201
|
Callegari S, Oeljeklaus S, Warscheid B, Dennerlein S, Thumm M, Rehling P, Dudek J. Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects. Autophagy 2016; 13:201-211. [PMID: 27846363 DOI: 10.1080/15548627.2016.1254852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The E3 ubiquitin ligase PARK2 and the mitochondrial protein kinase PINK1 are required for the initiation of mitochondrial damage-induced mitophagy. Together, PARK2 and PINK1 generate a phospho-ubiquitin signal on outer mitochondrial membrane proteins that triggers recruitment of the autophagy machinery. This paper describes the detection of a defined 500-kDa phospho-ubiquitin-rich PARK2 complex that accumulates on mitochondria upon treatment with the membrane uncoupler CCCP. Formation of this complex is dependent on the presence of PINK1 and is absent in mutant forms of PARK2, whereby mitophagy is also arrested. These results signify a functional signaling complex that is essential for the progression of mitophagy. The visualization of the PARK2 signaling complex represents a novel marker for this critical step in mitophagy and can be used to monitor mitophagy progression in PARK2 mutants and to uncover additional upstream factors required for PARK2-mediated mitophagy signaling.
Collapse
Affiliation(s)
- Sylvie Callegari
- a Department of Cellular Biochemistry , University Medical Center Göttingen , Göttingen , Germany
| | - Silke Oeljeklaus
- b University of Freiburg , Department of Biochemistry and Functional Proteomics , Institute of Biology II, Faculty of Biology , Freiburg , Germany
| | - Bettina Warscheid
- b University of Freiburg , Department of Biochemistry and Functional Proteomics , Institute of Biology II, Faculty of Biology , Freiburg , Germany.,c University of Freiburg, BIOSS Center for Biological Signaling Studies , Freiburg , Germany
| | - Sven Dennerlein
- a Department of Cellular Biochemistry , University Medical Center Göttingen , Göttingen , Germany
| | - Michael Thumm
- a Department of Cellular Biochemistry , University Medical Center Göttingen , Göttingen , Germany
| | - Peter Rehling
- a Department of Cellular Biochemistry , University Medical Center Göttingen , Göttingen , Germany.,d Max Planck Institute for Biophysical Chemistry , Göttingen , Germany
| | - Jan Dudek
- a Department of Cellular Biochemistry , University Medical Center Göttingen , Göttingen , Germany
| |
Collapse
|
202
|
Bingol B, Sheng M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic Biol Med 2016; 100:210-222. [PMID: 27094585 DOI: 10.1016/j.freeradbiomed.2016.04.015] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 12/16/2022]
Abstract
Mitochondrial quality control is central for maintaining a healthy population of mitochondria. Two Parkinson's disease genes, mitochondrial kinase PINK1 and ubiquitin ligase Parkin, degrade damaged mitochondria though mitophagy. In this pathway, PINK1 senses mitochondrial damage and activates Parkin by phosphorylating Parkin and ubiquitin. Activated Parkin then builds ubiquitin chains on damaged mitochondria to tag them for degradation in lysosomes. USP30 deubiquitinase acts as a brake on mitophagy by opposing Parkin-mediated ubiquitination. Human genetic data point to a role for mitophagy defects in neurodegenerative diseases. This review highlights the molecular mechanisms of the mitophagy pathway and the recent advances in the understanding of mitophagy in vivo.
Collapse
Affiliation(s)
- Baris Bingol
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA.
| | - Morgan Sheng
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA
| |
Collapse
|
203
|
Nguyen TN, Padman BS, Lazarou M. Deciphering the Molecular Signals of PINK1/Parkin Mitophagy. Trends Cell Biol 2016; 26:733-744. [DOI: 10.1016/j.tcb.2016.05.008] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/16/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
204
|
Buetow L, Huang DT. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat Rev Mol Cell Biol 2016; 17:626-42. [PMID: 27485899 PMCID: PMC6211636 DOI: 10.1038/nrm.2016.91] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covalent attachment (conjugation) of one or more ubiquitin molecules to protein substrates governs numerous eukaryotic cellular processes, including apoptosis, cell division and immune responses. Ubiquitylation was originally associated with protein degradation, but it is now clear that ubiquitylation also mediates processes such as protein-protein interactions and cell signalling depending on the type of ubiquitin conjugation. Ubiquitin ligases (E3s) catalyse the final step of ubiquitin conjugation by transferring ubiquitin from ubiquitin-conjugating enzymes (E2s) to substrates. In humans, more than 600 E3s contribute to determining the fates of thousands of substrates; hence, E3s need to be tightly regulated to ensure accurate substrate ubiquitylation. Recent findings illustrate how E3s function on a structural level and how they coordinate with E2s and substrates to meticulously conjugate ubiquitin. Insights regarding the mechanisms of E3 regulation, including structural aspects of their autoinhibition and activation are also emerging.
Collapse
Affiliation(s)
- Lori Buetow
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Danny T. Huang
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| |
Collapse
|
205
|
Rose CM, Isasa M, Ordureau A, Prado MA, Beausoleil SA, Jedrychowski MP, Finley DJ, Harper JW, Gygi SP. Highly Multiplexed Quantitative Mass Spectrometry Analysis of Ubiquitylomes. Cell Syst 2016; 3:395-403.e4. [PMID: 27667366 DOI: 10.1016/j.cels.2016.08.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/21/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022]
Abstract
System-wide quantitative analysis of ubiquitylomes has proven to be a valuable tool for elucidating targets and mechanisms of the ubiquitin-driven signaling systems, as well as gaining insights into neurodegenerative diseases and cancer. Current mass spectrometry methods for ubiquitylome detection require large amounts of starting material and rely on stochastic data collection to increase replicate analyses. We describe a method compatible with cell line and tissue samples for large-scale quantification of 5,000-9,000 ubiquitylation forms across ten samples simultaneously. Using this method, we reveal site-specific ubiquitylation in mammalian brain and liver tissues, as well as in cancer cells undergoing proteasome inhibition. To demonstrate the power of the approach for signal-dependent ubiquitylation, we examined protein and ubiquitylation dynamics for mitochondria undergoing PARKIN- and PINK1-dependent mitophagy. This analysis revealed the largest collection of PARKIN- and PINK1-dependent ubiquitylation targets to date in a single experiment, and it also revealed a subset of proteins recruited to the mitochondria during mitophagy.
