201
|
Turning the Stimulus On and Off Changes the Direction of α Traveling Waves. eNeuro 2020; 7:ENEURO.0218-20.2020. [PMID: 33168617 PMCID: PMC7688302 DOI: 10.1523/eneuro.0218-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Traveling waves have been studied to characterize the complex spatiotemporal dynamics of the brain. Several studies have suggested that the propagation direction of α traveling waves can be task dependent. For example, a recent electroencephalography (EEG) study from our group found that forward waves (i.e., occipital to frontal, FW waves) were observed during visual processing, whereas backward waves (i.e., frontal to occipital, BW waves) mostly occurred in the absence of sensory input. These EEG recordings, however, were obtained from different experimental sessions and different groups of subjects. To further examine how the waves’ direction changes between task conditions, 13 human participants were tested on a target detection task while EEG signals were recorded simultaneously. We alternated visual stimulation (5-s display of visual luminance sequences) and resting state (5 s of black screen) within each single trial, allowing us to monitor the moment-to-moment progression of traveling waves. As expected, the direction of α waves was closely linked with task conditions. First, FW waves from occipital to frontal regions, absent during rest, emerged as a result of visual processing, while BW waves in the opposite direction dominated in the absence of visual inputs, and were reduced (but not eliminated) by external visual inputs. Second, during visual stimulation (but not rest), both waves coexisted on average, but were negatively correlated. In summary, we conclude that the functional role of α traveling waves is closely related with their propagating direction, with stimulus-evoked FW waves supporting visual processing and spontaneous BW waves involved more in top-down control.
Collapse
|
202
|
Davidson MJ, Mithen W, Hogendoorn H, van Boxtel JJA, Tsuchiya N. The SSVEP tracks attention, not consciousness, during perceptual filling-in. eLife 2020; 9:e60031. [PMID: 33170121 PMCID: PMC7682990 DOI: 10.7554/elife.60031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Research on the neural basis of conscious perception has almost exclusively shown that becoming aware of a stimulus leads to increased neural responses. By designing a novel form of perceptual filling-in (PFI) overlaid with a dynamic texture display, we frequency-tagged multiple disappearing targets as well as their surroundings. We show that in a PFI paradigm, the disappearance of a stimulus and subjective invisibility is associated with increases in neural activity, as measured with steady-state visually evoked potentials (SSVEPs), in electroencephalography (EEG). We also find that this increase correlates with alpha-band activity, a well-established neural measure of attention. These findings cast doubt on the direct relationship previously reported between the strength of neural activity and conscious perception, at least when measured with current tools, such as the SSVEP. Instead, we conclude that SSVEP strength more closely measures changes in attention.
Collapse
Affiliation(s)
- Matthew J Davidson
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
- Department of Experimental Psychology, Faculty of Medicine, University of OxfordOxfordUnited Kingdom
| | - Will Mithen
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
| | - Hinze Hogendoorn
- Melbourne School of Psychological Sciences, University of MelbourneMelbourneAustralia
| | - Jeroen JA van Boxtel
- Discipline of Psychology, Faculty of Health, University of CanberraCanberraAustralia
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
- Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT)SuitaJapan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gunKyotoJapan
| |
Collapse
|
203
|
Tomassini A, Maris E, Hilt P, Fadiga L, D’Ausilio A. Visual detection is locked to the internal dynamics of cortico-motor control. PLoS Biol 2020; 18:e3000898. [PMID: 33079930 PMCID: PMC7598921 DOI: 10.1371/journal.pbio.3000898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/30/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Movements overtly sample sensory information, making sensory analysis an active-sensing process. In this study, we show that visual information sampling is not just locked to the (overt) movement dynamics but to the internal (covert) dynamics of cortico-motor control. We asked human participants to perform continuous isometric contraction while detecting unrelated and unpredictable near-threshold visual stimuli. The motor output (force) shows zero-lag coherence with brain activity (recorded via electroencephalography) in the beta-band, as previously reported. In contrast, cortical rhythms in the alpha-band systematically forerun the motor output by 200 milliseconds. Importantly, visual detection is facilitated when cortico-motor alpha (not beta) synchronization is enhanced immediately before stimulus onset, namely, at the optimal phase relationship for sensorimotor communication. These findings demonstrate an ongoing coupling between visual sampling and motor control, suggesting the operation of an internal and alpha-cycling visuomotor loop.
