201
|
Pavlovic S, Petrovic I, Jovicic N, Ljujic B, Miletic Kovacevic M, Arsenijevic N, Lukic ML. IL-33 Prevents MLD-STZ Induction of Diabetes and Attenuate Insulitis in Prediabetic NOD Mice. Front Immunol 2018; 9:2646. [PMID: 30498495 PMCID: PMC6249384 DOI: 10.3389/fimmu.2018.02646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease caused by the immune-mediated destruction of pancreatic β-cells. Prevention of type 1 diabetes requires early intervention in the autoimmune process against beta-cells of the pancreatic islets of Langerhans, which is believed to result from disordered immunoregulation. CD4+Foxp3+ regulatory T cells (Tregs) participate as one of the most important cell types in limiting the autoimmune process. The aim of this study was to investigate the effect of exogenous IL-33 in multiple low dose streptozotocin (MLD-STZ) induced diabetes and to delineate its role in the induction of protective Tregs in an autoimmune attack. C57BL/6 mice were treated i. p. with five doses of 40 mg/kg STZ and 0.4 μg rIL-33 four times, starting from day 0, 6, or 12 every second day from the day of disease induction. 16 weeks old NOD mice were treated with 6 injections of 0.4 μg/mouse IL-33 (every second day). Glycemia and glycosuria were measured and histological parameters in pancreatic islets were evaluated at the end of experiments. Cellular make up of the pancreatic lymph nodes and islets were evaluated by flow cytometry. IL-33 given simultaneously with the application of STZ completely prevented the development of hyperglycemia, glycosuria and profoundly attenuated mononuclear cell infiltration. IL-33 treatment was accompanied by higher number of IL-13 and IL-5 producing CD4+ T cells and increased presence of ST2+Foxp3+ regulatory T cells in pancreatic lymph nodes and islets. Elimination of Tregs abrogated protective effect of IL-33. We provide evidence that exogenous IL-33 completely prevents the development of T cell mediated inflammation in pancreatic islets and consecutive development of diabetes in C57BL/6 mice by facilitating the induction Treg cells. To extend this finding for possible relevance in spontaneous diabetes, we showed that IL-33 attenuate insulitis in prediabetic NOD mice.
Collapse
Affiliation(s)
- Sladjana Pavlovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Ivica Petrovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Miletic Kovacevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L. Lukic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
202
|
CD8+ T cell/IL-33/ILC2 axis exacerbates the liver injury in Con A-induced hepatitis in T cell-transferred Rag2-deficient mice. Inflamm Res 2018; 68:75-91. [DOI: 10.1007/s00011-018-1197-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/14/2018] [Accepted: 11/02/2018] [Indexed: 01/16/2023] Open
|
203
|
Interleukin 33 ameliorates disturbance of regulatory T cells in pulmonary sarcoidosis. Int Immunopharmacol 2018; 64:208-216. [DOI: 10.1016/j.intimp.2018.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022]
|
204
|
Numata T, Yoshizaki T, Yamaguchi S, Shimura E, Iwakura Y, Harada K, Sudo K, Tsuboi R, Nakae S. IL-36α is involved in hapten-specific T-cell induction, but not local inflammation, during contact hypersensitivity. Biochem Biophys Res Commun 2018; 506:429-436. [DOI: 10.1016/j.bbrc.2018.10.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
|
205
|
Oldenhove G, Boucquey E, Taquin A, Acolty V, Bonetti L, Ryffel B, Le Bert M, Englebert K, Boon L, Moser M. PD-1 Is Involved in the Dysregulation of Type 2 Innate Lymphoid Cells in a Murine Model of Obesity. Cell Rep 2018; 25:2053-2060.e4. [DOI: 10.1016/j.celrep.2018.10.091] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 06/19/2018] [Accepted: 10/24/2018] [Indexed: 11/28/2022] Open
|
206
|
Miller D, Motomura K, Garcia-Flores V, Romero R, Gomez-Lopez N. Innate Lymphoid Cells in the Maternal and Fetal Compartments. Front Immunol 2018; 9:2396. [PMID: 30416502 PMCID: PMC6212529 DOI: 10.3389/fimmu.2018.02396] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022] Open
Abstract
Pregnancy success is orchestrated by the complex balance between the maternal and fetal immune systems. Herein, we summarize the potential role of innate lymphoid cells (ILCs) in the maternal and fetal compartments. We reviewed published literature describing different ILC subsets [ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTi) cells] in the uterus, decidua, fetal tissues [liver, secondary lymphoid organs (SLO), intestine, and lung] and amniotic cavity. ILC1s, ILC2s, and ILC3s are present in the murine uterus prior to and during pregnancy but have only been detected in the non-pregnant endometrium in humans. Specifically, ILC2s reside in the murine uterus from mid-pregnancy to term, ILC1s increase throughout gestation, and ILC3s remain constant. Yet, LTi cells have only been detected in the non-pregnant murine uterus. In the human decidua, ILC1s, ILC3s, and LTi-like cells are more abundant during early gestation, whereas ILC2s increase at the end of pregnancy. Decidual ILC1s were also detected during mid-gestation in mice. Interestingly, functional decidual ILC2s and ILC3s increased in women who underwent spontaneous preterm labor, indicating the involvement of such cells in this pregnancy complication. Fetal ILCs exist in the liver, SLO, intestine, lung, and amniotic cavity. The fetal liver is thought to be the source of ILC progenitors since the differentiation of these cells from hematopoietic stem cells occurs at this site, and mature ILC subsets can be found in this compartment as well. The interaction between LTi cells and specialized stromal cells is important during the formation of SLO. Mature ILCs are found at the mucosal surfaces of the lung and intestine, from where they can extravasate into the amniotic cavity. Amniotic fluid ILCs express high levels of RORγt, CD161, and CD103, hallmarks of ILC3s. Such cells are more abundant in the second trimester than later in gestation. Although amniotic fluid ILC3s produce IL-17A and TNFα, indicating their functionality, their numbers in patients with intra-amniotic infection/inflammation remain unchanged compared to those without this pregnancy complication. Collectively, these findings suggest that maternal (uterine and decidual) ILCs play central roles in both the initiation and maintenance of pregnancy, and fetal ILCs participate in the development of immunity.
Collapse
Affiliation(s)
- Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
207
|
The roles of IL-17C in T cell-dependent and -independent inflammatory diseases. Sci Rep 2018; 8:15750. [PMID: 30356086 PMCID: PMC6200819 DOI: 10.1038/s41598-018-34054-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
IL-17C, which is a member of the IL-17 family of cytokines, is preferentially produced by epithelial cells in the lung, skin and colon, suggesting that IL-17C may be involved in not only host defense but also inflammatory diseases in those tissues. In support of that, IL-17C was demonstrated to contribute to development of T cell-dependent imiquimod-induced psoriatic dermatitis and T cell-independent dextran sodium sulfate-induced acute colitis using mice deficient in IL-17C and/or IL-17RE, which is a component of the receptor for IL-17C. However, the roles of IL-17C in other inflammatory diseases remain poorly understood. Therefore, we investigated the contributions of IL-17C to development of certain disease models using Il17c−/− mice, which we newly generated. Those mice showed normal development of T cell-dependent inflammatory diseases such as FITC- and DNFB-induced contact dermatitis/contact hypersensitivity (CHS) and concanavalin A-induced hepatitis, and T cell-independent inflammatory diseases such as bleomycin-induced pulmonary fibrosis, papain-induced airway eosinophilia and LPS-induced airway neutrophilia. On the other hand, those mice were highly resistant to LPS-induced endotoxin shock, indicating that IL-17C is crucial for protection against that immunological reaction. Therefore, IL-17C neutralization may represent a novel therapeutic approach for sepsis, in addition to psoriasis and acute colitis.
Collapse
|
208
|
Bueter CL, Deepe GS. Aeroallergens Exacerbate Histoplasma capsulatum Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:3352-3361. [PMID: 30348735 DOI: 10.4049/jimmunol.1800644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/20/2018] [Indexed: 11/19/2022]
Abstract
Allergens such as house dust mites (HDM) and papain induce strong Th2 responses, including elevated IL-4, IL-5, and IL-13 and marked eosinophilia in the airways. Histoplasma capsulatum is a dimorphic fungal pathogen that induces a strong Th1 response marked by IFN-γ and TNF-α production, leading to rapid clearance in nonimmunocompromised hosts. Th1 responses are generally dominant and overwhelm the Th2 response when stimuli for both are present, although there are instances when Th2 stimuli downregulate a Th1 response. We determined if the Th2 response to allergens prevents the host from mounting a Th1 response to H. capsulatum in vivo. C57BL/6 mice exposed to HDM or papain and infected with H. capsulatum exhibited a dominant Th2 response early, characterized by enhanced eosinophilia and elevated Th2 cytokines in lungs. These mice manifested exacerbated fungal burdens, suggesting that animals skewed toward a Th2 response by an allergen are less able to clear the H. capsulatum infection despite an intact Th1 response. In contrast, secondary infection is not exacerbated by allergen exposure, indicating that the memory response may suppress the Th2 response to HDM and quickly clear the infection. In conclusion, an in vivo skewing toward Th2 by allergens exacerbates fungal infection, even though there is a concurrent and unimpaired Th1 response to H. capsulatum.
