201
|
Karunaratne A, Li S, Bull AMJ. Nano-scale mechanisms explain the stiffening and strengthening of ligament tissue with increasing strain rate. Sci Rep 2018; 8:3707. [PMID: 29487334 PMCID: PMC5829138 DOI: 10.1038/s41598-018-21786-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/10/2018] [Indexed: 11/08/2022] Open
Abstract
Ligament failure is a major societal burden causing disability and pain. Failure is caused by trauma at high loading rates. At the macroscopic level increasing strain rates cause an increase in failure stress and modulus, but the mechanism for this strain rate dependency is not known. Here we investigate the nano scale mechanical property changes of human ligament using mechanical testing combined with synchrotron X-ray diffraction. With increasing strain rate, we observe a significant increase in fibril modulus and a reduction of fibril to tissue strain ratio, revealing that tissue-level stiffening is mainly due to the stiffening of collagen fibrils. Further, we show that the reduction in fibril deformation at higher strain rates is due to reduced molecular strain and fibrillar gaps, and is associated with rapid disruption of matrix-fibril bonding. This reduction in number of interfibrillar cross-links explains the changes in fibril strain; this is verified through computational modelling.
Collapse
Affiliation(s)
- Angelo Karunaratne
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Department of Mechanical Engineering, University of Moratuwa, Moratuwa, Sri Lanka
| | - Simin Li
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
202
|
Smith LR, Barton ER. Regulation of fibrosis in muscular dystrophy. Matrix Biol 2018; 68-69:602-615. [PMID: 29408413 DOI: 10.1016/j.matbio.2018.01.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 02/08/2023]
Abstract
The production of force and power are inherent properties of skeletal muscle, and regulated by contractile proteins within muscle fibers. However, skeletal muscle integrity and function also require strong connections between muscle fibers and their extracellular matrix (ECM). A well-organized and pliant ECM is integral to muscle function and the ability for many different cell populations to efficiently migrate through ECM is critical during growth and regeneration. For many neuromuscular diseases, genetic mutations cause disruption of these cytoskeletal-ECM connections, resulting in muscle fragility and chronic injury. Ultimately, these changes shift the balance from myogenic pathways toward fibrogenic pathways, culminating in the loss of muscle fibers and their replacement with fatty-fibrotic matrix. Hence a common pathological hallmark of muscular dystrophy is prominent fibrosis. This review will cover the salient features of muscular dystrophy pathogenesis, highlight the signals and cells that are important for myogenic and fibrogenic actions, and discuss how fibrosis alters the ECM of skeletal muscle, and the consequences of fibrosis in developing therapies.
Collapse
Affiliation(s)
- Lucas R Smith
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
203
|
Aziz J, Ahmad MF, Rahman MT, Yahya NA, Czernuszka J, Radzi Z. AFM analysis of collagen fibrils in expanded scalp tissue after anisotropic tissue expansion. Int J Biol Macromol 2018; 107:1030-1038. [DOI: 10.1016/j.ijbiomac.2017.09.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 01/24/2023]
|
204
|
Latifi N, Asgari M, Vali H, Mongeau L. A tissue-mimetic nano-fibrillar hybrid injectable hydrogel for potential soft tissue engineering applications. Sci Rep 2018; 8:1047. [PMID: 29348423 PMCID: PMC5773686 DOI: 10.1038/s41598-017-18523-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/13/2017] [Indexed: 01/19/2023] Open
Abstract
While collagen type I (Col-I) is commonly used as a structural component of biomaterials, collagen type III (Col-III), another fibril forming collagen ubiquitous in many soft tissues, has not previously been used. In the present study, the novel concept of an injectable hydrogel with semi-interpenetrating polymeric networks of heterotypic collagen fibrils, with tissue-specific Col-III to Col-I ratios, in a glycol-chitosan matrix was investigated. Col-III was introduced as a component of the novel hydrogel, inspired by its co-presence with Col-I in many soft tissues, its influence on the Col-I fibrillogenesis in terms of diameter and mechanics, and its established role in regulating scar formation. The hydrogel has a nano-fibrillar porous structure, and is mechanically stable under continuous dynamic stimulation. It was found to provide a longer half-life of about 35 days than similar hyaluronic acid-based hydrogels, and to support cell implantation in terms of viability, metabolic activity, adhesion and migration. The specific case of pure Col-III fibrils in a glycol-chitosan matrix was investigated. The proposed hydrogels meet many essential requirements for soft tissue engineering applications, particularly for mechanically challenged tissues such as vocal folds and heart valves.
Collapse
Affiliation(s)
- Neda Latifi
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke street west, Montreal, QC H3A 0C3, Canada.
| | - Meisam Asgari
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke street west, Montreal, QC H3A 0C3, Canada
| | - Hojatollah Vali
- Department of Anatomy & Cell Biology, McGill University, 3640 University street, Montreal, QC H3A 2B2, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke street west, Montreal, QC H3A 0C3, Canada
| |
Collapse
|
205
|
The hierarchical response of human corneal collagen to load. Acta Biomater 2018; 65:216-225. [PMID: 29128531 PMCID: PMC5729024 DOI: 10.1016/j.actbio.2017.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 02/04/2023]
Abstract
Fibrillar collagen in the human cornea is integral to its function as a transparent lens of precise curvature, and its arrangement is now well-characterised in the literature. While there has been considerable effort to incorporate fibrillar architecture into mechanical models of the cornea, the mechanical response of corneal collagen to small applied loads is not well understood. In this study the fibrillar and molecular response to tensile load was quantified using small and wide angle X-ray scattering (SAXS/WAXS), and digital image correlation (DIC) photography was used to calculate the local strain field that gave rise to the hierarchical changes. A molecular scattering model was used to calculate the tropocollagen tilt relative to the fibril axis and changes associated with applied strain. Changes were measured in the D-period, molecular tilt and the orientation and spacing of the fibrillar and molecular networks. These measurements were summarised into hierarchical deformation mechanisms, which were found to contribute at varying strains. The change in molecular tilt is indicative of a sub-fibrillar “spring-like” deformation mechanism, which was found to account for most of the applied strain under physiological and near-physiological loads. This deformation mechanism may play an important functional role in tissues rich in fibrils of high helical tilt, such as skin and cartilage. Statement of Significance Collagen is the primary mediator of soft tissue biomechanics, and variations in its hierarchical structure convey the varying amounts of structural support necessary for organs to function normally. Here we have examined the structural response of corneal collagen to tensile load using X-rays to probe hierarchies ranging from molecular to fibrillar. We found a previously unreported deformation mechanism whereby molecules, which are helically arranged relative to the axis of their fibril, change in tilt akin to the manner in which a spring stretches. This “spring-like” mechanism accounts for a significant portion of the applied deformation at low strains (<3%). These findings will inform the future design of collagen-based artificial corneas being developed to address world-wide shortages of corneal donor tissue.
Collapse
|
206
|
Bayón B, Berti IR, Gagneten AM, Castro GR. Biopolymers from Wastes to High-Value Products in Biomedicine. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7431-8_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
207
|
Radaelli F, D'Alfonso L, Collini M, Mingozzi F, Marongiu L, Granucci F, Zanoni I, Chirico G, Sironi L. μMAPPS: a novel phasor approach to second harmonic analysis for in vitro-in vivo investigation of collagen microstructure. Sci Rep 2017; 7:17468. [PMID: 29234132 PMCID: PMC5727101 DOI: 10.1038/s41598-017-17726-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022] Open
Abstract
Second Harmonic Generation (SHG) is a label-free imaging method used to monitor collagen organization in tissues. Due to its sensitivity to the incident polarization, it provides microstructural information otherwise unreachable by other intensity based imaging methods. We develop and test a Microscopic Multiparametric Analysis by Phasor projection of Polarization-dependent SHG (μMAPPS) that maps the features of the collagen architecture in tissues at the micrometer scale. μMAPPS retrieves pixel-by-pixel the collagen fibrils anisotropy and orientation by operating directly on two coupled phasor spaces, avoiding direct fitting of the polarization dependent SHG signal. We apply μMAPPS to fixed tissue sections and to the study of the collagen microscopic organization in tumors ex-vivo and in-vivo. We develop a clustering algorithm to automatically group pixels with similar microstructural features. μMAPPS can perform fast analyses of tissues and opens to future applications for in-situ diagnosis of pathologies and diseases that could assist histo-pathological evaluation.
Collapse
Affiliation(s)
- F Radaelli
- Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - L D'Alfonso
- Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - M Collini
- Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy.
