201
|
Brief Report: On the Concordance Percentages for Autistic Spectrum Disorder of Twins. J Autism Dev Disord 2009; 39:806-8. [DOI: 10.1007/s10803-008-0683-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/12/2008] [Indexed: 11/26/2022]
|
202
|
Abstract
Mental retardation--known more commonly nowadays as intellectual disability--is a severe neurological condition affecting up to 3% of the general population. As a result of the analysis of familial cases and recent advances in clinical genetic testing, great strides have been made in our understanding of the genetic etiologies of mental retardation. Nonetheless, no treatment is currently clinically available to patients suffering from intellectual disability. Several animal models have been used in the study of memory and cognition. Established paradigms in Drosophila have recently captured cognitive defects in fly mutants for orthologs of genes involved in human intellectual disability. We review here three protocols designed to understand the molecular genetic basis of learning and memory in Drosophila and the genes identified so far with relation to mental retardation. In addition, we explore the mental retardation genes for which evidence of neuronal dysfunction other than memory has been established in Drosophila. Finally, we summarize the findings in Drosophila for mental retardation genes for which no neuronal information is yet available. All in all, this review illustrates the impressive overlap between genes identified in human mental retardation and genes involved in physiological learning and memory.
Collapse
Affiliation(s)
- François V Bolduc
- Watson School of Biological Sciences, Cold Spring Harbor, New York, USA
| | | |
Collapse
|
203
|
Kakinuma H, Sato H. Copy-number variations associated with autism spectrum disorder. Pharmacogenomics 2009; 9:1143-54. [PMID: 18681787 DOI: 10.2217/14622416.9.8.1143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a clinically heterogeneous developmental disorder with a strong genetic component. Rare genetic disorders and various chromosomal abnormalities are thought to account for approximately 10% of people with ASD. The etiology of the remaining cases remains unknown. Recent advances in array-based technology have increased the resolution in detecting submicroscopic deletions and duplications, referred to as copy-number variations. ASD-associated copy-number variations, which are considered to be present in individuals with ASD but not in unaffected individuals, have been extensively investigated. These data will provide us with an opportunity not only to search for genes causing or contributing to ASDs but also to understand the genetics of ASD.
Collapse
Affiliation(s)
- Hiroaki Kakinuma
- Department of Pediatrics, Kanazawa Medical University, 1-1 Uchinada, Kahoku-gun, Ishikawa 920-293, Japan.
| | | |
Collapse
|
204
|
Abstract
Autism is a heterogeneous neurodevelopmental syndrome with a complex genetic etiology. It is still not clear whether autism comprises a vast collection of different disorders akin to intellectual disability or a few disorders sharing common aberrant pathways. Unifying principles among cases of autism are likely to be at the level of brain circuitry in addition to molecular pathways.
Collapse
|
205
|
Cook EH, Scherer SW. Copy-number variations associated with neuropsychiatric conditions. Nature 2008; 455:919-23. [PMID: 18923514 DOI: 10.1038/nature07458] [Citation(s) in RCA: 503] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neuropsychiatric conditions such as autism and schizophrenia have long been attributed to genetic alterations, but identifying the genes responsible has proved challenging. Microarray experiments have now revealed abundant copy-number variation--a type of variation in which stretches of DNA are duplicated, deleted and sometimes rearranged--in the human population. Genes affected by copy-number variation are good candidates for research into disease susceptibility. The complexity of neuropsychiatric genetics, however, dictates that assessment of the biomedical relevance of copy-number variants and the genes that they affect needs to be considered in an integrated context.
