201
|
Kharatmal SB, Singh JN, Sharma SS. Calpain inhibitor, MDL 28170 confer electrophysiological, nociceptive and biochemical improvement in diabetic neuropathy. Neuropharmacology 2015; 97:113-21. [DOI: 10.1016/j.neuropharm.2015.05.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/14/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|
202
|
Kharatmal S, Singh J, Sharma S. Comparative evaluation of in vitro and in vivo high glucose-induced alterations in voltage-gated tetrodotoxin-resistant sodium channel: Effects attenuated by sodium channel blockers. Neuroscience 2015; 305:183-96. [DOI: 10.1016/j.neuroscience.2015.07.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
203
|
A 3.7 kb fragment of the mouse Scn10a gene promoter directs neural crest but not placodal lineage EGFP expression in a transgenic animal. J Neurosci 2015; 35:8021-34. [PMID: 25995484 DOI: 10.1523/jneurosci.0214-15.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Under physiological conditions, the voltage-gated sodium channel Nav1.8 is expressed almost exclusively in primary sensory neurons. The mechanism restricting Nav1.8 expression is not entirely clear, but we have previously described a 3.7 kb fragment of the Scn10a promoter capable of recapitulating the tissue-specific expression of Nav1.8 in transfected neurons and cell lines (Puhl and Ikeda, 2008). To validate these studies in vivo, a transgenic mouse encoding EGFP under the control of this putative sensory neuron specific promoter was generated and characterized in this study. Approximately 45% of dorsal root ganglion neurons of transgenic mice were EGFP-positive (mean diameter = 26.5 μm). The majority of EGFP-positive neurons bound isolectin B4, although a small percentage (∼10%) colabeled with markers of A-fiber neurons. EGFP expression correlated well with the presence of Nav1.8 transcript (95%), Nav1.8-immunoreactivity (70%), and TTX-R INa (100%), although not all Nav1.8-expressing neurons expressed EGFP. Several cranial sensory ganglia originating from neurogenic placodes, such as the nodose ganglion, failed to express EGFP, suggesting that additional regulatory elements dictate Scn10a expression in placodal-derived sensory neurons. EGFP was also detected in discrete brain regions of transgenic mice. Quantitative PCR and Nav1.8-immunoreactivity confirmed Nav1.8 expression in the amygdala, brainstem, globus pallidus, lateral and paraventricular hypothalamus, and olfactory tubercle. TTX-R INa recorded from EGFP-positive hypothalamic neurons demonstrate the usefulness of this transgenic line to study novel roles of Nav1.8 beyond sensory neurons. Overall, Scn10a-EGFP transgenic mice recapitulate the majority of the Nav1.8 expression pattern in neural crest-derived sensory neurons.
Collapse
|
204
|
Tanaka KI, Sekino S, Ikegami M, Ikeda H, Kamei J. Antihyperalgesic effects of ProTx-II, a Nav1.7 antagonist, and A803467, a Nav1.8 antagonist, in diabetic mice. J Exp Pharmacol 2015; 7:11-6. [PMID: 27186141 PMCID: PMC4863530 DOI: 10.2147/jep.s79973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The present study investigated the effects of intrathecal administration of ProTx-II (tarantula venom peptide) and A803467 (5-[4-chloro-phenyl]-furan-2-carboxylic acid [3,5-dimethoxy-phenyl]-amide), selective Nav1.7 and Nav1.8 antagonists, respectively, on thermal hyperalgesia in a painful diabetic neuropathy model of mice. Intrathecal administration of ProTx-II at doses from 0.04 to 4 ng to diabetic mice dose-dependently and significantly increased the tail-flick latency. Intrathecal administration of A803467 at doses from 10 to 100 ng to diabetic mice also dose-dependently and significantly increased the tail-flick latency. However, intrathecal administration of either ProTx-II (4 ng) or A803467 (100 ng) had no effect on the tail-flick latency in nondiabetic mice. The expression of either the Nav1.7 or Nav1.8 sodium channel protein in the dorsal root ganglion in diabetic mice was not different from that in nondiabetic mice. The present results suggest that ProTx-II and A803467, highly selective blockers of Nav1.7 and Nav1.8 sodium channels, respectively, in the spinal cord, can have antihyperalgesic effects in diabetic mice.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan; Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shota Sekino
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Megumi Ikegami
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Hiroko Ikeda
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Junzo Kamei
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| |
Collapse
|
205
|
Casals-Díaz L, Casas C, Navarro X. Changes of voltage-gated sodium channels in sensory nerve regeneration and neuropathic pain models. Restor Neurol Neurosci 2015; 33:321-34. [DOI: 10.3233/rnn-140444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Laura Casals-Díaz
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Caty Casas
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Xavier Navarro
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
206
|
Bagal SK, Bungay PJ, Denton SM, Gibson KR, Glossop MS, Hay TL, Kemp MI, Lane CAL, Lewis ML, Maw GN, Million WA, Payne CE, Poinsard C, Rawson DJ, Stammen BL, Stevens EB, Thompson LR. Discovery and Optimization of Selective Nav1.8 Modulator Series That Demonstrate Efficacy in Preclinical Models of Pain. ACS Med Chem Lett 2015; 6:650-4. [PMID: 26101568 DOI: 10.1021/acsmedchemlett.5b00059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/29/2015] [Indexed: 12/11/2022] Open
Abstract
Voltage-gated sodium channels, in particular Nav1.8, can be targeted for the treatment of neuropathic and inflammatory pain. Herein, we described the optimization of Nav1.8 modulator series to deliver subtype selective, state, and use-dependent chemical matter that is efficacious in preclinical models of neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Sharan K. Bagal
- Worldwide Medicinal Chemistry, Pfizer Neusentis, The Portway Building, Granta Park, Great Abington, Cambridge CB21 6GS, U.K
| | - Peter J. Bungay
- Neusentis U.K., Pfizer Global R&D, The Portway Building, Granta Park, Cambridge CB21 6GS, U.K
| | - Stephen M. Denton
- Worldwide Medicinal Chemistry, Pfizer Global R&D, Sandwich CT13 9NJ, U.K
| | - Karl R. Gibson
- Worldwide Medicinal Chemistry, Pfizer Global R&D, Sandwich CT13 9NJ, U.K
| | - Melanie S. Glossop
- Worldwide Medicinal Chemistry, Pfizer Global R&D, Sandwich CT13 9NJ, U.K
| | - Tanya L. Hay
- Worldwide Medicinal Chemistry, Pfizer Global R&D, Sandwich CT13 9NJ, U.K
| | - Mark I. Kemp
- Worldwide Medicinal Chemistry, Pfizer Global R&D, Sandwich CT13 9NJ, U.K
| | | | - Mark L. Lewis
- Worldwide Medicinal Chemistry, Pfizer Global R&D, Sandwich CT13 9NJ, U.K
| | - Graham N. Maw
- Worldwide Medicinal Chemistry, Pfizer Global R&D, Sandwich CT13 9NJ, U.K
| | - William A. Million
- Worldwide Medicinal Chemistry, Pfizer Global R&D, Sandwich CT13 9NJ, U.K
| | - C. Elizabeth Payne
- Neusentis U.K., Pfizer Global R&D, The Portway Building, Granta Park, Cambridge CB21 6GS, U.K
| | - Cedric Poinsard
- Worldwide Medicinal Chemistry, Pfizer Global R&D, Sandwich CT13 9NJ, U.K
| | - David J. Rawson
- Worldwide Medicinal Chemistry, Pfizer Global R&D, Sandwich CT13 9NJ, U.K
| | - Blanda L. Stammen
- Worldwide Medicinal Chemistry, Pfizer Global R&D, Sandwich CT13 9NJ, U.K
| | - Edward B. Stevens
- Neusentis U.K., Pfizer Global R&D, The Portway Building, Granta Park, Cambridge CB21 6GS, U.K
| | - Lisa R. Thompson
- Worldwide Medicinal Chemistry, Pfizer Global R&D, Sandwich CT13 9NJ, U.K
| |
Collapse
|
207
|
de Lera Ruiz M, Kraus RL. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J Med Chem 2015; 58:7093-118. [PMID: 25927480 DOI: 10.1021/jm501981g] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tremendous therapeutic potential of voltage-gated sodium channels (Na(v)s) has been the subject of many studies in the past and is of intense interest today. Na(v)1.7 channels in particular have received much attention recently because of strong genetic validation of their involvement in nociception. Here we summarize the current status of research in the Na(v) field and present the most relevant recent developments with respect to the molecular structure, general physiology, and pharmacology of distinct Na(v) channel subtypes. We discuss Na(v) channel ligands such as small molecules, toxins isolated from animal venoms, and the recently identified Na(v)1.7-selective antibody. Furthermore, we review eight characterized ligand binding sites on the Na(v) channel α subunit. Finally, we examine possible therapeutic applications of Na(v) ligands and provide an update on current clinical studies.