- CNR - ISASI, Institute of Applied Sciences & Intelligent Systems, Via Campi Flegrei 34, Pozzuoli, NA, Italy.
| | - F Mingozzi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - L Marongiu
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - F Granucci
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - I Zanoni
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - G Chirico
- Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
- CNR - ISASI, Institute of Applied Sciences & Intelligent Systems, Via Campi Flegrei 34, Pozzuoli, NA, Italy
| | - L Sironi
- Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy.
| |
Collapse
|
208
|
Planz V, Seif S, Atchison JS, Vukosavljevic B, Sparenberg L, Kroner E, Windbergs M. Three-dimensional hierarchical cultivation of human skin cells on bio-adaptive hybrid fibers. Integr Biol (Camb) 2017; 8:775-84. [PMID: 27241237 DOI: 10.1039/c6ib00080k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The human skin comprises a complex multi-scale layered structure with hierarchical organization of different cells within the extracellular matrix (ECM). This supportive fiber-reinforced structure provides a dynamically changing microenvironment with specific topographical, mechanical and biochemical cell recognition sites to facilitate cell attachment and proliferation. Current advances in developing artificial matrices for cultivation of human cells concentrate on surface functionalizing of biocompatible materials with different biomolecules like growth factors to enhance cell attachment. However, an often neglected aspect for efficient modulation of cell-matrix interactions is posed by the mechanical characteristics of such artificial matrices. To address this issue, we fabricated biocompatible hybrid fibers simulating the complex biomechanical characteristics of native ECM in human skin. Subsequently, we analyzed interactions of such fibers with human skin cells focusing on the identification of key fiber characteristics for optimized cell-matrix interactions. We successfully identified the mediating effect of bio-adaptive elasto-plastic stiffness paired with hydrophilic surface properties as key factors for cell attachment and proliferation, thus elucidating the synergistic role of these parameters to induce cellular responses. Co-cultivation of fibroblasts and keratinocytes on such fiber mats representing the specific cells in dermis and epidermis resulted in a hierarchical organization of dermal and epidermal tissue layers. In addition, terminal differentiation of keratinocytes at the air interface was observed. These findings provide valuable new insights into cell behaviour in three-dimensional structures and cell-material interactions which can be used for rational development of bio-inspired functional materials for advanced biomedical applications.
Collapse
Affiliation(s)
- Viktoria Planz
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus Building A 4.1, 66123 Saarbrücken, Germany.
| | - Salem Seif
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus Building A 4.1, 66123 Saarbrücken, Germany. and PharmBioTec GmbH, Science Park 1, 66123 Saarbrücken, Germany
| | - Jennifer S Atchison
- INM - Leibniz Institute for New Materials, Campus Building D 2.2, 66123 Saarbrücken, Germany
| | - Branko Vukosavljevic
- Helmholtz Centre for Infection Research (HZI) and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Campus Building E 8.1, 66123 Saarbrücken, Germany
| | - Lisa Sparenberg
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus Building A 4.1, 66123 Saarbrücken, Germany.
| | - Elmar Kroner
- INM - Leibniz Institute for New Materials, Campus Building D 2.2, 66123 Saarbrücken, Germany
| | - Maike Windbergs
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus Building A 4.1, 66123 Saarbrücken, Germany. and PharmBioTec GmbH, Science Park 1, 66123 Saarbrücken, Germany and Helmholtz Centre for Infection Research (HZI) and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Campus Building E 8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
209
|
Madhumitha D, Dhathathreyan A. Interaction of Myoglobin colloids with BSA in solution: Insights into complex formation and elastic compliance. Int J Biol Macromol 2017; 105:1259-1268. [DOI: 10.1016/j.ijbiomac.2017.07.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 11/15/2022]
|
210
|
Malaspina DC, Szleifer I, Dhaher Y. Mechanical properties of a collagen fibril under simulated degradation. J Mech Behav Biomed Mater 2017; 75:549-557. [DOI: 10.1016/j.jmbbm.2017.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
|
211
|
Wu J, Yuan H, Li L, Fan K, Qian S, Li B. Viscoelastic shear lag model to predict the micromechanical behavior of tendon under dynamic tensile loading. J Theor Biol 2017; 437:202-213. [PMID: 29111420 DOI: 10.1016/j.jtbi.2017.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022]
Abstract
Owing to its viscoelastic nature, tendon exhibits stress rate-dependent breaking and stiffness function. A Kelvin-Voigt viscoelastic shear lag model is proposed to illustrate the micromechanical behavior of the tendon under dynamic tensile conditions. Theoretical closed-form expressions are derived to predict the deformation and stress transfer between fibrils and interfibrillar matrix while tendon is dynamically stretched. The results from the analytical solutions demonstrate that how the fibril overlap length and fibril volume fraction affect the stress transfer and mechanical properties of tendon. We find that the viscoelastic property of interfibrillar matrix mainly results in collagen fibril failure under fast loading rate or creep rupture of tendon. However, discontinuous fibril model and hierarchical structure of tendon ensure relative sliding under slow loading rate, helping dissipate energy and protecting fibril from damage, which may be a key reason why regularly staggering alignment microstructure is widely selected in nature. According to the growth, injury, healing and healed process of tendon observed by many researchers, the conclusions presented in this paper agrees well with the experimental findings. Additionally, the emphasis of this paper is on micromechanical behavior of tendon, whereas this analytical viscoelastic shear lag model can be equally applicable to other soft or hard tissues, owning the similar microstructure.
Collapse
Affiliation(s)
- Jiayu Wu
- MOE Key Laboratory of Disaster Forecast and Control in Engineering, Institute of Applied Mechanics, Jinan University, Guangzhou 510632, China; School of Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Hong Yuan
- MOE Key Laboratory of Disaster Forecast and Control in Engineering, Institute of Applied Mechanics, Jinan University, Guangzhou 510632, China.
| | - Longyuan Li
- School of Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Kunjie Fan
- School of Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Shanguang Qian
- Architecture Engineering Faculty, Kunming Metallurgy College, Kumming 650033, China
| | - Bing Li
- Blackett Laboratory, Imperial College London, South Kensington Campus, SW7 2AZ, UK
| |
Collapse
|
212
|
Li Q, Sun L, Zhang L, Xu Z, Kang Y, Xue P. Polydopamine-collagen complex to enhance the biocompatibility of polydimethylsiloxane substrates for sustaining long-term culture of L929 fibroblasts and tendon stem cells. J Biomed Mater Res A 2017; 106:408-418. [PMID: 28971550 DOI: 10.1002/jbm.a.36254] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/24/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022]
Abstract
Polydimethylsiloxane (PDMS) is a commercialized polymer extensively used in the fabrication of versatile microfluidic microdevices for studies in cell biology and tissue engineering. However, the inherent surface hydrophobicity of PDMS is not optimal for cell culture and thus restrains its applications for investigation of long-term behaviors of fibroblasts and stem cells. To improve the surface biocompatibility of PDMS, a facile technique was developed by modifying the PDMS surface with polydopamine-collagen (COL/PDA) complex. The successful synthesis of COL/PDA was verified through proton nuclear magnetic resonance spectroscopy. Compared to surface coating solely with COL or PDA, the surface wettability was significantly improved on COL/PDA-modified PDMS substrates based on water contact angle characterizations. The modified PDMS surface remarkably enhanced the initial adhesion and long-term proliferation of L929 fibroblasts and tendon stem cells (TSCs). Additionally, the effects of COL/PDA coating on cell viability and apoptosis were further investigated under prolonged incubation. We found that the COL/PDA coating on PDMS resulted in a substantial increase of cell viability compared to native PDMS, and the cell apoptosis was considerably impeded on the modified PDMS. This study demonstrated that COL/PDA coating can effectively enhance the surface biocompatibility of PDMS as verified by the enhanced adhesion and long-term proliferation of L929 fibroblasts and TSCs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 408-418, 2018.
