201
|
Skeletal muscle, autophagy, and physical activity: the ménage à trois of metabolic regulation in health and disease. J Mol Med (Berl) 2013; 92:127-37. [PMID: 24271008 DOI: 10.1007/s00109-013-1096-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/10/2013] [Accepted: 10/23/2013] [Indexed: 01/07/2023]
Abstract
Metabolic homeostasis is essential for cellular survival and proper tissue function. Multi-systemic metabolic regulation is therefore vital for good health. A number of tissues have the task of maintaining appropriate metabolism, and skeletal muscle is the most abundant of them. Muscle possesses a remarkable plasticity and is able to rapidly adapt to changes in energetic demands by fine-tuning the balance between catabolic and anabolic processes. Autophagy is a catabolic process responsible for the degradation of protein aggregates and damaged organelles, through the autophagosome-lysosome system. Proper regulation of autophagy flux is fundamental for organism homeostasis under physiological conditions and even more in response to metabolic stress, such as during physical activity and nutritional deficits. Both deficient and excessive autophagy are harmful for health and have devastating consequences in a myriad of pathologies. The regulation of autophagy flux in various tissues, and in particular in skeletal muscle, is of great importance for health and tissue homeostasis and represents a feasible mechanism by which physical exercise exerts its beneficial effects on muscle and whole body metabolism. This review is focused on the key molecular mechanisms regulating macromolecule and organelle turnover in muscle during alterations in nutrient availability and energetic demands, as well as their involvement in disease pathogenesis.
Collapse
|
202
|
Molecular mechanisms of treadmill therapy on neuromuscular atrophy induced via botulinum toxin A. Neural Plast 2013; 2013:593271. [PMID: 24327926 PMCID: PMC3845528 DOI: 10.1155/2013/593271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 09/13/2013] [Accepted: 10/01/2013] [Indexed: 01/09/2023] Open
Abstract
Botulinum toxin A (BoNT-A) is a bacterial zinc-dependent endopeptidase that acts specifically on neuromuscular junctions. BoNT-A blocks the release of acetylcholine, thereby decreasing the ability of a spastic muscle to generate forceful contraction, which results in a temporal local weakness and the atrophy of targeted muscles. BoNT-A-induced temporal muscle weakness has been used to manage skeletal muscle spasticity, such as poststroke spasticity, cerebral palsy, and cervical dystonia. However, the combined effect of treadmill exercise and BoNT-A treatment is not well understood. We previously demonstrated that for rats, following BoNT-A injection in the gastrocnemius muscle, treadmill running improved the recovery of the sciatic functional index (SFI), muscle contraction strength, and compound muscle action potential (CMAP) amplitude and area. Treadmill training had no influence on gastrocnemius mass that received BoNT-A injection, but it improved the maximal contraction force of the gastrocnemius, and upregulation of GAP-43, IGF-1, Myo-D, Myf-5, myogenin, and acetylcholine receptor (AChR) subunits α and β was found following treadmill training. Taken together, these results suggest that the upregulation of genes associated with neurite and AChR regeneration following treadmill training may contribute to enhanced gastrocnemius strength recovery following BoNT-A injection.
Collapse
|
203
|
Wang Q, Xu Z, Tang J, Sun J, Gao J, Wu T, Xiao M. Voluntary exercise counteracts Aβ25-35-induced memory impairment in mice. Behav Brain Res 2013; 256:618-25. [DOI: 10.1016/j.bbr.2013.09.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 11/26/2022]
|
204
|
Ilg W, Timmann D. Gait ataxia-specific cerebellar influences and their rehabilitation. Mov Disord 2013; 28:1566-75. [DOI: 10.1002/mds.25558] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/06/2013] [Accepted: 05/10/2013] [Indexed: 11/09/2022] Open
Affiliation(s)
- Winfried Ilg
- Computational Sensomotorics Section, Department of Cognitive Neurology; Hertie Institute for Clinical Brain Research, and Centre for Integrative Neuroscience, University of Tübingen; Tübingen; Germany
| | - Dagmar Timmann
- Department of Neurology; University of Duisburg-Essen; Essen; Germany
| |
Collapse
|
205
|
Samjoo IA, Safdar A, Hamadeh MJ, Raha S, Tarnopolsky MA. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutr Diabetes 2013; 3:e88. [PMID: 24042701 PMCID: PMC3789133 DOI: 10.1038/nutd.2013.30] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/09/2013] [Accepted: 08/01/2013] [Indexed: 12/17/2022] Open
Abstract
Background: Obesity is associated with low-grade systemic inflammation, in part because of secretion of proinflammatory cytokines, resulting into peripheral insulin resistance (IR). Increased oxidative stress is proposed to link adiposity and chronic inflammation. The effects of endurance exercise in modulating these outcomes in insulin-resistant obese adults remain unclear. We investigated the effect of endurance exercise on markers of oxidative damage (4-hydroxy-2-nonenal (4-HNE), protein carbonyls (PCs)) and antioxidant enzymes (superoxide dismutase (SOD), catalase) in skeletal muscle; urinary markers of oxidative stress (8-hydroxy-2-deoxyguanosine (8-OHdG), 8-isoprostane); and plasma cytokines (C-reactive protein (CRP), interleukin-6 (IL-6), leptin, adiponectin). Methods: Age- and fitness-matched sedentary obese and lean men (n=9 per group) underwent 3 months of moderate-intensity endurance cycling training with a vastus lateralis biopsy, 24-h urine sample and venous blood samples taken before and after the intervention. Results: Obese subjects had increased levels of oxidative damage: 4-HNE (+37% P⩽0.03) and PC (+63% P⩽0.02); evidence of increased adaptive response to oxidative stress because of elevated levels of copper/zinc SOD (Cu/ZnSOD) protein content (+84% P⩽0.01); increased markers of inflammation: CRP (+737% P⩽0.0001) and IL-6 (+85% P⩽0.03), and these correlated with increased markers of obesity; and increased leptin (+262% P⩽0.0001) with lower adiponectin (−27% P⩽0.01) levels vs lean controls. Training reduced 4-HNE (−10% P⩽0.04), PC (−21% P⩽0.05), 8-isoprostane (−26% P⩽0.02) and leptin levels (−33% P⩽0.01); had a tendency to decrease IL-6 levels (−21% P=0.07) and IR (−17% P=0.10); and increased manganese SOD (MnSOD) levels (+47% P⩽0.01). Conclusion: Endurance exercise reduced skeletal muscle-specific and systemic oxidative damage while improving IR and cytokine profile associated with obesity, independent of weight loss. Hence, exercise is a useful therapeutic modality to reduce risk factors associated with the pathogenesis of IR in obesity.
Collapse
Affiliation(s)
- I A Samjoo
- 1] Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada [2] Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
206
|
Kincaid B, Bossy-Wetzel E. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neurosci 2013; 5:48. [PMID: 24046746 PMCID: PMC3764375 DOI: 10.3389/fnagi.2013.00048] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/21/2013] [Indexed: 12/12/2022] Open
Abstract
Caloric restriction (CR), fasting, and exercise have long been recognized for their neuroprotective and lifespan-extending properties; however, the underlying mechanisms of these phenomena remain elusive. Such extraordinary benefits might be linked to the activation of sirtuins. In mammals, the sirtuin family has seven members (SIRT1–7), which diverge in tissue distribution, subcellular localization, enzymatic activity, and targets. SIRT1, SIRT2, and SIRT3 have deacetylase activity. Their dependence on NAD+ directly links their activity to the metabolic status of the cell. High NAD+ levels convey neuroprotective effects, possibly via activation of sirtuin family members. Mitochondrial sirtuin 3 (SIRT3) has received much attention for its role in metabolism and aging. Specific small nucleotide polymorphisms in Sirt3 are linked to increased human lifespan. SIRT3 mediates the adaptation of increased energy demand during CR, fasting, and exercise to increased production of energy equivalents. SIRT3 deacetylates and activates mitochondrial enzymes involved in fatty acid β-oxidation, amino acid metabolism, the electron transport chain, and antioxidant defenses. As a result, the mitochondrial energy metabolism increases. In addition, SIRT3 prevents apoptosis by lowering reactive oxygen species and inhibiting components of the mitochondrial permeability transition pore. Mitochondrial deficits associated with aging and neurodegeneration might therefore be slowed or even prevented by SIRT3 activation. In addition, upregulating SIRT3 activity by dietary supplementation of sirtuin activating compounds might promote the beneficial effects of this enzyme. The goal of this review is to summarize emerging data supporting a neuroprotective action of SIRT3 against Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Brad Kincaid
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | | |
Collapse
|
207
|
Rodell A, Rasmussen LJ, Bergersen LH, Singh KK, Gjedde A. Natural selection of mitochondria during somatic lifetime promotes healthy aging. FRONTIERS IN NEUROENERGETICS 2013; 5:7. [PMID: 23964235 PMCID: PMC3740293 DOI: 10.3389/fnene.2013.00007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/22/2013] [Indexed: 01/08/2023]
Abstract
Stimulation of mitochondrial biogenesis during life-time challenges both eliminates disadvantageous properties and drives adaptive selection of advantageous phenotypic variations. Intermittent fission and fusion of mitochondria provide specific targets for health promotion by brief temporal stressors, interspersed with periods of recovery and biogenesis. For mitochondria, the mechanisms of selection, variability, and heritability, are complicated by interaction of two independent genomes, including the multiple copies of DNA in each mitochondrion, as well as the shared nuclear genome of each cell. The mechanisms of stress-induced fission, followed by recovery-induced fusion and biogenesis, drive the improvement of mitochondrial functions, not only as directed by genotypic variations, but also as enabled by phenotypic diversity. Selective adaptation may explain unresolved aspects of aging, including the health effects of exercise, hypoxic and poisonous preconditioning, and tissue-specific mitochondrial differences. We propose that intermittent purposeful enhancement of mitochondrial biogenesis by stressful episodes with subsequent recovery paradoxically promotes adaptive mitochondrial health and continued healthy aging.