Collapse
Affiliation(s)
- Christopher M Rose
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marta Isasa
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Daniel J Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
206
|
Structural insights into Parkin substrate lysine targeting from minimal Miro substrates. Sci Rep 2016; 6:33019. [PMID: 27605430 PMCID: PMC5015425 DOI: 10.1038/srep33019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022] Open
Abstract
Hereditary Parkinson's disease is commonly caused by mutations in the protein kinase PINK1 or the E3 ubiquitin ligase Parkin, which function together to eliminate damaged mitochondria. PINK1 phosphorylates both Parkin and ubiquitin to stimulate ubiquitination of dozens of proteins on the surface of the outer mitochondrial membrane. However, the mechanisms by which Parkin recognizes specific proteins for modification remain largely unexplored. Here, we show that the C-terminal GTPase (cGTPase) of the Parkin primary substrate human Miro is necessary and sufficient for efficient ubiquitination. We present several new X-ray crystal structures of both human Miro1 and Miro2 that reveal substrate recognition and ubiquitin transfer to be specific to particular protein domains and lysine residues. We also provide evidence that Parkin substrate recognition is functionally separate from substrate modification. Finally, we show that prioritization for modification of a specific lysine sidechain of the cGTPase (K572) within human Miro1 is dependent on both its location and chemical microenvironment. Activation of Parkin by phosphorylation or by binding of pUb is required for prioritization of K572 for modification, suggesting that Parkin activation and acquisition of substrate specificity are coupled.
Collapse
|
207
|
Parkin and mitophagy in cancer. Oncogene 2016; 36:1315-1327. [PMID: 27593930 DOI: 10.1038/onc.2016.302] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
Mitophagy, the selective engulfment and clearance of mitochondria, is essential for the homeostasis of a healthy network of functioning mitochondria and prevents excessive production of cytotoxic reactive oxygen species from damaged mitochondria. The mitochondrially targeted PTEN-induced kinase-1 (PINK1) and the E3 ubiquitin ligase Parkin are well-established synergistic mediators of the mitophagy of dysfunctional mitochondria. This pathway relies on the ubiquitination of a number of mitochondrial outer membrane substrates and subsequent docking of autophagy receptor proteins to selectively clear mitochondria. There are also alternate Parkin-independent mitophagy pathways mediated by BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 and Nip-3 like protein X as well as other effectors. There is increasing evidence that ablation of mitophagy accelerates a number of pathologies. Familial Parkinsonism is associated with loss-of-function mutations in PINK1 and Parkin. A growing number of studies have observed a correlation between impaired Parkin activity and enhanced cancer development, leading to the emerging concept that Parkin activity, or mitophagy in general, is a tumour suppression mechanism. This review examines the molecular mechanisms of mitophagy and highlights the potential links between Parkin and the hallmarks of cancer that may influence tumour development and progression.
Collapse
|
208
|
Nakazawa S, Oikawa D, Ishii R, Ayaki T, Takahashi H, Takeda H, Ishitani R, Kamei K, Takeyoshi I, Kawakami H, Iwai K, Hatada I, Sawasaki T, Ito H, Nureki O, Tokunaga F. Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun 2016; 7:12547. [PMID: 27552911 PMCID: PMC4999505 DOI: 10.1038/ncomms12547] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 07/12/2016] [Indexed: 12/14/2022] Open
Abstract
Optineurin (OPTN) mutations cause neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and glaucoma. Although the ALS-associated E478G mutation in the UBAN domain of OPTN reportedly abolishes its NF-κB suppressive activity, the precise molecular basis in ALS pathogenesis still remains unclear. Here we report that the OPTN-UBAN domain is crucial for NF-κB suppression. Our crystal structure analysis reveals that OPTN-UBAN binds linear ubiquitin with homology to NEMO. TNF-α-mediated NF-κB activation is enhanced in OPTN-knockout cells, through increased ubiquitination and association of TNF receptor (TNFR) complex I components. Furthermore, OPTN binds caspase 8, and OPTN deficiency accelerates TNF-α-induced apoptosis by enhancing complex II formation. Immunohistochemical analyses of motor neurons from OPTN-associated ALS patients reveal that linear ubiquitin and activated NF-κB are partially co-localized with cytoplasmic inclusions, and that activation of caspases is elevated. Taken together, OPTN regulates both NF-κB activation and apoptosis via linear ubiquitin binding, and the loss of this ability may lead to ALS. Mutations in optineurin are associated with neurodegenerative diseases, including amyotrophic lateral sclerosis. Here, the authors report the structure of the ubiquitin binding domain of optineurin, which binds linear ubiquitin with homology to NEMO, and explore the function of this domain.