Collapse
Affiliation(s)
- Qian Li
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing, 400715, China
| | - Lihong Sun
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing, 400715, China
| | - Lei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Zhigang Xu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing, 400715, China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing, 400715, China
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing, 400715, China
| |
Collapse
|
213
|
Sinibaldi R, Conti A, Sinjari B, Spadone S, Pecci R, Palombo M, Komlev VS, Ortore MG, Tromba G, Capuani S, Guidotti R, De Luca F, Caputi S, Traini T, Della Penna S. Multimodal-3D imaging based on μMRI and μCT techniques bridges the gap with histology in visualization of the bone regeneration process. J Tissue Eng Regen Med 2017; 12:750-761. [PMID: 28593731 DOI: 10.1002/term.2494] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 04/23/2017] [Accepted: 06/05/2017] [Indexed: 01/05/2023]
Abstract
Bone repair/regeneration is usually investigated through X-ray computed microtomography (μCT) supported by histology of extracted samples, to analyse biomaterial structure and new bone formation processes. Magnetic resonance imaging (μMRI) shows a richer tissue contrast than μCT, despite at lower resolution, and could be combined with μCT in the perspective of conducting non-destructive 3D investigations of bone. A pipeline designed to combine μMRI and μCT images of bone samples is here described and applied on samples of extracted human jawbone core following bone graft. We optimized the coregistration procedure between μCT and μMRI images to avoid bias due to the different resolutions and contrasts. Furthermore, we used an Adaptive Multivariate Clustering, grouping homologous voxels in the coregistered images, to visualize different tissue types within a fused 3D metastructure. The tissue grouping matched the 2D histology applied only on 1 slice, thus extending the histology labelling in 3D. Specifically, in all samples, we could separate and map 2 types of regenerated bone, calcified tissue, soft tissues, and/or fat and marrow space. Remarkably, μMRI and μCT alone were not able to separate the 2 types of regenerated bone. Finally, we computed volumes of each tissue in the 3D metastructures, which might be exploited by quantitative simulation. The 3D metastructure obtained through our pipeline represents a first step to bridge the gap between the quality of information obtained from 2D optical microscopy and the 3D mapping of the bone tissue heterogeneity and could allow researchers and clinicians to non-destructively characterize and follow-up bone regeneration.
Collapse
Affiliation(s)
- R Sinibaldi
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
- Multimodal3D s.r.l., Rome, Italy
| | - A Conti
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - B Sinjari
- Department of Medical and Oral Sciences and Biotechnologies, G. D'Annunzio University of Chieti and Pescara, Chieti, Italy
| | - S Spadone
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - R Pecci
- Department of Technologies and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Palombo
- Department of Physics, Sapienza University of Rome, Rome, Italy
- CEA/DSV/I2BM, MIRCen, Fontenay-aux-Roses, France
| | - V S Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russian Federation
| | - M G Ortore
- Department of Life and Environmental Science, Marche Polytechnic University, Ancona, Italy
| | - G Tromba
- Elettra Sincrotrone Trieste, Trieste, Italy
| | - S Capuani
- CNR (Institute for Complex Systems) c/o Physics Department Sapienza University of Rome, Rome, Italy
| | - R Guidotti
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - F De Luca
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - S Caputi
- Department of Medical and Oral Sciences and Biotechnologies, G. D'Annunzio University of Chieti and Pescara, Chieti, Italy
| | - T Traini
- Department of Medical and Oral Sciences and Biotechnologies, G. D'Annunzio University of Chieti and Pescara, Chieti, Italy
| | - S Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
214
|
Park S. Computational modeling for prediction of the shear stress of three-dimensional isotropic and aligned fiber networks. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 148:91-98. [PMID: 28774442 DOI: 10.1016/j.cmpb.2017.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/17/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Interstitial flow (IF) is a creeping flow through the interstitial space of the extracellular matrix (ECM). IF plays a key role in diverse biological functions, such as tissue homeostasis, cell function and behavior. Currently, most studies that have characterized IF have focused on the permeability of ECM or shear stress distribution on the cells, but less is known about the prediction of shear stress on the individual fibers or fiber networks despite its significance in the alignment of matrix fibers and cells observed in fibrotic or wound tissues. In this study, I developed a computational model to predict shear stress for different structured fibrous networks. METHODS To generate isotropic models, a random growth algorithm and a second-order orientation tensor were employed. Then, a three-dimensional (3D) solid model was created using computer-aided design (CAD) software for the aligned models (i.e., parallel, perpendicular and cubic models). Subsequently, a tetrahedral unstructured mesh was generated and flow solutions were calculated by solving equations for mass and momentum conservation for all models. Through the flow solutions, I estimated permeability using Darcy's law. Average shear stress (ASS) on the fibers was calculated by averaging the wall shear stress of the fibers. By using nonlinear surface fitting of permeability, viscosity, velocity, porosity and ASS, I devised new computational models. RESULTS Overall, the developed models showed that higher porosity induced higher permeability, as previous empirical and theoretical models have shown. For comparison of the permeability, the present computational models were matched well with previous models, which justify our computational approach. ASS tended to increase linearly with respect to inlet velocity and dynamic viscosity, whereas permeability was almost the same. Finally, the developed model nicely predicted the ASS values that had been directly estimated from computational fluid dynamics (CFD). CONCLUSIONS The present computational models will provide new tools for predicting accurate functional properties and designing fibrous porous materials, thereby significantly advancing tissue engineering.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
215
|
Wei B, Nan J, Jiang Y, Wang H, Zhang J, He L, Xu C, Zhai Z, Xie D, Xie S. In Vitro Fabrication and Physicochemical Properties of a Hybrid Fibril from Xenogeneic Collagens. FOOD BIOPHYS 2017. [DOI: 10.1007/s11483-017-9498-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
216
|
Luo B, Smith JW, Wu Z, Kim J, Ou Z, Chen Q. Polymerization-Like Co-Assembly of Silver Nanoplates and Patchy Spheres. ACS NANO 2017; 11:7626-7633. [PMID: 28715193 DOI: 10.1021/acsnano.7b02059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Highly anisometric nanoparticles have distinctive mechanical, electrical, and thermal properties and are therefore appealing candidates for use as self-assembly building blocks. Here, we demonstrate that ultra-anisometric nanoplates, which have a nanoscale thickness but a micrometer-scale edge length, offer many material design capabilities. In particular, we show that these nanoplates "copolymerize" in a predictable way with patchy spheres (Janus and triblock particles) into one- and two-dimensional structures with tunable architectural properties. We find that, on the pathway to these structures, nanoplates assemble into chains following the kinetics of molecular step-growth polymerization. In the same mechanistic framework, patchy spheres control the size distribution and morphology of assembled structures, by behaving as monofunctional chain stoppers or multifunctional branch points during nanoplate polymerization. In addition, both the lattice constant and the stiffness of the nanoplate assemblies can be manipulated after assembly. We see highly anisometric nanoplates as one representative of a broader class of dual length-scale nanoparticles, with the potential to enrich the library of structures and properties available to the nanoparticle self-assembly toolbox.
Collapse
Affiliation(s)
- Binbin Luo
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - John W Smith
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Zixuan Wu
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Juyeong Kim
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Zihao Ou
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Qian Chen
- Department of Materials Science and Engineering, ‡Frederick Seitz Materials Research Laboratory, and §Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
217
|
Affiliation(s)
- Gang Seob Jung
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
218
|
Rossetti L, Kuntz LA, Kunold E, Schock J, Müller KW, Grabmayr H, Stolberg-Stolberg J, Pfeiffer F, Sieber SA, Burgkart R, Bausch AR. The microstructure and micromechanics of the tendon-bone insertion. NATURE MATERIALS 2017; 16:664-670. [PMID: 28250445 DOI: 10.1038/nmat4863] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 01/17/2017] [Indexed: 05/28/2023]
Abstract
The exceptional mechanical properties of the load-bearing connection of tendon to bone rely on an intricate interplay of its biomolecular composition, microstructure and micromechanics. Here we identify that the Achilles tendon-bone insertion is characterized by an interface region of ∼500 μm with a distinct fibre organization and biomolecular composition. Within this region, we identify a heterogeneous mechanical response by micromechanical testing coupled with multiscale confocal microscopy. This leads to localized strains that can be larger than the remotely applied strain. The subset of fibres that sustain the majority of loading in the interface area changes with the angle of force application. Proteomic analysis detects enrichment of 22 proteins in the interfacial region that are predominantly involved in cartilage and skeletal development as well as proteoglycan metabolism. The presented mechanisms mark a guideline for further biomimetic strategies to rationally design hard-soft interfaces.