Collapse
Affiliation(s)
- Chelsea L Bueter
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267; and
| | - George S Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267; and .,Veterans Affairs Hospital, Cincinnati, OH 45220
| |
Collapse
|
209
|
Andersson P, Yang Y, Hosaka K, Zhang Y, Fischer C, Braun H, Liu S, Yu G, Liu S, Beyaert R, Chang M, Li Q, Cao Y. Molecular mechanisms of IL-33-mediated stromal interactions in cancer metastasis. JCI Insight 2018; 3:122375. [PMID: 30333314 DOI: 10.1172/jci.insight.122375] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/11/2018] [Indexed: 01/23/2023] Open
Abstract
Molecular mechanisms underlying the cancer stroma in metastasis need further exploration. Here, we discovered that cancer-associated fibroblasts (CAFs) produced high levels of IL-33 that acted on tumor-associated macrophages (TAMs), causing them to undergo the M1 to M2 transition. Genomic profiling of metastasis-related genes in the IL-33-stimulated TAMs showed a >200-fold increase of MMP9. Signaling analysis demonstrated the IL-33-ST2-NF-κB-MMP9-laminin pathway that governed tumor stroma-mediated metastasis. In mouse and human fibroblast-rich pancreatic cancers, genetic deletion of IL-33, ST2, or MMP9 markedly blocked metastasis. Pharmacological inhibition of NF-κB and MMP9 also blocked cancer metastasis. Deletion of IL-33, ST2, or MMP9 restored laminin, a key basement membrane component associated with tumor microvessels. Together, our data provide mechanistic insights on the IL-33-NF-κB-MMP9-laminin axis that mediates the CAF-TAM-committed cancer metastasis. Thus, targeting the CAF-TAM-vessel axis provides an outstanding therapeutic opportunity for cancer treatment.
Collapse
Affiliation(s)
- Patrik Andersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yunlong Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yin Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carina Fischer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Harald Braun
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB Ghent, Belgium
| | - Shuzhen Liu
- Clinical Oncology Department, Weifang People's Hospital, Kuiwen District, Weifang, Shandong, China
| | - Guohua Yu
- Clinical Oncology Department, Weifang People's Hospital, Kuiwen District, Weifang, Shandong, China
| | - Shihai Liu
- Central Research Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB Ghent, Belgium
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Qi Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
210
|
DUSP10 constrains innate IL-33-mediated cytokine production in ST2 hi memory-type pathogenic Th2 cells. Nat Commun 2018; 9:4231. [PMID: 30315197 PMCID: PMC6185962 DOI: 10.1038/s41467-018-06468-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/11/2018] [Indexed: 01/21/2023] Open
Abstract
ST2hi memory-type Th2 cells are identified as a pathogenic subpopulation in eosinophilic airway inflammation. These ST2hi pathogenic Th2 cells produce large amount of IL-5 upon T cell receptor stimulation, but not in response to IL-33 treatment. By contrast, IL-33 alone induces cytokine production in ST2+ group 2 innate lymphoid cells (ILC2). Here we show that a MAPK phosphatase Dusp10 is a key negative regulator of IL-33-induced cytokine production in Th2 cells. In this regard, Dusp10 is expressed by ST2hi pathogenic Th2 cells but not by ILC2, and Dusp10 expression inhibits IL-33-induced cytokine production. Mechanistically, this inhibition is mediated by DUSP10-mediated dephosphorylation and inactivation of p38 MAPK, resulting in reduced GATA3 activity. The deletion of Dusp10 renders ST2hi Th2 cells capable of producing IL-5 by IL-33 stimulation. Our data thus suggest that DUSP10 restricts IL-33-induced cytokine production in ST2hi pathogenic Th2 cells by controlling p38-GATA3 activity. T helper 2 (Th2) cells and type 2 innate lymphoid cells (ILC2) respond differently to interleukin-33 (IL-33) stimulation. Here the authors show that a phosphatase, Dusp10, is expressed in Th2, but not ILC2, to dephosphorylate p38 kinase, reduce GATA3 transcription factor activity, and suppress the induction of IL-5 in response to IL-33.
Collapse
|
211
|
Ravanetti L, Dijkhuis A, Dekker T, Sabogal Pineros YS, Ravi A, Dierdorp BS, Erjefält JS, Mori M, Pavlidis S, Adcock IM, Rao NL, Lutter R. IL-33 drives influenza-induced asthma exacerbations by halting innate and adaptive antiviral immunity. J Allergy Clin Immunol 2018; 143:1355-1370.e16. [PMID: 30316823 DOI: 10.1016/j.jaci.2018.08.051] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 07/12/2018] [Accepted: 08/28/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Influenza virus triggers severe asthma exacerbations for which no adequate treatment is available. It is known that IL-33 levels correlate with exacerbation severity, but its role in the immunopathogenesis of exacerbations has remained elusive. OBJECTIVE We hypothesized that IL-33 is necessary to drive asthma exacerbations. We intervened with the IL-33 cascade and sought to dissect its role, also in synergy with thymic stromal lymphopoietin (TSLP), in airway inflammation, antiviral activity, and lung function. We aimed to unveil the major source of IL-33 in the airways and IL-33-dependent mechanisms that underlie severe asthma exacerbations. METHODS Patients with mild asthma were experimentally infected with rhinovirus. Mice were chronically exposed to house dust mite extract and then infected with influenza to resemble key features of exacerbations in human subjects. Interventions included the anti-IL-33 receptor ST2, anti-TSLP, or both. RESULTS We identified bronchial ciliated cells and type II alveolar cells as a major local source of IL-33 during virus-driven exacerbation in human subjects and mice, respectively. By blocking ST2, we demonstrated that IL-33 and not TSLP was necessary to drive exacerbations. IL-33 enhanced airway hyperresponsiveness and airway inflammation by suppressing innate and adaptive antiviral responses and by instructing epithelial cells and dendritic cells of house dust mite-sensitized mice to dampen IFN-β expression and prevent the TH1-promoting dendritic cell phenotype. IL-33 also boosted luminal NETosis and halted cytolytic antiviral activities but did not affect the TH2 response. CONCLUSION Interventions targeting the IL-33/ST2 axis could prove an effective acute short-term therapy for virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Lara Ravanetti
- Department of Experimental Immunology, Amsterdam University Medical Centers/University of Amsterdam, Amsterdam, The Netherlands; Department of Respiratory Medicine, Amsterdam University Medical Centers/University of Amsterdam, Amsterdam, The Netherlands.
| | - Annemiek Dijkhuis
- Department of Experimental Immunology, Amsterdam University Medical Centers/University of Amsterdam, Amsterdam, The Netherlands; Department of Respiratory Medicine, Amsterdam University Medical Centers/University of Amsterdam, Amsterdam, The Netherlands
| | - Tamara Dekker
- Department of Experimental Immunology, Amsterdam University Medical Centers/University of Amsterdam, Amsterdam, The Netherlands; Department of Respiratory Medicine, Amsterdam University Medical Centers/University of Amsterdam, Amsterdam, The Netherlands
| | - Yanaika S Sabogal Pineros
- Department of Experimental Immunology, Amsterdam University Medical Centers/University of Amsterdam, Amsterdam, The Netherlands; Department of Respiratory Medicine, Amsterdam University Medical Centers/University of Amsterdam, Amsterdam, The Netherlands
| | - Abilash Ravi
- Department of Experimental Immunology, Amsterdam University Medical Centers/University of Amsterdam, Amsterdam, The Netherlands; Department of Respiratory Medicine, Amsterdam University Medical Centers/University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara S Dierdorp
- Department of Experimental Immunology, Amsterdam University Medical Centers/University of Amsterdam, Amsterdam, The Netherlands; Department of Respiratory Medicine, Amsterdam University Medical Centers/University of Amsterdam, Amsterdam, The Netherlands
| | - Jonas S Erjefält
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Michiko Mori
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Stelios Pavlidis
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, Royal Brompton Campus, London, United Kingdom
| | - Ian M Adcock
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, Royal Brompton Campus, London, United Kingdom
| | - Navin L Rao
- Immunology Discovery, Janssen Research and Development, San Diego, Calif
| | - René Lutter
- Department of Experimental Immunology, Amsterdam University Medical Centers/University of Amsterdam, Amsterdam, The Netherlands; Department of Respiratory Medicine, Amsterdam University Medical Centers/University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
212
|
Xu H, Xu J, Xu L, Jin S, Turnquist HR, Hoffman R, Loughran P, Billiar TR, Deng M. Interleukin-33 contributes to ILC2 activation and early inflammation-associated lung injury during abdominal sepsis. Immunol Cell Biol 2018; 96:935-947. [PMID: 29672927 PMCID: PMC10116412 DOI: 10.1111/imcb.12159] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/07/2018] [Accepted: 04/07/2018] [Indexed: 02/05/2023]
Abstract
Sepsis is defined as infection with organ dysfunction due to a dysregulated immune response. The lung is one of the most vulnerable organs at the onset of sepsis. Interleukin (IL)-33 can be released by injured epithelial and endothelial cells in the lung and regulate immune activation and infiltration. Therefore, we postulated that IL-33 would contribute to the immune response in the lung during sepsis. Using the cecal ligation and puncture (CLP) sepsis model, we show here that IL-33 contributes significantly to both sepsis-induced inflammation in the lung and systemic inflammatory response in the early phase of sepsis. Despite the higher intra-peritoneal bacterial burden, the absence of IL-33 resulted in less infiltration of neutrophils and monocytes into the lungs in association with lower circulating, lung and liver cytokine levels as well as reduced lung injury at 6 h after sepsis. IL-33 was required for the upregulation of IL-5 in type 2 Innate Lymphoid Cells (ILC2), while IL-5 neutralization suppressed neutrophil and monocyte infiltration in the lungs during CLP sepsis. This reduction in leukocyte infiltration in IL-33-deficient mice was reversed by administration of recombinant IL-5. These results indicate that IL-33 plays a major role in the local inflammatory changes in the lung, in part, by regulating IL-5 and this axis contributes to lung injury early after the onset of sepsis.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jing Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Li Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Emergency, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, 430022, China
| | - Shuqing Jin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Anesthesia, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Heth R Turnquist
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Rosemary Hoffman
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
213
|
CXCR6 +ST2 + memory T helper 2 cells induced the expression of major basic protein in eosinophils to reduce the fecundity of helminth. Proc Natl Acad Sci U S A 2018; 115:E9849-E9858. [PMID: 30275296 DOI: 10.1073/pnas.1714731115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Memory T helper (mTh) cells play important roles in the reinfection of pathogens and drive the pathogenesis of diseases. While recent studies have characterized the pathogenic mTh2 cell subpopulations driving allergic inflammation, those that induce immune responses against helminth infection remain unknown. We found that IL-5-producing CXCR6+ST2+CD44+ mTh2 cells play a crucial role in the IL-33-dependent inhibition of the fecundity of helminth, whereas other ST2- mTh2 cells do not. Although both cell types induced the infiltration of granulocytes, especially eosinophils, into the lungs in response to helminth infection, the ST2+ mTh2 cell-induced eosinophils expressed higher levels of major basic protein (MBP), which is important for reducing the fecundity of Nippostrongylus brasiliensis (Nb), than ST2- mTh2 cell-induced ones. Notably, we also found that ST2+ Treg cells but not ST2- Treg cells suppressed CXCR6+ST2+ mTh2 cell-mediated immune responses. Taken together, these findings show that we identified a mechanism against helminth elicited by a subpopulation of IL-5-producing mTh2 cells through the accumulation of eosinophils strongly expressing MBP in the lungs.