Collapse
Affiliation(s)
- Seshiru Nakazawa
- Laboratory of Molecular Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.,Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Daisuke Oikawa
- Laboratory of Molecular Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.,Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Ryohei Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takashi Ayaki
- Department of Neurology, Wakayama Medical University, 811-1, Kimiidera, Wakayama, Wakayama 641-8510, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Shogoin, Kyoto 606-8507, Japan
| | - Hirotaka Takahashi
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Takeda
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kiyoko Kamei
- Laboratory of Molecular Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan
| | - Izumi Takeyoshi
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, 811-1, Kimiidera, Wakayama, Wakayama 641-8510, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Fuminori Tokunaga
- Laboratory of Molecular Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.,Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
209
|
Crowe SO, Pham GH, Ziegler JC, Deol KK, Guenette RG, Ge Y, Strieter ER. Subunit-Specific Labeling of Ubiquitin Chains by Using Sortase: Insights into the Selectivity of Deubiquitinases. Chembiochem 2016; 17:1525-31. [PMID: 27256865 PMCID: PMC5459594 DOI: 10.1002/cbic.201600276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 12/12/2022]
Abstract
Information embedded in different ubiquitin chains is transduced by proteins with ubiquitin-binding domains (UBDs) and erased by a set of hydrolytic enzymes referred to as deubiquitinases (DUBs). Understanding the selectivity of UBDs and DUBs is necessary for decoding the functions of different ubiquitin chains. Critical to these efforts is the access to chemically defined ubiquitin chains bearing site-specific fluorescent labels. One approach toward constructing such molecules involves peptide ligation by sortase (SrtA), a bacterial transpeptidase responsible for covalently attaching cell surface proteins to the cell wall. Here, we demonstrate the utility of SrtA in modifying individual subunits of ubiquitin chains. Using ubiquitin derivatives in which an N-terminal glycine is unveiled after protease-mediated digestion, we synthesized ubiquitin dimers, trimers, and tetramers with different isopeptide linkages. SrtA was then used in combination with fluorescent depsipeptide substrates to effect the modification of each subunit in a chain. By constructing branched ubiquitin chains with individual subunits tagged with a fluorophore, we provide evidence that the ubiquitin-specific protease USP15 prefers ubiquitin trimers but has little preference for a particular isopeptide linkage. Our results emphasize the importance of subunit-specific labeling of ubiquitin chains when studying how DUBs process these chains.
Collapse
Affiliation(s)
- Sean O Crowe
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Grace H Pham
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jacob C Ziegler
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kirandeep K Deol
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Robert G Guenette
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Eric R Strieter
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
210
|
Slowicka K, Vereecke L, van Loo G. Cellular Functions of Optineurin in Health and Disease. Trends Immunol 2016; 37:621-633. [PMID: 27480243 DOI: 10.1016/j.it.2016.07.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022]
Abstract
Optineurin (OPTN) was initially identified as a regulator of NF-κB and interferon signaling, but attracted most attention because of its association with various human disorders such as glaucoma, Paget disease of bone, and amyotrophic lateral sclerosis. Importantly, OPTN has recently been identified as an autophagy receptor important for the autophagic removal of pathogens, damaged mitochondria, and protein aggregates. This activity is most likely compromised in patients carrying OPTN mutations, and contributes to the observed phenotypes. In this review we summarize recent studies describing the molecular mechanisms by which OPTN controls immunity and autophagy, and discuss these findings in the context of several diseases that have been associated with OPTN (mal)function.
Collapse
Affiliation(s)
- Karolina Slowicka
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)Physiology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Lars Vereecke
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)Physiology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Geert van Loo
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)Physiology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
211
|
Abstract
Small ubiquitin-like modifiers (SUMOs) are essential for the regulation of several cellular processes and are potential therapeutic targets owing to their involvement in diseases such as cancer and Alzheimer disease. In the past decade, we have witnessed a rapid expansion of proteomic approaches for identifying sumoylated proteins, with recent advances in detecting site-specific sumoylation. In this Analysis, we combined all human SUMO proteomics data currently available into one cohesive database. We provide proteomic evidence for sumoylation of 3,617 proteins at 7,327 sumoylation sites, and insight into SUMO group modification by clustering the sumoylated proteins into functional networks. The data support sumoylation being a frequent protein modification (on par with other major protein modifications) with multiple nuclear functions, including in transcription, mRNA processing, DNA replication and the DNA-damage response.
Collapse
|
212
|
Roberts RF, Tang MY, Fon EA, Durcan TM. Defending the mitochondria: The pathways of mitophagy and mitochondrial-derived vesicles. Int J Biochem Cell Biol 2016; 79:427-436. [PMID: 27443527 DOI: 10.1016/j.biocel.2016.07.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023]
Abstract
Mitochondria are the powerhouses for the cell, consuming oxygen to generate sufficient energy for the maintenance of normal cellular processes. However, a deleterious consequence of this process are reactive oxygen species generated as side-products of these reactions. As a means to protect mitochondria from damage, cells and mitochondria have developed a wide-range of mitochondrial quality control mechanisms that remove damaged mitochondrial cargo, enabling the mitochondria to repair the damage and ultimately restore their normal function. If the damage is extensive and mitochondria can no longer be repaired, a process termed mitophagy is initiated in which the mitochondria are directed for autophagic clearance. Canonical mitophagy is regulated by two proteins, PINK1 and Parkin, which are mutated in familial forms of Parkinson's disease. In this review, we discuss recent work elucidating the mechanism of PINK1/Parkin-mediated mitophagy, along with recently uncovered PINK1/Parkin-independent mitophagy pathways. Moreover, we describe a novel mitochondrial quality control pathway, involving mitochondrial-derived vesicles that direct distinct and damaged mitochondrial cargo for degradation in the lysosome. Finally, we discuss the association between mitochondrial quality control, cardiac, hepatic and neurodegenerative disease and discuss the possibility of targeting these pathways for therapeutic purposes.