Collapse
Affiliation(s)
- Anders Rodell
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital Aarhus, Denmark
| | | | | | | | | |
Collapse
|
208
|
Dysregulation of mitochondrial quality control processes contribute to sarcopenia in a mouse model of premature aging. PLoS One 2013; 8:e69327. [PMID: 23935986 PMCID: PMC3720551 DOI: 10.1371/journal.pone.0069327] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/07/2013] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) mutations lead to decrements in mitochondrial function and accelerated rates of these mutations has been linked to skeletal muscle loss (sarcopenia). The purpose of this study was to investigate the effect of mtDNA mutations on mitochondrial quality control processes in skeletal muscle from animals (young; 3–6 months and older; 8–15 months) expressing a proofreading-deficient version of mtDNA polymerase gamma (PolG). This progeroid aging model exhibits elevated mtDNA mutation rates, mitochondrial dysfunction, and a premature aging phenotype that includes sarcopenia. We found increased expression of the mitochondrial biogenesis regulator peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and its target proteins, nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (Tfam) in PolG animals compared to wild-type (WT) (P<0.05). Muscle from older PolG animals displayed higher mitochondrial fission protein 1 (Fis1) concurrent with greater induction of autophagy, as indicated by changes in Atg5 and p62 protein content (P<0.05). Additionally, levels of the Tom22 import protein were higher in PolG animals when compared to WT (P<0.05). In contrast, muscle from normally-aged animals exhibited a distinctly different expression profile compared to PolG animals. Older WT animals appeared to have higher fusion (greater Mfn1/Mfn2, and lower Fis1) and lower autophagy (Beclin-1 and p62) compared to young WT suggesting that autophagy is impaired in aging muscle. In conclusion, muscle from mtDNA mutator mice display higher mitochondrial fission and autophagy levels that likely contribute to the sarcopenic phenotype observed in premature aging and this differs from the response observed in normally-aged muscle.
Collapse
|
209
|
Hulmi JJ, Oliveira BM, Silvennoinen M, Hoogaars WMH, Pasternack A, Kainulainen H, Ritvos O. Exercise restores decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activin-blocked mdx mice. Am J Physiol Endocrinol Metab 2013; 305:E171-82. [PMID: 23695214 DOI: 10.1152/ajpendo.00065.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The importance of adequate levels of muscle size and function and physical activity is widely recognized. Myostatin/activin blocking increases skeletal muscle mass but may decrease muscle oxidative capacity and can thus be hypothesized to affect voluntary physical activity. Soluble activin receptor IIB (sActRIIB-Fc) was produced to block myostatin/activins. Modestly dystrophic mdx mice were injected with sActRIIB-Fc or PBS with or without voluntary wheel running exercise for 7 wk. Healthy mice served as controls. Running for 7 wk attenuated the sActRIIB-Fc-induced increase in body mass by decreasing fat mass. Running also enhanced/restored the markers of muscle oxidative capacity and autophagy in mdx mice to or above the levels of healthy mice. Voluntary running activity was decreased by sActRIIB-Fc during the first 3-4 wk correlating with increased body mass. Home cage physical activity of mice, quantified from the force plate signal, was decreased by sActRIIB-Fc the whole 7-wk treatment in sedentary mice. To understand what happens during the first weeks after sActRIIB-Fc administration, when mice are less active, healthy mice were injected with sActRIIB-Fc or PBS for 2 wk. During the sActRIIB-Fc-induced rapid 2-wk muscle growth period, oxidative capacity and autophagy were reduced, which may possibly explain the decreased running activity. These results show that increased muscle size and decreased markers of oxidative capacity and autophagy during the first weeks of myostatin/activin blocking are associated with decreased voluntary activity levels. Voluntary exercise in dystrophic mice enhances the markers of oxidative capacity and autophagy to or above the levels of healthy mice.
Collapse
Affiliation(s)
- Juha J Hulmi
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä, Finland.
| | | | | | | | | | | | | |
Collapse
|
210
|
Davidson SM, Yellon DM. Mitochondrial DNA damage, oxidative stress, and atherosclerosis: where there is smoke there is not always fire. Circulation 2013; 128:681-3. [PMID: 23841982 DOI: 10.1161/circulationaha.113.004531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
211
|
Wang X, Pickrell AM, Rossi SG, Pinto M, Dillon LM, Hida A, Rotundo RL, Moraes CT. Transient systemic mtDNA damage leads to muscle wasting by reducing the satellite cell pool. Hum Mol Genet 2013; 22:3976-86. [PMID: 23760083 DOI: 10.1093/hmg/ddt251] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
With age, muscle mass and integrity are progressively lost leaving the elderly frail, weak and unable to independently care for themselves. Defined as sarcopenia, this age-related muscle atrophy appears to be multifactorial but its definite cause is still unknown. Mitochondrial dysfunction has been implicated in this process. Using a novel transgenic mouse model of mitochondrial DNA (mtDNA) double-strand breaks (DSBs) that presents a premature aging-like phenotype, we studied the role of mtDNA damage in muscle wasting. We caused DSBs in mtDNA of adult mice using a ubiquitously expressed mitochondrial-targeted endonuclease, mito-PstI. We found that a short, transient systemic mtDNA damage led to muscle wasting and a decline in locomotor activity later in life. We found a significant decline in muscle satellite cells, which decreases the muscle's capacity to regenerate and repair during aging. This phenotype was associated with impairment in acetylcholinesterase (AChE) activity and assembly at the neuromuscular junction (NMJ), also associated with muscle aging. Our data suggests that systemic mitochondrial dysfunction plays important roles in age-related muscle wasting by preferentially affecting the myosatellite cell pool.
Collapse
Affiliation(s)
- Xiao Wang
- These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Abstract
Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Manuel Serrano
- Tumor Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guido Kroemer
- INSERM, U848, Villejuif, France
- Metabolomics Platform, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
213
|
Dam AD, Mitchell AS, Quadrilatero J. Induction of mitochondrial biogenesis protects against caspase-dependent and caspase-independent apoptosis in L6 myoblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3426-3435. [PMID: 23643731 DOI: 10.1016/j.bbamcr.2013.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/08/2013] [Accepted: 04/26/2013] [Indexed: 02/07/2023]
Abstract
Apoptotic signaling plays an important role in skeletal muscle degradation, atrophy, and dysfunction. Mitochondria are central executers of apoptosis by directly participating in caspase-dependent and caspase-independent cell death signaling. Given the important apoptotic role of mitochondria, altering mitochondrial content could influence apoptosis. Therefore, we examined the direct effect of modest, but physiological increases in mitochondrial biogenesis and content on skeletal muscle apoptosis using a cell culture approach. Treatment of L6 myoblasts with SNAP or AICAR (5h/day for 5days) significantly increased PGC-1, AIF, cytochrome c, and MnSOD protein content as well as MitoTracker staining. Following induction of mitochondrial biogenesis, L6 myoblasts displayed decreased sensitivity to apoptotic cell death as well as reduced caspase-3 and caspase-9 activation following exposure to staurosporine (STS) and C2-ceramide. L6 myoblasts with higher mitochondrial content also exhibited reduced apoptosis and AIF release following exposure to hydrogen peroxide (H2O2). Analysis of several key apoptosis regulatory proteins (ARC, Bax, Bcl-2, XIAP), antioxidant proteins (catalase, MnSOD, CuZnSOD), and reactive oxygen species (ROS) measures (DCF and MitoSOX fluorescence) revealed that these mechanisms were not responsible for the observed cellular protection. However, myoblasts with higher mitochondrial content were less sensitive to Ca(2+)-induced mitochondrial permeability transition pore formation (mPTP) and mitochondrial membrane depolarization. Collectively, these data demonstrate that increased mitochondrial content at physiological levels provides protection against apoptotic cell death by decreasing caspase-dependent and caspase-independent signaling through influencing mitochondrial Ca(2+)-mediated apoptotic events. Therefore, increasing mitochondrial biogenesis/content may represent a potential therapeutic approach in skeletal muscle disorders displaying increased apoptosis.