Collapse
|
214
|
De Grove KC, Provoost S, Braun H, Blomme EE, Teufelberger AR, Krysko O, Beyaert R, Brusselle GG, Joos GF, Maes T. IL-33 signalling contributes to pollutant-induced allergic airway inflammation. Clin Exp Allergy 2018; 48:1665-1675. [PMID: 30159930 DOI: 10.1111/cea.13261] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Clinical and experimental studies have identified a crucial role for IL-33 and its receptor ST2 in allergic asthma. Inhalation of traffic-related pollutants, such as diesel exhaust particles (DEP), facilitates the development of asthma and can cause exacerbations of asthma. However, it is unknown whether IL-33/ST2 signalling contributes to the enhancing effects of air pollutants on allergic airway responses. OBJECTIVE We aim to investigate the functional role of IL-33/ST2 signalling in DEP-enhanced allergic airway responses, using an established murine model. METHODS C57BL/6J mice were exposed to saline, DEP alone, house dust mite (HDM) alone or combined DEP+HDM. To inhibit IL-33 signalling, recombinant soluble ST2 (r-sST2) was given prophylactically (ie, during the whole experimental protocol) or therapeutically (ie, at the end of the experimental protocol). Airway hyperresponsiveness and the airway inflammatory responses were assessed in bronchoalveolar lavage fluid (BALF) and lung. RESULTS Combined exposure to DEP+HDM increased IL-33 and ST2 expression in lung, elevated inflammatory responses and bronchial hyperresponsiveness compared to saline, sole DEP or sole HDM exposure. Prophylactic interference with the IL-33/ST2 signalling pathway impaired the DEP-enhanced allergic airway inflammation in the BALF, whereas effects on lung inflammation and airway hyperresponsiveness were minimal. Treatment with r-sST2 at the end of the experimental protocol did not modulate the DEP-enhanced allergic airway responses. CONCLUSION Our data suggest that the IL-33/ST2 pathway contributes to the onset of DEP-enhanced allergic airway inflammation.
Collapse
Affiliation(s)
- Katrien C De Grove
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Sharen Provoost
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Harald Braun
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Evy E Blomme
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Andrea R Teufelberger
- Upper Airway Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium
| | - Olga Krysko
- Upper Airway Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Guy G Brusselle
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Guy F Joos
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Tania Maes
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
215
|
NLRP3 Inflammasome and IL-33: Novel Players in Sterile Liver Inflammation. Int J Mol Sci 2018; 19:ijms19092732. [PMID: 30213101 PMCID: PMC6163521 DOI: 10.3390/ijms19092732] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
In sterile liver inflammation, danger signals are released in response to tissue injury to alert the immune system; e.g., by activation of the NLRP3 inflammasome. Recently, IL-33 has been identified as a novel type of danger signal or “alarmin”, which is released from damaged and necrotic cells. IL-33 is a pleiotropic cytokine that targets a broad range of immune cells and exhibits pro- and anti-inflammatory properties dependent on the disease. This review summarizes the immunomodulatory roles of the NLRP3 inflammasome and IL-33 in sterile liver inflammation and highlights potential therapeutic strategies targeting these pathways in liver disease.
Collapse
|
216
|
Marques RE, Besnard AG, Maillet I, Fagundes CT, Souza DG, Ryffel B, Teixeira MM, Liew FY, Guabiraba R. Interleukin-33 contributes to disease severity in Dengue virus infection in mice. Immunology 2018; 155:477-490. [PMID: 30098206 DOI: 10.1111/imm.12988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/20/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
The excessive inflammation often present in patients with severe dengue infection is considered both a hallmark of disease and a target for potential treatments. Interleukin-33 (IL-33) is a pleiotropic cytokine with pro-inflammatory effects whose role in dengue has not been fully elucidated. We demonstrate that IL-33 plays a disease-exacerbating role during experimental dengue infection in immunocompetent mice. Mice infected with dengue virus serotype 2 (DENV2) produced high levels of IL-33. DENV2-infected mice treated with recombinant IL-33 developed markedly more severe disease compared with untreated mice as assessed by mortality, granulocytosis, liver damage and pro-inflammatory cytokine production. Conversely, ST2-/- mice (deficient in IL-33 receptor) infected with DENV2 developed significantly less severe disease compared with wild-type mice. Furthermore, the increased disease severity and the accompanying pathology induced by IL-33 during dengue infection were reversed by the simultaneous treatment with a CXCR2 receptor antagonist (DF2156A). Together, these results indicate that IL-33 plays a disease-exacerbating role in experimental dengue infection, probably driven by CXCR2-expressing cells, leading to elevated pro-inflammatory response-mediated pathology. Our results also indicate that IL-33 is a potential therapeutic target for dengue infection.
Collapse
Affiliation(s)
- Rafael E Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | | | - Isabelle Maillet
- CNRS, UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires, Université d'Orléans, Orléans, France
| | - Caio T Fagundes
- Departamento de Microbiologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle G Souza
- Departamento de Microbiologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bernhard Ryffel
- CNRS, UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires, Université d'Orléans, Orléans, France
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Foo Y Liew
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.,School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | | |
Collapse
|
217
|
Michaudel C, Mackowiak C, Maillet I, Fauconnier L, Akdis CA, Sokolowska M, Dreher A, Tan HTT, Quesniaux VF, Ryffel B, Togbe D. Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33. J Allergy Clin Immunol 2018; 142:942-958. [DOI: 10.1016/j.jaci.2017.11.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022]
|
218
|
Arae K, Morita H, Unno H, Motomura K, Toyama S, Okada N, Ohno T, Tamari M, Orimo K, Mishima Y, Suto H, Okumura K, Sudo K, Miyazawa H, Taguchi H, Saito H, Matsumoto K, Nakae S. Chitin promotes antigen-specific Th2 cell-mediated murine asthma through induction of IL-33-mediated IL-1β production by DCs. Sci Rep 2018; 8:11721. [PMID: 30082755 PMCID: PMC6079063 DOI: 10.1038/s41598-018-30259-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
Chitin, which is a major component of house dust mites (HDM), fungi, crustaceans, etc., can activate immune cells, suggesting that it contributes to development of allergic disorders such as asthma. Although the pathophysiological sensitization route of asthmatic patients to allergens is considered via the respiratory tract, the roles of intranasally-administered chitin in development of asthma remain unclear. After ovalbumin (OVA) challenge, development of airway inflammation was profoundly exacerbated in mice sensitized with OVA in the presence of chitin. The exacerbation was dependent on IL-33, but not IL-25, thymic stromal lymphopoietin or IL-17A. Chitin enhanced IL-33-dependent IL-1β production by dendritic cells (DCs). Furthermore, chitin- and IL-33-stimulated DC-derived IL-1β promoted OVA-specific Th2 cell activation, resulting in aggravation of OVA-induced airway inflammation. These findings indicate the adjuvant activity of chitin via a new mechanism and provide important clues for development of therapeutics for allergic disorders caused by HDM, fungi and crustaceans.
Collapse
Grants
- Grants-in-Aid for Young Scientists (22790941 and 24791005) and Grants-in-Aid for Scientific Research (26461491) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The Grant for Joint Research Project of the Institute of Medical Science, the University of Tokyo (2024)
- Grants-in-Aid for Young Scientists (25860822) from the Ministry of Education, Culture, Sports, Science and Technology, Japan
- Grants-in-Aid for Challenging Exploratory Research (15K15377 and 16K15515) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.A Health Labour Sciences Research Grant from the Ministry of Health, Labour and Welfare, Japan.