Collapse
Affiliation(s)
- Manuel de Lera Ruiz
- Merck Research Laboratories , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Richard L Kraus
- Merck Research Laboratories , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| |
Collapse
|
208
|
Han Z, Jiang Y, Xiao F, Cao K, Wang DW. The effects of A-803467 on cardiac Nav1.5 channels. Eur J Pharmacol 2015; 754:52-60. [DOI: 10.1016/j.ejphar.2015.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/08/2015] [Accepted: 02/11/2015] [Indexed: 12/19/2022]
|
209
|
Abstract
Pharmacological, surgical, psychological, and alternative medicine approaches for the treatment of chronic pain, including neuropathic pain, provide only partial relief for most patients, with the efficacy of existing medications often blunted by dose-limiting side effects arising from drug actions on cells outside the pain-signaling axis. The development of more effective treatments for pain--particularly chronic pain states such as neuropathic pain--has been hampered by lack of predictive animal models and biomarkers, variation in pain characteristics between patients or on a day-to-day basis for single patients, patient stratification on the basis of symptoms rather than mechanism, and a high rate of placebo responses. We discuss genetic and genomic approaches to translational pain research. We review examples of the identification and validation of human pain targets through rodent genome-wide association studies (GWAS) and global mRNA expression studies, functional screening in flies and mice, human GWAS and whole-exome sequencing studies, and the targeted candidate gene approach. These and other emerging genetic and genomic strategies are likely to facilitate the development of new, more effective pain therapeutics.
Collapse
Affiliation(s)
- Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA. Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA. Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA. Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA. Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA.
| |
Collapse
|
210
|
Payne CE, Brown AR, Theile JW, Loucif AJC, Alexandrou AJ, Fuller MD, Mahoney JH, Antonio BM, Gerlach AC, Printzenhoff DM, Prime RL, Stockbridge G, Kirkup AJ, Bannon AW, England S, Chapman ML, Bagal S, Roeloffs R, Anand U, Anand P, Bungay PJ, Kemp M, Butt RP, Stevens EB. A novel selective and orally bioavailable Nav 1.8 channel blocker, PF-01247324, attenuates nociception and sensory neuron excitability. Br J Pharmacol 2015; 172:2654-70. [PMID: 25625641 DOI: 10.1111/bph.13092] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE NaV 1.8 ion channels have been highlighted as important molecular targets for the design of low MW blockers for the treatment of chronic pain. Here, we describe the effects of PF-01247324, a new generation, selective, orally bioavailable Nav 1.8 channel blocker of novel chemotype. EXPERIMENTAL APPROACH The inhibition of Nav 1.8 channels by PF-01247324 was studied using in vitro patch-clamp electrophysiology and the oral bioavailability and antinociceptive effects demonstrated using in vivo rodent models of inflammatory and neuropathic pain. KEY RESULTS PF-01247324 inhibited native tetrodotoxin-resistant (TTX-R) currents in human dorsal root ganglion (DRG) neurons (IC50 : 331 nM) and in recombinantly expressed h Nav 1.8 channels (IC50 : 196 nM), with 50-fold selectivity over recombinantly expressed TTX-R hNav 1.5 channels (IC50 : ∼10 μM) and 65-100-fold selectivity over TTX-sensitive (TTX-S) channels (IC50 : ∼10-18 μM). Native TTX-R currents in small-diameter rodent DRG neurons were inhibited with an IC50 448 nM, and the block of both human recombinant Nav 1.8 channels and TTX-R from rat DRG neurons was both frequency and state dependent. In vitro current clamp showed that PF-01247324 reduced excitability in both rat and human DRG neurons and also altered the waveform of the action potential. In vivo experiments n rodents demonstrated efficacy in both inflammatory and neuropathic pain models. CONCLUSIONS AND IMPLICATIONS Using PF-01247324, we have confirmed a role for Nav 1.8 channels in both inflammatory and neuropathic pain. We have also demonstrated a key role for Nav 1.8 channels in action potential upstroke and repetitive firing of rat and human DRG neurons.
Collapse
|
211
|
Catterall WA, Swanson TM. Structural Basis for Pharmacology of Voltage-Gated Sodium and Calcium Channels. Mol Pharmacol 2015; 88:141-50. [PMID: 25848093 DOI: 10.1124/mol.114.097659] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/06/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, muscle, and other electrically excitable cells. Voltage-gated calcium channels are activated by depolarization during action potentials, and calcium influx through them is the key second messenger of electrical signaling, initiating secretion, contraction, neurotransmission, gene transcription, and many other intracellular processes. Drugs that block sodium channels are used in local anesthesia and the treatment of epilepsy, bipolar disorder, chronic pain, and cardiac arrhythmia. Drugs that block calcium channels are used in the treatment of epilepsy, chronic pain, and cardiovascular disorders, including hypertension, angina pectoris, and cardiac arrhythmia. The principal pore-forming subunits of voltage-gated sodium and calcium channels are structurally related and likely to have evolved from ancestral voltage-gated sodium channels that are widely expressed in prokaryotes. Determination of the structure of a bacterial ancestor of voltage-gated sodium and calcium channels at high resolution now provides a three-dimensional view of the binding sites for drugs acting on sodium and calcium channels. In this minireview, we outline the different classes of sodium and calcium channel drugs, review studies that have identified amino acid residues that are required for their binding and therapeutic actions, and illustrate how the analogs of those key amino acid residues may form drug-binding sites in three-dimensional models derived from bacterial channels.
Collapse
Affiliation(s)
| | - Teresa M Swanson
- Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
212
|
Rahman W, Dickenson AH. Osteoarthritis-dependent changes in antinociceptive action of Nav1.7 and Nav1.8 sodium channel blockers: An in vivo electrophysiological study in the rat. Neuroscience 2015; 295:103-16. [PMID: 25818052 PMCID: PMC4414363 DOI: 10.1016/j.neuroscience.2015.03.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023]
Abstract
MIA-dependent antinociceptive effect of ProTxII and A-803467 on neuronal activity. Changes in Nav1.7 and 1.8 channel function contribute to osteoarthritic pain. Blocking Nav1.7 and Nav1.8 channels has therapeutic potential for the treatment of osteoarthritic pain.
Voltage-gated sodium channel blockers are not traditionally recommended for osteoarthritis (OA) pain therapy, but given the large peripheral drive that follows OA development there is a rationale for their use. Using a rat model of monosodium iodoacetate (MIA)-induced OA we used in vivo electrophysiology to assess the effects of the Nav1.7- and Nav1.8-selective antagonists, ProTxII and A-803467 respectively, on the evoked activity of spinal dorsal horn neurons in response to electrical, mechanical and thermal stimuli applied to the peripheral receptive field. These studies allow examination of the roles of these channels in suprathreshold stimuli, not amenable to behavioral threshold measures. Spinal administration of ProTxII significantly reduced neuronal responses evoked by mechanical punctate (von Frey (vF) 8–60 g) and noxious thermal (45 and 48 °C) stimuli in MIA rats only. A-803467 significantly inhibited neuronal responses evoked by vF 8–60 g and 48 °C heat after spinal administration; significantly inhibited responses evoked by brush, vFs 26–60 g and 40–48 °C stimuli after systemic administration; significantly inhibited the electrically evoked Aδ-, C-fiber, post-discharge, Input and wind-up responses and the brush, vFs 8–60 g and 45–48 °C evoked neuronal responses after intra plantar injection in the MIA group. In comparison A-803467 effects in the sham group were minimal and included a reduction of the neuronal response evoked by vF 60 g and 45 °C heat stimulation after spinal administration, no effect after systemic administration and an inhibition of the evoked response to 45 °C heat after intra plantar injection only. The observed selective inhibitory effect of ProTxII and A-803467 for the MIA-treated group suggests an increased role of Nav1.7 and 1.8 within nociceptive pathways in the arthritic condition, located at peripheral and central sites. These findings demonstrate the importance of, and add to, the mechanistic understanding of these channels in osteoarthritic pain.
Collapse
Affiliation(s)
- W Rahman
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - A H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
213
|
Carvacrol modulates voltage-gated sodium channels kinetics in dorsal root ganglia. Eur J Pharmacol 2015; 756:22-9. [PMID: 25794844 DOI: 10.1016/j.ejphar.2015.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/03/2015] [Accepted: 03/09/2015] [Indexed: 11/22/2022]
Abstract
Recent studies have shown that many of plant-derived compounds interact with specific ion channels and thereby modulate many sensing mechanisms, such as nociception. The monoterpenoid carvacrol (5-isopropyl-2-methylphenol) has an anti-nociceptive effect related to a reduction in neuronal excitability and voltage-gated Na(+) channels (NaV) inhibition in peripheral neurons. However, the detailed mechanisms of carvacrol-induced inhibition of neuronal NaV remain elusive. This study explores the interaction between carvacrol and NaV in isolated dorsal root ganglia neurons. Carvacrol reduced the total voltage-gated Na(+) current and tetrodotoxin-resistant (TTX-R) Na(+) current component in a concentration-dependent manner. Carvacrol accelerates current inactivation and induced a negative-shift in voltage-dependence of steady-state fast inactivation in total and TTX-R Na(+) current. Furthermore, carvacrol slowed the recovery from inactivation. Carvacrol provoked a leftward shift in both the voltage-dependence of steady-state inactivation and activation of the TTX-R Na(+) current component. In addition, carvacrol-induced inhibition of TTX-R Na(+) current was enhanced by an increase in stimulation frequency and when neurons were pre-conditioned with long depolarization pulse (5s at -50 mV). Taken all results together, we herein demonstrated that carvacrol affects NaV gating properties. The present findings would help to explain the mechanisms underlying the analgesic activity of carvacrol.