Collapse
Affiliation(s)
- Edwin H Cook
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois, 1747 West Roosevelt Road, Chicago, Illinois 60608, USA
| | | |
Collapse
|
206
|
Autism Overflows: Increasing Prevalence and Proliferating Theories. Neuropsychol Rev 2008; 18:273-86. [DOI: 10.1007/s11065-008-9074-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 09/12/2008] [Indexed: 12/31/2022]
|
207
|
Zhiling Y, Fujita E, Tanabe Y, Yamagata T, Momoi T, Momoi MY. Mutations in the gene encoding CADM1 are associated with autism spectrum disorder. Biochem Biophys Res Commun 2008; 377:926-9. [PMID: 18957284 DOI: 10.1016/j.bbrc.2008.10.107] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 10/17/2008] [Indexed: 11/16/2022]
Abstract
The unified idea on the molecular pathogenesis of Autism Spectrum Disorder (ASD) is still unknown although mutations in genes encoding neuroligins and SHANK3 have been shown in a small part of the patients. RA175/SynCAM1/CADM1(CADM1), a member of immunoglobulin superfamily, is another synaptic cell adhesion molecule. To clarify the idea that impaired synaptogenesis underlies the pathogenesis of ASD, we examined the relationship between mutations in the CADM1 gene and ASD. We found two missense mutations, C739A(H246N) and A755C(Y251S), in the CADM1 gene of male Caucasian ASD patients and their family members. Both mutations were located in the third immunoglobulin domain, which is essential for trans-active interaction. The mutated CADM1 exhibited less amount of high molecular weight with the matured oligosaccharide, defective trafficking to the cell surface, and more susceptibility to the cleavage and or degradation. Our findings provide key support for the unified idea that impaired synaptogenesis underlies the pathogenesis of ASD.
Collapse
Affiliation(s)
- Yu Zhiling
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
208
|
Rujescu D, Ingason A, Cichon S, Pietiläinen OPH, Barnes MR, Toulopoulou T, Picchioni M, Vassos E, Ettinger U, Bramon E, Murray R, Ruggeri M, Tosato S, Bonetto C, Steinberg S, Sigurdsson E, Sigmundsson T, Petursson H, Gylfason A, Olason PI, Hardarsson G, Jonsdottir GA, Gustafsson O, Fossdal R, Giegling I, Möller HJ, Hartmann AM, Hoffmann P, Crombie C, Fraser G, Walker N, Lonnqvist J, Suvisaari J, Tuulio-Henriksson A, Djurovic S, Melle I, Andreassen OA, Hansen T, Werge T, Kiemeney LA, Franke B, Veltman J, Buizer-Voskamp JE, Sabatti C, Ophoff RA, Rietschel M, Nöthen MM, Stefansson K, Peltonen L, St Clair D, Stefansson H, Collier DA. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 2008; 18:988-96. [PMID: 18945720 PMCID: PMC2695245 DOI: 10.1093/hmg/ddn351] [Citation(s) in RCA: 354] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deletions within the neurexin 1 gene (NRXN1; 2p16.3) are associated with autism and have also been reported in two families with schizophrenia. We examined NRXN1, and the closely related NRXN2 and NRXN3 genes, for copy number variants (CNVs) in 2977 schizophrenia patients and 33 746 controls from seven European populations (Iceland, Finland, Norway, Germany, The Netherlands, Italy and UK) using microarray data. We found 66 deletions and 5 duplications in NRXN1, including a de novo deletion: 12 deletions and 2 duplications occurred in schizophrenia cases (0.47%) compared to 49 and 3 (0.15%) in controls. There was no common breakpoint and the CNVs varied from 18 to 420 kb. No CNVs were found in NRXN2 or NRXN3. We performed a Cochran-Mantel-Haenszel exact test to estimate association between all CNVs and schizophrenia (P = 0.13; OR = 1.73; 95% CI 0.81-3.50). Because the penetrance of NRXN1 CNVs may vary according to the level of functional impact on the gene, we next restricted the association analysis to CNVs that disrupt exons (0.24% of cases and 0.015% of controls). These were significantly associated with a high odds ratio (P = 0.0027; OR 8.97, 95% CI 1.8-51.9). We conclude that NRXN1 deletions affecting exons confer risk of schizophrenia.