- Grants-in-Aid for Young Scientists (21790942 and 24688029) and the Program for Improvement of Research Environment for Young Researchers, The Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology, Japan. Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency. A Health Labour Sciences Research Grant from the Ministry of Health, Labour and Welfare, Japan
Collapse
Affiliation(s)
- Ken Arae
- Department of Immunology, Faculty of Health Sciences, Kyorin University, Tokyo, 181-8612, Japan
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hirotoshi Unno
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Sumika Toyama
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Naoko Okada
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Tatsukuni Ohno
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masato Tamari
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Keisuke Orimo
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Yuko Mishima
- Department of Immunology, Faculty of Health Sciences, Kyorin University, Tokyo, 181-8612, Japan
| | - Hajime Suto
- Atopy Research Center, Juntendo University, Tokyo, 113-0033, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University, Tokyo, 113-0033, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Hiroshi Miyazawa
- Department of Medical technology, Faculty of Health Sciences, Kyorin University, Tokyo, 181-8612, Japan
| | - Haruhiko Taguchi
- Department of Immunology, Faculty of Health Sciences, Kyorin University, Tokyo, 181-8612, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- Precursory Research for Embryonic Science and Technology (PREST), Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
219
|
Luo Q, Fan Y, Lin L, Wei J, Li Z, Li Y, Nakae S, Lin W, Chen Q. Interleukin-33 Protects Ischemic Brain Injury by Regulating Specific Microglial Activities. Neuroscience 2018; 385:75-89. [DOI: 10.1016/j.neuroscience.2018.05.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
|
220
|
The association of IL-33 and Foxp3 gene polymorphisms with recurrent pregnancy loss in Egyptian women. Cytokine 2018; 108:115-119. [DOI: 10.1016/j.cyto.2018.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/11/2017] [Accepted: 03/19/2018] [Indexed: 11/23/2022]
|
221
|
Lei AH, Xiao Q, Liu GY, Shi K, Yang Q, Li X, Liu YF, Wang HK, Cai WP, Guan YJ, Gabrilovich DI, Zhou J. ICAM-1 controls development and function of ILC2. J Exp Med 2018; 215:2157-2174. [PMID: 30049704 PMCID: PMC6080904 DOI: 10.1084/jem.20172359] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/02/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
ILC2s are key players in allergic airway inflammation. Lei et al. show that ICAM-1 controls ILC2 development and function through regulating ERK signaling pathway, suggesting targeting ICAM-1 as a potential strategy for ILC2-induced asthma. Group 2 innate lymphoid cells (ILC2s) are emerging as key players in the pathogenesis of allergic airway inflammation. The mechanisms regulating ILC2, however, are not fully understood. Here, we found that ICAM-1 is required for the development and function of ILC2. ICAM-1–deficient (ICAM-1−/−) mice displayed significantly lower levels of ILC2s in the bone marrow and peripheral tissues than wild-type controls. CLP transfer and in vitro culture assays revealed that the regulation of ILC2 by ICAM-1 is cell intrinsic. Furthermore, ILC2s from ICAM-1−/− mice were functionally impaired, as indicated by the diminished production of type-2 cytokines in response to IL-33 challenge. The reduction in lung ILC2s caused a clear remission of airway inflammation in ICAM-1−/− mice after administration of papain or Alternaria alternata. We further demonstrate that ILC2 defects caused by ICAM-1 deficiency are due to ERK signaling-dependent down-regulation of GATA3 protein. Collectively, these observations identify ICAM-1 as a novel regulator of ILC2.
Collapse
Affiliation(s)
- Ai-Hua Lei
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiang Xiao
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Gao-Yu Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kun Shi
- Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Qiong Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xing Li
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu-Feng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | | | | | - Dmitry I Gabrilovich
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,The Wistar Institute, Philadelphia, PA.,Key Laboratory of Tropical Disease Control, Chinese Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jie Zhou
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China .,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Chinese Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
222
|
Cottagiri M, Nyandjo M, Stephens M, Mantilla JJ, Saito H, Mackay IR, Rose NR, Njoku DB. In drug-induced, immune-mediated hepatitis, interleukin-33 reduces hepatitis and improves survival independently and as a consequence of FoxP3+ T-cell activity. Cell Mol Immunol 2018; 16:706-717. [PMID: 30030493 DOI: 10.1038/s41423-018-0087-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/06/2018] [Indexed: 01/13/2023] Open
Abstract
Immune-mediated, drug-induced hepatitis is a rare complication of halogenated volatile anesthetic administration. IL-4-regulated Th2-polarized reactions initiate this type and other types of hepatitis, while the mechanisms that regulate the severity remain elusive. IL-33 is an innate, IL-4-inducing, Th2-polarizing cytokine that has been detected in patients with liver failure and has been associated with upregulated ST2+Foxp3+CD4+CD25+ T cells; however, roles for IL-33 in drug-induced hepatitis are unclear. We investigated IL-33 in an anesthetic, immune-mediated hepatitis modeled in BALB/c, IL-33-/- and ST2-/- mice, as well as in patients with anesthetic hepatitis. The hepatic IL-33 and ST2 levels were elevated in BALB/c mice (p < 0.05) with hepatitis, and anti-IL-33 diminished hepatitis (p < 0.05) without reducing IL-33 levels. The complete absence of IL-33 reduced IL-10 (p < 0.05) and ST2+Foxp3+CD4+CD25+ T cells (p < 0.05), as well as reduced the overall survival (p < 0.05), suggesting suppressive roles for IL-33 in anesthetic, immune-mediated hepatitis. All of the mice demonstrated similar levels of CD4+ T-cell proliferation following direct T-cell receptor stimulation, but we detected splenic IL-33 and ST2-negative Foxp3+CD4+CD25+ T cells in ST2-/- mice that developed less hepatitis than BALB/c mice (p < 0.05), suggesting that ST2-negative Foxp3+CD4+CD25+ T cells reduced hepatitis. In patients, serum IL-33 and IPEX levels were correlated in controls (r2 = 0.5, p < 0.05), similar to the levels in mice, but not in anesthetic hepatitis patients (r2 = 0.01), who had elevated IL-33 (p < 0.001) and decreased IPEX (p < 0.01). Our results suggest that, in anesthetic, immune-mediated hepatitis, IL-33 does not regulate the CD4+ T-cell proliferation that initiates hepatitis, but IL-33, likely independent of ST2, reduces hepatitis via upregulation of Foxp3+CD4+CD25+ T cells. Further studies are needed to translate the role of IL-33 to human liver disease.
Collapse
Affiliation(s)
- Merylin Cottagiri
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 1800 Orleans Street, Suite 6349, Baltimore, MD, 21287, USA
| | - Maeva Nyandjo
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 1800 Orleans Street, Suite 6349, Baltimore, MD, 21287, USA
| | - Matthew Stephens
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 1800 Orleans Street, Suite 6349, Baltimore, MD, 21287, USA
| | - Joel J Mantilla
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 1800 Orleans Street, Suite 6349, Baltimore, MD, 21287, USA
| | - Hirohisa Saito
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, Japan, 650-0047
| | - Ian R Mackay
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA
| | - Dolores B Njoku
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 1800 Orleans Street, Suite 6349, Baltimore, MD, 21287, USA. .,Department of Pathology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| |
Collapse
|
223
|
Abstract
The extracellular forms of the IL-1 cytokines are active through binding to specific receptors on the surface of target cells. IL-1 ligands bind to the extracellular portion of their ligand-binding receptor chain. For signaling to take place, a non-binding accessory chain is recruited into a heterotrimeric complex. The intracellular approximation of the Toll-IL-1-receptor (TIR) domains of the 2 receptor chains is the event that initiates signaling. The family of IL-1 receptors (IL-1R) includes 10 structurally related members, and the distantly related soluble protein IL-18BP that acts as inhibitor of the cytokine IL-18. Over the years the receptors of the IL-1 family have been known with many different names, with significant confusion. Thus, we will use here a recently proposed unifying nomenclature. The family includes several ligand-binding chains (IL-1R1, IL-1R2, IL-1R4, IL-1R5, and IL-1R6), 2 types of accessory chains (IL-1R3, IL-1R7), molecules that act as inhibitors of signaling (IL-1R2, IL-1R8, IL-18BP), and 2 orphan receptors (IL-1R9, IL-1R10). In this review, we will examine how the receptors of the IL-1 family regulate the inflammatory and anti-inflammatory functions of the IL-1 cytokines and are, more at large, involved in modulating defensive and pathological innate immunity and inflammation. Regulation of the IL-1/IL-1R system in the brain will be also described, as an example of the peculiarities of organ-specific modulation of inflammation.
Collapse
Affiliation(s)
- Diana Boraschi
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Paola Italiani
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Sabrina Weil
- Immunology FB08, Justus-Liebig-Universitat Giessen, Giessen, Germany
| | - Michael U Martin
- Immunology FB08, Justus-Liebig-Universitat Giessen, Giessen, Germany
| |
Collapse
|
224
|
Takeda T, Morita H, Saito H, Matsumoto K, Matsuda A. Recent advances in understanding the roles of blood platelets in the pathogenesis of allergic inflammation and bronchial asthma. Allergol Int 2018; 67:326-333. [PMID: 29242144 DOI: 10.1016/j.alit.2017.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/12/2017] [Accepted: 11/19/2017] [Indexed: 12/28/2022] Open
Abstract
Platelets play an essential role in hemostasis to minimize blood loss due to traumatic injury. In addition, they contain various immune-associated molecules and contribute to immunological barrier formation at sites of vascular injury, thereby protecting against invading pathogens. Platelets are also crucially involved in development of allergic diseases, including bronchial asthma. Platelets in asthmatics are more activated than those in healthy individuals. By using a murine asthma model, platelets were shown to be actively involved in progression of the disease, including in airway eosinophilia and airway remodeling. In the asthmatic airway, pathological microvascular angiogenesis, a component of airway remodeling, is commonly observed, and the degree of abnormality is significantly associated with disease severity. Therefore, in order to repair the newly formed and structurally fragile blood vessels under inflammatory conditions, platelets may be continuously activated in asthmatics. Importantly, platelets constitutively express IL-33 protein, an alarmin cytokine that is essential for development of bronchial asthma. Meanwhile, the concept of development of allergic diseases has recently changed dramatically, and allergy researchers now share a belief in the centrality of epithelial barrier functions. In particular, IL-33 released from epithelial barrier tissue at sites of eczema can activate the antigen-non-specific innate immune system as an alarmin that is believed to be necessary for subsequent antigen-specific acquired immunological responses. From this perspective, we propose in this review a possible mechanism for how activated platelets act as an alarmin in development of bronchial asthma.