Collapse
Affiliation(s)
- L Rossetti
- Lehrstuhl für Zellbiophysik, Technische Universität München, D-85748 Garching, Germany
| | - L A Kuntz
- Lehrstuhl für Zellbiophysik, Technische Universität München, D-85748 Garching, Germany
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar, Technische Universität München, D-81675 München, Germany
| | - E Kunold
- Center for Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - J Schock
- Lehrstuhl für Biomedizinische Physik, Physik-Department &Institut für Medizintechnik, Technische Universität München, D-85748 Garching, Germany
| | - K W Müller
- Institute for Computational Mechanics, Technische Universität München, D-85748 Garching, Germany
- Structural and Applied Mechanics Group, Computational Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA
| | - H Grabmayr
- Lehrstuhl für Zellbiophysik, Technische Universität München, D-85748 Garching, Germany
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, D-80539 Munich, Germany
| | - J Stolberg-Stolberg
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar, Technische Universität München, D-81675 München, Germany
- University Hospital Münster, Department of Trauma-, Hand- and Reconstructive Surgery, Albert-Schweitzer-Campus 1, Building W1, D-48149 Münster, Germany
| | - F Pfeiffer
- Lehrstuhl für Biomedizinische Physik, Physik-Department &Institut für Medizintechnik, Technische Universität München, D-85748 Garching, Germany
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, D-81675 München, Germany
| | - S A Sieber
- Center for Integrated Protein Science (CIPSM), Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - R Burgkart
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar, Technische Universität München, D-81675 München, Germany
| | - A R Bausch
- Lehrstuhl für Zellbiophysik, Technische Universität München, D-85748 Garching, Germany
| |
Collapse
|
219
|
In vitro fibrillogenesis of tropocollagen type III in collagen type I affects its relative fibrillar topology and mechanics. Sci Rep 2017; 7:1392. [PMID: 28469139 PMCID: PMC5431193 DOI: 10.1038/s41598-017-01476-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/27/2017] [Indexed: 01/19/2023] Open
Abstract
Tropocollagen types I and III were simultaneously fibrilized in vitro, and the differences between the geometric and mechanical properties of the heterotypic fibrils with different mixing ratios of tropocollagen III to I were investigated. Transmission electron microscopy was used to confirm the simultaneous presence of both tropocollagen types within the heterotypic fibrils. The incorporation of collagen III in I caused the fibrils to be thinner with a shorter D-banding than pure collagen I. Hertzian contact model was used to obtain the elastic moduli from atomic force microscope indentation testing using a force volume analysis. The results indicated that an increase in the percentage of tropocollagen III reduced the mechanical stiffness of the obtained fibrils. The mechanical stiffness of the collagen fibrils was found to be greater at higher loading frequencies. This observation might explain the dominance of collagen III over I in soft distensible organs such as human vocal folds.
Collapse
|
220
|
Dong S, Huang Z, Tang L, Zhang X, Zhang Y, Jiang Y. A three-dimensional collagen-fiber network model of the extracellular matrix for the simulation of the mechanical behaviors and micro structures. Comput Methods Biomech Biomed Engin 2017; 20:991-1003. [DOI: 10.1080/10255842.2017.1321113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shoubin Dong
- School of Computer Science & Engineering, South China University of Technology, Guangzhou, China
| | - Zetao Huang
- School of Computer Science & Engineering, South China University of Technology, Guangzhou, China
| | - Liqun Tang
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou, China
| | - Xiaoyang Zhang
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou, China
| | - Yongrou Zhang
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou, China
| | - Yi Jiang
- Department of Mathematics & Statistics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
221
|
Goh KL, Holmes DF. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue. Int J Mol Sci 2017; 18:ijms18050901. [PMID: 28441344 PMCID: PMC5454814 DOI: 10.3390/ijms18050901] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action-the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced composites to a wide variety of collagen reinforcing (non-mutable) connective tissue, has allowed us to draw general conclusions concerning the mechanical response of the MCT at specific mechanical states, namely the stiff and complaint states. The intent of this review is to provide the latest insights, as well as identify technical challenges and opportunities, that may be useful for developing methods for effective mechanical support when adapting decellularised connective tissues from the sea urchin for tissue engineering or for the design of a synthetic analogue.
Collapse
Affiliation(s)
- Kheng Lim Goh
- Newcastle University Singapore, SIT Building at Nanyang Polytechnic, 172A Ang Mo Kio Avenue 8 #05-01, Singapore 567739, Singapore.
- Newcastle University, School of Mechanical & Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK.
| | - David F Holmes
- Manchester University, Wellcome Trust Centre for Cell Matrix Research, B.3016 Michael Smith Building, Faculty of Life Sciences, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
222
|
Lai WF, Rogach AL. Hydrogel-Based Materials for Delivery of Herbal Medicines. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11309-11320. [PMID: 28244320 DOI: 10.1021/acsami.6b16120] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herbal medicine, as an integral component of oriental medicine, has assimilated into the lives of Asian people for millennia. The therapeutic efficiency of herbal extracts and ingredients has, however, been limited by various factors, including the lack of targeting capacity and poor bioavailability. Hydrogels are hydrophilic polymer networks that can imbibe a substantial amount of fluids. They are biocompatible, and may enable sustained drug release. Hydrogels, therefore, have attracted widespread studies in pharmaceutical formulation. This article first reviews the latest progress in the development of hydrogel-based materials as carriers of herbal medicines, followed by a discussion of the relationships between hydrogel properties and carrier performance. Finally, the promising potential of using hydrogels to combine medicinal herbs with synthetic drugs in one single treatment will be highlighted as an avenue for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Pharmacy, Health Science Center, Shenzhen University , Shenzhen 518060, China
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University , Hong Kong
| | - Andrey L Rogach
- Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong , Hong Kong
| |
Collapse
|
223
|
Celikkin N, Rinoldi C, Costantini M, Trombetta M, Rainer A, Święszkowski W. Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1277-1299. [PMID: 28575966 DOI: 10.1016/j.msec.2017.04.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/25/2022]
Abstract
Tissue engineering (TE) aims to mimic the complex environment where organogenesis takes place using advanced materials to recapitulate the tissue niche. Cells, three-dimensional scaffolds and signaling factors are the three main and essential components of TE. Over the years, materials and processes have become more and more sophisticated, allowing researchers to precisely tailor the final chemical, mechanical, structural and biological features of the designed scaffolds. In this review, we will pose the attention on two specific classes of naturally derived polymers: fibrous proteins and glycosaminoglycans (GAGs). These materials hold great promise for advances in the field of regenerative medicine as i) they generally undergo a fast remodeling in vivo favoring neovascularization and functional cells organization and ii) they elicit a negligible immune reaction preventing severe inflammatory response, both representing critical requirements for a successful integration of engineered scaffolds with the host tissue. We will discuss the recent achievements attained in the field of regenerative medicine by using proteins and GAGs, their merits and disadvantages and the ongoing challenges to move the current concepts to practical clinical application.
Collapse
Affiliation(s)
- Nehar Celikkin
- Warsaw University of Technology, Faculty of Material Science and Engineering, 141 Woloska str., 02-507 Warsaw, Poland
| | - Chiara Rinoldi
- Warsaw University of Technology, Faculty of Material Science and Engineering, 141 Woloska str., 02-507 Warsaw, Poland
| | - Marco Costantini
- Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Marcella Trombetta
- Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Alberto Rainer
- Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Wojciech Święszkowski
- Warsaw University of Technology, Faculty of Material Science and Engineering, 141 Woloska str., 02-507 Warsaw, Poland.
| |
Collapse
|
224
|
Extraction and Characterization of Collagen from Broiler Chicken Feet (Gallus gallus domesticus) - Biomolecules from Poultry Waste. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
225
|
Investigating the Mechanobiology of Cancer Cell-ECM Interaction Through Collagen-Based 3D Scaffolds. Cell Mol Bioeng 2017; 10:223-234. [PMID: 31719861 DOI: 10.1007/s12195-017-0483-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/25/2017] [Indexed: 10/25/2022] Open
Abstract
Deregulated dynamics of the extracellular matrix (ECM) are one of the hallmarks of cancer. Studies on tumor mechanobiology are thus expected to provide an insight into the disease pathogenesis as well as potentially useful biomarkers. Type I collagen is among the major determinants of breast ECM structural and tensile properties, and collagen modifications during tumor evolution drive a number of disease-related processes favoring cancer progression and invasion. We investigated the use of 3D collagen-based scaffolds to identify the modifications induced by cancer cells on the mechanical and structural properties of the matrix, comparing cell lines from two breast tumor subtypes with different clinical aggressiveness. Orthotopic implantation was used to investigate the collagen content and architecture of in vivo breast tumors generated by the two cell lines. MDA-MB-231, which belongs to the aggressive basal-like subtype, increased scaffold stiffness and overexpressed the matrix-modifying enzyme, lysyl oxidase (LOX), whereas luminal A MCF-7 cells did not significantly alter the mechanical characteristics of extracellular collagen. This replicates the behavior of in vivo tumors generated by MDA-MB-231, characterized by a higher collagen content and higher LOX levels than MCF-7. When LOX activity was blocked, the ability of MDA-MB-231 to alter scaffold stiffness was impaired. Our model could constitute a relevant in vitro tool to reproduce and investigate the biomechanical interplay subsisting between cancer cells and the surrounding ECM and its impact on tumor phenotype and behavior.