Collapse
Affiliation(s)
- Alice Tomassini
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
- * E-mail:
| | - Eric Maris
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Centre for Cognition (DCC), Nijmegen, The Netherlands
| | - Pauline Hilt
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
| | - Luciano Fadiga
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
- Università di Ferrara, Dipartimento di Scienze Biomediche e Chirurgico Specialistiche, Ferrara, Italy
| | - Alessandro D’Ausilio
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
- Università di Ferrara, Dipartimento di Scienze Biomediche e Chirurgico Specialistiche, Ferrara, Italy
| |
Collapse
|
204
|
Nourski KV, Steinschneider M, Rhone AE, Kovach CK, Banks MI, Krause BM, Kawasaki H, Howard MA. Electrophysiology of the Human Superior Temporal Sulcus during Speech Processing. Cereb Cortex 2020; 31:1131-1148. [PMID: 33063098 DOI: 10.1093/cercor/bhaa281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
The superior temporal sulcus (STS) is a crucial hub for speech perception and can be studied with high spatiotemporal resolution using electrodes targeting mesial temporal structures in epilepsy patients. Goals of the current study were to clarify functional distinctions between the upper (STSU) and the lower (STSL) bank, hemispheric asymmetries, and activity during self-initiated speech. Electrophysiologic properties were characterized using semantic categorization and dialog-based tasks. Gamma-band activity and alpha-band suppression were used as complementary measures of STS activation. Gamma responses to auditory stimuli were weaker in STSL compared with STSU and had longer onset latencies. Activity in anterior STS was larger during speaking than listening; the opposite pattern was observed more posteriorly. Opposite hemispheric asymmetries were found for alpha suppression in STSU and STSL. Alpha suppression in the STS emerged earlier than in core auditory cortex, suggesting feedback signaling within the auditory cortical hierarchy. STSL was the only region where gamma responses to words presented in the semantic categorization tasks were larger in subjects with superior task performance. More pronounced alpha suppression was associated with better task performance in Heschl's gyrus, superior temporal gyrus, and STS. Functional differences between STSU and STSL warrant their separate assessment in future studies.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA.,Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, USA
| | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ariane E Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | | | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53705, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bryan M Krause
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA.,Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, USA.,Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
205
|
Tran XA, McDonald N, Dickinson A, Scheffler A, Frohlich J, Marin A, Kure Liu C, Nosco E, Şentürk D, Dapretto M, Spurling Jeste S. Functional connectivity during language processing in 3-month-old infants at familial risk for autism spectrum disorder. Eur J Neurosci 2020; 53:1621-1637. [PMID: 33043498 DOI: 10.1111/ejn.15005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 09/05/2020] [Accepted: 10/06/2020] [Indexed: 11/27/2022]
Abstract
Auditory statistical learning (ASL) plays a role in language development and may lay a foundation for later social communication impairment. As part of a longitudinal study of infant siblings, we asked whether electroencephalography (EEG) measures of connectivity during ASL at 3 months of age-differentiated infants who showed signs of autism spectrum disorder (ASD) at age 18 months. We measured spectral power and phase coherence in the theta (4-6 Hz) and alpha (6-12 Hz) frequency bands within putative language networks. Infants were divided into ASD-concern (n = 14) and No-ASD-concern (n = 49) outcome groups based on their ASD symptoms at 18 months, measured using the Autism Diagnostic Observation Scale Toddler Module. Using permutation testing, we identified a trend toward reduced left fronto-central phase coherence at the electrode pair F9-C3 in both theta and alpha frequency bands in infants who later showed ASD symptoms at 18 months. Across outcome groups, alpha coherence at 3 months correlated with greater word production at 18 months on the MacArthur-Bates Communicative Development Inventory. This study introduces signal processing and analytic tools that account for the challenges inherent in infant EEG studies, such as short duration of recordings, considerable movement artifact, and variable volume conduction. Our results indicate that connectivity, as measured by phase coherence during 2.5 min of ASL, can be quantified as early as 3 months and suggest that early alternations in connectivity may serve as markers of resilience for neurodevelopmental impairments.
Collapse
Affiliation(s)
- Xuan A Tran
- Center for Autism Research and Treatment, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Nicole McDonald
- Center for Autism Research and Treatment, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Abigail Dickinson
- Center for Autism Research and Treatment, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Aaron Scheffler
- Center for Autism Research and Treatment, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Joel Frohlich
- Center for Autism Research and Treatment, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Andrew Marin
- Center for Autism Research and Treatment, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Christopher Kure Liu
- Center for Autism Research and Treatment, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Erin Nosco
- Center for Autism Research and Treatment, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Damla Şentürk
- Center for Autism Research and Treatment, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Mirella Dapretto
- Center for Autism Research and Treatment, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Shafali Spurling Jeste
- Center for Autism Research and Treatment, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| |
Collapse
|
206
|
Alamia A, Timmermann C, Nutt DJ, VanRullen R, Carhart-Harris RL. DMT alters cortical travelling waves. eLife 2020; 9:e59784. [PMID: 33043883 PMCID: PMC7577737 DOI: 10.7554/elife.59784] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/11/2020] [Indexed: 12/25/2022] Open
Abstract
Psychedelic drugs are potent modulators of conscious states and therefore powerful tools for investigating their neurobiology. N,N, Dimethyltryptamine (DMT) can rapidly induce an extremely immersive state of consciousness characterized by vivid and elaborate visual imagery. Here, we investigated the electrophysiological correlates of the DMT-induced altered state from a pool of participants receiving DMT and (separately) placebo (saline) while instructed to keep their eyes closed. Consistent with our hypotheses, results revealed a spatio-temporal pattern of cortical activation (i.e. travelling waves) similar to that elicited by visual stimulation. Moreover, the typical top-down alpha-band rhythms of closed-eyes rest were significantly decreased, while the bottom-up forward wave was significantly increased. These results support a recent model proposing that psychedelics reduce the 'precision-weighting of priors', thus altering the balance of top-down versus bottom-up information passing. The robust hypothesis-confirming nature of these findings imply the discovery of an important mechanistic principle underpinning psychedelic-induced altered states.