Collapse
|
214
|
Lin HT, Chiu CC, Wang JJ, Hung CH, Chen YW. High frequency transcutaneous electrical nerve stimulation with diphenidol administration results in an additive antiallodynic effect in rats following chronic constriction injury. Neurosci Lett 2015; 589:62-6. [PMID: 25596445 DOI: 10.1016/j.neulet.2015.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 02/07/2023]
Abstract
The impact of coadministration of transcutaneous electrical nerve stimulation (TENS) and diphenidol is not well established. Here we estimated the effects of diphenidol in combination with TENS on mechanical allodynia and tumor necrosis factor-α (TNF-α) expression. Using an animal chronic constriction injury (CCI) model, the rat was estimated for evidence of mechanical sensitivity via von Frey hair stimulation and TNF-α expression in the sciatic nerve using the ELISA assay. High frequency (100Hz) TENS or intraperitoneal injection of diphenidol (2.0μmol/kg) was applied daily, starting on postoperative day 1 (POD1) and lasting for the next 13 days. We demonstrated that both high frequency TENS and diphenidol groups had an increase in mechanical withdrawal thresholds of 60%. Coadministration of high frequency TENS and diphenidol gives better results of paw withdrawal thresholds in comparison with high frequency TENS alone or diphenidol alone. Both diphenidol and coadministration of high frequency TENS with diphenidol groups showed a significant reduction of the TNF-α level compared with the CCI or HFS group (P<0.05) in the sciatic nerve on POD7, whereas the CCI or high frequency TENS group exhibited a higher TNF-α level than the sham group (P<0.05). Our resulting data revealed that diphenidol alone, high frequency TENS alone, and the combination produced a reduction of neuropathic allodynia. Both diphenidol and the combination of diphenidol with high frequency TENS inhibited TNF-α expression. A moderately effective dose of diphenidol appeared to have an additive effect with high frequency TENS. Therefore, multidisciplinary treatments could be considered for this kind of mechanical allodynia.
Collapse
Affiliation(s)
- Heng-Teng Lin
- Department of Physical Medicine and Rehabilitation, Madou Sin-Lau Hospital, Tainan, Taiwan; Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Chong-Chi Chiu
- Department of General Surgery, Chi Mei Medical Center, Tainan and Liouying, Taiwan; Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Jhi-Joung Wang
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, National Cheng Kung University, No.1 Ta-Hsueh Road, Tainan, Taiwan.
| | - Yu-Wen Chen
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Department of Physical Therapy, China Medical University, Taichung, Taiwan
| |
Collapse
|
215
|
Gu XY, Liu BL, Zang KK, Yang L, Xu H, Pan HL, Zhao ZQ, Zhang YQ. Dexmedetomidine inhibits Tetrodotoxin-resistant Nav1.8 sodium channel activity through Gi/o-dependent pathway in rat dorsal root ganglion neurons. Mol Brain 2015; 8:15. [PMID: 25761941 PMCID: PMC4350947 DOI: 10.1186/s13041-015-0105-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/18/2015] [Indexed: 11/12/2022] Open
Abstract
Background Systemically administered dexmedetomidine (DEX), a selective α2 adrenergic receptor (α2-AR) agonists, produces analgesia and sedation. Peripherally restricted α2-AR antagonist could block the analgesic effect of systemic DEX on neuropathic pain, with no effect on sedation, indicating peripheral analgesic effect of DEX. Tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 play important roles in the conduction of nociceptive sensation. Both α2-AR and Nav1.8 are found in small nociceptive DRG neurons. We, therefore, investigated the effects of DEX on the Nav1.8 currents in acutely dissociated small-diameter DRG neurons. Results Whole-cell patch-clamp recordings demonstrated that DEX concentration-dependently suppressed TTX-R Nav1.8 currents in small-diameter lumbar DRG neurons. DEX also shifted the steady-state inactivation curves of Nav1.8 in a hyperpolarizing direction and increased the threshold of action potential and decrease electrical and chemical stimuli-evoked firings in small-diameter DRG neurons. The α2-AR antagonist yohimbine or α2A-AR antagonist BRL44408 but not α2B-AR antagonist imiloxan blocked the inhibition of Nav1.8 currents by DEX. Immunohistochemistry results showed that Nav1.8 was predominantly expressed in peripherin-positive small-diameter DRG neurons, and some of them were α2A-AR-positive ones. Our electrophysiological recordings also demonstrated that DEX-induced inhibition of Nav1.8 currents was prevented by intracellular application of G-protein inhibitor GDPβ-s or Gi/o proteins inhibitor pertussis toxin (PTX), and bath application of adenylate cyclase (AC) activator forskolin or membrane-permeable cAMP analogue 8-Bromo-cAMP (8-Br-cAMP). PKA inhibitor Rp-cAMP could mimic DEX-induced inhibition of Nav1.8 currents. Conclusions We established a functional link between α2-AR and Nav1.8 in primary sensory neurons utilizing the Gi/o/AC/cAMP/PKA pathway, which probably mediating peripheral analgesia of DEX.
Collapse
Affiliation(s)
- Xi-Yao Gu
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| | - Ben-Long Liu
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| | - Kai-Kai Zang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| | - Liu Yang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| | - Hua Xu
- Department of Anesthesiology, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China.
| | - Hai-Li Pan
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Zhi-Qi Zhao
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| | - Yu-Qiu Zhang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| |
Collapse
|
216
|
Feng B, Zhu Y, La JH, Wills ZP, Gebhart GF. Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings. J Neurophysiol 2015; 113:2618-34. [PMID: 25652923 DOI: 10.1152/jn.00717.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/03/2015] [Indexed: 12/15/2022] Open
Abstract
Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current stimulation. The present study investigated this difference in the neural encoding characteristics between the soma and afferent ending using pharmacological approaches in an in vitro mouse colon-nerve preparation and complementary computational simulations. Immunohistological staining and Western blots revealed the presence of voltage-gated sodium channel (NaV) 1.6 and NaV1.7 at sensory neuronal endings in mouse colorectal tissue. Responses of stretch-sensitive colorectal afferent endings were significantly reduced by targeting NaV1.6 using selective antagonists (μ-conotoxin GIIIa and μ-conotoxin PIIIa) or tetrodotoxin. In contrast, neither selective NaV1.8 (A803467) nor NaV1.7 (ProTX-II) antagonists attenuated afferent responses to stretch. Computational simulation of a colorectal afferent ending that incorporated independent Markov models for NaV1.6 and NaV1.7, respectively, recapitulated the experimental findings, suggesting a necessary role for NaV1.6 in encoding tonic spiking by stretch-sensitive afferents. In addition, computational simulation of a dorsal root ganglion soma showed that, by adding a NaV1.6 conductance, a single-spiking neuron was converted into a tonic spiking one. These results suggest a mechanism/channel to explain the difference in neural encoding characteristics between afferent somata and sensory endings, likely caused by differential expression of ion channels (e.g., NaV1.6) at different parts of the neuron.
Collapse
Affiliation(s)
- Bin Feng
- Department of Anesthesiology, Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Yi Zhu
- Department of Anesthesiology, Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Jun-Ho La
- Department of Anesthesiology, Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Zachary P Wills
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - G F Gebhart
- Department of Anesthesiology, Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| |
Collapse
|
217
|
Curtright A, Rosser M, Goh S, Keown B, Wagner E, Sharifi J, Raible DW, Dhaka A. Modeling nociception in zebrafish: a way forward for unbiased analgesic discovery. PLoS One 2015; 10:e0116766. [PMID: 25587718 PMCID: PMC4294643 DOI: 10.1371/journal.pone.0116766] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/04/2014] [Indexed: 11/24/2022] Open
Abstract
Acute and chronic pain conditions are often debilitating, inflicting severe physiological, emotional and economic costs and affect a large percentage of the global population. However, the development of therapeutic analgesic agents based primarily on targeted drug development has been largely ineffective. An alternative approach to analgesic development would be to develop low cost, high throughput, untargeted animal based behavioral screens that model complex nociceptive behaviors in which to screen for analgesic compounds. Here we describe the development of a behavioral based assay in zebrafish larvae that is effective in identifying small molecule compounds with analgesic properties. In a place aversion assay, which likely utilizes supraspinal neuronal circuitry, individually arrayed zebrafish larvae show temperature-dependent aversion to increasing and decreasing temperatures deviating from rearing temperature. Modeling thermal hyperalgesia, the addition of the noxious inflammatory compound and TRPA1 agonist allyl isothiocyanate sensitized heat aversion and reversed cool aversion leading larvae to avoid rearing temperature in favor of otherwise acutely aversive cooler temperatures. We show that small molecules with known analgesic properties are able to inhibit acute and/or sensitized temperature aversion.