Collapse
|
226
|
Carniel TA, Fancello EA. A transversely isotropic coupled hyperelastic model for the mechanical behavior of tendons. J Biomech 2017; 54:49-57. [PMID: 28238424 DOI: 10.1016/j.jbiomech.2017.01.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Abstract
Several constitutive models for fibrous soft tissues used in literature provide a completely isotropic response when fibers are compressed. However, recent experimental investigations confirm the expectation that tendons behave anisotropically during compression tests. Motivated by these facts, the present manuscript presents an appropriate choice of hyperelastic potentials able to predict the coupled mechanical behaviors of tendons under both tensile and compressive loads with a relatively small number of material parameters. The high stiffness of tendons under tensile tests is handled by a transversely isotropic model while the coupled compressive response is modeled by means of a Fung-type potential in terms of Seth-Hill's generalized strain tensors. In present study the logarithm strain measure is used instead of the usually employed Green-Lagrange strain. After a parameter identification procedure, the resulting model showed ability to satisfactorily reproduce the experimental data. Details on the analytical material tangent modulus are provided. Present results will then enhance further researches related to tendon dissipative effects and numerical multiscale investigations.
Collapse
Affiliation(s)
- Thiago André Carniel
- GRANTE - Department of Mechanical Engineering, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Alberto Fancello
- GRANTE - Department of Mechanical Engineering, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; LEBm - University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
227
|
|
228
|
Design of Hierarchical Structures for Synchronized Deformations. Sci Rep 2017; 7:41183. [PMID: 28117427 PMCID: PMC5259711 DOI: 10.1038/srep41183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/16/2016] [Indexed: 11/09/2022] Open
Abstract
In this paper we propose a general method for creating a new type of hierarchical structures at any level in both 2D and 3D. A simple rule based on a rotate-and-mirror procedure is introduced to achieve multi-level hierarchies. These new hierarchical structures have remarkably few degrees of freedom compared to existing designs by other methods. More importantly, these structures exhibit synchronized motions during opening or closure, resulting in uniform and easily-controllable deformations. Furthermore, a simple analytical formula is found which can be used to avoid collision of units of the structure during the closing process. The novel design concept is verified by mathematical analyses, computational simulations and physical experiments.
Collapse
|
229
|
Heterogeneous nanomechanical properties of type I collagen in longitudinal direction. Biomech Model Mechanobiol 2017; 16:1023-1033. [DOI: 10.1007/s10237-016-0870-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 12/24/2016] [Indexed: 01/28/2023]
|
230
|
Liu N, Hong J, Zeng X, Pidaparti R, Wang X. Fracture mechanisms in multilayer phosphorene assemblies: from brittle to ductile. Phys Chem Chem Phys 2017; 19:13083-13092. [DOI: 10.1039/c7cp01033h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper studies the transition of fracture patterns of multilayer phosphorene assemblies.
Collapse
Affiliation(s)
- Ning Liu
- College of Engineering
- University of Georgia
- Athens
- USA
| | - Jiawang Hong
- Department of Applied Mechanics
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Xiaowei Zeng
- Department of Mechanical Engineering
- University of Texas at San Antonio
- San Antonio
- USA
| | | | - Xianqiao Wang
- College of Engineering
- University of Georgia
- Athens
- USA
| |
Collapse
|
231
|
Ovaska M, Bertalan Z, Miksic A, Sugni M, Di Benedetto C, Ferrario C, Leggio L, Guidetti L, Alava MJ, La Porta CA, Zapperi S. Deformation and fracture of echinoderm collagen networks. J Mech Behav Biomed Mater 2017; 65:42-52. [DOI: 10.1016/j.jmbbm.2016.07.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/07/2016] [Accepted: 07/31/2016] [Indexed: 11/26/2022]
|
232
|
Youngstrom DW, LaDow JE, Barrett JG. Tenogenesis of bone marrow-, adipose-, and tendon-derived stem cells in a dynamic bioreactor. Connect Tissue Res 2016; 57:454-465. [PMID: 27028488 DOI: 10.3109/03008207.2015.1117458] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tendons are frequently damaged and fail to regenerate, leading to pain, loss of function, and reduced quality of life. Mesenchymal stem cells (MSCs) possess clinically useful tissue-regenerative properties and have been exploited for use in tendon tissue engineering and cell therapy. However, MSCs exhibit phenotypic heterogeneity based on the donor tissue used, and the efficacy of cell-based treatment modalities may be improved by optimizing cell source based on relative differentiation capacity. Equine MSCs were isolated from bone marrow (BM), adipose (AD), and tendon (TN), expanded in monolayer prior to seeding on decellularized tendon scaffolds (DTS), and cell-laden constructs were placed in a bioreactor designed to mimic the biophysical environment of the tendon. It was hypothesized that TN MSCs would differentiate toward a tendon cell phenotype better than BM and AD MSCs in response to a conditioning period involving cyclic mechanical stimulation for 1 hour per day at 3% strain and 0.33 Hz. All cell types integrated into DTS adopted an elongated morphology similar to tenocytes, expressed tendon marker genes, and improved tissue mechanical properties after 11 days. TN MSCs expressed the greatest levels of scleraxis, collagen type-I, and cartilage oligomeric matrix protein. Major histocompatibility class-II protein mRNA expression was not detected in any of the MSC types, suggesting low immunogenicity for allogeneic transplantation. The results suggest that TN MSCs are the ideal cell type for regenerative medicine therapies for tendinopathies, exhibiting the most mature tendon-like phenotype in vitro. When TN MSCs are unavailable, BM or AD MSCs may serve as robust alternatives.
Collapse
Affiliation(s)
- Daniel W Youngstrom
- a Program in Biomedical and Veterinary Sciences, Marion duPont Scott Equine Medical Center , Virginia Tech , Leesburg , VA , USA
| | - Jade E LaDow
- a Program in Biomedical and Veterinary Sciences, Marion duPont Scott Equine Medical Center , Virginia Tech , Leesburg , VA , USA
| | - Jennifer G Barrett
- b Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center , Virginia Tech , Leesburg , VA , USA
| |
Collapse
|
233
|
Effect of crosslinking in cartilage-like collagen microstructures. J Mech Behav Biomed Mater 2016; 66:138-143. [PMID: 27866057 DOI: 10.1016/j.jmbbm.2016.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/03/2016] [Accepted: 10/14/2016] [Indexed: 11/20/2022]
Abstract
The mechanical performance of biological tissues is underpinned by a complex and finely balanced structure. Central to this is collagen, the most abundant protein in our bodies, which plays a dominant role in the functioning of tissues, and also in disease. Based on the collagen meshwork of articular cartilage, we have developed a bottom-up spring-node model of collagen and examined the effect of fibril connectivity, implemented by crosslinking, on mechanical behaviour. Although changing individual crosslink stiffness within an order of magnitude had no significant effect on modelling predictions, the density of crosslinks in a meshwork had a substantial impact on its behaviour. Highly crosslinked meshworks maintained a 'normal' configuration under loading, with stronger resistance to deformation and improved recovery relative to sparsely crosslinked meshwork. Stress on individual fibrils, however, was higher in highly crosslinked meshworks. Meshworks with low numbers of crosslinks reconfigured to disease-like states upon deformation and recovery. The importance of collagen interconnectivity may provide insight into the role of ultrastructure and its mechanics in the initiation, and early stages, of diseases such as osteoarthritis.
