seasonality. While several studies have focused on biodiversity inventories, this is the first study that describes seasonal changes in diversity within the basin. We sampled Pseudomonas populations from a seasonally variable water system at four different sampling dates (August 2003, January 2004, January 2005, and August 2005). A total of 70 Pseudomonas isolates across seasons were obtained, genotyped by fingerprinting (BOX-PCR), and taxonomically characterized by 16S rDNA sequencing. We found 35 unique genotypes, and two numerically dominant lineages (16S rDNA sequences) that made up 64% of the sample: P. cuatrocienegasensis and P. otitidis. We did not recover genotypes across seasons, but lineages reoccurred across seasons; P. cuatrocienegasensis was isolated exclusively in winter, while P. otitidis was only recovered in summer. We statistically show that taxonomic identity of isolates is not independent of the sampling season, and that winter and summer populations are different. In addition to the genetic description of populations, we show exploratory measures of growth rates at different temperatures, suggesting physiological differences between populations. Altogether, the results indicate seasonal changes in diversity of free-living aquatic Pseudomonas populations from CCB.
Collapse
|
247
|
Rösel S, Allgaier M, Grossart HP. Long-term characterization of free-living and particle-associated bacterial communities in Lake Tiefwaren reveals distinct seasonal patterns. MICROBIAL ECOLOGY 2012; 64:571-583. [PMID: 22526401 DOI: 10.1007/s00248-012-0049-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/14/2012] [Indexed: 05/31/2023]
Abstract
Seasonal changes in environmental conditions have a strong impact on microbial community structure and dynamics in aquatic habitats. To better elucidate the response of bacterial communities to environmental changes, we have measured a large variety of limnetic variables and investigated bacterial community composition (BCC) and dynamics over seven consecutive years between 2003 and 2009 in mesotrophic Lake Tiefwaren (NE Germany). We separated between free-living (FL, >0.2, <5.0 μm) and particle-associated (PA, >5.0 μm) bacteria to account for different bacterial lifestyles and to obtain a higher resolution of the microbial diversity. Changes in BCC were studied by DGGE based on PCR-amplified 16S rRNA gene fragments. Sequencing of DGGE bands revealed that ca. 70 % of all FL bacteria belonged to the Actinobacteria, whereas PA bacteria were dominated by Cyanobacteria (43 %). FL communities were generally less diverse and rather stable over time compared to their PA counterpart. Annual changes in reoccurring seasonal patterns of dominant freshwater bacteria were supported by statistical analyses, which revealed several significant correlations between DGGE profiles and various environmental variables, e.g. temperature and nutrients. Overall, FL bacteria were generally less affected by environmental changes than members of the PA fraction. Close association of PA bacteria with phytoplankton and zooplankton suggests a tight coupling of PA bacteria to organisms of higher trophic levels. Our results indicate substantial differences in bacterial lifestyle of pelagic freshwater bacteria, which are reflected by contrasting seasonal dynamics and relationships to a number of environmental variables.
Collapse
Affiliation(s)
- Stefan Rösel
- Department Limnology of Stratified Lakes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany
| | | | | |
Collapse
|
248
|
Mayali X, Weber PK, Pett-Ridge J. Taxon-specific C/N relative use efficiency for amino acids in an estuarine community. FEMS Microbiol Ecol 2012; 83:402-12. [PMID: 22994392 DOI: 10.1111/j.1574-6941.12000.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/16/2012] [Accepted: 08/18/2012] [Indexed: 11/30/2022] Open
Abstract
Microbial activity plays a critical role in determining the nutrient status of an ecosystem (i.e. N or C limitation). While the balance of C/N assimilation has been measured at the whole community scale, quantitative detection of N and C assimilation from a single substrate at the scale of individual taxa has not been carried out. We recently developed Chip-SIP, a microarray and NanoSIMS-based method for linking microbial phylogeny and function that allows simultaneous measurement of (15)N and (13)C incorporation. Here, we measured the relative incorporation of C and N from dual-labeled substrates by individual microbial taxa in bottle incubations of samples collected from an estuary. Incubation times < 24 h were sufficient to successfully detect active microbes incorporating (15)N ammonium. In subsequent experiments, we used the incorporation of labeled amino acids (AAs) as a proxy for heterotrophic activity and showed different levels of incorporation among different taxonomic groups. Taxon-specific differences in the net incorporation of AA-derived C and N indicate that the C/N relative use efficiency ranged from 0.8 to 1.4, where 1 reflects stoichiometric incorporation of C and N. Our results revealed that microbial organic matter processing is affected by taxon-specific physiological diversity, both in terms of general activity levels and in the ratio of assimilated C/N.