Collapse
Affiliation(s)
- Rosalind F Roberts
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada
| | - Matthew Y Tang
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada
| | - Edward A Fon
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada
| | - Thomas M Durcan
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada.
| |
Collapse
|
213
|
Synthesis of Isomeric Phosphoubiquitin Chains Reveals that Phosphorylation Controls Deubiquitinase Activity and Specificity. Cell Rep 2016; 16:1180-1193. [PMID: 27425610 PMCID: PMC4967478 DOI: 10.1016/j.celrep.2016.06.064] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/05/2016] [Accepted: 06/14/2016] [Indexed: 01/30/2023] Open
Abstract
Ubiquitin is post-translationally modified by phosphorylation at several sites, but the consequences of these modifications are largely unknown. Here, we synthesize multi-milligram quantities of ubiquitin phosphorylated at serine 20, serine 57, and serine 65 via genetic code expansion. We use these phosphoubiquitins for the enzymatic assembly of 20 isomeric phosphoubiquitin dimers, with different sites of isopeptide linkage and/or phosphorylation. We discover that phosphorylation of serine 20 on ubiquitin converts UBE3C from a dual-specificity E3 ligase into a ligase that primarily synthesizes K48 chains. We profile the activity of 31 deubiquitinases on the isomeric phosphoubiquitin dimers in 837 reactions, and we discover that phosphorylation at distinct sites in ubiquitin can activate or repress cleavage of a particular linkage by deubiquitinases and that phosphorylation at a single site in ubiquitin can control the specificity of deubiquitinases for distinct ubiquitin linkages. Milligram quantities of ubiquitin phosphorylated at Ser 20, 57, or 65 are purified Twenty isomeric phosphoubiquitin dimers are assembled and purified UBE3C chain synthesis specificity is controlled by Ser 20 ubiquitin phosphorylation Phosphorylation of ubiquitin controls deubiquitinase activity and linkage specificity
Collapse
|
214
|
Riley JS, Tait SW. Mechanisms of mitophagy: putting the powerhouse into the doghouse. Biol Chem 2016; 397:617-35. [DOI: 10.1515/hsz-2016-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Abstract
Since entering our cells in an endosymbiotic event one billion years ago, mitochondria have shaped roles for themselves in metabolism, inflammation, calcium storage, migration, and cell death. Given this critical role in cellular homeostasis it is essential that they function correctly. Equally critical is the ability of a cell to remove damaged or superfluous mitochondria to avoid potential deleterious effects. In this review we will discuss the various mechanisms of mitochondrial clearance, with a particular focus on Parkin/PINK1-mediated mitophagy, discuss the impact of altered mitophagy in ageing and disease, and finally consider potential therapeutic benefits of targeting mitophagy.
Collapse
|
215
|
Pearlstein E, Michel FJ, Save L, Ferrari DC, Hammond C. Abnormal Development of Glutamatergic Synapses Afferent to Dopaminergic Neurons of the Pink1(-/-) Mouse Model of Parkinson's Disease. Front Cell Neurosci 2016; 10:168. [PMID: 27445695 PMCID: PMC4917553 DOI: 10.3389/fncel.2016.00168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/09/2016] [Indexed: 11/13/2022] Open
Abstract
In a preceding study, we showed that in adult pink1−/− mice, a monogenic animal model of Parkinson’s disease (PD), striatal neurons display aberrant electrical activities that precede the onset of overt clinical manifestations. Here, we tested the hypothesis that the maturation of dopaminergic (DA) neurons of the pink1−/− substantia nigra compacta (SNc) follows, from early stages on, a different developmental trajectory from age-matched wild type (wt) SNc DA neurons. We used immature (postnatal days P2–P10) and young adult (P30–P90) midbrain slices of pink1−/− mice expressing the green fluorescent protein in tyrosine hydroxylase (TH)-positive neurons. We report that the developmental sequence of N-Methyl-D-aspartic acid (NMDA) spontaneous excitatory postsynaptic currents (sEPSCs) is altered in pink1−/− SNc DA neurons, starting from shortly after birth. They lack the transient episode of high NMDA receptor-mediated neuronal activity characteristic of the immature stage of wt SNc DA neurons. The maturation of the membrane resistance of pink1−/− SNc DA neurons is also altered. Collectively, these observations suggest that electrical manifestations occurring shortly after birth in SNc DA neurons might lead to dysfunction in dopamine release and constitute an early pathogenic mechanism of PD.
Collapse
Affiliation(s)
- Edouard Pearlstein
- UMR901, Aix-Marseille UniversitéMarseille, France; Institut de Neurobiologie de la Méditerranée (INMED), Inserm UMR 901Marseille, France
| | - François J Michel
- UMR901, Aix-Marseille UniversitéMarseille, France; Institut de Neurobiologie de la Méditerranée (INMED), Inserm UMR 901Marseille, France
| | - Laurène Save
- UMR901, Aix-Marseille UniversitéMarseille, France; Institut de Neurobiologie de la Méditerranée (INMED), Inserm UMR 901Marseille, France
| | - Diana C Ferrari
- UMR901, Aix-Marseille UniversitéMarseille, France; Institut de Neurobiologie de la Méditerranée (INMED), Inserm UMR 901Marseille, France
| | - Constance Hammond
- UMR901, Aix-Marseille UniversitéMarseille, France; Institut de Neurobiologie de la Méditerranée (INMED), Inserm UMR 901Marseille, France
| |
Collapse
|
216
|
Liang Q, Kobayashi S. Mitochondrial quality control in the diabetic heart. J Mol Cell Cardiol 2016; 95:57-69. [PMID: 26739215 PMCID: PMC6263145 DOI: 10.1016/j.yjmcc.2015.12.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/03/2015] [Accepted: 12/26/2015] [Indexed: 02/07/2023]
Abstract
Diabetes is a well-known risk factor for heart failure. Diabetic heart damage is closely related to mitochondrial dysfunction and increased ROS generation. However, clinical trials have shown no effects of antioxidant therapies on heart failure in diabetic patients, suggesting that simply antagonizing existing ROS by antioxidants is not sufficient to reduce diabetic cardiac injury. A potentially more effective treatment strategy may be to enhance the overall capacity of mitochondrial quality control to maintain a pool of healthy mitochondria that are needed for supporting cardiac contractile function in diabetic patients. Mitochondrial quality is controlled by a number of coordinated mechanisms including mitochondrial fission and fusion, mitophagy and biogenesis. The mitochondrial damage consistently observed in the diabetic hearts indicates a failure of the mitochondrial quality control mechanisms. Recent studies have demonstrated a crucial role for each of these mechanisms in cardiac homeostasis and have begun to interrogate the relative contribution of insufficient mitochondrial quality control to diabetic cardiac injury. In this review, we will present currently available literature that links diabetic heart disease to the dysregulation of major mitochondrial quality control mechanisms. We will discuss the functional roles of these mechanisms in the pathogenesis of diabetic heart disease and their potentials for targeted therapeutical manipulation.