Collapse
Affiliation(s)
- Tomohiro Takeda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Health Sciences, Kansai University of Health Sciences, Osaka, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akio Matsuda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
225
|
Morimoto Y, Hirahara K, Kiuchi M, Wada T, Ichikawa T, Kanno T, Okano M, Kokubo K, Onodera A, Sakurai D, Okamoto Y, Nakayama T. Amphiregulin-Producing Pathogenic Memory T Helper 2 Cells Instruct Eosinophils to Secrete Osteopontin and Facilitate Airway Fibrosis. Immunity 2018; 49:134-150.e6. [PMID: 29958800 DOI: 10.1016/j.immuni.2018.04.023] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 03/12/2018] [Accepted: 04/19/2018] [Indexed: 01/21/2023]
Abstract
Memory T cells provide long-lasting protective immunity, and distinct subpopulations of memory T cells drive chronic inflammatory diseases such as asthma. Asthma is a chronic allergic inflammatory disease with airway remodeling including fibrotic changes. The immunological mechanisms that induce airway fibrotic changes remain unknown. We found that interleukin-33 (IL-33) enhanced amphiregulin production by the IL-33 receptor, ST2hi memory T helper 2 (Th2) cells. Amphiregulin-epidermal growth factor receptor (EGFR)-mediated signaling directly reprogramed eosinophils to an inflammatory state with enhanced production of osteopontin, a key profibrotic immunomodulatory protein. IL-5-producing memory Th2 cells and amphiregulin-producing memory Th2 cells appeared to cooperate to establish lung fibrosis. The analysis of polyps from patients with eosinophilic chronic rhinosinusitis revealed fibrosis with accumulation of amphiregulin-producing CRTH2hiCD161hiCD45RO+CD4+ Th2 cells and osteopontin-producing eosinophils. Thus, the IL-33-amphiregulin-osteopontin axis directs fibrotic responses in eosinophilic airway inflammation and is a potential target for the treatment of fibrosis induced by chronic allergic disorders.
Collapse
Affiliation(s)
- Yuki Morimoto
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; AMED-PRIME, AMED, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tomoko Wada
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tomomi Ichikawa
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Toshio Kanno
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Mikiko Okano
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Institute for Global Prominent Research, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Daiju Sakurai
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
226
|
Serum Levels of IL-33 and Correlation with IL-4, IL-17A, and Hypergammaglobulinemia in Patients with Autoimmune Hepatitis. Mediators Inflamm 2018; 2018:7964654. [PMID: 30034292 PMCID: PMC6035854 DOI: 10.1155/2018/7964654] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/09/2018] [Accepted: 05/27/2018] [Indexed: 02/06/2023] Open
Abstract
This study investigated the role of IL-33 in the pathogenesis of autoimmune hepatitis (AIH). The levels of IL-33/sST2 and Th1/Th2/Th17-type cytokines were determined by enzyme-linked immunosorbent assay in serum samples obtained from 30 AIH patients and 20 healthy controls (HCs). In addition, a murine model of experimental AIH (EAIH) was established to investigate the role of IL-33 in disease progression. The serum levels of IL-33, sST2, Th17 cytokines (IL-17A), Th1 cytokines (IFN-γ, TNF-α), and Th2 cytokines (IL-4) were significantly elevated in AIH patients compared to HCs. Following immunosuppression therapy, serum levels of IL-33 and sST2 were significantly decreased. Additionally, the serum levels of IL-33 in AIH patients were correlated positively with markers of hypergammaglobulinemia (IgG, IgM, and IgA) and liver injury (γ-GT/ALP). Also, the serum levels of IL-33 in AIH patients were correlated positively with proinflammatory cytokine levels (IL-17A and IL-4). Interestingly, treatment of EAIH mice with a specific IL-33 neutralizing antibody significantly reversed the increasing trend in serum ALT/AST and inhibited the production of the type 2 (IL-4) and type 17 cytokines (IL-17) but not the type 1 cytokine (IFN-γ). Our findings highlight the possible role of the IL-33/sST2 axis in the progression of AIH, opening a new door for developing a novel therapeutic strategy for AIH.
Collapse
|
227
|
Chun TT, Chung CS, Fallon EA, Hutchins NA, Clarke E, Rossi AL, Cioffi WG, Heffernan DS, Ayala A. Group 2 Innate Lymphoid Cells (ILC2s) Are Key Mediators of the Inflammatory Response in Polymicrobial Sepsis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2097-2108. [PMID: 29935165 DOI: 10.1016/j.ajpath.2018.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
Abstract
Sepsis remains a major public health concern, characterized by marked immune dysfunction. Innate lymphoid cells develop from a common lymphoid precursor but have a role in orchestrating inflammation during innate response to infection. Here, we investigate the pathologic contribution of the group 2 innate lymphoid cells (ILC2s) in a murine model of acute septic shock (cecal ligation and puncture). Flow cytometric data revealed that ILC2s increase in number and percentage in the small intestine and in the peritoneal cells and inversely decline in the liver at 24 hours after septic insult. Sepsis also resulted in changes in ILC2 effector cytokine (IL-13) and activating cytokine (IL-33) in the plasma of mice and human patients in septic shock. Of interest, the sepsis-induced changes in cytokines were abrogated in mice deficient in functionally invariant natural killer T cells. Mice deficient in IL-13-producing cells, including ILC2s, had a survival advantage after sepsis along with decreased morphologic evidence of tissue injury and reduced IL-10 levels in the peritoneal fluid. Administration of a suppressor of tumorigenicity 2 (IL-33R) receptor-blocking antibody led to a transient survival advantage. Taken together, these findings suggest that ILC2s may play an unappreciated role in mediating the inflammatory response in both mice and humans; further, modulating ILC2 response in vivo may allow development of immunomodulatory strategies directed against sepsis.
Collapse
Affiliation(s)
- Tristen T Chun
- Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Eleanor A Fallon
- Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Noelle A Hutchins
- Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Erlyana Clarke
- Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Anne-Lise Rossi
- Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - William G Cioffi
- Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Daithi S Heffernan
- Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island; Division of Trauma and Surgical Critical Care, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island.
| |
Collapse
|
228
|
Zhao Y, De Los Santos FG, Wu Z, Liu T, Phan SH. An ST2-dependent role of bone marrow-derived group 2 innate lymphoid cells in pulmonary fibrosis. J Pathol 2018; 245:399-409. [DOI: 10.1002/path.5092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Yuyue Zhao
- Department of Respiratory Medicine, Peking Union Medical College Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | | | - Zhe Wu
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan USA
| | - Tianju Liu
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan USA
| | - Sem H Phan
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan USA
| |
Collapse
|
229
|
Dahlgren MW, Molofsky AB. All along the watchtower: group 2 innate lymphoid cells in allergic responses. Curr Opin Immunol 2018; 54:13-19. [PMID: 29860003 DOI: 10.1016/j.coi.2018.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
Group 2 innate lymphoid cells (ILC2) are a subset of innate lymphocytes that responds to local, tissue-derived signals and initiates allergic immune responses. ILC2 activation promotes the recruitment of eosinophils, polarization of alternatively activated macrophages, and tissue-remodeling, processes associated with the 'weep and sweep' response to helminthic worm colonization and infection. ILC2s also coordinate both physiologic and pathologic type 2 allergic immune responses, including promoting normal tissue development and remodeling and driving allergic pathology such as atopic dermatitis and allergic asthma. In this review we summarize recent advances in ILC2 biology, particularly focusing on how local cells and signals coordinately regulate ILC2s, how this may influence physiologic processes, and how ILC2 cooperate with adaptive T helper type 2 cells to drive pathologic allergic inflammation.
Collapse
Affiliation(s)
- Madelene W Dahlgren
- Department of Laboratory Medicine, University of California San Francisco, United States
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California San Francisco, United States.
| |
Collapse
|
230
|
Staurengo-Ferrari L, Trevelin SC, Fattori V, Nascimento DC, de Lima KA, Pelayo JS, Figueiredo F, Casagrande R, Fukada SY, Teixeira MM, Cunha TM, Liew FY, Oliveira RD, Louzada-Junior P, Cunha FQ, Alves-Filho JC, Verri WA. Interleukin-33 Receptor (ST2) Deficiency Improves the Outcome of Staphylococcus aureus-Induced Septic Arthritis. Front Immunol 2018; 9:962. [PMID: 29867945 PMCID: PMC5968393 DOI: 10.3389/fimmu.2018.00962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/18/2018] [Indexed: 01/29/2023] Open
Abstract
The ST2 receptor is a member of the Toll/IL-1R superfamily and interleukin-33 (IL-33) is its agonist. Recently, it has been demonstrated that IL-33/ST2 axis plays key roles in inflammation and immune mediated diseases. Here, we investigated the effect of ST2 deficiency in Staphylococcus aureus-induced septic arthritis physiopathology. Synovial fluid samples from septic arthritis and osteoarthritis individuals were assessed regarding IL-33 and soluble (s) ST2 levels. The IL-33 levels in samples from synovial fluid were significantly increased, whereas no sST2 levels were detected in patients with septic arthritis when compared with osteoarthritis individuals. The intra-articular injection of 1 × 107 colony-forming unity/10 μl of S. aureus American Type Culture Collection 6538 in wild-type (WT) mice induced IL-33 and sST2 production with a profile resembling the observation in the synovial fluid of septic arthritis patients. Data using WT, and ST2 deficient (−/−) and interferon-γ (IFN-γ)−/− mice showed that ST2 deficiency shifts the immune balance toward a type 1 immune response that contributes to eliminating the infection due to enhanced microbicide effect via NO production by neutrophils and macrophages. In fact, the treatment of ST2−/− bone marrow-derived macrophage cells with anti-IFN-γ abrogates the beneficial phenotype in the absence of ST2, which confirms that ST2 deficiency leads to IFN-γ expression and boosts the bacterial killing activity of macrophages against S. aureus. In agreement, WT cells achieved similar immune response to ST2 deficiency by IFN-γ treatment. The present results unveil a previously unrecognized beneficial effect of ST2 deficiency in S. aureus-induced septic arthritis.
