201
|
Furth N, Gertman O, Shiber A, Alfassy OS, Cohen I, Rosenberg MM, Doron NK, Friedler A, Ravid T. Exposure of bipartite hydrophobic signal triggers nuclear quality control of Ndc10 at the endoplasmic reticulum/nuclear envelope. Mol Biol Cell 2011; 22:4726-39. [PMID: 21998200 PMCID: PMC3237617 DOI: 10.1091/mbc.e11-05-0463] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Proper functioning of the protein-folding quality control network depends on the network's ability to discern diverse structural perturbations to the native states of its protein substrates. Despite the centrality of the detection of misfolded states to cell home-ostasis, very little is known about the exact sequence and structural features that mark a protein as being misfolded. To investigate these features, we studied the requirements for the degradation of the yeast kinetochore protein Ndc10p. Mutant Ndc10p is a substrate of a protein-folding quality control pathway mediated by the E3 ubiquitin (Ub) ligase Doa10p at the endoplasmic reticulum (ER)/nuclear envelope membrane. Analysis of Ndc10p mutant derivatives, employing a reverse genetics approach, identified an autonomous quality control-associated degradation motif near the C-terminus of the protein. This motif is composed of two indispensable hydrophobic elements: a hydrophobic surface of an amphipathic helix and a loosely structured hydrophobic C-terminal tail. Site-specific point mutations expose these elements, triggering ubiquitin-mediated and HSP70 chaperone-dependent degradation of Ndc10p. These findings substantiate the ability of the ER quality control system to recognize subtle perturbation(s) in the native structure of a nuclear protein.
Collapse
Affiliation(s)
- Noa Furth
- Department of Biological Chemistry, A Silberman Institute of Life Sciences, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Abstract
Misfolded proteins are potentially toxic and are therefore subjected to highly selective degradation by the ubiquitin-proteasome system. The identification of the Hul5 ubiquitin ligase as a major mediator of such 'quality-control' ubiquitylation following heat shock raises new questions about the design of these pathways.
Collapse
|
203
|
Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins. Nat Cell Biol 2011; 13:1344-52. [PMID: 21983566 PMCID: PMC4961474 DOI: 10.1038/ncb2343] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/16/2011] [Indexed: 11/10/2022]
Abstract
Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with numerous aggregation diseases. Several protein quality control mechanisms degrade non-native proteins by the ubiquitin proteasome system. Here, we use quantitative mass spectrometry to demonstrate that heat-shock triggers a large increase of ubiquitylation associated with misfolding of cytosolic proteins. We discover that the Hul5 HECT ubiquitin ligase participates in this heat-shock stress response. Hul5 is required to maintain cell fitness after heat-shock and to degrade short-lived misfolded proteins. In addition, localization of Hul5 in the cytoplasm is important for its quality control function. We identify potential Hul5 substrates in heat-shock and physiological conditions to reveal that Hul5 is required for ubiquitylation of low solubility cytosolic proteins including the Pin3 prion-like protein. These findings indicate that Hul5 is involved in a cytosolic protein quality control pathway that targets misfolded proteins for degradation.
Collapse
|
204
|
Sultana R, Theodoraki MA, Caplan AJ. UBR1 promotes protein kinase quality control and sensitizes cells to Hsp90 inhibition. Exp Cell Res 2011; 318:53-60. [PMID: 21983172 DOI: 10.1016/j.yexcr.2011.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/17/2022]
Abstract
UBR1 and UBR2 are N-recognin ubiquitin ligases that function in the N-end rule degradation pathway. In yeast, the UBR1 homologue also functions by N-end rule independent means to promote degradation of misfolded proteins generated by treatment of cells with geldanamycin, a small molecule inhibitor of Hsp90. Based on these studies we examined the role of mammalian UBR1 and UBR2 in the degradation of protein kinase clients upon Hsp90 inhibition. Our findings show that protein kinase clients Akt and Cdk4 are still degraded in mouse Ubr1(-)/(-) cells treated with geldanamycin, but that their levels recover much more rapidly than is found in wild type cells. These findings correlate with increased induction of Hsp90 expression in the Ubr1(-)/(-) cells compared with wild type cells. We also observed a reduction of UBR1 protein levels in geldanamycin-treated mouse embryonic fibroblasts and human breast cancer cells, suggesting that UBR1 is an Hsp90 client. Further studies revealed a functional overlap between UBR1 and the quality control ubiquitin ligase, CHIP. Our findings show that UBR1 function is conserved in controlling the levels of Hsp90-dependent protein kinases upon geldanamycin treatment, and suggest that it plays a role in determining the sensitivity of cancer cells to the chemotherapeutic effects of Hsp90 inhibitors.