Collapse
|
234
|
Ware MJ, Keshishian V, Law JJ, Ho JC, Favela CA, Rees P, Smith B, Mohammad S, Hwang RF, Rajapakshe K, Coarfa C, Huang S, Edwards DP, Corr SJ, Godin B, Curley SA. Generation of an in vitro 3D PDAC stroma rich spheroid model. Biomaterials 2016; 108:129-42. [PMID: 27627810 DOI: 10.1016/j.biomaterials.2016.08.041] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic/stromal reaction, which contributes to the poor clinical outcome of this disease. Therefore, greater understanding of the stroma development and tumor-stroma interactions is highly required. Pancreatic stellate cells (PSC) are myofibroblast-like cells located in exocrine areas of the pancreas, which as a result of inflammation produced by PDAC migrate and accumulate in the tumor mass, secreting extracellular matrix components and producing the dense PDAC stroma. Currently, only a few orthotopic or ectopic animal tumor models, where PDAC cells are injected into the pancreas or subcutaneous tissue layer, or genetically engineered animals offer tumors that encompass some stromal component. Herein, we report generation of a simple 3D PDAC in vitro micro-tumor model without an addition of external extracellular matrix, which encompasses a rich, dense and active stromal compartment. We have achieved this in vitro model by incorporating PSCs into 3D PDAC cell culture using a modified hanging drop method. It is now known that PSCs are the principal source of fibrosis in the stroma and interact closely with cancer cells to create a tumor facilitatory environment that stimulates local and distant tumor growth. The 3D micro-stroma models are highly reproducible with excellent uniformity, which can be used for PDAC-stroma interaction analysis and high throughput automated drug-screening assays. Additionally, the increased expression of collagenous regions means that molecular based perfusion and cytostaticity of gemcitabine is decreased in our Pancreatic adenocarcinoma stroma spheroids (PDAC-SS) model when compared to spheroids grown without PSCs. We believe this model will allow an improved knowledge of PDAC biology and has the potential to provide an insight into pathways that may be therapeutically targeted to inhibit PSC activation, thereby inhibiting the development of fibrosis in PDAC and interrupting PSC-PDAC cell interactions so as to inhibit cancer progression.
Collapse
Affiliation(s)
- Matthew J Ware
- Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vazrik Keshishian
- Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Justin J Law
- Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason C Ho
- Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carlos A Favela
- Department of Systems Medicine and Bio-engineering, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Paul Rees
- Department of Engineering, Swansea University, Swansea, United Kingdom
| | - Billie Smith
- Pathology and Histology Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sayeeduddin Mohammad
- Pathology and Histology Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rosa F Hwang
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shixia Huang
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dean P Edwards
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Stuart J Corr
- Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Chemistry, Rice University, Houston, TX 77005, USA; Department of Bioengineering, University of Houston, Houston, TX 77204, USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Steven A Curley
- Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
235
|
Multi-scale modeling of soft fibrous tissues based on proteoglycan mechanics. J Biomech 2016; 49:2349-57. [DOI: 10.1016/j.jbiomech.2016.02.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/21/2016] [Indexed: 11/18/2022]
|
236
|
Adouni M, Dhaher YY. A multi-scale elasto-plastic model of articular cartilage. J Biomech 2016; 49:2891-2898. [PMID: 27435568 DOI: 10.1016/j.jbiomech.2016.06.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 11/20/2022]
Abstract
Collagen damage is one of the earliest signs of cartilage degeneration and the onset of osteoarthritis (OA), but the connection between the microscale damage and macroscale tissue function is unclear. We argue that a multiscale model can help elucidate the biochemical and mechanical underpinnings of OA by connecting the microscale defects in collagen fibrils to the macroscopic cartilage mechanics. We investigated this connection using a multiscale fibril reinforced hyperelastoplastic (MFRHEP) model that accounts for the structural architecture of the soft tissue, starting from tropocollagen molecules that form fibrils, and moving to the complete soft tissue. This model was driven by reported experimental data from unconfined compression testing of cartilage. The model successfully described the observed transient response of the articular cartilage in unconfined and indentation tests with low and high loading rates. We used this model to understand damage initiation and propagation as a function of the cross-link density between tropocollagen molecules. This approach appeared to provide a realistic simulation of damage when compared with certain published studies. The current construct presents the first attempt to express the aggregate cartilage damage in terms of the cross-link density at the microfibril level.
Collapse
Affiliation(s)
- Malek Adouni
- Northwestern University, Physical Medicine and Rehabilitation Department, 345 East Superior Street, Chicago, IL 60611, USA; Rehabilitation Institute of Chicago, Sensory Motor Performance Program, 345 East Superior Street, Chicago, IL 60611, USA.
| | - Yasin Y Dhaher
- Northwestern University, Physical Medicine and Rehabilitation Department, 345 East Superior Street, Chicago, IL 60611, USA; Rehabilitation Institute of Chicago, Sensory Motor Performance Program, 345 East Superior Street, Chicago, IL 60611, USA; Northwestern University, Biomedical Engineering Department, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
237
|
Ghodsi H, Darvish K. Characterization of the viscoelastic behavior of a simplified collagen micro-fibril based on molecular dynamics simulations. J Mech Behav Biomed Mater 2016; 63:26-34. [PMID: 27341288 DOI: 10.1016/j.jmbbm.2016.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/31/2016] [Accepted: 06/04/2016] [Indexed: 10/21/2022]
Abstract
Collagen fibril is a major component of connective tissues such as bone, tendon, blood vessels, and skin. The mechanical properties of this highly hierarchical structure are greatly influenced by the presence of covalent cross-links between individual collagen molecules. This study investigates the viscoelastic behavior of a collagen lysine-lysine cross-link based on creep simulations with applied forces in the range or 10 to 2000pN using steered molecular dynamics (SMD). The viscoelastic model of the cross-link was combined with a system composed by two segments of adjacent collagen molecules hence representing a reduced viscoelastic model for a simplified micro-fibril. It was found that the collagen micro-fibril assembly had a steady-state Young׳s modulus ranging from 2.24 to 3.27GPa, which is in agreement with reported experimental measurements. The propagation of longitudinal force wave along the molecule was implemented by adding a delay element to the model. The force wave speed was found to be correlated with the speed of one-dimensional elastic waves in rods. The presented reduced model with three degrees of freedom can serve as a building block for developing models of the next level of hierarchy, i.e., a collagen fibril.
Collapse
Affiliation(s)
- Hossein Ghodsi
- Department of Mechanical Engineering, College of Engineering, Temple University, 1947N. 12th street, Philadelphia, PA 19122, USA.
| | - Kurosh Darvish
- Department of Mechanical Engineering, College of Engineering, Temple University, 1947N. 12th street, Philadelphia, PA 19122, USA.
| |
Collapse
|
238
|
Felgueiras HP, Murthy NS, Sommerfeld SD, Brás MM, Migonney V, Kohn J. Competitive Adsorption of Plasma Proteins Using a Quartz Crystal Microbalance. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13207-13217. [PMID: 27144779 PMCID: PMC6707081 DOI: 10.1021/acsami.5b12600] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proteins that get adsorbed onto the surfaces of biomaterials immediately upon their implantation mediate the interactions between the material and the environment. This process, in which proteins in a complex mixture compete for adsorption sites on the surface, is determined by the physicochemical interactions at the interface. Competitive adsorption of bovine serum albumin (BSA), fibronectin (Fn), and collagen type I (Col I), sequentially and from mixtures, was investigated so as to understand the performances of different surfaces used in biomedical applications. A quartz crystal microbalance with dissipation was used to monitor the adsorption of these proteins onto two materials used in functional bone replacement, a titanium alloy (Ti6Al4V) and Ti6Al4V physisorbed with poly(sodium styrenesulfonate) [poly(NaSS)], and three controls, gold, poly(desaminotyrosyltyrosine ethyl ester carbonate) [poly(DTEc)], and polystyrene (PS). In experiments with individual proteins, the adsorption was the highest with Fn and Col I and the least with BSA. Also, protein adsorption was the highest on poly(NaSS) and Ti6Al4V and the least on poly(DTEc). In sequential adsorption experiments, protein exchange was observed in BSA + Fn, Fn + Col I, and BSA + Col I sequences but not in Fn + BSA and Col I + BSA because of the lower affinity of BSA to surfaces relative to Fn and Col I. Protein adsorption was the highest with Col I + Fn on hydrophobic surfaces. In experiments with protein mixtures, with BSA & Fn, Fn appears to be preferentially adsorbed; with Fn & Col I, both proteins were adsorbed, probably as multilayers; and with Col I & BSA, the total amount of protein was the highest, greater than that in sequential and individual adsorption of the two proteins, probably because of the formation of BSA and Col I complexes. Protein conformational changes induced by the adsorbing surfaces, protein-protein interactions, and affinities of proteins appear to be the important factors that govern competitive adsorption. The findings reported here will be useful in understanding the host response to surfaces used for implants.