Collapse
Affiliation(s)
- Aaron D Dam
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrew S Mitchell
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
214
|
Johnson ML, Robinson MM, Nair KS. Skeletal muscle aging and the mitochondrion. Trends Endocrinol Metab 2013; 24:247-56. [PMID: 23375520 PMCID: PMC3641176 DOI: 10.1016/j.tem.2012.12.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 01/06/2023]
Abstract
Decline in human muscle mass and strength (sarcopenia) is a hallmark of the aging process. A growing body of research in the areas of bioenergetics and protein turnover has placed the mitochondria at the center of this process. It is now clear that, unless an active lifestyle is rigorously followed, skeletal muscle mitochondrial decline occurs as humans age. Increasing research on mitochondrial biology has elucidated the regulatory pathways involved in mitochondrial biogenesis, many of which are potential therapeutic targets, and highlight the beneficial effects of vigorous physical activity on skeletal muscle health for an aging population.
Collapse
Affiliation(s)
- Matthew L Johnson
- Mayo Clinic, Division of Endocrinology, 200 First Street SW, Joseph 5-194, Rochester, MN 55905, USA
| | | | | |
Collapse
|
215
|
The exonuclease activity of the yeast mitochondrial DNA polymerase γ suppresses mitochondrial DNA deletions between short direct repeats in Saccharomyces cerevisiae. Genetics 2013; 194:519-22. [PMID: 23589460 DOI: 10.1534/genetics.113.150920] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The importance of mitochondrial DNA (mtDNA) deletions in the progeroid phenotype of exonuclease-deficient DNA polymerase γ mice has been intensely debated. We show that disruption of Mip1 exonuclease activity increases mtDNA deletions 160-fold, whereas disease-associated polymerase variants were mostly unaffected, suggesting that exonuclease activity is vital to avoid deletions during mtDNA replication.
Collapse
|
216
|
Stumpf JD, Saneto RP, Copeland WC. Clinical and molecular features of POLG-related mitochondrial disease. Cold Spring Harb Perspect Biol 2013; 5:a011395. [PMID: 23545419 DOI: 10.1101/cshperspect.a011395] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The inability to replicate mitochondrial genomes (mtDNA) by the mitochondrial DNA polymerase (pol γ) leads to a subset of mitochondrial diseases. Many mutations in POLG, the gene that encodes pol γ, have been associated with mitochondrial diseases such as myocerebrohepatopathy spectrum (MCHS) disorders, Alpers-Huttenlocher syndrome, myoclonic epilepsy myopathy sensory ataxia (MEMSA), ataxia neuropathy spectrum (ANS), and progressive external ophthalmoplegia (PEO). This chapter explores five important topics in POLG-related disease: (1) clinical symptoms that identify and distinguish POLG-related diseases, (2) molecular characterization of defects in polymerase activity by POLG disease variants, (3) the importance of holoenzyme formation in disease presentation, (4) the role of pol γ exonuclease activity and mutagenesis in disease and aging, and (5) novel approaches to therapy and avoidance of toxicity based on primary research in pol γ replication.
Collapse
Affiliation(s)
- Jeffrey D Stumpf
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
217
|
Goldstein A, Wolfe LA. The elusive magic pill: finding effective therapies for mitochondrial disorders. Neurotherapeutics 2013; 10:320-8. [PMID: 23355364 PMCID: PMC3625379 DOI: 10.1007/s13311-012-0175-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The incidence of mitochondrial diseases has been estimated at 11.5/100,000 (1:8500) worldwide. In the USA up to 4000 newborns annually are expected to develop a mitochondrial disease. More than 50 million adults in the USA also suffer from diseases in which primary or secondary mitochondrial dysfunction is involved. Mitochondrial dysfunction has been identified in cancer, infertility, diabetes, heart diseases, blindness, deafness, kidney disease, liver disease, stroke, migraine, dwarfism, and resulting from numerous medication toxicities. Mitochondrial dysfunction is also involved in normal aging and age-related neurodegenerative diseases, such as Parkinson and Alzheimer diseases. Yet most treatments available are based on empiric data and clinician experience because of the lack of randomized controlled clinical trials to provide evidence-based treatments for these disorders. Here we explore the current state of research for the treatment of mitochondrial disorders.
Collapse
Affiliation(s)
- Amy Goldstein
- />Division of Child Neurology, Childrens Hospital of Pittsburgh of UPMC, Pittsburgh, PA USA
| | - Lynne A. Wolfe
- />Undiagnosed Diseases Program, National Institutes of Health, 10 Center DR, MSC 1205, RM# 3-2551, Bethesda, MD 20892 USA
| |
Collapse
|
218
|
Dai Y, Kiselak T, Clark J, Clore E, Zheng K, Cheng A, Kujoth GC, Prolla TA, Maratos-Flier E, Simon DK. Behavioral and metabolic characterization of heterozygous and homozygous POLG mutator mice. Mitochondrion 2013; 13:282-91. [PMID: 23542163 DOI: 10.1016/j.mito.2013.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/06/2013] [Accepted: 03/19/2013] [Indexed: 02/02/2023]
Abstract
The mitochondrial DNA (mtDNA) polymerase γ (POLG) mutator mice provide the first experimental evidence that high levels of somatic mtDNA mutations can be functionally significant. Here we report that older homozygous, but not heterozygous, POLG mice show significant reductions in striatal dopaminergic terminals as well as deficits in motor function. However, resting oxygen consumption, heat production, mtDNA content and mitochondrial electron transport chain activities are significantly decreased at older ages in both homozygous and heterozygous mice. These results indicate that high levels of somatic mtDNA mutations can contribute to dopaminergic dysfunction and to behavioral and metabolic deficits.
Collapse
Affiliation(s)
- Ying Dai
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Abstract
In mitochondrial myopathies with respiratory chain deficiency impairment of energy cell production may lead to in excess reactive oxygen species generation with consequent oxidative stress and cell damage. Aerobic training has been showed to increase muscle performance in patients with mitochondrial myopathies. Aim of this study has been to evaluate, in 7 patients (6F e 1 M, mean age 44.9 ± 12.1 years) affected by mitochondrial disease, concomitantly to lactate exercise curve, the occurrence of oxidative stress, as indicated by circulating levels of lipoperoxides, in rest condition and as effect of exercise, and also, to verify if an aerobic training program is able to modify, in these patients, ox-redox balance efficiency. At rest and before training blood level of lipoperoxides was 382.4 ± 37.8 AU, compared to controls (318.7 ± 63.8; P < 0.05), this corresponding to a moderate oxidative stress degree according to the adopted scale. During incremental exercise blood level of lipoperoxides did not increase, but maintained significantly higher compared to controls. After an aerobic training of 10 weeks the blood level of lipoperoxides decreased by 13.7% at rest (P < 0.01) and 10.4%, 8.6% and 8.5% respectively at the corresponding times during the exercise test (P = 0.06). These data indicate that, in mitochondrial patients, oxidative stress occurs and that an aerobic training is useful in partially reverting this condition.