Collapse
Affiliation(s)
- Rasheda Sultana
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | | | | |
Collapse
|
205
|
Hwang CS, Sukalo M, Batygin O, Addor MC, Brunner H, Aytes AP, Mayerle J, Song HK, Varshavsky A, Zenker M. Ubiquitin ligases of the N-end rule pathway: assessment of mutations in UBR1 that cause the Johanson-Blizzard syndrome. PLoS One 2011; 6:e24925. [PMID: 21931868 PMCID: PMC3172311 DOI: 10.1371/journal.pone.0024925] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/19/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Johanson-Blizzard syndrome (JBS; OMIM 243800) is an autosomal recessive disorder that includes congenital exocrine pancreatic insufficiency, facial dysmorphism with the characteristic nasal wing hypoplasia, multiple malformations, and frequent mental retardation. Our previous work has shown that JBS is caused by mutations in human UBR1, which encodes one of the E3 ubiquitin ligases of the N-end rule pathway. The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. One class of degradation signals (degrons) recognized by UBR1 are destabilizing N-terminal residues of protein substrates. METHODOLOGY/PRINCIPAL FINDINGS Most JBS-causing alterations of UBR1 are nonsense, frameshift or splice-site mutations that abolish UBR1 activity. We report here missense mutations of human UBR1 in patients with milder variants of JBS. These single-residue changes, including a previously reported missense mutation, involve positions in the RING-H2 and UBR domains of UBR1 that are conserved among eukaryotes. Taking advantage of this conservation, we constructed alleles of the yeast Saccharomyces cerevisiae UBR1 that were counterparts of missense JBS-UBR1 alleles. Among these yeast Ubr1 mutants, one of them (H160R) was inactive in yeast-based activity assays, the other one (Q1224E) had a detectable but weak activity, and the third one (V146L) exhibited a decreased but significant activity, in agreement with manifestations of JBS in the corresponding JBS patients. CONCLUSIONS/SIGNIFICANCE These results, made possible by modeling defects of a human ubiquitin ligase in its yeast counterpart, verified and confirmed the relevance of specific missense UBR1 alleles to JBS, and suggested that a residual activity of a missense allele is causally associated with milder variants of JBS.
Collapse
Affiliation(s)
- Cheol-Sang Hwang
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Maja Sukalo
- Institute of Human Genetics, University Hospital, Magdeburg, Germany
| | - Olga Batygin
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | | | - Han Brunner
- Department of Human Genetics, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Antonio Perez Aytes
- Dismorfologia y Genetica Reproductiva, Grupo de Investigacion en Perinatologia, Instituto de Investigacion Sanitari, Fundacion Hospital La Fe, Valencia, Spain
| | - Julia Mayerle
- Department of Gastroenterology and Nutrition, University Hospital, Greifswald, Germany
| | - Hyun Kyu Song
- School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (AV); (MZ)
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Magdeburg, Germany
- Institute of Human Genetics, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- * E-mail: (AV); (MZ)
| |
Collapse
|
206
|
Quality control and fate determination of Hsp90 client proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:683-8. [PMID: 21871502 DOI: 10.1016/j.bbamcr.2011.08.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 12/24/2022]
Abstract
Quality control processes regulate the proteome by determining whether a protein is to be folded or degraded. Hsp90 is a hub in the network of molecular chaperones that maintain this process because it promotes both folding and degradation, in addition to regulating expression of other quality control components. The significance of Hsp90's role in quality control is enhanced by the function of its clients, which include protein kinases and transcription factors, in cellular signaling. The inhibition of Hsp90 with small molecules results in the rapid degradation of such clients via the ubiquitin/proteasome pathway, and also in the induction of the Hsp70 molecular chaperone. These two events result in markedly different outcomes depending on cell type. For tumor cells there is a profound loss of signaling in growth promoting pathways. By contrast, increased amounts of Hsp70 in neuronal cells ameliorate the toxicity that is associated with the formation of aggregates observed in neurodegenerative conditions. In this review we discuss the mechanisms underlying these differential effects of Hsp90 inhibition on the quality control of distinct client proteins. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
207
|
Chen B, Retzlaff M, Roos T, Frydman J. Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol 2011; 3:a004374. [PMID: 21746797 DOI: 10.1101/cshperspect.a004374] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Eukaryotic cells must contend with a continuous stream of misfolded proteins that compromise the cellular protein homeostasis balance and jeopardize cell viability. An elaborate network of molecular chaperones and protein degradation factors continually monitor and maintain the integrity of the proteome. Cellular protein quality control relies on three distinct yet interconnected strategies whereby misfolded proteins can either be refolded, degraded, or delivered to distinct quality control compartments that sequester potentially harmful misfolded species. Molecular chaperones play a critical role in determining the fate of misfolded proteins in the cell. Here, we discuss the spatial and temporal organization of cellular quality control strategies and their implications for human diseases linked to protein misfolding and aggregation.