Collapse
Affiliation(s)
- Dan Rujescu
- Division of Molecular and Clinical Neurobiology, Department of Psychiatry, Ludwig- Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Dev Psychopathol 2008; 20:775-803. [PMID: 18606031 DOI: 10.1017/s0954579408000370] [Citation(s) in RCA: 580] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Advances in the fields of cognitive and affective developmental neuroscience, developmental psychopathology, neurobiology, genetics, and applied behavior analysis have contributed to a more optimistic outcome for individuals with autism spectrum disorder (ASD). These advances have led to new methods for early detection and more effective treatments. For the first time, prevention of ASD is plausible. Prevention will entail detecting infants at risk before the full syndrome is present and implementing treatments designed to alter the course of early behavioral and brain development. This article describes a developmental model of risk, risk processes, symptom emergence, and adaptation in ASD that offers a framework for understanding early brain plasticity in ASD and its role in prevention of the disorder.
Collapse
|
210
|
Abstract
Autism (ie, the autism spectrum disorders) is now recognized in 1 in 150 children. This article highlights the definition, neurobiology, screening, and diagnosis of autism. The genetics, immunology, imaging, and neurophysiology of autism are reviewed, with particular emphasis on areas that impact pediatricians. Early recognition of the social deficits that characterize autism is key to maximizing the potential of these children.
Collapse
Affiliation(s)
- Isabelle Rapin
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
211
|
Abstract
This review on autism spectrum disorder (ASD) focusses on recent insights in the clinical picture, such as continuity of the phenotype and the concept of broader phenotype, on epidemiology and on clinical issues relevant to physicians, including new methods for early screening and diagnosis, psychiatric and somatic co-morbidity, and the expansion of so-called complementary and alternative treatments. ASD is a disorder with mainly genetic causes and recent insights show that a variety of genetic mechanisms may be involved, i.e. single gene disorders, copy number variations and polygenic mechanisms. Technological advances in genetics have lead to a number of promising findings, which, together with other lines of fundamental research, suggest that ASD may be a disorder of connectivity in the brain, at least in a subgroup of patients. It is possible that part of the genetic load in autism actually reflects gene-environment interaction, but there is no evidence for purely environmental causes in a substantial number of cases. Clinical research suggests that ASD may be a multi-system disorder in at least a subgroup of subjects, affecting the gastro-intestinal (GI) tract, the immune system and perhaps other systems. Behavioural treatments remain the cornerstone of management, and are mainly aimed at stimulation of the domains of impaired development and reducing secondary behaviours. These treatments are constantly being refined, but the main progress in this area may be the increase of research on effectiveness.
Collapse
Affiliation(s)
- Jean G Steyaert
- Department of Child and Adolescent Psychiatry, Katholieke Universiteit Leuven (UZ Leuven), Herestraat 49, 3000, Leuven, Belgium.
| | | |
Collapse
|
212
|
Hughes JR. A review of recent reports on autism: 1000 studies published in 2007. Epilepsy Behav 2008; 13:425-37. [PMID: 18627794 DOI: 10.1016/j.yebeh.2008.06.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/24/2008] [Accepted: 06/27/2008] [Indexed: 01/28/2023]
Abstract
From 1000 studies published in 2007 on all aspects of autism, those that reached clear conclusions or included quantitative data were selected for this review. Possible etiologies include elemental metals, especially the inconsistent evidence regarding mercury from the vaccine preservative thimerosal, not used after 2001, and chromosomes and genes with the conclusion that autism has a complex genetic architecture. Also, various parental conditions are considered, as are many different abnormalities in the central nervous system, especially underconnectivity within the cortex. Furthermore, deficiencies in mirror neurons have been proposed, leading to the "theory of mind" explanation that autistic children tend to disregard others. In addition, various global deficiencies, like an increase in inhibitory synaptic transmission, are proposed. Characteristics of these children include selective (inward) attention; underresponsiveness; stereotyped repetitive motor behavior; increased head size, weight, and height; various cognitive and communicative disorders; and also epilepsy. Therapy has emphasized risperidone, but some atypical antipsychotic medications have been helpful, as have robotic aids, massage, hyperbaric oxygen, and music. Nearly every conceivable problem that a child could have can be observed in these unfortunate children.