Collapse
Affiliation(s)
| | - Christopher Timmermann
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Faculty of Medicine, Imperial CollegeLondonUnited Kingdom
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College LondonLondonUnited Kingdom
| | - David J Nutt
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College LondonLondonUnited Kingdom
| | - Rufin VanRullen
- Cerco, CNRS Université de ToulouseToulouseFrance
- Artificial and Natural Intelligence Toulouse Institute (ANITI)ToulouseFrance
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
207
|
Budzinskiy S, Beuter A, Volpert V. Nonlinear analysis of periodic waves in a neural field model. CHAOS (WOODBURY, N.Y.) 2020; 30:083144. [PMID: 32872829 DOI: 10.1063/5.0012010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Various types of brain activity, including motor, visual, and language, are accompanied by the propagation of periodic waves of electric potential in the cortex, possibly providing the synchronization of the epicenters involved in these activities. One example is cortical electrical activity propagating during sleep and described as traveling waves [Massimini et al., J. Neurosci. 24, 6862-6870 (2004)]. These waves modulate cortical excitability as they progress. Clinically related examples include cortical spreading depression in which a wave of depolarization propagates not only in migraine but also in stroke, hemorrhage, or traumatic brain injury [Whalen et al., Sci. Rep. 8, 1-9 (2018)]. Here, we consider the possible role of epicenters and explore a neural field model with two nonlinear integrodifferential equations for the distributions of activating and inhibiting signals. It is studied with symmetric connectivity functions characterizing signal exchange between two populations of neurons, excitatory and inhibitory. Bifurcation analysis is used to investigate the emergence of periodic traveling waves and of standing oscillations from the stationary, spatially homogeneous solutions, and the stability of these solutions. Both types of solutions can be started by local oscillations indicating a possible role of epicenters in the initiation of wave propagation.
Collapse
Affiliation(s)
- S Budzinskiy
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | | | - V Volpert
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
208
|
Yaakub SN, Tangwiriyasakul C, Abela E, Koutroumanidis M, Elwes RDC, Barker GJ, Richardson MP. Heritability of alpha and sensorimotor network changes in temporal lobe epilepsy. Ann Clin Transl Neurol 2020; 7:667-676. [PMID: 32333640 PMCID: PMC7261746 DOI: 10.1002/acn3.51032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Electroencephalography (EEG) features in the alpha band have been shown to differ between people with epilepsy and healthy controls. Here, in a group of patients with mesial temporal lobe epilepsy (mTLE), we seek to confirm these EEG features, and using simultaneous functional magnetic resonance imaging, we investigate whether brain networks related to the alpha rhythm differ between patients and healthy controls. Additionally, we investigate whether alpha abnormalities are found as an inherited endophenotype in asymptomatic relatives. METHODS We acquired scalp EEG and simultaneous EEG and functional magnetic resonance imaging in 24 unrelated patients with unilateral mTLE, 23 asymptomatic first-degree relatives of patients with mTLE, and 32 healthy controls. We compared peak alpha power and frequency from electroencephalographic data in patients and relatives to healthy controls. We identified brain networks associated with alpha oscillations and compared these networks in patients and relatives to healthy controls. RESULTS Patients had significantly reduced peak alpha frequency (PAF) across all parietal and occipital electrodes. Asymptomatic relatives also had significantly reduced PAF over 14 of 17 parietal and occipital electrodes. Both patients and asymptomatic relatives showed a combination of increased activation and a failure of deactivation in relation to alpha oscillations compared to healthy controls in the sensorimotor network. INTERPRETATION Genetic factors may contribute to the shift in PAF and alterations in brain networks related to alpha oscillations. These may not entirely be a consequence of anti-epileptic drugs, seizures or hippocampal sclerosis and deserve further investigation as mechanistic contributors to mTLE.