Collapse
Affiliation(s)
- Bryan Chen
- Department of Biology and BioX Program, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
208
|
Varshavsky A. The N-end rule pathway and regulation by proteolysis. Protein Sci 2011; 20:1298-345. [PMID: 21633985 PMCID: PMC3189519 DOI: 10.1002/pro.666] [Citation(s) in RCA: 527] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 01/12/2023]
Abstract
The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. Degradation signals (degrons) that are targeted by the N-end rule pathway include a set called N-degrons. The main determinant of an N-degron is a destabilizing N-terminal residue of a protein. In eukaryotes, the N-end rule pathway is a part of the ubiquitin system and consists of two branches, the Ac/N-end rule and the Arg/N-end rule pathways. The Ac/N-end rule pathway targets proteins containing N(α) -terminally acetylated (Nt-acetylated) residues. The Arg/N-end rule pathway recognizes unacetylated N-terminal residues and involves N-terminal arginylation. Together, these branches target for degradation a majority of cellular proteins. For example, more than 80% of human proteins are cotranslationally Nt-acetylated. Thus most proteins harbor a specific degradation signal, termed (Ac)N-degron, from the moment of their birth. Specific N-end rule pathways are also present in prokaryotes and in mitochondria. Enzymes that produce N-degrons include methionine-aminopeptidases, caspases, calpains, Nt-acetylases, Nt-amidases, arginyl-transferases and leucyl-transferases. Regulated degradation of specific proteins by the N-end rule pathway mediates a legion of physiological functions, including the sensing of heme, oxygen, and nitric oxide; selective elimination of misfolded proteins; the regulation of DNA repair, segregation and condensation; the signaling by G proteins; the regulation of peptide import, fat metabolism, viral and bacterial infections, apoptosis, meiosis, spermatogenesis, neurogenesis, and cardiovascular development; and the functioning of adult organs, including the pancreas and the brain. Discovered 25 years ago, this pathway continues to be a fount of biological insights.
Collapse
Affiliation(s)
- Alexander Varshavsky
- 1Division of Biology, California Institute of Technology, Pasadena, California 91125.
| |
Collapse
|
209
|
Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 2011; 475:394-7. [PMID: 21743475 PMCID: PMC3150218 DOI: 10.1038/nature10181] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 05/06/2011] [Indexed: 12/23/2022]
Abstract
A substantial proportion of the genome encodes membrane proteins that are delivered to the endoplasmic reticulum by dedicated targeting pathways1. Membrane proteins that fail targeting must be rapidly degraded to avoid aggregation and disruption of cytosolic protein homeostasis2,3. The mechanisms of mislocalized protein (MLP) degradation are unknown. Here, we reconstitute MLP degradation in vitro to identify factors involved in this pathway. We find that nascent membrane proteins tethered to ribosomes are not substrates for ubiquitination unless they are released into the cytosol. Their inappropriate release results in capture by the Bag6 complex, a recently identified ribosome-associating chaperone4. Bag6 complex capture depends on unprocessed or non-inserted hydrophobic domains that distinguish MLPs from potential cytosolic proteins. A subset of these Bag6 clients is transferred to TRC40 for membrane insertion, while the remainder are rapidly ubiquitinated. Depletion of the Bag6 complex impairs efficient ubiquitination selectively of MLPs. Thus, by its presence on ribosomes synthesizing nascent membrane proteins, the Bag6 complex links targeting and ubiquitination pathways. We propose that such coupling permits fast-tracking of MLPs for degradation without futile engagement of cytosolic folding machinery.