Collapse
Affiliation(s)
- Andrew Curtright
- Department of Biological Structure, University of Washington, Seattle, Washington, 98195, United States of America
| | - Micaela Rosser
- Department of Biological Structure, University of Washington, Seattle, Washington, 98195, United States of America
| | - Shamii Goh
- Department of Biological Structure, University of Washington, Seattle, Washington, 98195, United States of America
| | - Bailey Keown
- Department of Biological Structure, University of Washington, Seattle, Washington, 98195, United States of America
| | - Erinn Wagner
- Department of Biological Structure, University of Washington, Seattle, Washington, 98195, United States of America
| | - Jasmine Sharifi
- Department of Biological Structure, University of Washington, Seattle, Washington, 98195, United States of America
| | - David W. Raible
- Department of Biological Structure, University of Washington, Seattle, Washington, 98195, United States of America
- Neurobiology and Behavior Graduate Program, University of Washington, Seattle, Washington, 98195, United States of America
| | - Ajay Dhaka
- Department of Biological Structure, University of Washington, Seattle, Washington, 98195, United States of America
- Neurobiology and Behavior Graduate Program, University of Washington, Seattle, Washington, 98195, United States of America
- * E-mail:
| |
Collapse
|
218
|
Liu XD, Yang JJ, Fang D, Cai J, Wan Y, Xing GG. Functional upregulation of nav1.8 sodium channels on the membrane of dorsal root Ganglia neurons contributes to the development of cancer-induced bone pain. PLoS One 2014; 9:e114623. [PMID: 25503076 PMCID: PMC4263726 DOI: 10.1371/journal.pone.0114623] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/11/2014] [Indexed: 11/19/2022] Open
Abstract
We have previously reported that enhanced excitability of dorsal root ganglia (DRG) neurons contributes to the development of bone cancer pain, which severely decreases the quality of life of cancer patients. Nav1.8, a tetrodotoxin-resistant (TTX-R) sodium channel, contributes most of the sodium current underlying the action potential upstroke and accounts for most of the current in later spikes in a train. We speculate that the Nav1.8 sodium channel is a potential candidate responsible for the enhanced excitability of DRG neurons in rats with bone cancer pain. Here, using electrophysiology, Western blot and behavior assays, we documented that the current density of TTX-R sodium channels, especially the Nav1.8 channel, increased significantly in DRG neurons of rats with cancer-induced bone pain. This increase may be due to an increased expression of Nav1.8 on the membrane of DRG neurons. Accordantly, blockade of Nav1.8 sodium channels by its selective blocker A-803467 significantly alleviated the cancer-induced mechanical allodynia and thermal hyperalgesia in rats. Taken together, these results suggest that functional upregulation of Nav1.8 channels on the membrane of DRG neurons contributes to the development of cancer-induced bone pain.
Collapse
Affiliation(s)
- Xiao-Dan Liu
- Neuroscience Research Institute, Peking University, Beijing, People's Republic of China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Jing-Jing Yang
- Neuroscience Research Institute, Peking University, Beijing, People's Republic of China
| | - Dong Fang
- Neuroscience Research Institute, Peking University, Beijing, People's Republic of China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing, People's Republic of China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - You Wan
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing, People's Republic of China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China; Key Laboratory for Neuroscience, Ministry of Education and Ministry of Health, Beijing, People's Republic of China
| |
Collapse
|
219
|
Zhang H, Zou B, Du F, Xu K, Li M. Reporting sodium channel activity using calcium flux: pharmacological promiscuity of cardiac Nav1.5. Mol Pharmacol 2014; 87:207-17. [PMID: 25422141 DOI: 10.1124/mol.114.094789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are essential for membrane excitability and represent therapeutic targets for treating human diseases. Recent reports suggest that these channels, e.g., Nav1.3 and Nav1.5, are inhibited by multiple structurally distinctive small molecule drugs. These studies give reason to wonder whether these drugs collectively target a single site or multiple sites in manifesting such pharmacological promiscuity. We thus investigate the pharmacological profile of Nav1.5 through systemic analysis of its sensitivity to diverse compound collections. Here, we report a dual-color fluorescent method that exploits a customized Nav1.5 [calcium permeable Nav channel, subtype 5 (SoCal5)] with engineered-enhanced calcium permeability. SoCal5 retains wild-type (WT) Nav1.5 pharmacological profiles. WT SoCal5 and SoCal5 with the local anesthetics binding site mutated (F1760A) could be expressed in separate cells, each with a different-colored genetically encoded calcium sensor, which allows a simultaneous report of compound activity and site dependence. The pharmacological profile of SoCal5 reveals a hit rate (>50% inhibition) of around 13% at 10 μM, comparable to that of hERG. The channel activity is susceptible to blockage by known drugs and structurally diverse compounds. The broad inhibition profile is highly dependent on the F1760 residue in the inner cavity, which is a residue conserved among all nine subtypes of Nav channels. Both promiscuity and dependence on F1760 seen in Nav1.5 were replicated in Nav1.4. Our evidence of a broad inhibition profile of Nav channels suggests a need to consider off-target effects on Nav channels. The site-dependent promiscuity forms a foundation to better understand Nav channels and compound interactions.
Collapse
Affiliation(s)
- Hongkang Zhang
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center (H.Z., B.Z., F.D., K.X., M.L.); Johns Hopkins Ion Channel Center (H.Z., B.Z., F.D., K.X., M.L.), Johns Hopkins University, Baltimore, Maryland; and GlaxoSmithKline, King of Prussia, Pennsylvania (M.L.)
| | - Beiyan Zou
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center (H.Z., B.Z., F.D., K.X., M.L.); Johns Hopkins Ion Channel Center (H.Z., B.Z., F.D., K.X., M.L.), Johns Hopkins University, Baltimore, Maryland; and GlaxoSmithKline, King of Prussia, Pennsylvania (M.L.)
| | - Fang Du
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center (H.Z., B.Z., F.D., K.X., M.L.); Johns Hopkins Ion Channel Center (H.Z., B.Z., F.D., K.X., M.L.), Johns Hopkins University, Baltimore, Maryland; and GlaxoSmithKline, King of Prussia, Pennsylvania (M.L.)
| | - Kaiping Xu
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center (H.Z., B.Z., F.D., K.X., M.L.); Johns Hopkins Ion Channel Center (H.Z., B.Z., F.D., K.X., M.L.), Johns Hopkins University, Baltimore, Maryland; and GlaxoSmithKline, King of Prussia, Pennsylvania (M.L.)
| | - Min Li
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center (H.Z., B.Z., F.D., K.X., M.L.); Johns Hopkins Ion Channel Center (H.Z., B.Z., F.D., K.X., M.L.), Johns Hopkins University, Baltimore, Maryland; and GlaxoSmithKline, King of Prussia, Pennsylvania (M.L.).
| |
Collapse
|
220
|
Abstract
Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitablility occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. The present study in rats (Rattus norvegicus) found persistent upregulation after SCI of protein, but not mRNA, for a voltage-gated Na(+) channel, Nav1.8, that is expressed almost exclusively in primary afferent neurons. Selectively knocking down Nav1.8 after SCI suppressed spontaneous activity in dissociated dorsal root ganglion neurons, reversed hypersensitivity of hindlimb withdrawal reflexes, and reduced ongoing pain assessed by a conditioned place preference test. These results show that activity in primary afferent neurons contributes to ongoing SCI pain.
Collapse
|
221
|
Christidis N, Kang I, Cairns BE, Kumar U, Dong X, Rosén A, Kopp S, Ernberg M. Expression of 5-HT3 receptors and TTX resistant sodium channels (Na(V)1.8) on muscle nerve fibers in pain-free humans and patients with chronic myofascial temporomandibular disorders. J Headache Pain 2014; 15:63. [PMID: 25261281 PMCID: PMC4182444 DOI: 10.1186/1129-2377-15-63] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous studies have shown that 5-HT3-antagonists reduce muscle pain, but there are no studies that have investigated the expression of 5-HT3-receptors in human muscles. Also, tetrodotoxin resistant voltage gated sodium-channels (NaV) are involved in peripheral sensitization and found in trigeminal ganglion neurons innervating the rat masseter muscle. This study aimed to investigate the frequency of nerve fibers that express 5-HT3A-receptors alone and in combination with NaV1.8 sodium-channels in human muscles and to compare it between healthy pain-free men and women, the pain-free masseter and tibialis anterior muscles, and patients with myofascial temporomandibular disorders (TMD) and pain-free controls. METHODS Three microbiopsies were obtained from the most bulky part of the tibialis and masseter muscles of seven and six healthy men and seven and six age-matched healthy women, respectively, while traditional open biopsies were obtained from the most painful spot of the masseter of five female patients and from a similar region of the masseter muscle of five healthy, age-matched women. The biopsies were processed by routine immunohistochemical methods. The biopsy sections were incubated with monoclonal antibodies against the specific axonal marker PGP 9.5, and polyclonal antibodies against the 5-HT3A-receptors and NaV1.8 sodium-channels. RESULTS A similar percentage of nerve fibers in the healthy masseter (85.2%) and tibialis (88.7%) muscles expressed 5-HT3A-receptors. The expression of NaV1.8 by 5-HT3A positive nerve fibers associated with connective tissue was significantly higher than nerve fibers associated with myocytes (P < .001). In the patients, significantly more fibers per section were found with an average of 3.8 ± 3 fibers per section in the masseter muscle compared to 2.7 ± 0.2 in the healthy controls (P = .024). Further, the frequency of nerve fibers that co-expressed NaV1.8 and 5-HT3A receptors was significantly higher in patients (42.6%) compared to healthy controls (12.0%) (P < .001). CONCLUSIONS This study showed that the 5-HT3A-receptor is highly expressed in human masseter and tibialis muscles and that there are more nerve fibers that express 5-HT3A-receptors in the masseter of women with myofascial TMD compared to healthy women. These findings indicate that 5-HT3-receptors might be up-regulated in myofascial TMD and could serve as potential biomarkers of chronic muscle pain.