Collapse
Affiliation(s)
- John R Hughes
- Department of Neurology, University of Illinois Medical Center (M/C 796), 912 South Wood Street, Chicago, IL 60612, USA
| |
Collapse
|
213
|
Dietert RR, Dietert JM. Potential for early-life immune insult including developmental immunotoxicity in autism and autism spectrum disorders: focus on critical windows of immune vulnerability. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:660-680. [PMID: 18821424 DOI: 10.1080/10937400802370923] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Early-life immune insults (ELII) including xenobiotic-induced developmental immunotoxicity (DIT) are important factors in childhood and adult chronic diseases. However, prenatal and perinatal environmentally induced immune alterations have yet to be considered in depth in the context of autism and autism spectrum disorders (ASDs). Numerous factors produce early-life-induced immune dysfunction in offspring, including exposure to xenobiotics, maternal infections, and other prenatal-neonatal stressors. Early life sensitivity to ELII, including DIT, results from the heightened vulnerability of the developing immune system to disruption and the serious nature of the adverse outcomes arising after disruption of one-time immune maturational events. The resulting health risks extend beyond infectious diseases, cancer, allergy, and autoimmunity to include pathologies of the neurological, reproductive, and endocrine systems. Because these changes may include misregulation of resident inflammatory myelomonocytic cells in tissues such as the brain, they are a potential concern in cases of prenatal-neonatal brain pathologies and neurobehavioral deficits. Autism and ASDs are chronic developmental neurobehavioral disorders that are on the rise in the United States with prenatal and perinatal environmental factors suspected as contributors to this increase. Evidence for an association between environmentally associated childhood immune dysfunction and ASDs suggests that ELII and DIT may contribute to these conditions. However, it is not known if this linkage is directly associated with the brain pathologies or represents a separate (or secondary) outcome. This review considers the known features of ELII and DIT and how they may provide important clues to prenatal brain inflammation and the risk of autism and ASDs.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY14852, USA.
| | | |
Collapse
|
214
|
Branch DR. Gender-selective toxicity of thimerosal. ACTA ACUST UNITED AC 2008; 61:133-6. [PMID: 18771903 DOI: 10.1016/j.etp.2008.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 11/16/2022]
Abstract
A recent report shows a correlation of the historical use of thimerosal in therapeutic immunizations with the subsequent development of autism; however, this association remains controversial. Autism occurs approximately four times more frequently in males compared to females; thus, studies of thimerosal toxicity should take into consideration gender-selective effects. The present study was originally undertaken to determine the maximum tolerated dose (MTD) of thimersosal in male and female CD1 mice. However, during the limited MTD studies, it became apparent that thimerosal has a differential MTD that depends on whether the mouse is male or female. At doses of 38.4-76.8mg/kg using 10% DMSO as diluent, seven of seven male mice compared to zero of seven female mice tested succumbed to thimerosal. Although the thimerosal levels used were very high, as we were originally only trying to determine MTD, it was completely unexpected to observe a difference of the MTD between male and female mice. Thus, our studies, although not directly addressing the controversy surrounding thimerosal and autism, and still preliminary due to small numbers of mice examined, provide, nevertheless, the first report of gender-selective toxicity of thimerosal and indicate that any future studies of thimerosal toxicity should take into consideration gender-specific differences.