Collapse
|
210
|
Rosenbaum JC, Gardner RG. How a disordered ubiquitin ligase maintains order in nuclear protein homeostasis. Nucleus 2011; 2:264-70. [PMID: 21941105 DOI: 10.4161/nucl.2.4.16118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cells use protein quality control (PQC) systems to protect themselves from potentially harmful misfolded proteins. Many misfolded proteins are repaired by molecular chaperones, but irreparably damaged proteins must be destroyed. Eukaryotes predominantly destroy these abnormally folded proteins through the ubiquitin-proteasome pathway, which requires compartment-specific ubiquitin ligase complexes that mark substrates with ubiquitin for proteasome degradation. In the yeast nucleus, misfolded proteins are targeted for degradation by the ubiquitin ligase San1, which binds misfolded nuclear proteins directly and does not appear to require chaperones for substrate binding. San1 is also remarkably adaptable, as it is capable of ubiquitinating a structurally diverse assortment of abnormally folded substrates. We attribute this adaptability to San1's high degree of structural disorder, which provides flexibility and allows San1 to conform to differently shaped substrates. Here we review our recent work characterizing San1's distinctive mode of substrate recognition and the associated implications for PQC in the nucleus.
Collapse
Affiliation(s)
- Joel C Rosenbaum
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
211
|
Wang S, Thibault G, Ng DTW. Routing misfolded proteins through the multivesicular body (MVB) pathway protects against proteotoxicity. J Biol Chem 2011; 286:29376-29387. [PMID: 21708947 DOI: 10.1074/jbc.m111.233346] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The secretory pathway maintains multiple quality control checkpoints. Initially, endoplasmic reticulum-associated degradation pathways monitor protein folding to retain and eliminate aberrant products. Despite its broad client range, some molecules escape detection and traffic to Golgi membranes. There, a poorly understood mechanism termed Golgi quality control routes aberrant proteins for lysosomal/vacuolar degradation. To better understand Golgi quality control, we examined the processing of the obligate substrate Wsc1p. Misfolded Wsc1p does not use routes of typical vacuolar membrane proteins. Instead, it partitions into intralumenal vesicles of the multivesicular body (MVB) pathway, mediated by the E3 ubiquitin ligase Rsp5p. Its subsequent transport to the vacuolar lumen is essential for complete molecule breakdown. Surprisingly, the transport mode plays a second crucial function in neutralizing potential substrate toxicity. Eliminating the MVB sorting signal diverted molecules to the vacuolar limiting membrane, resulting in the generation of toxic by-products. These data demonstrate a new role of the MVB pathway in protein quality control.
Collapse
Affiliation(s)
- Songyu Wang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| | - Guillaume Thibault
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Davis T W Ng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
212
|
Protein quality control at the plasma membrane. Curr Opin Cell Biol 2011; 23:483-91. [PMID: 21571517 DOI: 10.1016/j.ceb.2011.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/12/2011] [Accepted: 04/19/2011] [Indexed: 12/22/2022]
Abstract
Cellular proteostasis (or protein homeostasis) depends on the timely folding and disposal of conformationally damaged polypeptides during their life span at all subcellular locations. This process is particularly important for membrane proteins confined to the cell surface with crucial regulatory role in cellular homoeostasis and intercellular communication. Accumulating evidences indicate that membrane proteins exported from the endoplasmic reticulum (ER) are subjected to peripheral quality control (QC) along the late secretory and endocytic pathways, as well as at the plasma membrane (PM). Recently identified components of the PM QC recognition and effector mechanisms responsible for ubiquitination and lysosomal degradation of conformationally damaged PM proteins uncovered striking similarities to and differences from that of the ER QC machinery. Possible implications of the peripheral protein QC activity in phenotypic modulation of conformational diseases are also outlined.
Collapse
|
213
|
Fredrickson EK, Rosenbaum JC, Locke MN, Milac TI, Gardner RG. Exposed hydrophobicity is a key determinant of nuclear quality control degradation. Mol Biol Cell 2011; 22:2384-95. [PMID: 21551067 PMCID: PMC3128539 DOI: 10.1091/mbc.e11-03-0256] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein quality control (PQC) degradation protects the cell by preventing the toxic accumulation of misfolded proteins. In eukaryotes, PQC degradation is primarily achieved by ubiquitin ligases that attach ubiquitin to misfolded proteins for proteasome degradation. To function effectively, PQC ubiquitin ligases must distinguish misfolded proteins from their normal counterparts by recognizing an attribute of structural abnormality commonly shared among misfolded proteins. However, the nature of the structurally abnormal feature recognized by most PQC ubiquitin ligases is unknown. Here we demonstrate that the yeast nuclear PQC ubiquitin ligase San1 recognizes exposed hydrophobicity in its substrates. San1 recognition is triggered by exposure of as few as five contiguous hydrophobic residues, which defines the minimum window of hydrophobicity required for San1 targeting. We also find that the exposed hydrophobicity recognized by San1 can cause aggregation and cellular toxicity, underscoring the fundamental protective role for San1-mediated PQC degradation of misfolded nuclear proteins.