Collapse
Affiliation(s)
- Larissa Staurengo-Ferrari
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Silvia C Trevelin
- Cardiovascular Division, British Heart Foundation Centre, King's College London, London, United Kingdom.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Victor Fattori
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Daniele C Nascimento
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kalil A de Lima
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jacinta S Pelayo
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Florêncio Figueiredo
- Laboratory of Pathology, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Healthy Sciences Centre, Londrina State University, Londrina, Brazil
| | - Sandra Y Fukada
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Foo Y Liew
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Rene D Oliveira
- Division of Clinical Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Paulo Louzada-Junior
- Division of Clinical Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Waldiceu A Verri
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
231
|
Koga S, Hozumi K, Hirano KI, Yazawa M, Terooatea T, Minoda A, Nagasawa T, Koyasu S, Moro K. Peripheral PDGFRα +gp38 + mesenchymal cells support the differentiation of fetal liver-derived ILC2. J Exp Med 2018; 215:1609-1626. [PMID: 29728440 PMCID: PMC5987924 DOI: 10.1084/jem.20172310] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are derived from common lymphoid progenitors (CLPs) via several specific precursors, and the transcription factors essential for ILC2 differentiation have been extensively studied. However, the external factors regulating commitment to the ILC lineage as well as the sites and stromal cells that constitute the optimal microenvironment for ILC2-specific differentiation are not fully defined. In this study, we demonstrate that three key external factors, the concentration of interleukin 7 (IL-7) and strength and duration of Notch signaling, coordinately determine the fate of CLP toward the T, B, or ILC lineage. Additionally, we identified three stages of ILC2 in the fetal mesentery that require STAT5 signals for maturation: ILC progenitors, CCR9+ ILC2 progenitors, and KLRG1- immature ILC2. We further demonstrate that ILC2 development is supported by mesenteric platelet-derived growth factor receptor α (PDGFRα)+ glycoprotein 38 (gp38)+ mesenchymal cells. Collectively, our results suggest that early differentiation of ILC2 occurs in the fetal liver via IL-7 and Notch signaling, whereas final differentiation occurs in the periphery with the aid of PDGFRα+gp38+ cells.
Collapse
Affiliation(s)
- Satoshi Koga
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Division of Immunobiology, Department of Medical Life Science, Department of Supramolecular Biology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Ken-Ichi Hirano
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Masaki Yazawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan.,Department of Biochemistry, Tokai University, Hiratsuka, Japan
| | - Tommy Terooatea
- Epigenome Technology Exploration Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Aki Minoda
- Epigenome Technology Exploration Unit, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Deparment of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan .,Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Division of Immunobiology, Department of Medical Life Science, Department of Supramolecular Biology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
232
|
Cao K, Liao X, Lu J, Yao S, Wu F, Zhu X, Shi D, Wen S, Liu L, Zhou H. IL-33/ST2 plays a critical role in endothelial cell activation and microglia-mediated neuroinflammation modulation. J Neuroinflammation 2018; 15:136. [PMID: 29728120 PMCID: PMC5935936 DOI: 10.1186/s12974-018-1169-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
Abstract
Background Interleukin-33 (IL-33) is increasingly being recognized as a key immunomodulatory cytokine in many neurological diseases. Methods In the present study, wild-type (WT) and IL-33−/− mice received intracerebroventricular (i.c.v.) injection of lipopolysaccharide (LPS) to induce neuroinflammation. Intravital microscopy was employed to examine leukocyte–endothelial interactions in the brain vasculature. The degree of neutrophil infiltration was determined by myeloperoxidase (MPO) staining. Real-time PCR and western blotting were used to detect endothelial activation. Enzyme-linked immunosorbent assay and quantitative PCR were conducted to detect pro-inflammatory cytokine levels in the brain. Results In IL-33−/− mice, neutrophil infiltration in the brain cortex and leukocyte–endothelial cell interactions in the cerebral microvessels were significantly decreased as compared to WT mice after LPS injection. In addition, IL-33−/− mice showed reduced activation of microglia and cerebral endothelial cells. In vitro results indicated that IL-33 directly activated cerebral endothelial cells and promoted pro-inflammatory cytokine production in LPS-stimulated microglia. Conclusions Our study indicated that IL-33/ST2 signaling plays an important role in the activation of microglia and cerebral endothelial cells and, therefore, is essential in leukocyte recruitment in brain inflammation. Graphical abstract The role of IL-33/ST2 in LPS induced neuroinflammation![]()
Collapse
Affiliation(s)
- Kelei Cao
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Xiang Liao
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Jiahui Lu
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Shu Yao
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Fengjiao Wu
- Department of Immunology, Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, 233030, China
| | - Xingxing Zhu
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Dongyan Shi
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Shuang Wen
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, JS, China.
| |
Collapse
|
233
|
Mindt BC, Fritz JH, Duerr CU. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis. Front Immunol 2018; 9:840. [PMID: 29760695 PMCID: PMC5937028 DOI: 10.3389/fimmu.2018.00840] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2) represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.
Collapse
Affiliation(s)
- Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits (MRCCT), McGill University, Montreal, QC, Canada.,FOCiS Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, QC, Canada
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits (MRCCT), McGill University, Montreal, QC, Canada.,FOCiS Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Claudia U Duerr
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits (MRCCT), McGill University, Montreal, QC, Canada.,FOCiS Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, QC, Canada.,Institute of Microbiology and Infection Immunology, Charité - University Medical Centre Berlin, Berlin, Germany
| |
Collapse
|
234
|
Takamori A, Nambu A, Sato K, Yamaguchi S, Matsuda K, Numata T, Sugawara T, Yoshizaki T, Arae K, Morita H, Matsumoto K, Sudo K, Okumura K, Kitaura J, Matsuda H, Nakae S. IL-31 is crucial for induction of pruritus, but not inflammation, in contact hypersensitivity. Sci Rep 2018; 8:6639. [PMID: 29703903 PMCID: PMC5923199 DOI: 10.1038/s41598-018-25094-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
IL-31, which is a member of the IL-6 family of cytokines, is produced mainly by activated CD4+ T cells, in particular activated Th2 cells, suggesting a contribution to development of type-2 immune responses. IL-31 was reported to be increased in specimens from patients with atopic dermatitis, and IL-31-transgenic mice develop atopic dermatitis-like skin inflammation, which is involved in the pathogenesis of atopic dermatitis. However, the role of IL-31 in development of contact dermatitis/contact hypersensitivity (CHS), which is mediated by hapten-specific T cells, including Th2 cells, is not fully understood. Therefore, we investigated this using IL-31-deficient (Il31−/−) mice, which we newly generated. We demonstrated that the mice showed normal migration and maturation of skin dendritic cells and induction of hapten-specific T cells in the sensitization phase of FITC-induced CHS, and normal induction of local inflammation in the elicitation phase of FITC- and DNFB-induced CHS. On the other hand, those mice showed reduced scratching frequency and duration during FITC- and/or DNFB-induced CHS. Our findings suggest that IL-31 is responsible for pruritus, but not induction of local skin inflammation, during CHS induced by FITC and DNFB.
Collapse
Affiliation(s)
- Ayako Takamori
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Atopy Research Center, Juntendo University, Tokyo, 113-8412, Japan
| | - Aya Nambu
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Keiko Sato
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Sachiko Yamaguchi
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Kenshiro Matsuda
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Takafumi Numata
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Dermatology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Takeru Sugawara
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Takamichi Yoshizaki
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, 330-8503, Japan
| | - Ken Arae
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University, Tokyo, 113-8412, Japan
| | - Jiro Kitaura
- Atopy Research Center, Juntendo University, Tokyo, 113-8412, Japan
| | - Hiroshi Matsuda
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan. .,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| |
Collapse
|
235
|
Tang X, Wu F, Fan J, Jin Y, Wang J, Yang G. Posttranscriptional Regulation of Interleukin-33 Expression by MicroRNA-200 in Bronchial Asthma. Mol Ther 2018; 26:1808-1817. [PMID: 29778524 DOI: 10.1016/j.ymthe.2018.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/12/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022] Open
Abstract
The importance of understanding how interleukin-33 (IL-33) is regulated (particularly by miRs) is critical in IL-33 biology, and evidence of this in asthma pathology is limited. MicroRNA profiling of cells isolated from bronchoalveolar lavage of 14 asthmatic patients and 11 healthy controls revealed miR-200b and miR-200c were significantly reduced in asthmatic patients compared with healthy controls. The reduction was validated in two independent models of allergen-induced allergic airway inflammation and further demonstrated to be inversely correlated with asthma severity, as well as increased IL-33 production in asthmatic patients. In addition, the miR-200b and miR-200c binding sites in the 3' UTR of IL-33 mRNA were identified by bioinformatics analysis and reporter gene assay. More importantly, introduction of miR-200b and miR-200c reduced, while inhibition of endogenous miR-200b and miR-200c increased, the induction of IL-33 expression in lung epithelial cells. Exogenous administration of miR-200b to lungs of mice with allergic inflammation resulted in a decrease in IL-33 levels and resolution of airway inflammation phenotype. In conclusion, miR-200b and miR-200c by regulating the expression of IL-33 have a role in bronchial asthma, and dysregulation of expression of miR-200b/c may be the underlying mechanism resulting in the asthmatic phenotype.
Collapse
Affiliation(s)
- Xin Tang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Wu
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinshuo Fan
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Jin
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianjun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
236
|
Khaitov MR, Gaisina AR, Shilovskiy IP, Smirnov VV, Ramenskaia GV, Nikonova AA, Khaitov RM. The Role of Interleukin-33 in Pathogenesis of Bronchial Asthma. New Experimental Data. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29534664 DOI: 10.1134/s0006297918010029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interleukin-33 (IL-33) belongs to the IL-1 cytokine family and plays an important role in modulating immune system by inducing Th2 immune response via the ST2 membrane receptor. Epithelial cells are the major producers of IL-33. However, IL-33 is also secreted by other cells, e.g., bone marrow cells, dendritic cells, macrophages, and mast cells. IL-33 targets a broad range of cell types bearing the ST2 surface receptor. Many ST2-positive cells, such as Th2 cells, mast cells, basophils, and eosinophils, are involved in the development of allergic bronchial asthma (BA). This suggests that IL-33 directly participates in BA pathogenesis. Currently, the role of IL-33 in pathogenesis of inflammatory disorders, including BA, has been extensively investigated using clinical samples collected from patients, as well as asthma animal models. In particular, numerous studies on blocking IL-33 and its receptor by monoclonal antibodies in asthma mouse model have been performed over the last several years; IL-33- and ST2-deficient transgenic mice have also been generated. In this review, we summarized and analyzed the data on the role of IL-33 in BA pathogenesis and the prospects for creating new treatments for BA.