Collapse
Affiliation(s)
- Donald R Branch
- Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.
| |
Collapse
|
215
|
Shaner A, Miller G, Mintz J. Autism as the Low-Fitness Extreme of a Parentally Selected Fitness Indicator. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2008; 19:389-413. [DOI: 10.1007/s12110-008-9049-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
216
|
Ozgen HM, Staal WG, Barber JC, de Jonge MV, Eleveld MJ, Beemer FA, Hochstenbach R, Poot M. A novel 6.14 Mb duplication of chromosome 8p21 in a patient with autism and self mutilation. J Autism Dev Disord 2008; 39:322-9. [PMID: 18696223 DOI: 10.1007/s10803-008-0627-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 07/15/2008] [Indexed: 11/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders with a strong genetic etiology. Cytogenetic abnormalities have been detected in 5-10% of the patients with autism. In this study, we present the clinical, cytogenetic and array-comparative genomic hybridization (array-CGH) evaluation of a 13-year-old male with severe developmental delay, facial dysmorphic features, autism and self mutilation. The patient was found to carry a de novo duplication of chromosome region 8p21 of minimally 6.14 and maximally 6.58 Mb as ascertained by bacterial artificial chromosome (BAC)-based array-CGH. Hitherto, only a few patients with autism with cytogenetically visible duplications involving the chromosome 8p21 region have been described, but the extent of these duplications has not been determined at the molecular level. This represents the smallest rearrangement of chromosomal region 8p21 as yet found in a patient with autism. For 11 of the 36 genes with known functions located within this duplication clear transcription in the brain was found. Of those the STMN4 and DPYSL2 genes are the most likely candidate genes to be involved in neuronal development, and, if altered in gene-dosage, in the autistic phenotype of our patient.
Collapse
Affiliation(s)
- Heval M Ozgen
- Department of Child and Adolescent Psychiatry, Rudolf Magnus Institute of Neuroscience, UMC Utrecht, HP B01.201, GA, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Abstract
PURPOSE OF REVIEW Autism is now recognized in one out of 150 children. This review highlights the topics within the growing autism literature that are shaping current thinking on autism and advancing research and clinical understanding of autism spectrum disorders. RECENT FINDINGS The role of single-stranded microdeletions and epigenetic influences on brain development has dramatically altered our understanding of the etiology of the autisms. Recent research has focused on the role of synapse structure and function as central to the development of autism and suggests possible targets of interventions. Brain underconnectivity has been a focus in recent imaging studies and has become a central theme in conceptualizing autism. Despite increased awareness of autism there is no 'epidemic' and no one cause for autism. Data from the sibling studies are identifying early markers of autism and defining the broader autism phenotype. SUMMARY Larger datasets in genetics, a focus on the early signs of autism, and increased recognition of the importance of defining subgroups of children with autism are leading to a greater understanding of the etiologies of autism. A growing interest in defining the molecular biology of social cognition, which is at the core of autism, will lead to expansion of our presently limited choices of mechanistically based interventions.
Collapse
|
218
|
Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 2008; 9:341-55. [PMID: 18414403 DOI: 10.1038/nrg2346] [Citation(s) in RCA: 1183] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autism is a heterogeneous syndrome defined by impairments in three core domains: social interaction, language and range of interests. Recent work has led to the identification of several autism susceptibility genes and an increased appreciation of the contribution of de novo and inherited copy number variation. Promising strategies are also being applied to identify common genetic risk variants. Systems biology approaches, including array-based expression profiling, are poised to provide additional insights into this group of disorders, in which heterogeneity, both genetic and phenotypic, is emerging as a dominant theme.
Collapse
Affiliation(s)
- Brett S Abrahams
- Neurology Department, and Semel Institute for Neuroscience and Behaviour, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1769 USA.
| | | |
Collapse
|
219
|
The functional impact of structural variation in humans. Trends Genet 2008; 24:238-45. [PMID: 18378036 DOI: 10.1016/j.tig.2008.03.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 11/21/2022]
Abstract
Structural variation includes many different types of chromosomal rearrangement and encompasses millions of bases in every human genome. Over the past 3 years, the extent and complexity of structural variation has become better appreciated. Diverse approaches have been adopted to explore the functional impact of this class of variation. As disparate indications of the important biological consequences of genome dynamism are accumulating rapidly, we review the evidence that structural variation has an appreciable impact on cellular phenotypes, disease and human evolution.