Collapse
Affiliation(s)
- Eric K Fredrickson
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
214
|
Chakrabarti O, Rane NS, Hegde RS. Cytosolic aggregates perturb the degradation of nontranslocated secretory and membrane proteins. Mol Biol Cell 2011; 22:1625-37. [PMID: 21411629 PMCID: PMC3093316 DOI: 10.1091/mbc.e10-07-0638] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein aggregates are a common feature of numerous diseases and may have various detrimental effects that remain poorly understood. Here the authors show that one consequence of cytosolic aggregates is to selectively delay degradation of mislocalized secretory and membrane proteins, leading to their aberrant accumulation over time. A wide range of diseases are associated with the accumulation of cytosolic protein aggregates. The effects of these aggregates on various aspects of normal cellular protein homeostasis remain to be determined. Here we find that cytosolic aggregates, without necessarily disrupting proteasome function, can markedly delay the normally rapid degradation of nontranslocated secretory and membrane protein precursors. In the case of mammalian prion protein (PrP), the nontranslocated fraction is recruited into preexisting aggregates before its triage for degradation. This recruitment permits the growth and persistence of cytosolic PrP aggregates, explaining their apparent “self-conversion” seen in earlier studies of transient proteasome inhibition. For other proteins, the aggregate-mediated delay in precursor degradation led to aggregation and/or soluble residence in the cytosol, often causing aberrant cellular morphology. Remarkably, improving signal sequence efficiency mitigated these effects of aggregates. These observations identify a previously unappreciated consequence of cytosolic aggregates for nontranslocated secretory and membrane proteins, a minor but potentially disruptive population the rapid disposal of which is critical to maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Oishee Chakrabarti
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
215
|
Kitamura K, Taki M, Tanaka N, Yamashita I. Fission yeast Ubr1 ubiquitin ligase influences the oxidative stress response via degradation of active Pap1 bZIP transcription factor in the nucleus. Mol Microbiol 2011; 80:739-55. [PMID: 21410566 DOI: 10.1111/j.1365-2958.2011.07605.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cells adapt to oxidative stress by transcriptional activation of genes encoding antioxidants and proteins of other protective roles. A bZIP transcription factor, Pap1, plays a critical role in this process and overexpression of Pap1 confers resistance to various oxidants and drugs in fission yeast. Pap1 temporarily enters the nucleus upon oxidative stress but returns to the cytoplasm once cells adapt to the stress, suggesting that cellular localization regulates Pap1 function. We report here an additional regulatory mechanism that Ubr1 ubiquitin ligase-dependent degradation lowered the Pap1 protein levels. ubr1 cells were causally resistant to hydrogen peroxide because of the increment of Pap1 levels. Pap1 was preferentially degraded in the nucleus where Ubr1 was consistently enriched. Proteolysis was critical to downregulate Pap1 especially when its activation persisted, as constitutively nuclear Pap1 severely inhibited growth in ubr1 mutants. Inactive mutations in the bZIP DNA binding domain stabilized Pap1 but rescued the lethality caused by constitutively active Pap1 in ubr1 mutants. These findings indicate that either nuclear export or Ubr1-mediated proteolysis must be operative to prevent uncontrolled Pap1 function. Coincidental dysfunction in both inhibitory pathways causes lethality because of prolonged activation of Pap1. Ubr1 is a critical regulator for the homeostasis of oxidative stress response.
Collapse
Affiliation(s)
- Kenji Kitamura
- Center for Gene Science, Hiroshima University, Kagamiyama 1-4-2, Higashi-Hiroshima 739-8527, Japan.
| | | | | | | |
Collapse
|
216
|
Abstract
In this issue of Molecular Cell, Rosenbaum et al. describe a mechanism that allows San1 to selectively detect misfolded proteins for nuclear protein quality control.