Collapse
|
220
|
Abstract
Alpers-Huttenlocher syndrome is an uncommon mitochondrial disease most often associated with mutations in the mitochondrial DNA replicase, polymerase-γ. Alterations in enzyme activity result in reduced levels or deletions in mitochondrial DNA. Phenotypic manifestations occur when the functional content of mitochondrial DNA reaches a critical nadir. The tempo of disease progression and onset varies among patients, even in identical genotypes. The classic clinical triad of seizures, liver degeneration, and progressive developmental regression helps define the disorder, but a wide range of clinical expression occurs. The majority of patients are healthy before disease onset, and seizures herald the disorder in most patients. Seizures can rapidly progress to medical intractability, with frequent episodes of epilepsia partialis continua or status epilepticus. Liver involvement may precede or occur after seizure onset. Regardless, eventual liver failure is common. Both the tempo of disease progression and range of organ involvement vary from patient to patient, and are only partly explained by pathogenic effects of genetic mutations. Diagnosis involves the constellation of organ involvement, not the sequence of signs. This disorder is relentlessly progressive and ultimately fatal.
Collapse
|
221
|
Affiliation(s)
- Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
222
|
Abstract
Preservation of aerobic fitness and skeletal muscle strength through exercise training can ameliorate metabolic dysfunction and prevent chronic disease. These benefits are mediated in part by extensive metabolic and molecular remodeling of skeletal muscle by exercise. Aerobic and resistance exercise represent extremes on the exercise continuum and elicit markedly different training responses that are mediated by a complex interplay between a myriad of signaling pathways coupled to downstream regulators of transcription and translation. Here, we review the metabolic responses and molecular mechanisms that underpin the adaptatation of skeletal muscle to acute exercise and exercise training.
Collapse
Affiliation(s)
- Brendan Egan
- Institute for Sport and Health, School of Public Health, Physiotherapy and Population Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
223
|
Lucanic M, Lithgow GJ, Alavez S. Pharmacological lifespan extension of invertebrates. Ageing Res Rev 2013; 12:445-58. [PMID: 22771382 DOI: 10.1016/j.arr.2012.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 01/11/2023]
Abstract
There is considerable interest in identifying small, drug-like compounds that slow aging in multiple species, particularly in mammals. Such compounds may prove to be useful in treating and retarding age-related disease in humans. Just as invertebrate models have been essential in helping us understand the genetic pathways that control aging, these model organisms are also proving valuable in discovering chemical compounds that influence longevity. The nematode Caenorhabditis elegans has numerous advantages for such studies including its short lifespan and has been exploited by a number of investigators to find compounds that impact aging. Here, we summarize the progress being made in identifying compounds that extend the lifespan of invertebrates, and introduce the challenges we face in translating this research into human therapies.
Collapse
|
224
|
Mason PA, Cox LS. The role of DNA exonucleases in protecting genome stability and their impact on ageing. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1317-1340. [PMID: 21948156 PMCID: PMC3528374 DOI: 10.1007/s11357-011-9306-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/19/2011] [Indexed: 05/30/2023]
Abstract
Exonucleases are key enzymes involved in many aspects of cellular metabolism and maintenance and are essential to genome stability, acting to cleave DNA from free ends. Exonucleases can act as proof-readers during DNA polymerisation in DNA replication, to remove unusual DNA structures that arise from problems with DNA replication fork progression, and they can be directly involved in repairing damaged DNA. Several exonucleases have been recently discovered, with potentially critical roles in genome stability and ageing. Here we discuss how both intrinsic and extrinsic exonuclease activities contribute to the fidelity of DNA polymerases in DNA replication. The action of exonucleases in processing DNA intermediates during normal and aberrant DNA replication is then assessed, as is the importance of exonucleases in repair of double-strand breaks and interstrand crosslinks. Finally we examine how exonucleases are involved in maintenance of mitochondrial genome stability. Throughout the review, we assess how nuclease mutation or loss predisposes to a range of clinical diseases and particularly ageing.
Collapse
Affiliation(s)
- Penelope A. Mason
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
225
|
deFilippi CR, de Lemos JA, Tkaczuk AT, Christenson RH, Carnethon MR, Siscovick DS, Gottdiener JS, Seliger SL. Physical activity, change in biomarkers of myocardial stress and injury, and subsequent heart failure risk in older adults. J Am Coll Cardiol 2012; 60:2539-47. [PMID: 23158528 DOI: 10.1016/j.jacc.2012.08.1006] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/24/2012] [Accepted: 08/30/2012] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the association between physical activity and changes in levels of highly sensitive troponin T (cTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP), and the subsequent risk of the development of heart failure (HF) in community-dwelling older adults. BACKGROUND Higher baseline levels of cTnT and NT-proBNP and increases over time correlate with the risk of HF in older adults. Factors modifying these levels have not been identified. METHODS NT-proBNP and cTnT were measured at baseline and 2 to 3 years later in adults 65 years of age and older free of HF participating in the Cardiovascular Health Study. Self-reported physical activity and walking pace were combined into a composite score. An increase was prespecified for NT-proBNP as a >25% increment from baseline to ≥190 pg/ml and for cTnT as a >50% increment from baseline in participants with detectable levels (≥3 pg/ml). RESULTS A total of 2,933 participants free of HF had NT-proBNP and cTnT measured at both time points. The probability of an increase in biomarker concentrations between baseline and follow-up visits was inversely related to the physical activity score. Compared with participants with the lowest score, those with the highest score had an odds ratio of 0.50 (95% confidence interval: 0.33 to 0.77) for an increase in NT-proBNP and an odds ratio of 0.30 (95% confidence interval: 0.16 to 0.55) for an increase in cTnT, after adjusting for comorbidities and baseline levels. A higher activity score associated with a lower long-term incidence of HF. Moreover, at each level of activity, an increase in either biomarker still identified those at higher risk. CONCLUSIONS These findings suggest that moderate physical activity has protective effects on early heart failure phenotypes, preventing cardiac injury and neurohormonal activation.
Collapse
Affiliation(s)
- Christopher R deFilippi
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21212, USA.
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Puterman E, Epel E. An intricate dance: Life experience, multisystem resiliency, and rate of telomere decline throughout the lifespan. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2012; 6:807-825. [PMID: 23162608 PMCID: PMC3496269 DOI: 10.1111/j.1751-9004.2012.00465.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Accumulation of life stressors predicts accelerated development and progression of diseases of aging. Telomere length, the DNA-based biomarker indicating cellular aging, is a mechanism of disease development, and is shortened in a dose response fashion by duration and severity of life stressor exposures. Telomere length captures the interplay between genetics, life experiences and psychosocial and behavioral factors. Over the past several years, psychological stress resilience, healthy lifestyle factors, and social connections have been associated with longer telomere length and it appears that these factors can protect individuals from stress-induced telomere shortening. In the current review, we highlight these findings, and illustrate that combining these `multisystem resiliency' factors may strengthen our understanding of aging, as these powerful factors are often neglected in studies of aging. In naturalistic studies, the effects of chronic stress exposure on biological pathways are rarely main effects, but rather a complex interplay between adversity and resiliency factors. We suggest that chronic stress effects can be best understood by directly testing if the deleterious effects of stress on biological aging processes, in this case the cell allostasis measure of telomere shortening, are mitigated in individuals with high levels of multisystem resiliency. Without attending to such interactions, stress effects are often masked and missed. Taking account of the cluster of positive buffering factors that operate across the lifespan will take us a step further in understanding healthy aging. While these ideas are applied to the telomere length literature for illustration, the concept of multisystem resiliency might apply to aging broadly, from cellular to systemic health.
Collapse
|
227
|
Nilsson MI, Samjoo IA, Hettinga BP, Koeberl DD, Zhang H, Hawke TJ, Nissar AA, Ali T, Brandt L, Ansari MU, Hazari H, Patel N, Amon J, Tarnopolsky MA. Aerobic training as an adjunctive therapy to enzyme replacement in Pompe disease. Mol Genet Metab 2012; 107:469-79. [PMID: 23041258 DOI: 10.1016/j.ymgme.2012.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 01/06/2023]
Abstract
BACKGROUND Aerobic exercise may be used in conjunction with enzyme replacement therapy (ERT) to attenuate cardiovascular deconditioning, skeletal muscle wasting, and loss of motor function in Pompe disease (glycogen storage disease type II; GSDII), but the effects on lysosomal glycogen content and macroautophagy have not been defined to date. PURPOSE The main objectives of this study were to determine if acute aerobic exercise enhances 24-h uptake of recombinant human enzyme (rhGAA; Myozyme® [aim 1]) and if endurance training improves disease pathology when combined with ERT [aim 2] in Pompe mice. METHODS For the first aim in our study, Pompe mutant mice (6(neo)/6(neo)) were grouped into ERT (Myozyme® injection only [40 mg/kg]) and ERT+EX (Myozyme® injection followed by 90 min treadmill exercise) cohorts, and enzyme uptake was assessed in the heart and quadriceps 24h post injection. For the second aim of our study, mutant mice were randomized into control, endurance-trained, enzyme-treated, or combination therapy groups. Exercised animals underwent 14 weeks of progressive treadmill training with or without biweekly Myozyme® injections (40 mg/kg) and tissues were harvested 1 week post last treatment. RESULTS Myozyme® uptake (GAA activity) was not improved in ERT+EX over ERT alone at 24-h post injection. Endurance exercise training, with or without ERT, improved aerobic capacity and normalized grip strength, motor function, and lean mass (P<0.05), but did not reduce glycogen content or normalize macroautophagy beyond traditional enzyme replacement therapy. CONCLUSIONS Endurance training is beneficial as an adjunctive therapy to ERT in Pompe disease, although it works by mechanisms independent of a reduction in glycogen content.