Collapse
Affiliation(s)
- Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
| | - Satoru Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| |
Collapse
|
217
|
George S, Aguirre JD, Spratt DE, Bi Y, Jeffery M, Shaw GS, O'Donoghue P. Generation of phospho-ubiquitin variants by orthogonal translation reveals codon skipping. FEBS Lett 2016; 590:1530-42. [DOI: 10.1002/1873-3468.12182] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Susanna George
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Jacob D. Aguirre
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Donald E. Spratt
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Yumin Bi
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Madeline Jeffery
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Gary S. Shaw
- Department of Biochemistry; The University of Western Ontario; London Canada
- Department of Chemistry; The University of Western Ontario; London Canada
| | - Patrick O'Donoghue
- Department of Biochemistry; The University of Western Ontario; London Canada
- Department of Chemistry; The University of Western Ontario; London Canada
| |
Collapse
|
218
|
Pao KC, Stanley M, Han C, Lai YC, Murphy P, Balk K, Wood NT, Corti O, Corvol JC, Muqit MM, Virdee S. Probes of ubiquitin E3 ligases enable systematic dissection of parkin activation. Nat Chem Biol 2016; 12:324-31. [PMID: 26928937 PMCID: PMC4909137 DOI: 10.1038/nchembio.2045] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/08/2016] [Indexed: 12/17/2022]
Abstract
E3 ligases represent an important class of enzymes, yet there are currently no chemical probes for profiling their activity. We develop a new class of activity-based probe by re-engineering a ubiquitin-charged E2 conjugating enzyme and demonstrate the utility of these probes by profiling the transthiolation activity of the RING-in-between-RING (RBR) E3 ligase parkin in vitro and in cellular extracts. Our study provides valuable insight into the roles, and cellular hierarchy, of distinct phosphorylation events in parkin activation. We also profile parkin mutations associated with patients with Parkinson's disease and demonstrate that they mediate their effect largely by altering transthiolation activity. Furthermore, our probes enable direct and quantitative measurement of endogenous parkin activity, revealing that endogenous parkin is activated in neuronal cell lines (≥75%) in response to mitochondrial depolarization. This new technology also holds promise as a novel biomarker of PINK1-parkin signaling, as demonstrated by its compatibility with samples derived from individuals with Parkinson's disease.
Collapse
Affiliation(s)
- Kuan-Chuan Pao
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| | - Mathew Stanley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| | - Cong Han
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| | - Yu-Chiang Lai
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| | - Paul Murphy
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| | - Kristin Balk
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| | - Nicola T. Wood
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| | - Olga Corti
- Sorbonne Universités, UPMC Univ Paris 06; and INSERM UMRS_1127, CIC_1422; CNRS UMR_7225; AP-HP and ICM, Hôpital Pitié-Salpêtrière, Department of Neurology, F-75013, Paris, France
| | - Jean-Christophe Corvol
- Sorbonne Universités, UPMC Univ Paris 06; and INSERM UMRS_1127, CIC_1422; CNRS UMR_7225; AP-HP and ICM, Hôpital Pitié-Salpêtrière, Department of Neurology, F-75013, Paris, France
| | - Miratul M.K. Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
- School of Medicine, University of Dundee, Dundee, Scotland, UK, DD1 9SY
| | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| |
Collapse
|
219
|
Abstract
Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation.
Collapse
Affiliation(s)
- Kirby N Swatek
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
220
|
Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A 2016; 113:4039-44. [PMID: 27035970 DOI: 10.1073/pnas.1523926113] [Citation(s) in RCA: 530] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selective autophagy of damaged mitochondria requires autophagy receptors optineurin (OPTN), NDP52 (CALCOCO2), TAX1BP1, and p62 (SQSTM1) linking ubiquitinated cargo to autophagic membranes. By using quantitative proteomics, we show that Tank-binding kinase 1 (TBK1) phosphorylates all four receptors on several autophagy-relevant sites, including the ubiquitin- and LC3-binding domains of OPTN and p62/SQSTM1 as well as the SKICH domains of NDP52 and TAX1BP1. Constitutive interaction of TBK1 with OPTN and the ability of OPTN to bind to ubiquitin chains are essential for TBK1 recruitment and kinase activation on mitochondria. TBK1 in turn phosphorylates OPTN's UBAN domain at S473, thereby expanding the binding capacity of OPTN to diverse Ub chains. In combination with phosphorylation of S177 and S513, this posttranslational modification promotes recruitment and retention of OPTN/TBK1 on ubiquitinated, damaged mitochondria. Moreover, phosphorylation of OPTN on S473 enables binding to pS65 Ub chains and is also implicated in PINK1-driven and Parkin-independent mitophagy. Thus, TBK1-mediated phosphorylation of autophagy receptors creates a signal amplification loop operating in selective autophagy of damaged mitochondria.