Collapse
Affiliation(s)
- Randolph Y Hampton
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
217
|
Rosenbaum JC, Fredrickson EK, Oeser ML, Garrett-Engele CM, Locke MN, Richardson LA, Nelson ZW, Hetrick ED, Milac TI, Gottschling DE, Gardner RG. Disorder targets misorder in nuclear quality control degradation: a disordered ubiquitin ligase directly recognizes its misfolded substrates. Mol Cell 2011; 41:93-106. [PMID: 21211726 DOI: 10.1016/j.molcel.2010.12.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/01/2010] [Accepted: 10/27/2010] [Indexed: 01/22/2023]
Abstract
Protein quality control (PQC) degradation systems protect the cell from the toxic accumulation of misfolded proteins. Because any protein can become misfolded, these systems must be able to distinguish abnormal proteins from normal ones, yet be capable of recognizing the wide variety of distinctly shaped misfolded proteins they are likely to encounter. How individual PQC degradation systems accomplish this remains an open question. Here we show that the yeast nuclear PQC ubiquitin ligase San1 directly recognizes its misfolded substrates via intrinsically disordered N- and C-terminal domains. These disordered domains are punctuated with small segments of order and high sequence conservation that serve as substrate-recognition sites San1 uses to target its different substrates. We propose that these substrate-recognition sites, interspersed among flexible, disordered regions, provide San1 an inherent plasticity which allows it to bind its many, differently shaped misfolded substrates.
Collapse
Affiliation(s)
- Joel C Rosenbaum
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Matsuo Y, Kishimoto H, Tanae K, Kitamura K, Katayama S, Kawamukai M. Nuclear protein quality is regulated by the ubiquitin-proteasome system through the activity of Ubc4 and San1 in fission yeast. J Biol Chem 2011; 286:13775-90. [PMID: 21324894 DOI: 10.1074/jbc.m110.169953] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic cells monitor and maintain protein quality through a set of protein quality control (PQC) systems whose role is to minimize the harmful effects of the accumulation of aberrant proteins. Although these PQC systems have been extensively studied in the cytoplasm, nuclear PQC systems are not well understood. The present work shows the existence of a nuclear PQC system mediated by the ubiquitin-proteasome system in the fission yeast Schizosaccharomyces pombe. Asf1-30, a mutant form of the histone chaperone Asf1, was used as a model substrate for the study of the nuclear PQC. A temperature-sensitive Asf1-30 protein localized to the nucleus was selectively degraded by the ubiquitin-proteasome system. The Asf1-30 mutant protein was highly ubiquitinated at higher temperatures, and it remained stable in an mts2-1 mutant, which lacks proteasome activity. The E2 enzyme Ubc4 was identified among 11 candidate proteins as the ubiquitin-conjugating enzyme in this system, and San1 was selected among 100 candidates as the ubiquitin ligase (E3) targeting Asf1-30 for degradation. San1, but not other nuclear E3s, showed specificity for the mutant nuclear Asf1-30, but did not show activity against wild-type Asf1. These data clearly showed that the aberrant nuclear protein was degraded by a defined set of E1-E2-E3 enzymes through the ubiquitin-proteasome system. The data also show, for the first time, the presence of a nuclear PQC system in fission yeast.
Collapse
Affiliation(s)
- Yuzy Matsuo
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | | | | | | | | | | |
Collapse
|
219
|
Hwang CS, Shemorry A, Auerbach D, Varshavsky A. The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases. Nat Cell Biol 2010; 12:1177-85. [PMID: 21076411 PMCID: PMC3003441 DOI: 10.1038/ncb2121] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/18/2010] [Indexed: 02/07/2023]
Abstract
Substrates of the N-end rule pathway are recognized by the Ubr1 E3 ubiquitin ligase through their destabilizing N-terminal residues. Our previous work showed that the Ubr1 E3 and the Ufd4 E3 co-target an internal degron of the Mgt1 DNA repair protein. Ufd4 is an E3 of the ubiquitin-fusion degradation (UFD) pathway that recognizes an N-terminal ubiquitin moiety. Here we report that the RING-type Ubr1 E3 and the HECT-type Ufd4 E3 interact, both physically and functionally. Although Ubr1 can recognize and polyubiquitylate an N-end rule substrate in the absence of Ufd4, the Ubr1-Ufd4 complex is more processive in that it produces a longer substrate-linked polyubiquitin chain. Conversely, Ubr1 can function as a polyubiquitylation-enhancing component of the Ubr1-Ufd4 complex in its targeting of UFD substrates. We also found that Ubr1 can recognize the N-terminal ubiquitin moiety. These and related advances unify two proteolytic systems that have been studied separately over two decades.