Collapse
Affiliation(s)
- Nikolaos Christidis
- Orofacial Pain and Jaw Function, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Inhibitors of voltage-gated sodium channel Nav1.7: patent applications since 2010. Pharm Pat Anal 2014; 3:509-21. [DOI: 10.4155/ppa.14.39] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There has been intense interest in developing inhibitors of the sodium channel Nav1.7 because genetic studies have established very strong validation for the efficacy to alleviate both inflammatory and neuropathic pain. This review summarizes patent applications targeting Nav1.7 since 2010 until May, 2014. We have classified the patents into three categories as follows: small molecules with well-defined molecular selectivity among sodium channel isoforms; biologicals with well-defined molecular selectivity; and, small molecules that inhibit Nav1.7 with unknown molecular selectivity. Most of the review is dedicated to small molecule selective compounds.
Collapse
|
223
|
Du X, Hao H, Gigout S, Huang D, Yang Y, Li L, Wang C, Sundt D, Jaffe DB, Zhang H, Gamper N. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission. Pain 2014; 155:2306-22. [PMID: 25168672 PMCID: PMC4247381 DOI: 10.1016/j.pain.2014.08.025] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/02/2014] [Accepted: 08/19/2014] [Indexed: 01/10/2023]
Abstract
Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na+, and T-type Ca2+ channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron.
Collapse
Affiliation(s)
- Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China.
| | - Han Hao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China
| | - Sylvain Gigout
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Dongyang Huang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China
| | - Yuehui Yang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China
| | - Li Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China
| | - Caixue Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China
| | - Danielle Sundt
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - David B Jaffe
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, PR China; Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
224
|
Tetrodotoxin-resistant sodium channels in sensory neurons generate slow resurgent currents that are enhanced by inflammatory mediators. J Neurosci 2014; 34:7190-7. [PMID: 24849353 DOI: 10.1523/jneurosci.5011-13.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resurgent sodium currents contribute to the regeneration of action potentials and enhanced neuronal excitability. Tetrodotoxin-sensitive (TTX-S) resurgent currents have been described in many different neuron populations, including cerebellar and dorsal root ganglia (DRG) neurons. In most cases, sodium channel Nav1.6 is the major contributor to these TTX-S resurgent currents. Here we report a novel TTX-resistant (TTX-R) resurgent current recorded from rat DRG neurons. The TTX-R resurgent currents are similar to classic TTX-S resurgent currents in many respects, but not all. As with TTX-S resurgent currents, they are activated by membrane repolarization, inhibited by lidocaine, and enhanced by a peptide-mimetic of the β4 sodium channel subunit intracellular domain. However, the TTX-R resurgent currents exhibit much slower kinetics, occur at more depolarized voltages, and are sensitive to the Nav1.8 blocker A803467. Moreover, coimmunoprecipitation experiments from rat DRG lysates indicate the endogenous sodium channel β4 subunits associate with Nav1.8 in DRG neurons. These results suggest that slow TTX-R resurgent currents in DRG neurons are mediated by Nav1.8 and are generated by the same mechanism underlying TTX-S resurgent currents. We also show that both TTX-S and TTX-R resurgent currents in DRG neurons are enhanced by inflammatory mediators. Furthermore, the β4 peptide increased excitability of small DRG neurons in the presence of TTX. We propose that these slow TTX-R resurgent currents contribute to the membrane excitability of nociceptive DRG neurons under normal conditions and that enhancement of both types of resurgent currents by inflammatory mediators could contribute to sensory neuronal hyperexcitability associated with inflammatory pain.
Collapse
|
225
|
Yue JX, Wang RR, Yu J, Tang YY, Hou WW, Lou GD, Zhang SH, Chen Z. Histamine upregulates Nav1.8 expression in primary afferent neurons via H2 receptors: involvement in neuropathic pain. CNS Neurosci Ther 2014; 20:883-92. [PMID: 24990156 DOI: 10.1111/cns.12305] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 05/27/2014] [Accepted: 06/09/2014] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION The upregulation of Nav1.8 in primary afferents plays a critical role in the development and persistence of neuropathic pain. The mechanisms underlying the upregulation are not fully understood. AIMS The present study aims to investigate the regulatory effect of histamine on the expression of Nav1.8 in primary afferent neurons and its involvement in neuropathic pain. RESULTS Histamine at 10(-8) M increased the expression of Nav1.8 in cultured DRG neurons. This effect could be blocked by H2 receptor antagonist cimetidine or famotidine, but not by H1 receptor antagonist pyrilamine or dual H3 /H4 antagonist thioperamide. Peri-sciatic administration of histamine increased Nav1.8 expression in the sciatic nerve and L4/L5 DRG neurons in a dose-dependent manner, accompanied with remarkable mechanical allodynia and heat hyperalgesia in the ipsilateral hindpaw. Famotidine but not pyrilamine or thioperamide inhibited Nav1.8 upregulation and pain hypersensitivity. In addition, famotidine (40 mg/kg, i.p.) not only suppressed autotomy behavior in the rat neuroma model of neuropathic pain but also attenuated mechanical allodynia and thermal hyperalgesia following partial sciatic nerve ligation. Moreover, famotidine inhibited Nav1.8 upregulation in the neuroma and ligated sciatic nerve. CONCLUSIONS Our findings indicate that histamine increases Nav1.8 expression in primary afferent neurons via H2 receptor-mediated pathway and thereby contributes to neuropathic pain. H2 receptor antagonists may potentially be used as analgesics for patients with neuropathic pain.
Collapse
Affiliation(s)
- Jia-Xing Yue
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medicine, Zhejiang University, Hangzhou, China; Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Chen WN, Lee CH, Lin SH, Wong CW, Sun WH, Wood JN, Chen CC. Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia. Mol Pain 2014; 10:40. [PMID: 24957987 PMCID: PMC4083869 DOI: 10.1186/1744-8069-10-40] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/18/2014] [Indexed: 01/23/2023] Open
Abstract
Background Tissue acidosis is effective in causing chronic muscle pain. However, how muscle nociceptors contribute to the transition from acute to chronic pain is largely unknown. Results Here we showed that a single intramuscular acid injection induced a priming effect on muscle nociceptors of mice. The primed muscle nociceptors were plastic and permitted the development of long-lasting chronic hyperalgesia induced by a second acid insult. The plastic changes of muscle nociceptors were modality-specific and required the activation of acid-sensing ion channel 3 (ASIC3) or transient receptor potential cation channel V1 (TRPV1). Activation of ASIC3 was associated with increased activity of tetrodotoxin (TTX)-sensitive voltage-gated sodium channels but not protein kinase Cϵ (PKCϵ) in isolectin B4 (IB4)-negative muscle nociceptors. In contrast, increased activity of TTX-resistant voltage-gated sodium channels with ASIC3 or TRPV1 activation in NaV1.8-positive muscle nociceptors was required for the development of chronic hyperalgesia. Accordingly, compared to wild type mice, NaV1.8-null mice showed briefer acid-induced hyperalgesia (5 days vs. >27 days). Conclusion ASIC3 activation may manifest a new type of nociceptor priming in IB4-negative muscle nociceptors. The activation of ASIC3 and TRPV1 as well as enhanced NaV1.8 activity are essential for the development of long-lasting hyperalgesia in acid-induced, chronic, widespread muscle pain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chih-Cheng Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
227
|
Jarvis MF, Scott VE, McGaraughty S, Chu KL, Xu J, Niforatos W, Milicic I, Joshi S, Zhang Q, Xia Z. A peripherally acting, selective T-type calcium channel blocker, ABT-639, effectively reduces nociceptive and neuropathic pain in rats. Biochem Pharmacol 2014; 89:536-44. [DOI: 10.1016/j.bcp.2014.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 01/03/2023]
|
228
|
Watanabe K, Larsson K, Rydevik B, Konno SI, Nordborg C, Olmarker K. Increase of sodium channels (nav 1.8 and nav 1.9) in rat dorsal root ganglion neurons exposed to autologous nucleus pulposus. Open Orthop J 2014; 8:69-73. [PMID: 24843387 PMCID: PMC4023406 DOI: 10.2174/1874325001408010069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/12/2014] [Accepted: 03/29/2014] [Indexed: 12/19/2022] Open
Abstract
Purpose: It has been assumed that nucleus pulposus-induced activation of the dorsal root ganglion (DRG) may
be related to an activation of sodium channels in the DRG neurons. In this study we assessed the expression of Nav 1.8
and Nav 1.9 following disc puncture. Method: Thirty female Sprague-Dawley rats were used. The L4/L5 disc was punctured by a needle (n=12) and compared
to a sham group without disc puncture (n=12) and a naive group (n=6). At day 1 and 7, sections of the left L4 DRG were
immunostained with anti-Nav 1.8 and Nav 1.9 antibodies. Result: At day 1 after surgery, both Nav 1.8-IR neurons and Nav 1.9-IR neurons were significantly increased in the disc
puncture group compared to the sham and naive groups (p<0.05), but not at day 7. Conclusion: The findings in the present study demonstrate a neuronal mechanism that may be of importance in the
pathophysiology of sciatic pain in disc herniation.