Collapse
|
221
|
Dorn GW. Central Parkin: The evolving role of Parkin in the heart. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1307-1312. [PMID: 26992930 DOI: 10.1016/j.bbabio.2016.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/11/2016] [Accepted: 03/13/2016] [Indexed: 11/17/2022]
Abstract
Parkin is familiar to many because of its link to Parkinson's disease, and to others because of its well-characterized role as a central factor mediating selective mitophagy of damaged mitochondria for mitochondrial quality control. The genetic connection between Parkin and Parkinson's disease derives from clinical gene-association studies, whereas our mechanistic understanding of Parkin functioning in mitophagy is based almost entirely on work performed in cultured cells. Surprisingly, experimental evidence linking the disease and the presumed mechanism derives almost entirely from fruit flies; germline Parkin deficient mice do not develop Parkinson's disease phenotypes. Moreover, genetic manipulation of Parkin signaling in mouse hearts does not support a central role for Parkin in homeostatic mitochondrial quality control in this mitochondria-rich and -dependent organ. Here, I provide an overview of data suggesting that (in mouse hearts at least) Parkin functions more as a stress-induced and developmentally-programmed facilitator of cardiomyocyte mitochondrial turnover. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
222
|
Abstract
Ubiquitin plays an essential role in modulating protein functions, and deregulation of the ubiquitin system leads to the development of multiple human diseases. Owing to its molecular features, ubiquitin can form various homo- and heterotypic polymers on substrate proteins, thereby provoking distinct cellular responses. The concept of multifaceted ubiquitin chains encoding different functions has been substantiated in recent years. It has been established that all possible ubiquitin linkage types are utilized for chain assembly and propagation of specific signals in vivo. In addition, branched ubiquitin chains and phosphorylated ubiquitin molecules have been put under the spotlight recently. The development of novel technologies has provided detailed insights into the structure and function of previously poorly understood ubiquitin signals. In this Cell Science at a Glance article and accompanying poster, we provide an update on the complexity of ubiquitin chains and their physiological relevance.
Collapse
Affiliation(s)
- Masato Akutsu
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von Laue-Str. 15, Frankfurt 60438, Germany
| | - Ivan Dikic
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von Laue-Str. 15, Frankfurt 60438, Germany
| | - Anja Bremm
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von Laue-Str. 15, Frankfurt 60438, Germany
| |
Collapse
|
223
|
Yamano K, Matsuda N, Tanaka K. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep 2016; 17:300-16. [PMID: 26882551 DOI: 10.15252/embr.201541486] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
The quality of mitochondria, essential organelles that produce ATP and regulate numerous metabolic pathways, must be strictly monitored to maintain cell homeostasis. The loss of mitochondrial quality control systems is acknowledged as a determinant for many types of neurodegenerative diseases including Parkinson's disease (PD). The two gene products mutated in the autosomal recessive forms of familial early-onset PD, Parkin and PINK1, have been identified as essential proteins in the clearance of damaged mitochondria via an autophagic pathway termed mitophagy. Recently, significant progress has been made in understanding how the mitochondrial serine/threonine kinase PINK1 and the E3 ligase Parkin work together through a novel stepwise cascade to identify and eliminate damaged mitochondria, a process that relies on the orchestrated crosstalk between ubiquitin/phosphorylation signaling and autophagy. In this review, we highlight our current understanding of the detailed molecular mechanisms governing Parkin-/PINK1-mediated mitophagy and the evidences connecting Parkin/PINK1 function and mitochondrial clearance in neurons.
Collapse
Affiliation(s)
- Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
224
|
Chin LS, Li L. Ubiquitin phosphorylation in Parkinson's disease: Implications for pathogenesis and treatment. Transl Neurodegener 2016; 5:1. [PMID: 26740872 PMCID: PMC4702311 DOI: 10.1186/s40035-015-0049-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized primarily by the loss of dopaminergic neurons in substantia nigra. The pathogenic mechanisms of PD remain unclear, and no effective therapy currently exists to stop neurodegeneration in this debilitating disease. The identification of mutations in mitochondrial serine/threonine kinase PINK1 or E3 ubiquitin-protein ligase parkin as the cause of autosomal recessive PD opens up new avenues for uncovering neuroprotective pathways and PD pathogenic mechanisms. Recent studies reveal that PINK1 translocates to the outer mitochondrial membrane in response to mitochondrial depolarization and phosphorylates ubiquitin at the residue Ser65. The phosphorylated ubiquitin serves as a signal for activating parkin and recruiting autophagy receptors to promote clearance of damaged mitochondria via mitophagy. Emerging evidence has begun to indicate a link between impaired ubiquitin phosphorylation-dependent mitophagy and PD pathogenesis and supports the potential of Ser65-phosphorylated ubiquitin as a biomarker for PD. The new mechanistic insights and phenotypic screens have identified multiple potential therapeutic targets for PD drug discovery. This review highlights recent advances in understanding ubiquitin phosphorylation in mitochondrial quality control and PD pathogenesis and discusses how these findings can be translated into novel approaches for PD diagnostic and therapeutic development.
Collapse
Affiliation(s)
- Lih-Shen Chin
- Department of Pharmacology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Lian Li
- Department of Pharmacology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
225
|
Abstract
In this issue of Molecular Cell, Heo et al. (2015) uncover a new mechanism of signal amplification during mitophagy through cooperative regulation of the TBK1 kinase and autophagy receptors.