Collapse
Affiliation(s)
- Mats I Nilsson
- Department of Pediatrics and Medicine, Neuromuscular Clinic, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Yamada T, Ivarsson N, Hernández A, Fahlström A, Cheng AJ, Zhang SJ, Bruton JD, Ulfhake B, Westerblad H. Impaired mitochondrial respiration and decreased fatigue resistance followed by severe muscle weakness in skeletal muscle of mitochondrial DNA mutator mice. J Physiol 2012; 590:6187-97. [PMID: 22988144 DOI: 10.1113/jphysiol.2012.240077] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction can drastically impair muscle function, with weakness and exercise intolerance as key symptoms. Here we examine the time course of development of muscle dysfunction in a mouse model of premature ageing induced by defective proofreading function of mitochondrial DNA (mtDNA) polymerase (mtDNA mutator mouse). Isolated fast-twitch muscles and single muscle fibres from young (3-5 months) and end-stage (11 months) mtDNA mutator mice were compared to age-matched control mice. Force and free myoplasmic [Ca(2+)] ([Ca(2+)](i)) were measured under resting conditions and during fatigue induced by repeated tetani. Muscles of young mtDNA mutator mice displayed no weakness in the rested state, but had lower force and [Ca(2+)](i) than control mice during induction of fatigue. Muscles of young mtDNA mutator mice showed decreased activities of citrate synthase and β-hydroxyacyl-coenzyme A dehydrogenase, reduced expression of cytochrome c oxidase, and decreased expression of triggers of mitochondrial biogenesis (PGC-1α, PPARα, AMPK). Muscles from end-stage mtDNA mutator mice showed weakness under resting conditions with markedly decreased tetanic [Ca(2+)](i), force per cross-sectional area and protein expression of the sarcoplasmic reticulum Ca(2+) pump (SERCA1). In conclusion, fast-twitch muscles of prematurely ageing mtDNA mutator mice display a sequence of deleterious mitochondrial-to-nucleus signalling with an initial decrease in oxidative capacity, which was not counteracted by activation of signalling to increase mitochondrial biogenesis. This was followed by severe muscle weakness in the end stage. These results have implication for normal ageing and suggest that decreased mitochondrial oxidative capacity due to a sedentary lifestyle may predispose towards muscle weakness developing later in life.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Schiff M, Bénit P, Jacobs HT, Vockley J, Rustin P. Therapies in inborn errors of oxidative metabolism. Trends Endocrinol Metab 2012; 23:488-95. [PMID: 22633959 PMCID: PMC4135311 DOI: 10.1016/j.tem.2012.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/19/2012] [Accepted: 04/21/2012] [Indexed: 11/21/2022]
Abstract
Mitochondrial diseases encompass a wide range of presentations and mechanisms, dictating a need to consider both broad-based and disease-specific therapies. The manifestations of mitochondrial dysfunction and the response to therapy vary between individuals. This probably reflects the genetic complexity of mitochondrial biology, which requires an excess of 2000 genes for proper function, with numerous interfering epigenetic and environmental factors. Accordingly, we are increasingly aware of the complexity of these diseases which involve far more than merely decreased ATP supply. Indeed, recent therapeutic progress has addressed only specific disease entities. In this review present and prospective therapeutic approaches will be discussed on the basis of targets and mechanism of action, but with a broad outlook on their potential applications.
Collapse
Affiliation(s)
- Manuel Schiff
- Institut National de la Santé et de la Recherche Médicale Unité 676, Hôpital Robert Debré, F-75019 Paris, France
| | | | | | | | | |
Collapse
|
230
|
Greising SM, Call JA, Lund TC, Blazar BR, Tolar J, Lowe DA. Skeletal muscle contractile function and neuromuscular performance in Zmpste24 -/- mice, a murine model of human progeria. AGE (DORDRECHT, NETHERLANDS) 2012; 34:805-819. [PMID: 21713376 PMCID: PMC3682066 DOI: 10.1007/s11357-011-9281-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/14/2011] [Indexed: 05/31/2023]
Abstract
Human progeroid syndromes and premature aging mouse models present as segmental, accelerated aging because some tissues and not others are affected. Skeletal muscle is detrimentally changed by normal aging but whether it is an affected tissue in progeria has not been resolved. We hypothesized that mice which mimic Hutchinson-Gilford progeria syndrome would exhibit age-related alterations of skeletal muscle. Zmpste24 (-/-) and Zmpste24 (+/+) littermates were assessed for skeletal muscle functions, histo-morphological characteristics, and ankle joint mechanics. Twenty-four-hour active time, ambulation, grip strength, and whole body tension were evaluated as markers of neuromuscular performance, each of which was at least 33% lower in Zmpste24 (-/-) mice compared with littermates (p < 0.06). Contractile capacity of the posterior leg muscles were not affected in Zmpste24 (-/-) mice, but muscles of the anterior leg were 30-90% weaker than those of Zmpste24 (+/+) mice (p < 0.01). Leg muscles were 32-47% smaller in the Zmpste24 (-/-) mice and contained ~60% greater collagen relative to littermates (p < 0.01). Soleus and extensor digitorum longus muscles of Zmpste24 (-/-) mice had excessive myonuclei and altered fiber size distributions but, otherwise, appeared normal. Ankle range of motion was 70% lower and plantar- and dorsiflexion passive torques were nearly 3-fold greater in Zmpste24 (-/-) than Zmpste24 (+/+) mice (p ≤ 0.01). The combined factors of muscle atrophy, collagen accumulation, and perturbed joint mechanics likely contributed to poor neuromuscular performance and selective muscle weakness displayed by Zmpste24 (-/-)mice. In summary, these characteristics are similar to those of aged mice indicating accelerated aging of skeletal muscle in progeria.
Collapse
Affiliation(s)
- Sarah M. Greising
- />Rehabilitation Science and Program in Physical Therapy, University of Minnesota, School of Medicine, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| | - Jarrod A. Call
- />Rehabilitation Science and Program in Physical Therapy, University of Minnesota, School of Medicine, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| | - Troy C. Lund
- />Cancer Center and the Department of Pediatrics, Division of Hematology/Oncology, Blood and Marrow Transplantation, University of Minnesota, School of Medicine, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| | - Bruce R. Blazar
- />Cancer Center and the Department of Pediatrics, Division of Hematology/Oncology, Blood and Marrow Transplantation, University of Minnesota, School of Medicine, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| | - Jakub Tolar
- />Cancer Center and the Department of Pediatrics, Division of Hematology/Oncology, Blood and Marrow Transplantation, University of Minnesota, School of Medicine, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| | - Dawn A. Lowe
- />Rehabilitation Science and Program in Physical Therapy, University of Minnesota, School of Medicine, 420 Delaware Street SE, Minneapolis, MN 55455 USA
- />420 Delaware St SE, MMC 388, Minneapolis, MN 55455 USA
| |
Collapse
|
231
|
Rowe GC, El-Khoury R, Patten IS, Rustin P, Arany Z. PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle. PLoS One 2012; 7:e41817. [PMID: 22848618 PMCID: PMC3404101 DOI: 10.1371/journal.pone.0041817] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/28/2012] [Indexed: 11/19/2022] Open
Abstract
Exercise confers numerous health benefits, many of which are thought to stem from exercise-induced mitochondrial biogenesis (EIMB) in skeletal muscle. The transcriptional coactivator PGC-1α, a potent regulator of metabolism in numerous tissues, is widely believed to be required for EIMB. We show here that this is not the case. Mice engineered to lack PGC-1α specifically in skeletal muscle (Myo-PGC-1αKO mice) retained intact EIMB. The exercise capacity of these mice was comparable to littermate controls. Induction of metabolic genes after 2 weeks of in-cage voluntary wheel running was intact. Electron microscopy revealed no gross abnormalities in mitochondria, and the mitochondrial biogenic response to endurance exercise was as robust in Myo-PGC-1αKO mice as in wildtype mice. The induction of enzymatic activity of the electron transport chain by exercise was likewise unperturbed in Myo-PGC-1αKO mice. These data demonstrate that PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle, in sharp contrast to the prevalent assumption in the field.