Collapse
Affiliation(s)
- Xavier Mayali
- Chemical Science Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | | | | |
Collapse
|
249
|
Abstract
SAR11 is an ancient and diverse clade of heterotrophic bacteria that are abundant throughout the world’s oceans, where they play a major role in the ocean carbon cycle. Correlations between the phylogenetic branching order and spatiotemporal patterns in cell distributions from planktonic ocean environments indicate that SAR11 has evolved into perhaps a dozen or more specialized ecotypes that span evolutionary distances equivalent to a bacterial order. We isolated and sequenced genomes from diverse SAR11 cultures that represent three major lineages and encompass the full breadth of the clade. The new data expand observations about genome evolution and gene content that previously had been restricted to the SAR11 Ia subclade, providing a much broader perspective on the clade’s origins, evolution, and ecology. We found small genomes throughout the clade and a very high proportion of core genome genes (48 to 56%), indicating that small genome size is probably an ancestral characteristic. In their level of core genome conservation, the members of SAR11 are outliers, the most conserved free-living bacteria known. Shared features of the clade include low GC content, high gene synteny, a large hypervariable region bounded by rRNA genes, and low numbers of paralogs. Variation among the genomes included genes for phosphorus metabolism, glycolysis, and C1 metabolism, suggesting that adaptive specialization in nutrient resource utilization is important to niche partitioning and ecotype divergence within the clade. These data provide support for the conclusion that streamlining selection for efficient cell replication in the planktonic habitat has occurred throughout the evolution and diversification of this clade. The SAR11 clade is the most abundant group of marine microorganisms worldwide, making them key players in the global carbon cycle. Growing knowledge about their biochemistry and metabolism is leading to a more mechanistic understanding of organic carbon oxidation and sequestration in the oceans. The discovery of small genomes in SAR11 provided crucial support for the theory that streamlining selection can drive genome reduction in low-nutrient environments. Study of isolates in culture revealed atypical organic nutrient requirements that can be attributed to genome reduction, such as conditional auxotrophy for glycine and its precursors, a requirement for reduced sulfur compounds, and evidence for widespread cycling of C1 compounds in marine environments. However, understanding the genetic variation and distribution of such pathways and characteristics like streamlining throughout the group has required the isolation and genome sequencing of diverse SAR11 representatives, an analysis of which we provide here.
Collapse
|
250
|
Sintes E, Witte H, Stodderegger K, Steiner P, Herndl GJ. Temporal dynamics in the free-living bacterial community composition in the coastal North Sea. FEMS Microbiol Ecol 2012; 83:413-24. [PMID: 22938648 PMCID: PMC3561708 DOI: 10.1111/1574-6941.12003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 06/06/2012] [Accepted: 08/22/2012] [Indexed: 11/29/2022] Open
Abstract
The coastal North Sea is characterized by strong seasonal dynamics in abiotic and biotic variables. Hence, pronounced temporal changes in the bacterioplankton community composition can be expected. Catalyzed reporter deposition fluorescence in situ hybridization analysis showed a seasonal succession, with Alphaproteobacteria dominating before the spring phytoplankton bloom, Bacteroidetes increasing during the bloom (up to 60% of the prokaryotic community) and being replaced by Gammaproteobacteria during the postbloom period (on average 30% of prokaryotic cells). Daily changes in similarity of the bacterioplankton community assessed by Terminal Restriction Fragment Length Polymorphism averaged 0.08 day−1 (Whittaker similarity index) for the free-living bacterial community, resulting in a decreasing similarity between samples with increasing time up to approximately 150 days. After about 150 days, the community composition became increasingly similar to the initial composition. Changes in the bacterial community showed periods of fairly stable composition, interrupted by periods of rapid changes. Taken together, our results support the notion of a recurring bacterioplankton community in the coastal North Sea and indicate a tight coupling between the resources, the bacterial community metabolism, physiological structure and community composition throughout the seasonal cycle in the coastal North Sea.
Collapse
Affiliation(s)
- Eva Sintes
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands.
| | | | | | | | | |
Collapse
|