Collapse
Affiliation(s)
- Kazuyuki Watanabe
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ; Department of Orthopaedic Surgery, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Karin Larsson
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Björn Rydevik
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shin-Ichi Konno
- Department of Orthopaedic Surgery, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Claes Nordborg
- Department of Pathology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kjell Olmarker
- Musculoskeletal Research, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
229
|
Belkouch M, Dansereau MA, Tétreault P, Biet M, Beaudet N, Dumaine R, Chraibi A, Mélik-Parsadaniantz S, Sarret P. Functional up-regulation of Nav1.8 sodium channel in Aβ afferent fibers subjected to chronic peripheral inflammation. J Neuroinflammation 2014; 11:45. [PMID: 24606981 PMCID: PMC4007624 DOI: 10.1186/1742-2094-11-45] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/21/2014] [Indexed: 02/05/2023] Open
Abstract
Background Functional alterations in the properties of Aβ afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Nav1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Nav1.8 in controlling Aβ-fiber excitability following persistent inflammation. Methods Distribution and expression of Nav1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund’s adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Nav1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Nav1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats. Results Our findings revealed that Nav1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Nav1.8 peak current densities are enhanced in inflamed large myelinated Aβ-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aβ-fiber neuron excitability by shifting the voltage-dependent activation of Nav1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Nav1.8 currents in Aβ-fiber neurons observed following intraplantar CFA injection and concomitantly blocks CFA-induced mechanical allodynia, suggesting that Nav1.8 regulation in Aβ-fibers contributes to inflammatory pain. Conclusions Collectively, these findings support a key role for Nav1.8 in controlling the excitability of Aβ-fibers and its potential contribution to the development of mechanical allodynia under persistent inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Philippe Sarret
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
230
|
Waxman SG, Zamponi GW. Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci 2014; 17:153-63. [DOI: 10.1038/nn.3602] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/08/2013] [Indexed: 12/13/2022]
|
231
|
A gain-of-function voltage-gated sodium channel 1.8 mutation drives intense hyperexcitability of A- and C-fiber neurons. Pain 2014; 155:896-905. [PMID: 24447515 DOI: 10.1016/j.pain.2014.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 12/27/2013] [Accepted: 01/14/2014] [Indexed: 12/12/2022]
Abstract
Therapeutic use of general sodium channel blockers, such as lidocaine, can substantially reduce the enhanced activity in sensory neurons that accompanies chronic pain after nerve or tissue injury. However, because these general blockers have significant side effects, there is great interest in developing inhibitors that specifically target subtypes of sodium channels. Moreover, some idiopathic small-fiber neuropathies are driven by gain-of-function mutations in specific sodium channel subtypes. In the current study, we focus on one subtype, the voltage-gated sodium channel 1.8 (Nav1.8). Nav1.8 is preferentially expressed in nociceptors, and gain-of-function mutations in Nav1.8 result in painful mechanical hypersensitivity in humans. Here, we used the recently developed gain-of-function Nav1.8 transgenic mouse strain, Possum, to investigate Nav1.8-mediated peripheral afferent hyperexcitability. This gain-of-function mutation resulted in markedly increased mechanically evoked action potential firing in subclasses of Aβ, Aδ, and C fibers. Moreover, mechanical stimuli initiated bursts of action potential firing in specific subpopulations that continued for minutes after removal of the force and were not susceptible to conduction failure. Surprisingly, despite the intense afferent firing, the behavioral effects of the Nav1.8 mutation were quite modest, as only frankly noxious stimuli elicited enhanced pain behavior. These data demonstrate that a Nav1.8 gain-of-function point mutation contributes to intense hyperexcitability along the afferent axon within distinct sensory neuron subtypes.
Collapse
|
232
|
Qi B, Wei Y, Chen S, Zhou G, Li H, Xu J, Ding Y, Lu X, Zhao L, Zhang F, Chen G, Zhao J, Liu S. Nav1.8 channels in ganglionated plexi modulate atrial fibrillation inducibility. Cardiovasc Res 2014; 102:480-6. [PMID: 24419303 DOI: 10.1093/cvr/cvu005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Emerging evidences indicate that SCN10A/NaV1.8 is associated with cardiac conduction and atrial fibrillation, but the exact role of NaV1.8 in cardiac electrophysiology remains poorly understood. The present study was designed to investigate the effects of blocking NaV1.8 channels in cardiac ganglionated plexi (GP) on modulating cardiac conduction and atrial fibrillation inducibility in the canine model. METHODS AND RESULTS Thirteen mongrel dogs were randomly enrolled. Right cervical vagus nerve stimulation (VNS) was applied to determine its effects on the sinus rate, ventricular rate during atrial fibrillation, PR interval, atrial effective refractory period, and the cumulative window of vulnerability. The NaV1.8 blocker A-803467 (1 μmol/0.5 mL per GP, n = 7) or 5% DMSO/95% polyethylene glycol (0.5 mL per GP, n = 6, control) was injected into the anterior right GP and the inferior right GP. The effects of VNS on the sinus rate, ventricular rate, PR interval, atrial effective refractory period, and the cumulative window of vulnerability were significantly eliminated at 10, 35, and 90 min after A-803467 injection. In separate experiments (n = 8), A-803467 blunted the slowing of sinus rate with increasing stimulation voltage of the anterior right GP at 10 min after local injection. CONCLUSIONS Blockade of NaV1.8 channels suppresses the effects of VNS on cardiac conduction and atrial fibrillation inducibility, most likely by inhibiting the neural activity of the cardiac GP.
Collapse
Affiliation(s)
- Baozhen Qi
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Yong Wei
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Songwen Chen
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Hongli Li
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Juan Xu
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Yu Ding
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Xiaofeng Lu
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Liqun Zhao
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Feng Zhang
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Gang Chen
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Jing Zhao
- Wolfson Institute for Biomedical Research, University College London, Wing3.1, Cruciform Building, Gower Street, London WC1E 6BT, UK
| | - Shaowen Liu
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| |
Collapse
|
233
|
Cummins TR, Rush AM. Voltage-gated sodium channel blockers for the treatment of neuropathic pain. Expert Rev Neurother 2014; 7:1597-612. [DOI: 10.1586/14737175.7.11.1597] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
234
|
Cherki RS, Kolb E, Langut Y, Tsveyer L, Bajayo N, Meir A. Two tarantula venom peptides as potent and differential NaV channels blockers. Toxicon 2014; 77:58-67. [DOI: 10.1016/j.toxicon.2013.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 10/26/2022]
|
235
|
Blockade of Nav1.8 Currents in Nociceptive Trigeminal Neurons Contributes to Anti-trigeminovascular Nociceptive Effect of Amitriptyline. Neuromolecular Med 2013; 16:308-21. [DOI: 10.1007/s12017-013-8282-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/08/2013] [Indexed: 01/22/2023]
|
236
|
Muroi Y, Undem BJ. Targeting voltage gated sodium channels NaV1.7, Na V1.8, and Na V1.9 for treatment of pathological cough. Lung 2013; 192:15-20. [PMID: 24272479 DOI: 10.1007/s00408-013-9533-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
Recent advances in our understanding of voltage-gated sodium channels (NaVs) lead to the rational hypothesis that drugs capable of selective blockade of NaV subtypes may be a safe and effective strategy for the treatment of unwanted cough. Among the nine NaV subtypes (NaV1.1-NaV1.9), the afferent nerves involved in initiating cough, in common with nociceptive neurons in the somatosensory system, express mainly NaV1.7, NaV1.8, and NaV1.9. Although knowledge about the effect of selectively blocking these channels on the cough reflex is limited, their biophysical properties indicate that each may contribute to the hypertussive and allotussive state that typifies subacute and chronic nonproductive cough.
Collapse
|
237
|
Probing functional properties of nociceptive axons using a microfluidic culture system. PLoS One 2013; 8:e80722. [PMID: 24278311 PMCID: PMC3835735 DOI: 10.1371/journal.pone.0080722] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/04/2013] [Indexed: 11/25/2022] Open
Abstract
Pathological changes in axonal function are integral features of many neurological disorders, yet our knowledge of the molecular basis of axonal dysfunction remains limited. Microfluidic chambers (MFCs) can provide unique insight into the axonal compartment independent of the soma. Here we demonstrate how an MFC based cell culture system can be readily adapted for the study of axonal function in vitro. We illustrate the ease and versatility to assay electrogenesis and conduction of action potentials (APs) in naïve, damaged or sensitized DRG axons using calcium imaging at the soma for pharmacological screening or patch-clamp electrophysiology for detailed biophysical characterisation. To demonstrate the adaptability of the system, we report by way of example functional changes in nociceptor axons following sensitization by neurotrophins and axotomy in vitro. We show that NGF can locally sensitize axonal responses to capsaicin, independent of the soma. Axotomizing neurons in MFC results in a significant increase in the proportion of neurons that respond to axonal stimulation, and interestingly leads to accumulation of Nav1.8 channels in regenerating axons. Axotomy also augmented AP amplitude following axotomy and altered activation thresholds in a subpopulation of regenerating axons. We further show how the system can readily be used to study modulation of axonal function by non-neuronal cells such as keratinocytes. Hence we describe a novel in vitro platform for the study of axonal function and a surrogate model for nerve injury and sensitization.