Collapse
Affiliation(s)
- Glenn C. Rowe
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Riyad El-Khoury
- Hôpital Robert Debré, and Université Paris, Faculté de Médecine Denis Diderot, Paris, France
| | - Ian S. Patten
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pierre Rustin
- Hôpital Robert Debré, and Université Paris, Faculté de Médecine Denis Diderot, Paris, France
| | - Zolt Arany
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
232
|
|
233
|
Abstract
Studies in humans and in mice have highlighted the importance of short telomeres and impaired mitochondrial function in driving age-related functional decline in the heart. Although telomere and mitochondrial dysfunction have been viewed mainly in isolation, recent studies in telomerase-deficient mice have provided evidence for an intimate link between these two processes. Telomere dysfunction induces a profound p53-dependent repression of the master regulators of mitochondrial biogenesis and function, peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and PGC-1β in the heart, which leads to bioenergetic compromise due to impaired oxidative phosphorylation and ATP generation. This telomere-p53-PGC mitochondrial/metabolic axis integrates many factors linked to heart aging including increased DNA damage, p53 activation, mitochondrial, and metabolic dysfunction and provides a molecular basis of how dysfunctional telomeres can compromise cardiomyocytes and stem cell compartments in the heart to precipitate cardiac aging.
Collapse
Affiliation(s)
- Javid Moslehi
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | |
Collapse
|
234
|
Dai DF, Chen T, Johnson SC, Szeto H, Rabinovitch PS. Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2012; 16:1492-526. [PMID: 22229339 PMCID: PMC3329953 DOI: 10.1089/ars.2011.4179] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) are the major causes of death in the western world. The incidence of cardiovascular disease as well as the rate of cardiovascular mortality and morbidity increase exponentially in the elderly population, suggesting that age per se is a major risk factor of CVDs. The physiologic changes of human cardiac aging mainly include left ventricular hypertrophy, diastolic dysfunction, valvular degeneration, increased cardiac fibrosis, increased prevalence of atrial fibrillation, and decreased maximal exercise capacity. Many of these changes are closely recapitulated in animal models commonly used in an aging study, including rodents, flies, and monkeys. The application of genetically modified aged mice has provided direct evidence of several critical molecular mechanisms involved in cardiac aging, such as mitochondrial oxidative stress, insulin/insulin-like growth factor/PI3K pathway, adrenergic and renin angiotensin II signaling, and nutrient signaling pathways. This article also reviews the central role of mitochondrial oxidative stress in CVDs and the plausible mechanisms underlying the progression toward heart failure in the susceptible aging hearts. Finally, the understanding of the molecular mechanisms of cardiac aging may support the potential clinical application of several "anti-aging" strategies that treat CVDs and improve healthy cardiac aging.
Collapse
Affiliation(s)
- Dao-Fu Dai
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
235
|
Kirkwood TBL, Kowald A. The free-radical theory of ageing--older, wiser and still alive: modelling positional effects of the primary targets of ROS reveals new support. Bioessays 2012; 34:692-700. [PMID: 22641614 DOI: 10.1002/bies.201200014] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The continuing viability of the free-radical theory of ageing has been questioned following apparently incompatible recent results. We show by modelling positional effects of the generation and primary targets of reactive oxygen species that many of the apparently negative results are likely to be misleading. We conclude that there is instead a need to look more closely at the mechanisms by which free radicals contribute to age-related dysfunction in living systems. There also needs to be deeper understanding of the dynamics of accumulation and removal of the various kinds of molecular damage, in particular mtDNA mutations. Finally, the expectation that free-radical damage on its own might cause ageing needs to be relinquished in favour of the recognition that the free-radical theory is just one of the multiple mechanisms driving the ageing process.
Collapse
Affiliation(s)
- Thomas B L Kirkwood
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Newcastle Upon Tyne, UK.
| | | |
Collapse
|
236
|
Abstract
Old age is a major risk factor for cardiovascular diseases. Several lines of evidence in experimental animal models have indicated the central role of mitochondria both in lifespan determination and in cardiovascular aging. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and biogenesis as well as the crosstalk between mitochondria and cellular signaling in cardiac and vascular aging. Intrinsic cardiac aging in the murine model closely recapitulates age-related cardiac changes in humans (left ventricular hypertrophy, fibrosis and diastolic dysfunction), while the phenotype of vascular aging include endothelial dysfunction, reduced vascular elasticity, and chronic vascular inflammation. Both cardiac and vascular aging involve neurohormonal signaling (eg, renin-angiotensin, adrenergic, insulin-IGF1 signaling) and cell-autonomous mechanisms. The potential therapeutic strategies to improve mitochondrial function in aging and cardiovascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants, calorie restriction, calorie restriction mimetics, and exercise training.
Collapse
Affiliation(s)
- Dao-Fu Dai
- Department of Pathology, University of Washington, Seattle, USA
| | | | | |
Collapse
|
237
|
Arthur ST, Cooley ID. The effect of physiological stimuli on sarcopenia; impact of Notch and Wnt signaling on impaired aged skeletal muscle repair. Int J Biol Sci 2012; 8:731-60. [PMID: 22701343 PMCID: PMC3371570 DOI: 10.7150/ijbs.4262] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/06/2012] [Indexed: 12/17/2022] Open
Abstract
The age-related loss of skeletal muscle mass and function that is associated with sarcopenia can result in ultimate consequences such as decreased quality of life. The causes of sarcopenia are multifactorial and include environmental and biological factors. The purpose of this review is to synthesize what the literature reveals in regards to the cellular regulation of sarcopenia, including impaired muscle regenerative capacity in the aged, and to discuss if physiological stimuli have the potential to slow the loss of myogenic potential that is associated with sarcopenia. In addition, this review article will discuss the effect of aging on Notch and Wnt signaling, and whether physiological stimuli have the ability to restore Notch and Wnt signaling resulting in rejuvenated aged muscle repair. The intention of this summary is to bring awareness to the benefits of consistent physiological stimulus (exercise) to combating sarcopenia as well as proclaiming the usefulness of contraction-induced injury models to studying the effects of local and systemic influences on aged myogenic capability.
Collapse
Affiliation(s)
- Susan Tsivitse Arthur
- Department of Kinesiology, Laboratory of Systems Physiology, University North Carolina - Charlotte, Charlotte, NC 28223, USA.
| | | |
Collapse
|
238
|
Abstract
Progressive DNA damage and mitochondrial decline are both considered to be prime instigators of natural ageing. Traditionally, these two pathways have been viewed largely in isolation. However, recent studies have revealed a molecular circuit that directly links DNA damage to compromised mitochondrial biogenesis and function via p53. This axis of ageing may account for both organ decline and disease development associated with advanced age and could illuminate a path for the development of relevant therapeutics.
Collapse
|
239
|
Michel S, Wanet A, De Pauw A, Rommelaere G, Arnould T, Renard P. Crosstalk between mitochondrial (dys)function and mitochondrial abundance. J Cell Physiol 2012; 227:2297-310. [PMID: 21928343 DOI: 10.1002/jcp.23021] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A controlled regulation of mitochondrial mass through either the production (biogenesis) or the degradation (mitochondrial quality control) of the organelle represents a crucial step for proper mitochondrial and cell function. Key steps of mitochondrial biogenesis and quality control are overviewed, with an emphasis on the role of mitochondrial chaperones and proteases that keep mitochondria fully functional, provided the mitochondrial activity impairment is not excessive. In this case, the whole organelle is degraded by mitochondrial autophagy or "mitophagy." Beside the maintenance of adequate mitochondrial abundance and functions for cell homeostasis, mitochondrial biogenesis might be enhanced, through discussed signaling pathways, in response to various physiological stimuli, like contractile activity, exposure to low temperatures, caloric restriction, and stem cells differentiation. In addition, mitochondrial dysfunction might also initiate a retrograde response, enabling cell adaptation through increased mitochondrial biogenesis.