Collapse
Affiliation(s)
- M R Khaitov
- Institute of Immunology, FMBA of Russia, Moscow, 115478, Russia.
| | | | | | | | | | | | | |
Collapse
|
237
|
Abstract
Allergic inflammation is a type 2 immune disorder classically characterized by high levels of immunoglobulin E (IgE) and the development of Th2 cells. Asthma is a pulmonary allergic inflammatory disease resulting in bronchial hyper-reactivity. Atopic asthma is defined by IgE antibody-mediated mast cell degranulation, while in non-atopic asthma there is no allergen-specific IgE and more involvement of innate immune cells, such as basophils, group 2 innate lymphoid cells (ILC2), and eosinophils. Recently, protease allergens were shown to cause asthmatic responses in the absence of Th2 cells, suggesting that an innate cell network (IL-33/TSLP-basophil-ILC2-IL-5/IL-13 axis) can facilitate the sensitization phase of type 2 inflammatory responses. Recent evidence also indicates that in the chronic phase, these innate immune cells directly or indirectly contribute to the adaptive Th2 cell responses. In this review, we discuss the role of Th2 cytokines (IL-4 and IL-13) and innate immune cells (mast cells, basophils, ILC2s, and dendritic cells) in the cross-talk between innate and adaptive inflammatory responses.
Collapse
Affiliation(s)
- Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan.,Laboratory for Cytokine Regulation, Research Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| |
Collapse
|
238
|
Ealey KN, Moro K, Koyasu S. Are ILC2s Jekyll and Hyde in airway inflammation? Immunol Rev 2018; 278:207-218. [PMID: 28658554 DOI: 10.1111/imr.12547] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Asthma is a complex heterogeneous disease of the airways characterized by lung inflammation, airway hyperreactivity (AHR), mucus overproduction, and remodeling of the airways. Group 2 innate lymphoid cells (ILC2s) play a crucial role in the initiation and propagation of type 2 inflammatory programs in allergic asthma models, independent of adaptive immunity. In response to allergen, helminths or viral infection, damaged airway epithelial cells secrete IL-33, IL-25, and thymic stromal lymphopoietin (TSLP), which activate ILC2s to produce type 2 cytokines such as IL-5, IL-13, and IL-9. Furthermore, ILC2s coordinate a network of cellular responses and interact with numerous cell types to propagate the inflammatory response and repair lung damage. ILC2s display functional plasticity in distinct asthma phenotypes, enabling them to respond to very different immune microenvironments. Thus, in the context of non-allergic asthma, triggered by exposure to environmental factors, ILC2s transdifferentiate to ILC1-like cells and activate type 1 inflammatory programs in the lung. In this review, we summarize accumulating evidence on the heterogeneity, plasticity, regulatory mechanisms, and pleiotropic roles of ILC2s in allergic inflammation as well as mechanisms for their suppression in the airways.
Collapse
Affiliation(s)
- Kafi N Ealey
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Minato, Japan
| |
Collapse
|
239
|
Drake LY, Kita H. IL-33: biological properties, functions, and roles in airway disease. Immunol Rev 2018; 278:173-184. [PMID: 28658560 DOI: 10.1111/imr.12552] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Interleukin (IL)-33 is a key cytokine involved in type 2 immunity and allergic airway diseases. Abundantly expressed in lung epithelial cells, IL-33 plays critical roles in both innate and adaptive immune responses in mucosal organs. In innate immunity, IL-33 and group 2 innate lymphoid cells (ILC2s) provide an essential axis for rapid immune responses and tissue homeostasis. In adaptive immunity, IL-33 interacts with dendritic cells, Th2 cells, follicular T cells, and regulatory T cells, where IL-33 influences the development of chronic airway inflammation and tissue remodeling. The clinical findings that both the IL-33 and ILC2 levels are elevated in patients with allergic airway diseases suggest that IL-33 plays an important role in the pathogenesis of these diseases. IL-33 and ILC2 may also serve as biomarkers for disease classification and to monitor the progression of diseases. In this article, we reviewed the current knowledge of the biology of IL-33 and discussed the roles of the IL-33 in regulating airway immune responses and allergic airway diseases.
Collapse
Affiliation(s)
- Li Yin Drake
- Division of Allergic Diseases and Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hirohito Kita
- Division of Allergic Diseases and Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
240
|
Hirose K, Iwata A, Tamachi T, Nakajima H. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol Rev 2018; 278:145-161. [PMID: 28658544 DOI: 10.1111/imr.12540] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allergic asthma is characterized by eosinophilic airway inflammation, mucus hyperproduction, and airway hyperreactivity, causing reversible airway obstruction. Accumulating evidence indicates that antigen-specific Th2 cells and their cytokines such as IL-4, IL-5, and IL-13 orchestrate these pathognomonic features of asthma. However, over the past decade, the understanding of asthma pathogenesis has made a significant shift from a Th2 cell-dependent, IgE-mediated disease to a more complicated heterogeneous disease. Recent studies clearly show that not only Th2 cytokines but also other T cell-related cytokines such as IL-17A and IL-22 as well as epithelial cell cytokines such as IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) are involved in the pathogenesis of asthma. In this review, we focus on the roles of these players beyond Th2 pathways in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiro Tamachi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
241
|
Cayrol C, Duval A, Schmitt P, Roga S, Camus M, Stella A, Burlet-Schiltz O, Gonzalez-de-Peredo A, Girard JP. Environmental allergens induce allergic inflammation through proteolytic maturation of IL-33. Nat Immunol 2018; 19:375-385. [PMID: 29556000 DOI: 10.1038/s41590-018-0067-5] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 01/22/2023]
Abstract
Allergic inflammation has crucial roles in allergic diseases such as asthma. It is therefore important to understand why and how the immune system responds to allergens. Here we found that full-length interleukin 33 (IL-33FL), an alarmin cytokine with critical roles in type 2 immunity and asthma, functioned as a protease sensor that detected proteolytic activities associated with various environmental allergens across four kingdoms, including fungi, house dust mites, bacteria and pollens. When exposed to allergen proteases, IL-33FL was rapidly cleaved in its central 'sensor' domain, which led to activation of the production of type 2 cytokines in group 2 innate lymphoid cells. Preventing cleavage of IL-33FL reduced allergic airway inflammation. Our findings reveal a molecular mechanism for the rapid induction of allergic type 2 inflammation following allergen exposure, with important implications for allergic diseases.
Collapse
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Anais Duval
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pauline Schmitt
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stephane Roga
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mylène Camus
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alexandre Stella
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne Gonzalez-de-Peredo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
242
|
Ball DH, Al-Riyami L, Harnett W, Harnett MM. IL-33/ST2 signalling and crosstalk with FcεRI and TLR4 is targeted by the parasitic worm product, ES-62. Sci Rep 2018. [PMID: 29540770 PMCID: PMC5852134 DOI: 10.1038/s41598-018-22716-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ES-62 is a secreted parasitic worm-derived immunomodulator that exhibits therapeutic potential in allergy by downregulating aberrant MyD88 signalling to normalise the inflammatory phenotype and mast cell responses. IL-33 plays an important role in driving mast cell responses and promoting type-2 allergic inflammation, particularly with respect to asthma, via MyD88-integrated crosstalk amongst the IL-33 receptor (ST2), TLR4 and FcεRI. We have now investigated whether ES-62 targets this pathogenic network by subverting ST2-signalling, specifically by characterising how the functional outcomes of crosstalk amongst ST2, TLR4 and FcεRI are modulated by the worm product in wild type and ST2-deficient mast cells. This analysis showed that whilst ES-62 inhibits IL-33/ST2 signalling, the precise functional modulation observed varies with receptor usage and/or mast cell phenotype. Thus, whilst ES-62’s harnessing of the capacity of ST2 to sequester MyD88 appears sufficient to mediate its inhibitory effects in peritoneal-derived serosal mast cells, downregulation of MyD88 expression appears to be required to dampen the higher levels of cytokine production typically released by bone marrow-derived mucosal mast cells.
Collapse
Affiliation(s)
- Dimity H Ball
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, Scotland
| | - Lamyaa Al-Riyami
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, Scotland
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, Scotland
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, Scotland.
| |
Collapse
|
243
|
Suto H, Nambu A, Morita H, Yamaguchi S, Numata T, Yoshizaki T, Shimura E, Arae K, Asada Y, Motomura K, Kaneko M, Abe T, Matsuda A, Iwakura Y, Okumura K, Saito H, Matsumoto K, Sudo K, Nakae S. IL-25 enhances T H17 cell-mediated contact dermatitis by promoting IL-1β production by dermal dendritic cells. J Allergy Clin Immunol 2018. [PMID: 29522843 DOI: 10.1016/j.jaci.2017.12.1007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND In addition to thymic stromal lymphopoietin and IL-33, IL-25 is known to induce TH2 cytokine production by various cell types, including TH2 cells, TH9 cells, invariant natural killer T cells, and group 2 innate lymphoid cells, involved in TH2-type immune responses. Because both TH2-type and TH17-type cells/cytokines are crucial for contact hypersensitivity (CHS), IL-25 can contribute to this by enhancing TH2-type immune responses. However, the precise role of IL-25 in the pathogenesis of fluorescein isothiocyanate-induced CHS is poorly understood. OBJECTIVE We investigated the contribution of IL-25 to CHS using Il25-/- mice. METHODS CHS was evaluated by means of measurement of ear skin thickness in mice after fluorescein isothiocyanate painting. Skin dendritic cell (DC) migration, hapten-specific TH cell differentiation, and detection of IL-1β-producing cells were determined by using flow cytometry, ELISA, and immunohistochemistry, respectively. RESULTS In contrast to thymic stromal lymphopoietin, we found that IL-25 was not essential for skin DC migration or hapten-specific TH cell differentiation in the sensitization phase of CHS. Unexpectedly, mast cell- and non-immune cell-derived IL-25 was important for hapten-specific TH17 cell-mediated rather than TH2 cell-mediated inflammation in the elicitation phase of CHS by enhancing TH17-related, but not TH2-related, cytokines in the skin. In particular, IL-1β produced by dermal DCs in response to IL-25 was crucial for hapten-specific TH17 cell activation, contributing to induction of local inflammation in the elicitation phase of CHS. CONCLUSION Our results identify a novel IL-25 inflammatory pathway involved in induction of TH17 cell-mediated, but not TH2 cell-mediated, CHS. IL-25 neutralization can be a potential approach for treatment of CHS.