Collapse
|
220
|
Abstract
BACKGROUND Autism spectrum disorders (ASDs) are among the most heritable of all neurodevelopmental disorders. Despite intense research there has been limited success in deciphering the etiology of ASDs. OBJECTIVE It has been shown that chromosomal rearrangements play an important role in ASDs. The recent development of techniques to screen the genome for genetic variation at ever-higher resolution has led to some crucial discoveries over the last year. This progress is described and discussed. METHODS This review provides an overview of genetic variation studies in ASD, with a focus on structural genetic variation. RESULTS/CONCLUSION Screening for copy number variation is an important approach in ASD research. With the introduction of next-generation sequencing, the pace of ASD genetics will increase in the near future.
Collapse
Affiliation(s)
- Lars Feuk
- The Hospital for Sick Children, Program in Genetics and Genome Biology, 101 College Street, MaRS - East Tower, Rm 14-701, Toronto, ON M5G 1L7, Canada +1 416 813 7654 ext 1358 ; +1 416 813 8319 ;
| |
Collapse
|
221
|
Wise CA, Gao X, Shoemaker S, Gordon D, Herring JA. Understanding genetic factors in idiopathic scoliosis, a complex disease of childhood. Curr Genomics 2008; 9:51-9. [PMID: 19424484 PMCID: PMC2674301 DOI: 10.2174/138920208783884874] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 02/23/2008] [Accepted: 02/24/2008] [Indexed: 12/20/2022] Open
Abstract
Idiopathic scoliosis (AIS) is the most common pediatric spinal deformity, affecting ~3% of children worldwide. AIS significantly impacts national health in the U. S. alone, creating disfigurement and disability for over 10% of patients and costing billions of dollars annually for treatment. Despite many investigations, the underlying etiology of IS is poorly understood. Twin studies and observations of familial aggregation reveal significant genetic contributions to IS. Several features of the disease including potentially strong genetic effects, the early onset of disease, and standardized diagnostic criteria make IS ideal for genomic approaches to finding risk factors. Here we comprehensively review the genetic contributions to IS and compare those findings to other well-described complex diseases such as Crohn's disease, type 1 diabetes, psoriasis, and rheumatoid arthritis. We also summarize candidate gene studies and evaluate them in the context of possible disease aetiology. Finally, we provide study designs that apply emerging genomic technologies to this disease. Existing genetic data provide testable hypotheses regarding IS etiology, and also provide proof of principle for applying high-density genome-wide methods to finding susceptibility genes and disease modifiers.
Collapse
Affiliation(s)
- Carol A Wise
- Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX
- McDermott Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xiaochong Gao
- Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, TX
| | | | - Derek Gordon
- Department of Genetics, Rutgers University, Piscataway, NJ
| | - John A Herring
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX
- Dept. of Orthopaedic Surgery, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| |
Collapse
|
222
|
Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, Saemundsen E, Stefansson H, Ferreira MAR, Green T, Platt OS, Ruderfer DM, Walsh CA, Altshuler D, Chakravarti A, Tanzi RE, Stefansson K, Santangelo SL, Gusella JF, Sklar P, Wu BL, Daly MJ. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008; 358:667-75. [PMID: 18184952 DOI: 10.1056/nejmoa075974] [Citation(s) in RCA: 1186] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Autism spectrum disorder is a heritable developmental disorder in which chromosomal abnormalities are thought to play a role. METHODS As a first component of a genomewide association study of families from the Autism Genetic Resource Exchange (AGRE), we used two novel algorithms to search for recurrent copy-number variations in genotype data from 751 multiplex families with autism. Specific recurrent de novo events were further evaluated in clinical-testing data from Children's Hospital Boston and in a large population study in Iceland. RESULTS Among the AGRE families, we observed five instances of a de novo deletion of 593 kb on chromosome 16p11.2. Using comparative genomic hybridization, we observed the identical deletion in 5 of 512 children referred to Children's Hospital Boston for developmental delay, mental retardation, or suspected autism spectrum disorder, as well as in 3 of 299 persons with autism in an Icelandic population; the deletion was also carried by 2 of 18,834 unscreened Icelandic control subjects. The reciprocal duplication of this region occurred in 7 affected persons in AGRE families and 4 of the 512 children from Children's Hospital Boston. The duplication also appeared to be a high-penetrance risk factor. CONCLUSIONS We have identified a novel, recurrent microdeletion and a reciprocal microduplication that carry substantial susceptibility to autism and appear to account for approximately 1% of cases. We did not identify other regions with similar aggregations of large de novo mutations.