Collapse
|
238
|
|
239
|
Chen YW, Tzeng JI, Liu KS, Yu SH, Hung CH, Wang JJ. Systemic diphenidol reduces neuropathic allodynia and TNF-alpha overexpression in rats after chronic constriction injury. Neurosci Lett 2013; 552:62-5. [DOI: 10.1016/j.neulet.2013.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/17/2013] [Accepted: 07/21/2013] [Indexed: 01/20/2023]
|
240
|
Rahman W, Dickenson AH. Voltage gated sodium and calcium channel blockers for the treatment of chronic inflammatory pain. Neurosci Lett 2013; 557 Pt A:19-26. [PMID: 23941888 DOI: 10.1016/j.neulet.2013.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 01/16/2023]
Abstract
The inflammatory response is a natural response of the body that occurs immediately following tissue damage, which may be due to injury, infection or disease. The acute inflammatory response is an essential mechanism that promotes healing and a key aspect is the ensuing pain, which warns the subject to protect the site of injury. Thus, it is common to see a zone of primary sensitization as well as consequential central sensitization that generally, is maintained by a peripheral drive from the zone of tissue injury. Inflammation associated with chronic pain states, such as rheumatoid and osteoarthritis, cancer and migraine etc. is deleterious to health and often debilitating for the patient. Thus there is a large unmet clinical need. The mechanisms underlying both acute and chronic inflammatory pain are extensive and complex, involving a diversity of cell types, receptors and proteins. Among these the contribution of voltage gated sodium and calcium channels on peripheral nociceptors is critical for nociceptive transmission beyond the peripheral transducers and changes in their distribution, accumulation, clustering and functional activities have been linked to both inflammatory and neuropathic pain. The latter has been the main area for trials and use of drugs that modulate ion channels such as carbamazepine and gabapentin, but given the large peripheral drive that follows tissue damage, there is a clear rationale for blocking voltage gated sodium and calcium channels in these pain states. It has been hypothesized that pain of inflammatory origin may evolve into a condition that resembles neuropathic pain, but mixed pains such as low back pain and cancer pain often include elements of both pain states. This review considers the therapeutic potential for sodium and calcium channel blockers for the treatment of chronic inflammatory pain states.
Collapse
Affiliation(s)
- Wahida Rahman
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
241
|
Plakhova VB, Shelykh TN, Podzorova SA, Kravtsova VV, Kornilova EC, Krylov BV. Epidermal growth factor modulates voltage sensitivity of slow sodium channels. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2013; 450:123-5. [PMID: 23821047 DOI: 10.1134/s0012496613030095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Indexed: 11/23/2022]
Affiliation(s)
- V B Plakhova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | | | |
Collapse
|
242
|
Yu J, Fang Q, Lou GD, Shou WT, Yue JX, Tang YY, Hou WW, Xu TL, Ohtsu H, Zhang SH, Chen Z. Histamine modulation of acute nociception involves regulation of Nav 1.8 in primary afferent neurons in mice. CNS Neurosci Ther 2013; 19:649-58. [PMID: 23773488 DOI: 10.1111/cns.12134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 11/27/2022] Open
Abstract
AIMS To explore the role of histamine in acute pain perception and its possible mechanisms. METHODS Pain-like behaviors induced by four types of noxious stimuli (hot-plate, tail-pressure, acetic acid, and formalin) were accessed in mice. Nav 1.8 expression and functions in primary afferent neurons were compared between histidine decarboxylase knockout (HDC(-/-) ) mice and their wild-types. RESULTS HDC(-/-) mice, lacking in endogenous histamine, showed elevated sensitivity to all these noxious stimuli, as compared with the wild-types. In addition, a depletion of endogenous histamine with α-fluoromethylhistidine (α-FMH), a specific HDC inhibitor, or feeding mice a low-histamine diet also enhanced nociception in the wild-types. Nav 1.8 expression in primary afferent neurons was increased both in HDC(-/-) and in α-FMH-treated wild-type mice. A higher Nav 1.8 current density, a lower action potential (AP) threshold, and a higher firing rate in response to suprathreshold stimulation were observed in nociception-related small DRG neurons of HDC(-/-) mice. Nav 1.8 inhibitor A-803467, but not TTX, diminished the hyperexcitability and blocked repetitive AP firing of these neurons. CONCLUSION Our results indicate that histamine participates in acute pain modulation in a dose-related manner. The regulation of Nav 1.8 expression and the excitability of nociceptive primary afferent neurons may be involved in the underlying mechanisms.
Collapse
Affiliation(s)
- Jie Yu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
A novel benzazepinone sodium channel blocker with oral efficacy in a rat model of neuropathic pain. Bioorg Med Chem Lett 2013; 23:3640-5. [DOI: 10.1016/j.bmcl.2013.03.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 11/22/2022]
|
244
|
Abstract
Arthritis pain is a complex phenomenon involving intricate neurophysiological processing at all levels of the pain pathway. The treatment options available to alleviate joint pain are fairly limited and most arthritis patients report only modest pain relief with current treatments. A better understanding of the neural mechanisms responsible for musculoskeletal pain and the identification of new targets will help in the development of future pharmacological therapies. This article reviews some of the latest research into factors which contribute to joint pain and covers areas such as cannabinoids, proteinase activated receptors, sodium channels, cytokines and transient receptor potential channels. The emerging hypothesis that osteoarthritis may have a neuropathic component is also discussed.
Collapse
|
245
|
Tibbs GR, Rowley TJ, Sanford RL, Herold KF, Proekt A, Hemmings HC, Andersen OS, Goldstein PA, Flood PD. HCN1 channels as targets for anesthetic and nonanesthetic propofol analogs in the amelioration of mechanical and thermal hyperalgesia in a mouse model of neuropathic pain. J Pharmacol Exp Ther 2013; 345:363-73. [PMID: 23549867 DOI: 10.1124/jpet.113.203620] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic pain after peripheral nerve injury is associated with afferent hyperexcitability and upregulation of hyperpolarization-activated, cyclic nucleotide-regulated (HCN)-mediated IH pacemaker currents in sensory neurons. HCN channels thus constitute an attractive target for treating chronic pain. HCN channels are ubiquitously expressed; analgesics targeting HCN1-rich cells in the peripheral nervous system must spare the cardiac pacemaker current (carried mostly by HCN2 and HCN4) and the central nervous system (where all four isoforms are expressed). The alkylphenol general anesthetic propofol (2,6-di-iso-propylphenol) selectively inhibits HCN1 channels versus HCN2-HCN4 and exhibits a modest pharmacokinetic preference for the periphery. Consequently, we hypothesized that propofol, and congeners, should be antihyperalgesic. Alkyl-substituted propofol analogs have different rank-order potencies with respect to HCN1 inhibition, GABA(A) receptor (GABA(A)-R) potentiation, and general anesthesia. Thus, 2,6- and 2,4-di-tertbutylphenol (2,6- and 2,4-DTBP, respectively) are more potent HCN1 antagonists than propofol, whereas 2,6- and 2,4-di-sec-butylphenol (2,6- and 2,4-DSBP, respectively) are less potent. In contrast, DSBPs, but not DTBPs, enhance GABA(A)-R function and are general anesthetics. 2,6-DTBP retained propofol's selectivity for HCN1 over HCN2-HCN4. In a peripheral nerve ligation model of neuropathic pain, 2,6-DTBP and subhypnotic propofol are antihyperalgesic. The findings are consistent with these alkylphenols exerting analgesia via non-GABA(A)-R targets and suggest that antagonism of central HCN1 channels may be of limited importance to general anesthesia. Alkylphenols are hydrophobic, and thus potential modifiers of lipid bilayers, but their effects on HCN channels are due to direct drug-channel interactions because they have little bilayer-modifying effect at therapeutic concentrations. The alkylphenol antihyperalgesic target may be HCN1 channels in the damaged peripheral nervous system.
Collapse
Affiliation(s)
- Gareth R Tibbs
- Department of Anesthesiology, College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Stone AJ, Kim JS, Yamauchi K, Ruiz-Velasco V, Kaufman MP. Attenuation of autonomic reflexes by A803467 may not be solely caused by blockade of NaV 1.8 channels. Neurosci Lett 2013; 543:177-82. [PMID: 23523647 DOI: 10.1016/j.neulet.2013.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
In decerebrated rats, we determined the dose of A803467, a NaV 1.8 antagonist, needed to attenuate the reflex pressor responses to femoral arterial injections of lactic acid (24 mM; ~0.1 ml) and capsaicin (0.1 μg), agents which stimulate thin fiber afferents having NaV 1.8 channels. We also determined whether the dose of A803467 needed to attenuate these reflex responses affected the responses of muscle spindle afferents to tendon stretch and succinylcholine (200 μg). Spindle afferents are not supplied with NaV 1.8 channels, and consequently their responses to these stimuli should not be influenced by A803467. Pressor responses to lactic acid and capsaicin were not altered by 500 μg of A803467 (n=6). A803467 in a dose of 1mg, however, significantly reduced (p<0.05; n=12) the pressor responses to lactic acid (23 ± 5 to 7 ± 3 Δmm Hg) and capsaicin (47 ± 5 to 31 ± 5 ΔmmHg). Surprisingly, we also found that 1mg of A803467 reduced the responses of 10 spindle afferents to succinylcholine (34 ± 11 to 4 ± 3 Δimp/s; p<0.05) and stretch (83 ± 17 to 0.4 ± 1 Δimp/s; p<0.05). We conclude that A803467 reduces the reflex response to lactic acid and capsaicin; however, it may be working on multiple channels, including NaV 1.8, other NaVs as well as voltage-gated calcium channels.