Collapse
Affiliation(s)
- Sébastien Michel
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (FUNDP), Namur, Belgium
| | | | | | | | | | | |
Collapse
|
240
|
Birds and longevity: does flight driven aerobicity provide an oxidative sink? Ageing Res Rev 2012; 11:242-53. [PMID: 22198369 DOI: 10.1016/j.arr.2011.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/28/2011] [Accepted: 12/06/2011] [Indexed: 12/25/2022]
Abstract
Birds generally age slower and live longer than similar sized mammals. For birds this occurs despite elevated blood glucose levels that for mammals would in part define them as diabetic. However these data were acquired in respiration states that have little resemblance to conditions in healthy tissues and mitochondrial RS production is probably minimal in healthy animals. Indeed mitochondria probably act as net consumers rather than producers of RS. Here we propose that (1) if mitochondria are antioxidant systems, the greater mitochondrial mass in athletic species, such as birds, is advantageous as it should provide a substantial sink for RS. (2) The intense drive for aerobic performance and decreased body density to facilitate flight may explain the relative insensitivity of birds to insulin, as well as depressed insulin levels and apparent sensitization to glucagon. Glucagon also associates with the sirtuin protein family, most of which are associated with caloric restriction regulated pathways, mitochondrial biogenesis and life span extension. (3) We note that telomeres, which appear to be unusually long in birds, bind Sirtuins 2 and 4 and therefore may stabilize and protect nuclear DNA. Ultimately these flight driven responses may suppress somatic growth and protect DNA from oxidative damage that would otherwise lead to ageing and non-viral cancers.
Collapse
|
241
|
Bori Z, Zhao Z, Koltai E, Fatouros IG, Jamurtas AZ, Douroudos II, Terzis G, Chatzinikolaou A, Sovatzidis A, Draganidis D, Boldogh I, Radak Z. The effects of aging, physical training, and a single bout of exercise on mitochondrial protein expression in human skeletal muscle. Exp Gerontol 2012; 47:417-24. [PMID: 22449457 DOI: 10.1016/j.exger.2012.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/21/2012] [Accepted: 03/11/2012] [Indexed: 01/10/2023]
Abstract
Aging results in a significant decline in aerobic capacity and impaired mitochondrial function. We have tested the effects of moderate physical activity on aerobic capacity and a single bout of exercise on the expression profile of mitochondrial biogenesis, and fusion and fission related genes in skeletal muscle of human subjects. Physical activity attenuated the aging-associated decline in VO2 max (p<0.05). Aging increased and a single exercise bout decreased the expression of nuclear respiratory factor-1 (NRF1), while the transcription factor A (TFAM) expression showed a strong relationship with VO(2max) and increased significantly in the young physically active group. Mitochondrial fission representing FIS1 was induced by regular physical activity, while a bout of exercise decreased fusion-associated gene expression. The expression of polynucleotide phosphorylase (PNPase) changed inversely in young and old groups and decreased with aging. The A2 subunit of cyclic AMP-activated protein kinase (AMPK) was induced by a single bout of exercise in skeletal muscle samples of both young and old subjects (p<0.05). Our data suggest that moderate levels of regular physical activity increases a larger number of mitochondrial biogenesis-related gene expressions in young individuals than in aged subjects. Mitochondrial fission is impaired by aging and could be one of the most sensitive markers of the age-associated decline in the adaptive response to physical activity.
Collapse
Affiliation(s)
- Zoltan Bori
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Abstract
Mitochondria are often regarded as the powerhouse of the cell by generating the ultimate energy transfer molecule, ATP, which is required for a multitude of cellular processes. However, the role of mitochondria goes beyond their capacity to create molecular fuel, to include the generation of reactive oxygen species, the regulation of calcium, and activation of cell death. Mitochondrial dysfunction is part of both normal and premature ageing, but can contribute to inflammation, cell senescence, and apoptosis. Cardiovascular disease, and in particular atherosclerosis, is characterized by DNA damage, inflammation, cell senescence, and apoptosis. Increasing evidence indicates that mitochondrial damage and dysfunction also occur in atherosclerosis and may contribute to the multiple pathological processes underlying the disease. This review summarizes the normal role of mitochondria, the causes and consequences of mitochondrial dysfunction, and the evidence for mitochondrial damage and dysfunction in vascular disease. Finally, we highlight areas of mitochondrial biology that may have therapeutic targets in vascular disease.
Collapse
Affiliation(s)
- Emma Yu
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | | |
Collapse
|
243
|
Reddigan JI, Riddell MC, Kuk JL. The joint association of physical activity and glycaemic control in predicting cardiovascular death and all-cause mortality in the US population. Diabetologia 2012; 55:632-5. [PMID: 22080254 DOI: 10.1007/s00125-011-2374-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/28/2011] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to examine the joint association of physical activity and glycaemic control as measured by HbA(1c) on all-cause and cardiovascular disease (CVD) mortality risk. METHODS The sample included 10,352 adults from the Third National Health and Nutrition Examination Survey (NHANES III) Linked Mortality Public-use File (follow-up 13.4 ± 3.9 years; 2,463 deaths). Physical activity was assessed by questionnaire and classified into inactive and active categories based on self-reported frequency of leisure-time activity. HbA(1c) was categorised to reflect the American Diabetes Association diagnostic and treatment guidelines. RESULTS Being physically active was associated with a decreased risk of all-cause (HR 0.74 [95% CI 0.67, 0.81]) and CVD (HR 0.71 [95% CI 0.62, 0.82]) mortality, whereas higher levels of HbA(1c) were associated with an increased mortality risk. HbA(1c) ≥ 7% (53 mmol/mol) was associated with the highest risk for all-cause (HR 1.54 [95% CI 1.30, 1.82]) and CVD (HR 1.93 [95% CI 1.52, 2.45]) mortality. Across all categories of HbA(1c), active individuals were not at increased risk for all-cause mortality compared with inactive individuals with normal glycaemic control. Similar findings were observed for CVD mortality, except that active individuals with HbA(1c) ≥ 7% (53 mmol/mol) were still at increased risk for CVD mortality. However, their risk for CVD death was substantially lower than the risk for their inactive counterparts (HR 1.38 [95% CI 1.03, 1.84] vs HR 1.98 [95% CI 1.34, 2.92]). CONCLUSIONS/INTERPRETATION Physical activity is associated with lower all-cause and CVD mortality risk for individuals across all levels of glycaemic control. Therefore, engaging in a physically active lifestyle and achieving normal levels of glycaemic control may both be important for the prevention of early mortality.
Collapse
Affiliation(s)
- J I Reddigan
- School of Kinesiology and Health Science, 2002 Sherman Health Science Centre, York University, 4700 Keele Street, Toronto, ON, Canada M3J 1P3
| | | | | |
Collapse
|
244
|
Dillon LM, Williams SL, Hida A, Peacock JD, Prolla TA, Lincoln J, Moraes CT. Increased mitochondrial biogenesis in muscle improves aging phenotypes in the mtDNA mutator mouse. Hum Mol Genet 2012; 21:2288-97. [PMID: 22357654 DOI: 10.1093/hmg/dds049] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aging is an intricate process that increases susceptibility to sarcopenia and cardiovascular diseases. The accumulation of mitochondrial DNA (mtDNA) mutations is believed to contribute to mitochondrial dysfunction, potentially shortening lifespan. The mtDNA mutator mouse, a mouse model with a proofreading-deficient mtDNA polymerase γ, was shown to develop a premature aging phenotype, including sarcopenia, cardiomyopathy and decreased lifespan. This phenotype was associated with an accumulation of mtDNA mutations and mitochondrial dysfunction. We found that increased expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a crucial regulator of mitochondrial biogenesis and function, in the muscle of mutator mice increased mitochondrial biogenesis and function and also improved the skeletal muscle and heart phenotypes of the mice. Deep sequencing analysis of their mtDNA showed that the increased mitochondrial biogenesis did not reduce the accumulation of mtDNA mutations but rather caused a small increase. These results indicate that increased muscle PGC-1α expression is able to improve some premature aging phenotypes in the mutator mice without reverting the accumulation of mtDNA mutations.