Collapse
|
223
|
Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, Shago M, Moessner R, Pinto D, Ren Y, Thiruvahindrapduram B, Fiebig A, Schreiber S, Friedman J, Ketelaars CEJ, Vos YJ, Ficicioglu C, Kirkpatrick S, Nicolson R, Sloman L, Summers A, Gibbons CA, Teebi A, Chitayat D, Weksberg R, Thompson A, Vardy C, Crosbie V, Luscombe S, Baatjes R, Zwaigenbaum L, Roberts W, Fernandez B, Szatmari P, Scherer SW. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008; 82:477-88. [PMID: 18252227 DOI: 10.1016/j.ajhg.2007.12.009] [Citation(s) in RCA: 1336] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 12/18/2007] [Accepted: 12/19/2007] [Indexed: 02/03/2023] Open
Abstract
Structural variation (copy number variation [CNV] including deletion and duplication, translocation, inversion) of chromosomes has been identified in some individuals with autism spectrum disorder (ASD), but the full etiologic role is unknown. We performed genome-wide assessment for structural abnormalities in 427 unrelated ASD cases via single-nucleotide polymorphism microarrays and karyotyping. With microarrays, we discovered 277 unbalanced CNVs in 44% of ASD families not present in 500 controls (and re-examined in another 1152 controls). Karyotyping detected additional balanced changes. Although most variants were inherited, we found a total of 27 cases with de novo alterations, and in three (11%) of these individuals, two or more new variants were observed. De novo CNVs were found in approximately 7% and approximately 2% of idiopathic families having one child, or two or more ASD siblings, respectively. We also detected 13 loci with recurrent/overlapping CNV in unrelated cases, and at these sites, deletions and duplications affecting the same gene(s) in different individuals and sometimes in asymptomatic carriers were also found. Notwithstanding complexities, our results further implicate the SHANK3-NLGN4-NRXN1 postsynaptic density genes and also identify novel loci at DPP6-DPP10-PCDH9 (synapse complex), ANKRD11, DPYD, PTCHD1, 15q24, among others, for a role in ASD susceptibility. Our most compelling result discovered CNV at 16p11.2 (p = 0.002) (with characteristics of a genomic disorder) at approximately 1% frequency. Some of the ASD regions were also common to mental retardation loci. Structural variants were found in sufficiently high frequency influencing ASD to suggest that cytogenetic and microarray analyses be considered in routine clinical workup.
Collapse
Affiliation(s)
- Christian R Marshall
- The Centre for Applied Genomics, The Hospital for Sick Children, Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Oxidative Stress and the Metabolic Pathology of Autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2008. [DOI: 10.1007/978-1-60327-489-0_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
225
|
Affiliation(s)
- Jacqueline N Crawley
- Intramural Research Program, National Institute of Mental Health, Bethesda, MD 20892-3730, USA.
| |
Collapse
|
226
|
Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, Morgan J. Mapping Early Brain Development in Autism. Neuron 2007; 56:399-413. [PMID: 17964254 DOI: 10.1016/j.neuron.2007.10.016] [Citation(s) in RCA: 541] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
227
|
Ledford H. New mutations implicated in half of autism cases. Nature 2007. [DOI: 10.1038/news070723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|