Collapse
Affiliation(s)
- Cheol-Sang Hwang
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
220
|
Abstract
A temperature-sensitive chimeric transmembrane protein reveals a mechanism for disposing misfolded proteins that make it to the plasma membrane. Cellular protein homeostasis profoundly depends on the disposal of terminally damaged polypeptides. To demonstrate the operation and elucidate the molecular basis of quality control of conformationally impaired plasma membrane (PM) proteins, we constructed CD4 chimeras containing the wild type or a temperature-sensitive bacteriophage λ domain in their cytoplasmic region. Using proteomic, biochemical, and genetic approaches, we showed that thermal unfolding of the λ domain at the PM provoked the recruitment of Hsp40/Hsc70/Hsp90 chaperones and the E2–E3 complex. Mixed-chain polyubiquitination, monitored by bioluminescence resonance energy transfer and immunoblotting, is responsible for the nonnative chimera–accelerated internalization, impaired recycling, and endosomal sorting complex required for transport–dependent lysosomal degradation. A similar paradigm prevails for mutant dopamine D4.4 and vasopressin V2 receptor removal from the PM. These results outline a peripheral proteostatic mechanism in higher eukaryotes and its potential contribution to the pathogenesis of a subset of conformational diseases.
Collapse
Affiliation(s)
- Pirjo M Apaja
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | | | | |
Collapse
|
221
|
Abstract
The aggregation of misfolded proteins is associated with the perturbation of cellular function, ageing and various human disorders. Mounting evidence suggests that protein aggregation is often part of the cellular response to an imbalanced protein homeostasis rather than an unspecific and uncontrolled dead-end pathway. It is a regulated process in cells from bacteria to humans, leading to the deposition of aggregates at specific sites. The sequestration of misfolded proteins in such a way is protective for cell function as it allows for their efficient solubilization and refolding or degradation by components of the protein quality-control network. The organized aggregation of misfolded proteins might also allow their asymmetric distribution to daughter cells during cell division.
Collapse
|
222
|
Buchberger A, Bukau B, Sommer T. Protein Quality Control in the Cytosol and the Endoplasmic Reticulum: Brothers in Arms. Mol Cell 2010; 40:238-52. [DOI: 10.1016/j.molcel.2010.10.001] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 12/12/2022]
|
223
|
Prasad R, Kawaguchi S, Ng DTW. A nucleus-based quality control mechanism for cytosolic proteins. Mol Biol Cell 2010; 21:2117-27. [PMID: 20462951 PMCID: PMC2893977 DOI: 10.1091/mbc.e10-02-0111] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Intracellular quality control systems monitor protein conformational states. Irreversibly misfolded proteins are cleared through specialized degradation pathways. Their importance is underscored by numerous pathologies caused by aberrant proteins. In the cytosol, where most proteins are synthesized, quality control remains poorly understood. Stress-inducible chaperones and the 26S proteasome are known mediators but how their activities are linked is unclear. To better understand these mechanisms, a panel of model misfolded substrates was analyzed in detail. Surprisingly, their degradation occurs not in the cytosol but in the nucleus. Degradation is dependent on the E3 ubiquitin ligase San1p, known previously to direct the turnover of damaged nuclear proteins. A second E3 enzyme, Ubr1p, augments this activity but is insufficient by itself. San1p and Ubr1p are not required for nuclear import of substrates. Instead, the Hsp70 chaperone system is needed for efficient import and degradation. These data reveal a new function of the nucleus as a compartment central to the quality control of cytosolic proteins.
Collapse
Affiliation(s)
- Rupali Prasad
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore 117604
| | | | | |
Collapse
|
224
|
Nillegoda NB, Theodoraki MA, Mandal AK, Mayo KJ, Ren HY, Sultana R, Wu K, Johnson J, Cyr DM, Caplan AJ. Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins. Mol Biol Cell 2010; 21:2102-16. [PMID: 20462952 PMCID: PMC2893976 DOI: 10.1091/mbc.e10-02-0098] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ubr1 and Ubr2 ubiquitin ligases are shown to promote degradation of misfolded cytosolic polypeptides in vivo and in a purified system in association with Hsp70. Quality control systems facilitate polypeptide folding and degradation to maintain protein homeostasis. Molecular chaperones promote folding, whereas the ubiquitin/proteasome system mediates degradation. We show here that Saccharomyces cerevisiae Ubr1 and Ubr2 ubiquitin ligases promote degradation of unfolded or misfolded cytosolic polypeptides. Ubr1 also catalyzes ubiquitinylation of denatured but not native luciferase in a purified system. This activity is based on the direct interaction of denatured luciferase with Ubr1, although Hsp70 stimulates polyubiquitinylation of the denatured substrate. We also report that loss of Ubr1 and Ubr2 function suppressed the growth arrest phenotype resulting from chaperone mutation. This correlates with increased protein kinase maturation and indicates partitioning of foldable conformers toward the proteasome. Our findings, based on the efficiency of this quality control system, suggest that the cell trades growth potential to avert the potential toxicity associated with accumulation of unfolded or misfolded proteins. Ubr1 and Ubr2 therefore represent E3 components of a novel quality control pathway for proteins synthesized on cytosolic ribosomes.