Collapse
Affiliation(s)
- Lloye M Dillon
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
245
|
Dillon LM, Rebelo AP, Moraes CT. The role of PGC-1 coactivators in aging skeletal muscle and heart. IUBMB Life 2012; 64:231-41. [PMID: 22279035 DOI: 10.1002/iub.608] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/05/2011] [Indexed: 12/11/2022]
Abstract
Aging is the progressive decline in cellular, tissue, and organ function. This complex process often manifests as loss of muscular strength, cardiovascular function, and cognitive ability. Mitochondrial dysfunction and decreased mitochondrial biogenesis are believed to participate in metabolic abnormalities and loss of organ function, which will eventually contribute to aging and decreased lifespan. In this review, we discuss what is currently known about mitochondrial dysfunction in the aging skeletal muscle and heart. We focused our discussion on the role of PGC-1 coactivators in the regulation of mitochondrial biogenesis and function and possible therapeutic benefits of increased mitochondrial biogenesis in compensating for mitochondrial dysfunction and circumventing aging and aging-related diseases.
Collapse
Affiliation(s)
- Lloye M Dillon
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, FL, USA
| | | | | |
Collapse
|
246
|
Ahlqvist KJ, Hämäläinen RH, Yatsuga S, Uutela M, Terzioglu M, Götz A, Forsström S, Salven P, Angers-Loustau A, Kopra OH, Tyynismaa H, Larsson NG, Wartiovaara K, Prolla T, Trifunovic A, Suomalainen A. Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice. Cell Metab 2012; 15:100-9. [PMID: 22225879 DOI: 10.1016/j.cmet.2011.11.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/24/2011] [Accepted: 11/30/2011] [Indexed: 12/30/2022]
Abstract
Somatic stem cell (SSC) dysfunction is typical for different progeroid phenotypes in mice with genomic DNA repair defects. MtDNA mutagenesis in mice with defective Polg exonuclease activity also leads to progeroid symptoms, by an unknown mechanism. We found that Polg-Mutator mice had neural (NSC) and hematopoietic progenitor (HPC) dysfunction already from embryogenesis. NSC self-renewal was decreased in vitro, and quiescent NSC amounts were reduced in vivo. HPCs showed abnormal lineage differentiation leading to anemia and lymphopenia. N-acetyl-L-cysteine treatment rescued both NSC and HPC abnormalities, suggesting that subtle ROS/redox changes, induced by mtDNA mutagenesis, modulate SSC function. Our results show that mtDNA mutagenesis affected SSC function early but manifested as respiratory chain deficiency in nondividing tissues in old age. Deletor mice, having mtDNA deletions in postmitotic cells and no progeria, had normal SSCs. We propose that SSC compartment is sensitive to mtDNA mutagenesis, and that mitochondrial dysfunction in SSCs can underlie progeroid manifestations.
Collapse
Affiliation(s)
- Kati J Ahlqvist
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Abstract
SIGNIFICANCE Plants produce many small molecules with biomedical potential. Their absorption from foods, metabolism, their effects on physiological and pathological processes, and the mechanisms of action are intensely investigated. Many are known to affect multiple cellular functions. Mitochondria are coming to be recognized as a major target for these compounds, especially redox-active ones, but the mechanisms involved still need clarification. At the same time, frontline research is uncovering the importance of processes involving these organelles for the cell and for an array of physiological and pathological processes. We review the major functions and possible dysfunctions of mitochondria, identify signaling pathways through which plant-derived molecules have an impact, and show how this may be relevant for major pathologies. RECENT ADVANCES Antioxidant, protective effects may arise as a reaction to a low-level pro-oxidant activity, largely taking place at mitochondria. Some plant-derived molecules can activate AMP-dependent kinase, with a consequent upregulation of mitochondrial biogenesis and a potential favorable impact on aging, pathologies like diabetes and neurodegeneration, and on ischemic damage. CRITICAL ISSUES The extrapolation of in vitro results and the verification of paradigms in vivo is a key issue for current research on both plant-derived compounds and mitochondria. The low bioavailability of many of these molecules poses a problem for both the study of their activities and their utilization. FUTURE DIRECTIONS The further clarification of the role of mitochondria in the activities of plant dietary compounds and their metabolites, mitochondrial targeting, the development of analogs and pro-drugs are all topics for promising research.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Institute of Neuroscience, Department of Experimental Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
248
|
Ross JM. Visualization of mitochondrial respiratory function using cytochrome c oxidase/succinate dehydrogenase (COX/SDH) double-labeling histochemistry. J Vis Exp 2011:e3266. [PMID: 22143245 DOI: 10.3791/3266] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Mitochondrial DNA (mtDNA) defects are an important cause of disease and may underlie aging and aging-related alterations (1,2). The mitochondrial theory of aging suggests a role for mtDNA mutations, which can alter bioenergetics homeostasis and cellular function, in the aging process (3). A wealth of evidence has been compiled in support of this theory (1,4), an example being the mtDNA mutator mouse (5); however, the precise role of mtDNA damage in aging is not entirely understood (6,7). Observing the activity of respiratory enzymes is a straightforward approach for investigating mitochondrial dysfunction. Complex IV, or cytochrome c oxidase (COX), is essential for mitochondrial function. The catalytic subunits of COX are encoded by mtDNA and are essential for assembly of the complex (Figure 1). Thus, proper synthesis and function are largely based on mtDNA integrity (2). Although other respiratory complexes could be investigated, Complexes IV and II are the most amenable to histochemical examination (8,9). Complex II, or succinate dehydrogenase (SDH), is entirely encoded by nuclear DNA (Figure 1), and its activity is typically not affected by impaired mtDNA, although an increase might indicate mitochondrial biogenesis (10-12). The impaired mtDNA observed in mitochondrial diseases, aging, and age-related diseases often leads to the presence of cells with low or absent COX activity (2,12-14). Although COX and SDH activities can be investigated individually, the sequential double-labeling method (15,16) has proved to be advantageous in locating cells with mitochondrial dysfunction (12,17-21). Many of the optimal constitutions of the assay have been determined, such as substrate concentration, electron acceptors/donors, intermediate electron carriers, influence of pH, and reaction time (9,22,23). 3,3'-diaminobenzidine (DAB) is an effective and reliable electron donor (22). In cells with functioning COX, the brown indamine polymer product will localize in mitochondrial cristae and saturate cells (22). Those cells with dysfunctional COX will therefore not be saturated by the DAB product, allowing for the visualization of SDH activity by reduction of nitroblue tetrazolium (NBT), an electron acceptor, to a blue formazan end product (9,24). Cytochrome c and sodium succinate substrates are added to normalize endogenous levels between control and diseased/mutant tissues (9). Catalase is added as a precaution to avoid possible contaminating reactions from peroxidase activity (9,22). Phenazine methosulfate (PMS), an intermediate electron carrier, is used in conjunction with sodium azide, a respiratory chain inhibitor, to increase the formation of the final reaction products (9,25). Despite this information, some critical details affecting the result of this seemly straightforward assay, in addition to specificity controls and advances in the technique, have not yet been presented.
Collapse
Affiliation(s)
- Jaime M Ross
- Department of Neuroscience, Karolinska Institutet
| |
Collapse
|
249
|
Hong S. Can we jog our way to a younger-looking immune system? Brain Behav Immun 2011; 25:1519-20. [PMID: 21878385 DOI: 10.1016/j.bbi.2011.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 08/14/2011] [Indexed: 11/17/2022] Open
Affiliation(s)
- Suzi Hong
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093-0804, USA.
| |
Collapse
|
250
|
Little JP, Safdar A, Benton CR, Wright DC. Skeletal muscle and beyond: the role of exercise as a mediator of systemic mitochondrial biogenesis. Appl Physiol Nutr Metab 2011; 36:598-607. [DOI: 10.1139/h11-076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been known for more than 4 decades that exercise causes increases in skeletal muscle mitochondrial enzyme content and activity (i.e., mitochondrial biogenesis). Increasing evidence now suggests that exercise can induce mitochondrial biogenesis in a wide range of tissues not normally associated with the metabolic demands of exercise. Perturbations in mitochondrial content and (or) function have been linked to a wide variety of diseases, in multiple tissues, and exercise may serve as a potent approach by which to prevent and (or) treat these pathologies. In this context, the purpose of this review is to highlight the effects of exercise, and the underlying mechanisms therein, on the induction of mitochondrial biogenesis in skeletal muscle, adipose tissue, liver, brain, and kidney.
Collapse
Affiliation(s)
- Jonathan P. Little
- Department of Biology, I.K. Barber School of Arts and Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Adeel Safdar
- Departments of Kinesiology, Pediatrics and Medicine, McMaster University, Hamilton, ON, Canada
| | - Carley R. Benton
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - David C. Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|