Collapse
Affiliation(s)
- Andrew G Manford
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
226
|
Kumar A, Aguirre JD, Condos TEC, Martinez-Torres RJ, Chaugule VK, Toth R, Sundaramoorthy R, Mercier P, Knebel A, Spratt DE, Barber KR, Shaw GS, Walden H. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J 2015; 34:2506-21. [PMID: 26254304 PMCID: PMC4609183 DOI: 10.15252/embj.201592337] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 11/09/2022] Open
Abstract
The PARK2 gene is mutated in 50% of autosomal recessive juvenile parkinsonism (ARJP) cases. It encodes parkin, an E3 ubiquitin ligase of the RBR family. Parkin exists in an autoinhibited state that is activated by phosphorylation of its N-terminal ubiquitin-like (Ubl) domain and binding of phosphoubiquitin. We describe the 1.8 Å crystal structure of human parkin in its fully inhibited state and identify the key interfaces to maintain parkin inhibition. We identify the phosphoubiquitin-binding interface, provide a model for the phosphoubiquitin-parkin complex and show how phosphorylation of the Ubl domain primes parkin for optimal phosphoubiquitin binding. Furthermore, we demonstrate that the addition of phosphoubiquitin leads to displacement of the Ubl domain through loss of structure, unveiling a ubiquitin-binding site used by the E2~Ub conjugate, thus leading to active parkin. We find the role of the Ubl domain is to prevent parkin activity in the absence of the phosphorylation signals, and propose a model for parkin inhibition, optimization for phosphoubiquitin recruitment, release of inhibition by the Ubl domain and engagement with an E2~Ub conjugate. Taken together, this model provides a mechanistic framework for activating parkin.
Collapse
Affiliation(s)
- Atul Kumar
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Jacob D Aguirre
- Department of Biochemistry, Schulich School of Medicine & Dentistry University of Western Ontario, London, ON, Canada
| | - Tara E C Condos
- Department of Biochemistry, Schulich School of Medicine & Dentistry University of Western Ontario, London, ON, Canada
| | - R Julio Martinez-Torres
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Viduth K Chaugule
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | | | - Pascal Mercier
- Department of Biochemistry, Schulich School of Medicine & Dentistry University of Western Ontario, London, ON, Canada
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Donald E Spratt
- Department of Biochemistry, Schulich School of Medicine & Dentistry University of Western Ontario, London, ON, Canada
| | - Kathryn R Barber
- Department of Biochemistry, Schulich School of Medicine & Dentistry University of Western Ontario, London, ON, Canada
| | - Gary S Shaw
- Department of Biochemistry, Schulich School of Medicine & Dentistry University of Western Ontario, London, ON, Canada
| | - Helen Walden
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| |
Collapse
|
227
|
Pickrell AM, Huang CH, Kennedy SR, Ordureau A, Sideris DP, Hoekstra JG, Harper JW, Youle RJ. Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress. Neuron 2015; 87:371-81. [PMID: 26182419 DOI: 10.1016/j.neuron.2015.06.034] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/03/2015] [Accepted: 06/24/2015] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. PARK2 mutations cause early-onset forms of PD. PARK2 encodes an E3 ubiquitin ligase, Parkin, that can selectively translocate to dysfunctional mitochondria to promote their removal by autophagy. However, Parkin knockout (KO) mice do not display signs of neurodegeneration. To assess Parkin function in vivo, we utilized a mouse model that accumulates dysfunctional mitochondria caused by an accelerated generation of mtDNA mutations (Mutator mice). In the absence of Parkin, dopaminergic neurons in Mutator mice degenerated causing an L-DOPA reversible motor deficit. Other neuronal populations were unaffected. Phosphorylated ubiquitin was increased in the brains of Mutator mice, indicating PINK1-Parkin activation. Parkin loss caused mitochondrial dysfunction and affected the pathogenicity but not the levels of mtDNA somatic mutations. A systemic loss of Parkin synergizes with mitochondrial dysfunction causing dopaminergic neuron death modeling PD pathogenic processes.
Collapse
Affiliation(s)
- Alicia M Pickrell
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chiu-Hui Huang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott R Kennedy
- Department of Pathology, University of Washington, Seattle, WA 98104, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dionisia P Sideris
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jake G Hoekstra
- Department of Pathology, University of Washington, Seattle, WA 98104, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
228
|
Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW. The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Mol Cell 2015; 60:7-20. [PMID: 26365381 DOI: 10.1016/j.molcel.2015.08.016] [Citation(s) in RCA: 627] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/12/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Damaged mitochondria are detrimental to cellular homeostasis. One mechanism for removal of damaged mitochondria involves the PINK1-PARKIN pathway, which poly-ubiquitylates damaged mitochondria to promote mitophagy. We report that assembly of ubiquitin chains on mitochondria triggers autophagy adaptor recruitment concomitantly with activation of the TBK1 kinase, which physically associates with OPTN, NDP52, and SQSTM1. TBK1 activation in HeLa cells requires OPTN and NDP52 and OPTN ubiquitin chain binding. In addition to the known role of S177 phosphorylation in OPTN on ATG8 recruitment, TBK1-dependent phosphorylation on S473 and S513 promotes ubiquitin chain binding in vitro as well as TBK1 activation, OPTN mitochondrial retention, and efficient mitophagy in vivo. These data reveal a self-reinforcing positive feedback mechanism that coordinates TBK1-dependent autophagy adaptor phosphorylation with the assembly of ubiquitin chains on mitochondria to facilitate efficient mitophagy, and mechanistically links genes mutated in Parkinson's disease and amyotrophic lateral sclerosis in a common selective autophagy pathway.