Collapse
Affiliation(s)
- Audrey J Stone
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA 17033, United States.
| | | | | | | | | |
Collapse
|
247
|
Electroacupuncture Reduces Carrageenan- and CFA-Induced Inflammatory Pain Accompanied by Changing the Expression of Nav1.7 and Nav1.8, rather than Nav1.9, in Mice Dorsal Root Ganglia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:312184. [PMID: 23573123 PMCID: PMC3615619 DOI: 10.1155/2013/312184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/13/2013] [Indexed: 11/17/2022]
Abstract
Several voltage-gated sodium channels (Navs) from nociceptive nerve fibers have been identified as important effectors in pain signaling. The objective of this study is to investigate the electroacupuncture (EA) analgesia mechanism by changing the expression of Navs in mice dorsal root ganglia (DRG). We injected carrageenan and complete Freund's adjuvant (CFA) into the mice plantar surface of the hind paw to induce inflammation and examined the antinociception effect of EA at the Zusanli (ST36) acupoint at 2 Hz low frequency. Mechanical hyperalgesia was evaluated by using electronic von Frey filaments, and thermal hyperalgesia was assessed using Hargreaves' test. Furthermore, we observed the expression and quality of Navs in DRG neurons. Our results showed that EA reduced mechanical and thermal pain in inflammatory animal model. The expression of Nav1.7 and Nav1.8 was increased after 4 days of carrageenan- and CFA-elicited inflammatory pain and further attenuated by 2 Hz EA stimulation. The attenuation cannot be observed in Nav1.9 sodium channels. We demonstrated that EA at Zusanli (ST36) acupoint at 2 Hz low-frequency stimulation attenuated inflammatory pain accompanied by decreasing the expression of Nav1.7 and 1.8, rather than Nav1.9, sodium channels in peripheral DRG neurons.
Collapse
|
248
|
Moldovan M, Alvarez S, Romer Rosberg M, Krarup C. Axonal voltage-gated ion channels as pharmacological targets for pain. Eur J Pharmacol 2013; 708:105-12. [PMID: 23500193 DOI: 10.1016/j.ejphar.2013.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 03/04/2013] [Indexed: 12/19/2022]
Abstract
Upon peripheral nerve injury (caused by trauma or disease process) axons of the dorsal root ganglion (DRG) somatosensory neurons have the ability to sprout and regrow/remyelinate to reinnervate distant target tissue or form a tangled scar mass called a neuroma. This regenerative response can become maladaptive leading to a persistent and debilitating pain state referred to as chronic pain corresponding to the clinical description of neuropathic/chronic inflammatory pain. There is little agreement to what causes peripheral chronic pain other than hyperactivity of the nociceptive DRG neurons which ultimately depends on the function of voltage-gated ion channels. This review focuses on the pharmacological modulators of voltage-gated ion channels known to be present on axonal membrane which represents by far the largest surface of DRG neurons. Blockers of voltage-gated Na(+) channels, openers of voltage-gated K(+) channels and blockers of hyperpolarization-activated cyclic nucleotide-gated channels that were found to reduce neuronal activity were also found to be effective in neuropathic and inflammatory pain states. The isoforms of these channels present on nociceptive axons have limited specificity. The rationale for considering axonal voltage-gated ion channels as targets for pain treatment comes from the accumulating evidence that chronic pain states are associated with a dysregulation of these channels that could alter their specificity and make them more susceptible to pharmacological modulation. This drives the need for further development of subtype-specific voltage-gated ion channels modulators, as well as clinically available neurophysiological techniques for monitoring axonal ion channel function in peripheral nerves.
Collapse
Affiliation(s)
- Mihai Moldovan
- Institute of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
249
|
Ho WSV, Davis AJ, Chadha PS, Greenwood IA. Effective contractile response to voltage-gated Na+ channels revealed by a channel activator. Am J Physiol Cell Physiol 2013; 304:C739-47. [PMID: 23364266 DOI: 10.1152/ajpcell.00164.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the molecular identity and impact of enhancing voltage-gated Na(+) (Na(V)) channels in the control of vascular tone. In rat isolated mesenteric and femoral arteries mounted for isometric tension recording, the vascular actions of the Na(V) channel activator veratridine were examined. Na(V) channel expression was probed by molecular techniques and immunocytochemistry. In mesenteric arteries, veratridine induced potent contractions (pEC(50) = 5.19 ± 0.20, E(max) = 12.0 ± 2.7 mN), which were inhibited by 1 μM TTX (a blocker of all Na(V) channel isoforms, except Na(V)1.5, Na(V)1.8, and Na(V)1.9), but not by selective blockers of Na(V)1.7 (ProTx-II, 10 nM) or Na(V)1.8 (A-80347, 1 μM) channels. The responses were insensitive to endothelium removal but were partly (~60%) reduced by chemical destruction of sympathetic nerves by 6-hydroxydopamine (2 mM) or antagonism at the α1-adrenoceptor by prazosin (1 μM). KB-R7943, a blocker of the reverse mode of the Na(+)/Ca(2+) exchanger (3 μM), inhibited veratridine contractions in the absence or presence of prazosin. T16A(inh)-A01, a Ca(2+)-activated Cl(-) channel blocker (10 μM), also inhibited the prazosin-resistant contraction to veratridine. Na(V) channel immunoreactivity was detected in freshly isolated mesenteric myocytes, with apparent colocalization with the Na(+)/Ca(2+) exchanger. Veratridine induced similar contractile effects in the femoral artery, and mRNA transcripts for Na(V)1.2 and Na(V)1.3 channels were evident in both vessel types. We conclude that, in addition to sympathetic nerves, NaV channels are expressed in vascular myocytes, where they are functionally coupled to the reverse mode of Na(+)/Ca(2+) exchanger and subsequent activation of Ca(2+)-activated Cl(-) channels, causing contraction. The TTX-sensitive Na(V)1.2 and Na(V)1.3 channels are likely involved in vascular control.
Collapse
Affiliation(s)
- W-S Vanessa Ho
- Division of Biomedical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| | | | | | | |
Collapse
|
250
|
Arisawa T, Tahara T, Shiroeda H, Minato T, Matsue Y, Saito T, Fukuyama T, Otsuka T, Fukumura A, Nakamura M, Shibata T. Genetic polymorphisms of SCN10A are associated with functional dyspepsia in Japanese subjects. J Gastroenterol 2013; 48:73-80. [PMID: 22618805 DOI: 10.1007/s00535-012-0602-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/05/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Visceral sensory impulses are transmitted via C-fibers from the gastrointestinal tract to the central nervous system. The tetrodotoxinresistant (TTX-r) sodium channel, Na(V) 1.8/SNS (sensory-neuron specific), encoded by SCN10A, has been identified on C-fibers. We attempted to clarify the association between functional dyspepsia (FD) and SCN10A non-synonymous polymorphisms (2884 A>G, 3218 C>T and 3275 T>C). METHODS The study was performed in 642 subjects (345 with no symptoms and 297 with FD). We employed a multiplex polymerase chain reaction single-strand confirmation polymorphism (PCR-SSCP) method to detect the gene polymorphisms. RESULTS The 3218 CC homozygotes had a reduced risk for the development of FD [odds ratio (OR) 0.589; 95 % confidence interval (CI) 0.402-0.864; p = 0.0067]. In addition, both 2884 A>G and 3275 T>C, which were in linkage disequilibrium, were also associated with the development of FD (p = 0.039 and 0.028, respectively). Each 2884 G carrier, 3218 CC homozygote, and 3275 C carrier had a reduced risk for the development of both epigastric pain syndrome (EPS) and postprandial distress syndrome (PDS). The subjects with the 2884 G allele, 3275 C allele, and no 3218 T allele had a reduced risk for FD (OR 0.618; 95 % CI 0.448-0.853; p = 0.0034). This haplotype was associated with a reduced risk for both EPS and PDS (p = 0.0011 and 0.0056, respectively). In addition, there was a significant association between FD and this haplotype in Helicobacter pylori-negative subjects (OR 0.463; 95 % CI 0279-0.9768; p = 0.0029). CONCLUSION We conclude that genetic polymorphisms of SCN10A are closely associated with FD (both EPS and PDS), especially in H. pylori-negative subjects, in Japanese.
Collapse
Affiliation(s)
- Tomiyasu Arisawa
- Department of Gastroenterology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa, 920-0293, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|