Collapse
Affiliation(s)
- Hajime Suto
- Atopy Research Center, Juntendo University, Tokyo, Japan
| | - Aya Nambu
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Sachiko Yamaguchi
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takafumi Numata
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takamichi Yoshizaki
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Eri Shimura
- Atopy Research Center, Juntendo University, Tokyo, Japan; Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ken Arae
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Immunology, Faculty of Health Science, Kyorin University, Tokyo, Japan
| | - Yousuke Asada
- Department of Ophthalmology, Juntendo University, Tokyo, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mari Kaneko
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, Japan; Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Takaya Abe
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University, Tokyo, Japan
| | - Yoichiro Iwakura
- Center for Experimental Animal Models, Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
244
|
Barbour M, Wood R, Hridi SU, Wilson C, McKay G, Bushell TJ, Jiang HR. The therapeutic effect of anti-CD52 treatment in murine experimental autoimmune encephalomyelitis is associated with altered IL-33 and ST2 expression levels. J Neuroimmunol 2018. [PMID: 29526407 DOI: 10.1016/j.jneuroim.2018.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) mice were administered with murine anti-CD52 antibody to investigate its therapeutic effect and whether the treatment modulates IL-33 and ST2 expression. EAE severity and central nervous system (CNS) inflammation were reduced following the treatment, which was accompanied by peripheral T and B lymphocyte depletion and reduced production of various cytokines including IL-33, while sST2 was increased. In spinal cords of EAE mice, while the number of IL-33+ cells remained unchanged, the extracellular level of IL-33 protein was significantly reduced in anti-CD52 antibody treated mice compared with controls. Furthermore the number of ST2+ cells in the spinal cord of treated EAE mice was downregulated due to decreased inflammation and immune cell infiltration in the CNS. These results suggest that treatment with anti-CD52 antibody differentially alters expression of IL-33 and ST2, both systemically and within the CNS, which may indicate IL-33/ST2 axis is involved in the action of the antibody in inhibiting EAE.
Collapse
Affiliation(s)
- Mark Barbour
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Rachel Wood
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Shehla U Hridi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Chelsey Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Grant McKay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Trevor J Bushell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
245
|
Critical Roles of IL-33/ST2 Pathway in Neurological Disorders. Mediators Inflamm 2018; 2018:5346413. [PMID: 29507527 PMCID: PMC5817350 DOI: 10.1155/2018/5346413] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/06/2017] [Indexed: 01/21/2023] Open
Abstract
Interleukin-33 (IL-33) is an IL-1 family member, which exhibits both pro- and anti-inflammatory properties solely based on the type of the disease itself. Generally, IL-33 is expressed by both endothelial and epithelial cells and mediates its function based on the interaction with various receptors, mainly with ST2 variants. IL-33 is a potent inducer for the Th2 immune response which includes defence mechanism in brain diseases. Thus, in this paper, we review the biological features of IL-33 and the critical roles of IL-33/ST2 pathway in selected neurological disorders including Alzheimer's disease, multiple sclerosis, and malaria infection to discuss the involvement of IL-33/ST2 pathway during these brain diseases and its potential as future immunotherapeutic agents or for intervention purposes.
Collapse
|
246
|
What is the role of interleukin 33 and ST2 receptor in myasthenia gravis? J Neuroimmunol 2018; 315:50-57. [DOI: 10.1016/j.jneuroim.2017.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/19/2023]
|
247
|
von Moltke J, Pepper M. Sentinels of the Type 2 Immune Response. Trends Immunol 2018; 39:99-111. [PMID: 29122456 PMCID: PMC6181126 DOI: 10.1016/j.it.2017.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
Abstract
Type 2 immune responses have evolved to sense and respond to large, non-replicating infections or non-microbial noxious compounds in tissues. The development of these responses therefore depends upon highly coordinated and tightly regulated tissue-residing cellular sensors and responders. Multiple exposure to type 2 helper T cell (Th2)-inducing stimuli further enhances both the diversity and potency of the response. This review discusses advances in our understanding of the interacting cellular subsets that comprise both primary and secondary type 2 responses. Current knowledge regarding type 2 immune responses in the lung are initially presented and are then contrasted with what is known about the small intestine. The studies described portray an immune response that depends upon well-organized tissue structures, and suggest their modulation as a therapeutic strategy.
Collapse
Affiliation(s)
- Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA.
| |
Collapse
|
248
|
Zhao J, Zhao Y. Interleukin-33 and its Receptor in Pulmonary Inflammatory Diseases. Crit Rev Immunol 2018; 35:451-61. [PMID: 27279043 DOI: 10.1615/critrevimmunol.2016015865] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 cytokine family. It modulates immune responses and biological functions through binding to its membrane receptor, ST2L. ST2L is a member of the Toll-like/IL-1 (TIR)-receptor superfamily, and its isoform, soluble ST2 (sST2), functions as an inhibitor of the IL-33/ST2L pathway. Levels of IL-33 and sST2 in serum and bronchoalveolar lavage fluid (BAL) are known biomarkers for a variety of disorders such as heart failure, non-small-cell lung cancer, and pulmonary inflammatory diseases. IL-33 also exists in the nuclei, and nuclear IL-33 seems to regulate cytokine gene expression. In this review, we focus on the role of IL-33/ST2 in the pathogenesis of pulmonary inflammatory diseases including asthma, chronic obstructive pulmonary disease (COPD), and lung injury.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, Acute Lung Injury Center of Excellence, and Vascular Medical Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yutong Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, Acute Lung Injury Center of Excellence, and Vascular Medical Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
249
|
Akimoto M, Takenaga K. Role of the IL-33/ST2L axis in colorectal cancer progression. Cell Immunol 2018; 343:103740. [PMID: 29329638 DOI: 10.1016/j.cellimm.2017.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022]
Abstract
Interleukin-33 (IL-33) has been identified as a natural ligand of ST2L. IL-33 primarily acts as a key regulator of Th2 responses through binding to ST2L, which is antagonized by soluble ST2 (sST2). The IL-33/ST2L axis is involved in various inflammatory pathologies, including ulcerative colitis (UC). Several recent investigations have also suggested that the IL-33/ST2L axis plays a role in colorectal cancer (CRC) progression. In CRC, tumor- and stroma-derived IL-33 may activate ST2L on various cell types in an autocrine and paracrine manner. Although several findings support the hypothesis that the IL-33/ST2L axis positively regulates CRC progression, other reports do not; hence, this hypothesis remains controversial. At any rate, recent studies have provided overwhelming evidence that the IL-33/ST2L axis plays important roles in CRC progression. This review summarizes the role of the IL-33/ST2L axis in the UC and CRC microenvironments.
Collapse
Affiliation(s)
- Miho Akimoto
- Department of Life Science, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| | - Keizo Takenaga
- Department of Life Science, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
250
|
Cao Q, Wang Y, Niu Z, Wang C, Wang R, Zhang Z, Chen T, Wang XM, Li Q, Lee VWS, Huang Q, Tan J, Guo M, Wang YM, Zheng G, Yu D, Alexander SI, Wang H, Harris DCH. Potentiating Tissue-Resident Type 2 Innate Lymphoid Cells by IL-33 to Prevent Renal Ischemia-Reperfusion Injury. J Am Soc Nephrol 2018; 29:961-976. [PMID: 29295873 DOI: 10.1681/asn.2017070774] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/23/2017] [Indexed: 12/21/2022] Open
Abstract
The IL-33-type 2 innate lymphoid cell (ILC2) axis has an important role in tissue homeostasis, inflammation, and wound healing. However, the relative importance of this innate immune pathway for immunotherapy against inflammation and tissue damage remains unclear. Here, we show that treatment with recombinant mouse IL-33 prevented renal structural and functional injury and reduced mortality in mice subjected to ischemia-reperfusion injury (IRI). Compared with control-treated IRI mice, IL-33-treated IRI mice had increased levels of IL-4 and IL-13 in serum and kidney and more ILC2, regulatory T cells (Tregs), and anti-inflammatory (M2) macrophages. Depletion of ILC2, but not Tregs, substantially abolished the protective effect of IL-33 on renal IRI. Adoptive transfer of ex vivo-expanded ILC2 prevented renal injury in mice subjected to IRI. This protective effect associated with induction of M2 macrophages in kidney and required ILC2 production of amphiregulin. Treatment of mice with IL-33 or ILC2 after IRI was also renoprotective. Furthermore, in a humanized mouse model of renal IRI, treatment with human IL-33 or transfer of ex vivo-expanded human ILC2 ameliorated renal IRI. This study has uncovered a major protective role of the IL-33-ILC2 axis in renal IRI that could be potentiated as a therapeutic strategy.
Collapse
Affiliation(s)
- Qi Cao
- Centre for Transplant and Renal Research and .,Henan Key Laboratory of Immunology and Targeted Therapy, and.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yiping Wang
- Centre for Transplant and Renal Research and
| | - Zhiguo Niu
- Henan Key Laboratory of Immunology and Targeted Therapy, and.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | | | | | | | - Titi Chen
- Centre for Transplant and Renal Research and
| | - Xin Maggie Wang
- Flow Cytometry Facility, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Qing Li
- Centre for Transplant and Renal Research and
| | | | - Qingsong Huang
- Henan Key Laboratory of Immunology and Targeted Therapy, and.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jing Tan
- Department of Nephrology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Minghao Guo
- Department of Nephrology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia; and
| | | | - Di Yu
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia; and
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, and .,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | | |
Collapse
|