Collapse
Affiliation(s)
- Helena P. Felgueiras
- Laboratory of Biomaterials and Specialty Polymers, LBPS-CSPBAT CNRS UMR 7244, Institut Galilée, Université Paris 13, 93430 Villetaneuse, France
| | - N. Sanjeeva Murthy
- New Jersey Center for Biomaterials, Rutgers University, 145 Bevier Road, Piscataway, New Jersey 08854, USA
| | - Sven D. Sommerfeld
- New Jersey Center for Biomaterials, Rutgers University, 145 Bevier Road, Piscataway, New Jersey 08854, USA
| | - M. Manuela Brás
- Institute of Biomedical Engineering (INEB), Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Institute for Innovation and Health (I3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Véronique Migonney
- Laboratory of Biomaterials and Specialty Polymers, LBPS-CSPBAT CNRS UMR 7244, Institut Galilée, Université Paris 13, 93430 Villetaneuse, France
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers University, 145 Bevier Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|
239
|
Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention. Ann Biomed Eng 2016; 44:2642-60. [PMID: 27138523 DOI: 10.1007/s10439-016-1628-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/22/2016] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications.
Collapse
|
240
|
Deshmukh SN, Dive AM, Moharil R, Munde P. Enigmatic insight into collagen. J Oral Maxillofac Pathol 2016; 20:276-83. [PMID: 27601823 PMCID: PMC4989561 DOI: 10.4103/0973-029x.185932] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/06/2016] [Indexed: 11/26/2022] Open
Abstract
Collagen is a unique, triple helical molecule which forms the major part of extracellular matrix. It is the most abundant protein in the human body, representing 30% of its dry weight. It is the fibrous structural protein that makes up the white fibers (collagen fibers) of skin, tendons, bones, cartilage and all other connective tissues. Collagens are not only essential for the mechanical resistance and resilience of multicellular organisms, but are also signaling molecules defining cellular shape and behavior. The human body has at least 16 types of collagen, but the most prominent types are I, II and III. Collagens are produced by several cell types and are distinguishable by their molecular compositions, morphologic characteristics, distribution, functions and pathogenesis. This is the major fibrous glycoprotein present in the extracellular matrix and in connective tissue and helps in maintaining the structural integrity of these tissues. It has a triple helical structure. Various studies have proved that mutations that modify folding of the triple helix result in identifiable genetic disorders. Collagen diseases share certain similarities with autoimmune diseases, because autoantibodies specific to each collagen disease are produced. Therefore, this review highlights the role of collagen in normal health and also the disorders associated with structural and functional defects in collagen.
Collapse
Affiliation(s)
- Shrutal Narendra Deshmukh
- Department of Oral and Maxillofacial Pathology, Dr. RRK Dental College and Research Centre, Akola, Maharashtra, India
| | - Alka M Dive
- Department of Oral and Maxillofacial Pathology, VSPM'S DCRC, Nagpur, Maharashtra, India
| | - Rohit Moharil
- Department of Oral and Maxillofacial Pathology, VSPM'S DCRC, Nagpur, Maharashtra, India
| | - Prashant Munde
- Department of Oral and Maxillofacial Pathology, VSPM'S DCRC, Nagpur, Maharashtra, India
| |
Collapse
|
241
|
Linka K, Itskov M. Mechanics of collagen fibrils: A two-scale discrete damage model. J Mech Behav Biomed Mater 2016; 58:163-172. [DOI: 10.1016/j.jmbbm.2015.08.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 11/16/2022]
|
242
|
Jee SE, Zhou J, Tan J, Breschi L, Tay FR, Grégoire G, Pashley DH, Jang SS. Investigation of ethanol infiltration into demineralized dentin collagen fibrils using molecular dynamics simulations. Acta Biomater 2016; 36:175-85. [PMID: 26969524 DOI: 10.1016/j.actbio.2016.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/18/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
The purpose of this study is to investigate the interaction of neat ethanol with bound and non-bound water in completely demineralized dentin that is fully hydrated, using molecular dynamics (MD) simulation method. The key to creating ideal resin-dentin bonds is the removal of residual free water layers and its replacement by ethanol solvent in which resin monomers are soluble, using the ethanol wet-bonding technique. The test null hypotheses were that ethanol cannot remove any collagen-bound water, and that ethanol cannot infiltrate into the spacing between collagen triple helix due to narrow interlayer spacing. Collagen fibrillar structures of overlap and gap regions were constructed by aligning the collagen triple helix of infinite length in hexagonal packing. Three layers of the water molecules were specified as the layers of 0.15-0.22nm, 0.22-0.43nm and 0.43-0.63nm from collagen atoms by investigating the water distribution surrounding collagen molecules. Our simulation results show that ethanol molecules infiltrated into the intermolecular spacing in the gap region, which increased due to the lateral shrinkage of the collagen structures in contact with ethanol solution, while there was no ethanol infiltration observed in the overlap region. Infiltrated ethanol molecules in the gap region removed residual water molecules via modifying mostly the third water layer (50% decrease), which would be considered as a loosely-bound water layer. The first and second hydration layers, which would be considered as tightly bound water layers, were not removed by the ethanol molecules, thus maintaining the helical structures of the collagen molecules.
Collapse
|
243
|
Abd-Elgaliel WR, Tung CH. Exploring the structural requirements of collagen-binding peptides. Biopolymers 2016; 100:167-73. [PMID: 23436394 DOI: 10.1002/bip.22188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 10/30/2012] [Accepted: 11/12/2012] [Indexed: 01/14/2023]
Abstract
Collagen synthesis and tissue remodeling are involved in many diseases; therefore, collagen-specific binding agents have been developed to study collagen changes in various tissues. Based on a recently reported collagen binding peptide, which contains unnatural biphenylalanine (Bip) amino acid residue, constructs with various structure variations were synthesized to explore the contributions of unnatural Bip residue, conformational restrain, and amino acid sequence in collagen recognition. Their binding efficiency to collagens was evaluated in vitro using pure collagens. The results indicate that the C-terminal unnatural Bip residue, rather than the peptide sequence or conformational restrain, dominated the collagen I binding. Subsequent tissue binding study showed that the selected peptide did not offer preferential selectivity over collagen I in tissue, suggesting that a simple in vitro binding assay cannot adequately model the complex biological environment.
Collapse
Affiliation(s)
- Wael R Abd-Elgaliel
- Department of Translational Imaging, Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX
| | | |
Collapse
|
244
|
Xia W, Ruiz L, Pugno NM, Keten S. Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies. NANOSCALE 2016; 8:6456-6462. [PMID: 26935048 DOI: 10.1039/c5nr08488a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Multi-layer graphene assemblies (MLGs) or fibers with a staggered architecture exhibit high toughness and failure strain that surpass those of the constituent single sheets. However, how the architectural parameters such as the sheet overlap length affect these mechanical properties remains unknown due in part to the limitations of mechanical continuum models. By exploring the mechanics of MLG assemblies under tensile deformation using our established coarse-grained molecular modeling framework, we have identified three different critical interlayer overlap lengths controlling the strength, plastic stress, and toughness of MLGs, respectively. The shortest critical length scale L(C)(S) governs the strength of the assembly as predicted by the shear-lag model. The intermediate critical length L(C)(P) is associated with a dynamic frictional process that governs the strain localization propensity of the assembly, and hence the failure strain. The largest critical length scale L(C)(T) corresponds to the overlap length necessary to achieve 90% of the maximum theoretical toughness of the material. Our analyses provide the general guidelines for tuning the constitutive properties and toughness of multilayer 2D nanomaterials using elasticity, interlayer adhesion energy and geometry as molecular design parameters.
Collapse
Affiliation(s)
- Wenjie Xia
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Luis Ruiz
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Nicola M Pugno
- Department of Civil, Environmental and Mechanical Engineering, Laboratory of Bio-inspired & Graphene Mechanics, University of Trento, Via Mesiano 77, 38123 Trento, Italy and Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy and School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Sinan Keten
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA. and Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
245
|
Jastrzebska M, Tarnawska D, Wrzalik R, Chrobak A, Grelowski M, Wylegala E, Zygadlo D, Ratuszna A. New insight into the shortening of the collagen fibril D-period in human cornea. J Biomol Struct Dyn 2016; 35:551-563. [PMID: 26872619 DOI: 10.1080/07391102.2016.1153520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Collagen fibrils type I display a typical banding pattern, so-called D-periodicity, of about 67 nm, when visualized by atomic force or electron microscopy imaging. Herein we report on a significant shortening of the D-period for human corneal collagen fibrils type I (21 ± 4 nm) upon air-drying, whereas no changes in the D-period were observed for human scleral collagen fibrils type I (64 ± 4 nm) measured under the same experimental conditions as the cornea. It was also found that for the corneal stroma fixed with glutaraldehyde and air-dried, the collagen fibrils show the commonly accepted D-period of 61 ± 8 nm. We used the atomic force microscopy method to image collagen fibrils type I present in the middle layers of human cornea and sclera. The water content in the cornea and sclera samples was varying in the range of .066-.085. Calculations of the D-period using the theoretical model of the fibril and the FFT approach allowed to reveal the possible molecular mechanism of the D-period shortening in the corneal collagen fibrils upon drying. It was found that both the decrease in the shift and the simultaneous reduction in the distance between tropocollagen molecules can be responsible for the experimentally observed effect. We also hypothesize that collagen type V, which co-assembles with collagen type I into heterotypic fibrils in cornea, could be involved in the observed shortening of the corneal D-period.