Collapse
Affiliation(s)
- Jin-Mi Heo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Systems Biology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
229
|
Dove KK, Klevit RE, Rittinger K. pUBLically unzipping Parkin: how phosphorylation exposes a ligase bit by bit. EMBO J 2015; 34:2486-8. [PMID: 26346274 DOI: 10.15252/embj.201592857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Katja K Dove
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
230
|
Herhaus L, Dikic I. Expanding the ubiquitin code through post-translational modification. EMBO Rep 2015; 16:1071-83. [PMID: 26268526 PMCID: PMC4576978 DOI: 10.15252/embr.201540891] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022] Open
Abstract
Ubiquitylation is among the most prevalent post-translational modifications (PTMs) and regulates numerous cellular functions. Interestingly, ubiquitin (Ub) can be itself modified by other PTMs, including acetylation and phosphorylation. Acetylation of Ub on K6 and K48 represses the formation and elongation of Ub chains. Phosphorylation of Ub happens on multiple sites, S57 and S65 being the most frequently modified in yeast and mammalian cells, respectively. In mammals, the PINK1 kinase activates ubiquitin ligase Parkin by phosphorylating S65 of Ub and of the Parkin Ubl domain, which in turn promotes the amplification of autophagy signals necessary for the removal of damaged mitochondria. Similarly, TBK1 phosphorylates the autophagy receptors OPTN and p62 to initiate feedback and feedforward programs for Ub-dependent removal of protein aggregates, mitochondria and pathogens (such as Salmonella and Mycobacterium tuberculosis). The impact of PINK1-mediated phosphorylation of Ub and TBK1-dependent phosphorylation of autophagy receptors (OPTN and p62) has been recently linked to the development of Parkinson's disease and amyotrophic lateral sclerosis, respectively. Hence, the post-translational modification of Ub and its receptors can efficiently expand the Ub code and modulate its functions in health and disease.
Collapse
Affiliation(s)
- Lina Herhaus
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
231
|
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015; 524:309-314. [PMID: 26266977 PMCID: PMC5018156 DOI: 10.1038/nature14893] [Citation(s) in RCA: 1890] [Impact Index Per Article: 210.0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Michael Lazarou
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle A Sliter
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lesley A Kane
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shireen A Sarraf
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chunxin Wang
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathon L Burman
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dionisia P Sideris
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam I Fogel
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
232
|
Abstract
A recent report, solving the structure of a Parkin-phosphoubiquitin complex, greatly advances the understanding of the Parkin activation mechanism.
Collapse
|
233
|
Sauvé V, Lilov A, Seirafi M, Vranas M, Rasool S, Kozlov G, Sprules T, Wang J, Trempe JF, Gehring K. A Ubl/ubiquitin switch in the activation of Parkin. EMBO J 2015; 34:2492-505. [PMID: 26254305 PMCID: PMC4609182 DOI: 10.15252/embj.201592237] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/24/2015] [Indexed: 11/23/2022] Open
Abstract
Mutations in Parkin and PINK1 cause an inherited early-onset form of Parkinson's disease. The two proteins function together in a mitochondrial quality control pathway whereby PINK1 accumulates on damaged mitochondria and activates Parkin to induce mitophagy. How PINK1 kinase activity releases the auto-inhibited ubiquitin ligase activity of Parkin remains unclear. Here, we identify a binding switch between phospho-ubiquitin (pUb) and the ubiquitin-like domain (Ubl) of Parkin as a key element. By mutagenesis and SAXS, we show that pUb binds to RING1 of Parkin at a site formed by His302 and Arg305. pUb binding promotes disengagement of the Ubl from RING1 and subsequent Parkin phosphorylation. A crystal structure of Parkin Δ86–130 at 2.54 Å resolution allowed the design of mutations that specifically release the Ubl domain from RING1. These mutations mimic pUb binding and promote Parkin phosphorylation. Measurements of the E2 ubiquitin-conjugating enzyme UbcH7 binding to Parkin and Parkin E3 ligase activity suggest that Parkin phosphorylation regulates E3 ligase activity downstream of pUb binding.
Collapse
Affiliation(s)
- Véronique Sauvé
- Groupe de recherché axé sur la structure des protéines and Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Asparouh Lilov
- Groupe de recherché axé sur la structure des protéines and Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Marjan Seirafi
- Groupe de recherché axé sur la structure des protéines and Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Marta Vranas
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Shafqat Rasool
- Groupe de recherché axé sur la structure des protéines and Department of Biochemistry, McGill University, Montréal, QC, Canada Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Guennadi Kozlov
- Groupe de recherché axé sur la structure des protéines and Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Tara Sprules
- Quebec/Eastern Canada High Field NMR Facility (QANUC), Montréal, QC, Canada
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Kalle Gehring
- Groupe de recherché axé sur la structure des protéines and Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
234
|
Abstract
Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), including phosphorylation. Flux through such pathways is dictated by the fractional stoichiometry of distinct modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events, illustrated with the PINK1/PARKIN pathway. A key feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems.
Collapse
Affiliation(s)
- Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christian Münch
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
235
|
Abstract
The E3 ubiquitin ligase PARKIN (encoded by PARK2) and the protein kinase PINK1 (encoded by PARK6) are mutated in autosomal recessive juvenile Parkinsonism (AR-JP) and work together in the disposal of damaged mitochondria by mitophagy1–3. PINK1 is stabilised on the outside of depolarised mitochondria, and phosphorylates poly-ubiquitin (polyUb)4–8 as well as the PARKIN Ub-like (Ubl) domain9,10. These phosphorylation events lead to PARKIN recruitment to mitochondria, and activation by an unknown allosteric mechanism4–12. Here we present the crystal structure of Pediculus humanus PARKIN in complex with Ser65-phosphorylated ubiquitin (phosphoUb), revealing the molecular basis for PARKIN recruitment and activation. The phosphoUb binding site on PARKIN comprises a conserved phosphate pocket and harbours residues mutated in AR-JP patients. PhosphoUb binding leads to straightening of a helix in the RING1 domain, and the resulting conformational changes release the Ubl domain from the PARKIN core; this activates PARKIN. Moreover, phosphoUb-mediated Ubl release enhances Ubl phosphorylation by PINK1, leading to conformational changes within the Ubl domain and stabilisation of an open, active conformation of PARKIN. We redefine the role of the Ubl domain not only as an inhibitory13 but also as an activating element that is restrained in inactive PARKIN and released by phosphoUb. Our work opens new avenues to identify small molecule PARKIN activators.
Collapse
|