Collapse
Affiliation(s)
- Nadinath B Nillegoda
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
SUMO-independent in vivo activity of a SUMO-targeted ubiquitin ligase toward a short-lived transcription factor. Genes Dev 2010; 24:893-903. [PMID: 20388728 DOI: 10.1101/gad.1906510] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many proteins are regulated by ubiquitin-dependent proteolysis. Substrate ubiquitylation can be stimulated by additional post-translational modifications, including small ubiquitin-like modifier (SUMO) conjugation. The recently discovered SUMO-targeted ubiquitin ligases (STUbLs) mediate the latter effect; however, no endogenous substrates of STUbLs that are degraded under normal conditions are known. From a targeted genomic screen, we now identify the yeast STUbL Slx5-Slx8, a heterodimeric RING protein complex, as a key ligase mediating degradation of the MATalpha2 (alpha2) repressor. The ubiquitin-conjugating enzyme Ubc4 was found in the same screen. Surprisingly, mutants with severe defects in SUMO-protein conjugation were not impaired for alpha2 turnover. Unmodified alpha2 also bound to and was ubiquitylated efficiently by Slx5-Slx8. Nevertheless, when we inactivated four SUMO-interacting motifs (SIMs) in Slx5 that together account for its noncovalent SUMO binding, both in vitro Slx5-Slx8-dependent ubiquitylation and in vivo degradation of alpha2 were inhibited. These data identify alpha2 as the first native substrate of the conserved STUbLs, and demonstrate that its STUbL-mediated ubiquitylation does not require SUMO. We suggest that alpha2, and presumably other proteins, have surface features that mimic SUMO, and therefore can directly recruit STUbLs without prior SUMO conjugation.
Collapse
|
226
|
Mandal AK, Gibney PA, Nillegoda NB, Theodoraki MA, Caplan AJ, Morano KA. Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system. Mol Biol Cell 2010; 21:1439-48. [PMID: 20237159 PMCID: PMC2861604 DOI: 10.1091/mbc.e09-09-0779] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Hsp110 family of protein chaperones was known to promote maturation of Hsp90 client proteins. The yeast Hsp110 ortholog Sse1 is now shown to influence the decision to fold or degrade substrates of the Hsp70–Hsp90 chaperone system when maturation is compromised. Heat shock protein 70 (Hsp70) plays a central role in protein homeostasis and quality control in conjunction with other chaperone machines, including Hsp90. The Hsp110 chaperone Sse1 promotes Hsp90 activity in yeast, and functions as a nucleotide exchange factor (NEF) for cytosolic Hsp70, but the precise roles Sse1 plays in client maturation through the Hsp70–Hsp90 chaperone system are not fully understood. We find that upon pharmacological inhibition of Hsp90, a model protein kinase, Ste11ΔN, is rapidly degraded, whereas heterologously expressed glucocorticoid receptor (GR) remains stable. Hsp70 binding and nucleotide exchange by Sse1 was required for GR maturation and signaling through endogenous Ste11, as well as to promote Ste11ΔN degradation. Overexpression of another functional NEF partially compensated for loss of Sse1, whereas the paralog Sse2 fully restored GR maturation and Ste11ΔN degradation. Sse1 was required for ubiquitinylation of Ste11ΔN upon Hsp90 inhibition, providing a mechanistic explanation for its role in substrate degradation. Sse1/2 copurified with Hsp70 and other proteins comprising the “early-stage” Hsp90 complex, and was absent from “late-stage” Hsp90 complexes characterized by the presence of Sba1/p23. These findings support a model in which Hsp110 chaperones contribute significantly to the decision made by Hsp70 to fold or degrade a client protein.
Collapse
Affiliation(s)
- Atin K Mandal
- Department of Biology, The City College of New York, New York, NY 10031, USA.
| | | | | | | | | | | |
Collapse
|