Collapse
Affiliation(s)
- Maria Jastrzebska
- a Department of Solid State Physics, A. Chelkowski Institute of Physics , University of Silesia , Uniwersytecka 4, 40-007 Katowice , Poland.,d Silesian Center for Education and Interdisciplinary Research , University of Silesia , 75 Pułku Piechoty 1, 41-500 Chorzów , Poland
| | - Dorota Tarnawska
- b Faculty of Medicine and Division of Dentistry in Zabrze, Clinical Department of Ophthalmology , Medical University of Silesia , Panewnicka 65, 40-760 Katowice , Poland.,c Department of Biophysics and Molecular Physics, A. Chelkowski Institute of Physics , University of Silesia , Uniwersytecka 4, 40-007 Katowice , Poland.,d Silesian Center for Education and Interdisciplinary Research , University of Silesia , 75 Pułku Piechoty 1, 41-500 Chorzów , Poland
| | - Roman Wrzalik
- c Department of Biophysics and Molecular Physics, A. Chelkowski Institute of Physics , University of Silesia , Uniwersytecka 4, 40-007 Katowice , Poland.,d Silesian Center for Education and Interdisciplinary Research , University of Silesia , 75 Pułku Piechoty 1, 41-500 Chorzów , Poland
| | - Artur Chrobak
- a Department of Solid State Physics, A. Chelkowski Institute of Physics , University of Silesia , Uniwersytecka 4, 40-007 Katowice , Poland.,d Silesian Center for Education and Interdisciplinary Research , University of Silesia , 75 Pułku Piechoty 1, 41-500 Chorzów , Poland
| | - Michal Grelowski
- d Silesian Center for Education and Interdisciplinary Research , University of Silesia , 75 Pułku Piechoty 1, 41-500 Chorzów , Poland
| | - Edward Wylegala
- b Faculty of Medicine and Division of Dentistry in Zabrze, Clinical Department of Ophthalmology , Medical University of Silesia , Panewnicka 65, 40-760 Katowice , Poland
| | - Dorota Zygadlo
- d Silesian Center for Education and Interdisciplinary Research , University of Silesia , 75 Pułku Piechoty 1, 41-500 Chorzów , Poland
| | - Alicja Ratuszna
- a Department of Solid State Physics, A. Chelkowski Institute of Physics , University of Silesia , Uniwersytecka 4, 40-007 Katowice , Poland.,d Silesian Center for Education and Interdisciplinary Research , University of Silesia , 75 Pułku Piechoty 1, 41-500 Chorzów , Poland
| |
Collapse
|
246
|
The Difference of Structural State and Deformation Behavior between Teenage and Mature Human Dentin. Int J Biomater 2016; 2016:6073051. [PMID: 26989416 PMCID: PMC4771909 DOI: 10.1155/2016/6073051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 11/17/2022] Open
Abstract
Objective. The cause of considerable elasticity and plasticity of human dentin is discussed in the relationship with its microstructure. Methods. Structural state of teenage and mature human dentin is examined by using XRD and TEM techniques, and their deformation behavior under compression is studied as well. Result. XRD study has shown that crystallographic type of calcium hydroxyapatite in human dentin (calcium hydrogen phosphate hydroxide Ca9HPO4(PO4)5OH; Space Group P63/m (176); a = 9,441 A; c = 6,881 A; c/a = 0,729; Crystallite (Scherrer) 200 A) is the same for these age groups. In both cases, dentin matrix is X-ray amorphous. According to TEM examination, there are amorphous and ultrafine grain phases in teenage and mature dentin. Mature dentin is stronger on about 20% than teenage dentin, while teenage dentin is more elastic on about 20% but is less plastic on about 15% than mature dentin. Conclusion. The amorphous phase is dominant in teenage dentin, whereas the ultrafine grain phase becomes dominant in mature dentin. Mechanical properties of human dentin under compression depend on its structural state, too.
Collapse
|
247
|
Jafarinia H, Khoshnood A, Jalali MA. Rigidity of transmembrane proteins determines their cluster shape. Phys Rev E 2016; 93:012403. [PMID: 26871097 DOI: 10.1103/physreve.93.012403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Indexed: 12/18/2022]
Abstract
Protein aggregation in cell membrane is vital for the majority of biological functions. Recent experimental results suggest that transmembrane domains of proteins such as α-helices and β-sheets have different structural rigidities. We use molecular dynamics simulation of a coarse-grained model of protein-embedded lipid membranes to investigate the mechanisms of protein clustering. For a variety of protein concentrations, our simulations under thermal equilibrium conditions reveal that the structural rigidity of transmembrane domains dramatically affects interactions and changes the shape of the cluster. We have observed stable large aggregates even in the absence of hydrophobic mismatch, which has been previously proposed as the mechanism of protein aggregation. According to our results, semiflexible proteins aggregate to form two-dimensional clusters, while rigid proteins, by contrast, form one-dimensional string-like structures. By assuming two probable scenarios for the formation of a two-dimensional triangular structure, we calculate the lipid density around protein clusters and find that the difference in lipid distribution around rigid and semiflexible proteins determines the one- or two-dimensional nature of aggregates. It is found that lipids move faster around semiflexible proteins than rigid ones. The aggregation mechanism suggested in this paper can be tested by current state-of-the-art experimental facilities.
Collapse
Affiliation(s)
- Hamidreza Jafarinia
- Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11155-9567, Tehran, Iran
| | - Atefeh Khoshnood
- Reservoir Engineering Research Institute, Palo Alto, California 94301, USA
| | - Mir Abbas Jalali
- Department of Astronomy, University of California, Berkeley, California 94720, USA
| |
Collapse
|
248
|
Depalle B, Qin Z, Shefelbine SJ, Buehler MJ. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content. J Bone Miner Res 2016; 31:380-90. [PMID: 26866939 PMCID: PMC4915725 DOI: 10.1002/jbmr.2705] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 11/24/2022]
Abstract
Mineralized collagen fibrils are composed of tropocollagen molecules and mineral crystals derived from hydroxyapatite to form a composite material that combines optimal properties of both constituents and exhibits incredible strength and toughness. Their complex hierarchical structure allows collagen fibrils to sustain large deformation without breaking. In this study, we report a mesoscale model of a single mineralized collagen fibril using a bottom-up approach. By conserving the three-dimensional structure and the entanglement of the molecules, we were able to construct finite-size fibril models that allowed us to explore the deformation mechanisms which govern their mechanical behavior under large deformation. We investigated the tensile behavior of a single collagen fibril with various intrafibrillar mineral content and found that a mineralized collagen fibril can present up to five different deformation mechanisms to dissipate energy. These mechanisms include molecular uncoiling, molecular stretching, mineral/collagen sliding, molecular slippage, and crystal dissociation. By multiplying its sources of energy dissipation and deformation mechanisms, a collagen fibril can reach impressive strength and toughness. Adding mineral into the collagen fibril can increase its strength up to 10 times and its toughness up to 35 times. Combining crosslinks with mineral makes the fibril stiffer but more brittle. We also found that a mineralized fibril reaches its maximum toughness to density and strength to density ratios for a mineral density of around 30%. This result, in good agreement with experimental observations, attests that bone tissue is optimized mechanically to remain lightweight but maintain strength and toughness.
Collapse
Affiliation(s)
- Baptiste Depalle
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sandra J Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
249
|
Collagen interactions: Drug design and delivery. Adv Drug Deliv Rev 2016; 97:69-84. [PMID: 26631222 DOI: 10.1016/j.addr.2015.11.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery.
Collapse
|
250
|
Borassi C, Sede AR, Mecchia MA, Salgado Salter JD, Marzol E, Muschietti JP, Estevez JM. An update on cell surface proteins containing extensin-motifs. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:477-87. [PMID: 26475923 DOI: 10.1093/jxb/erv455] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge.
Collapse
Affiliation(s)
- Cecilia Borassi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Ana R Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Martin A Mecchia
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Juan D Salgado Salter
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina. Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina.
| | - Jose M Estevez
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina.
| |
Collapse
|