Collapse
Affiliation(s)
- Siti N Yaakub
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, King's College London, Psychology & Neuroscience, London, UK.,School of Biomedical Engineering & Imaging Sciences, King's College London & Guy's and St Thomas' PET Centre, King's College London, London, UK
| | - Chayanin Tangwiriyasakul
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, King's College London, Psychology & Neuroscience, London, UK
| | - Eugenio Abela
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, King's College London, Psychology & Neuroscience, London, UK.,Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Michalis Koutroumanidis
- Department of Clinical Neurophysiology and Epilepsies, Guy's and St. Thomas' NHS Foundation Trust, St. Thomas' Hospital, London, UK
| | - Robert D C Elwes
- Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mark P Richardson
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, King's College London, Psychology & Neuroscience, London, UK.,Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
209
|
Bourgeois A, Guedj C, Carrera E, Vuilleumier P. Pulvino-cortical interaction: An integrative role in the control of attention. Neurosci Biobehav Rev 2020; 111:104-113. [DOI: 10.1016/j.neubiorev.2020.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/02/2019] [Accepted: 01/04/2020] [Indexed: 11/25/2022]
|
210
|
Grosenbaugh DK, Joshi S, Fitzgerald MP, Lee KS, Wagley PK, Koeppel AF, Turner SD, McConnell MJ, Goodkin HP. A deletion in Eml1 leads to bilateral subcortical heterotopia in the tish rat. Neurobiol Dis 2020; 140:104836. [PMID: 32179177 PMCID: PMC7814471 DOI: 10.1016/j.nbd.2020.104836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Children with malformations of cortical development (MCD) are at risk for epilepsy, developmental delays, behavioral disorders, and intellectual disabilities. For a subset of these children, antiseizure medications or epilepsy surgery may result in seizure freedom. However, there are limited options for treating or curing the other conditions, and epilepsy surgery is not an option in all cases of pharmacoresistant epilepsy. Understanding the genetic and neurobiological mechanisms underlying MCD is a necessary step in elucidating novel therapeutic targets. The tish (telencephalic internal structural heterotopia) rat is a unique model of MCD with spontaneous seizures, but the underlying genetic mutation(s) have remained unknown. DNA and RNA-sequencing revealed that a deletion encompassing a previously unannotated first exon markedly diminished Eml1 transcript and protein abundance in the tish brain. Developmental electrographic characterization of the tish rat revealed early-onset of spontaneous spike-wave discharge (SWD) bursts beginning at postnatal day (P) 17. A dihybrid cross demonstrated that the mutant Eml1 allele segregates with the observed dysplastic cortex and the early-onset SWD bursts in monogenic autosomal recessive frequencies. Our data link the development of the bilateral, heterotopic dysplastic cortex of the tish rat to a deletion in Eml1.
Collapse
Affiliation(s)
- Denise K Grosenbaugh
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Suchitra Joshi
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Mark P Fitzgerald
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kevin S Lee
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States; Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, United States; Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Pravin K Wagley
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Alexander F Koeppel
- Center for Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Stephen D Turner
- Center for Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States; Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, United States; Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, United States.
| | - Howard P Goodkin
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, United States; Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States.
| |
Collapse
|
211
|
Hemispheric Asymmetry of Globus Pallidus Relates to Alpha Modulation in Reward-Related Attentional Tasks. J Neurosci 2019; 39:9221-9236. [PMID: 31578234 DOI: 10.1523/jneurosci.0610-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/27/2022] Open
Abstract
Whereas subcortical structures such as the basal ganglia have been widely explored in relation to motor control, recent evidence suggests that their mechanisms extend to the domain of attentional switching. We here investigated the subcortical involvement in reward related top-down control of visual alpha-band oscillations (8-13 Hz), which have been consistently linked to mechanisms supporting the allocation of visuospatial attention. Given that items associated with contextual saliency (e.g., monetary reward or loss) attract attention, it is not surprising that the acquired salience of visual items further modulates. The executive networks controlling such reward-dependent modulations of oscillatory brain activity have yet to be fully elucidated. Although such networks have been explored in terms of corticocortical interactions, subcortical regions are likely to be involved. To uncover this, we combined MRI and MEG data from 17 male and 11 female participants, investigating whether derived measures of subcortical structural asymmetries predict interhemispheric modulation of alpha power during a spatial attention task. We show that volumetric hemispheric lateralization of globus pallidus (GP) and thalamus (Th) explains individual hemispheric biases in the ability to modulate posterior alpha power. Importantly, for the GP, this effect became stronger when the value saliency parings in the task increased. Our findings suggest that the GP and Th in humans are part of a subcortical executive control network, differentially involved in modulating posterior alpha activity in the presence of saliency. Further investigation aimed at uncovering the interaction between subcortical and neocortical attentional networks would provide useful insight in future studies.SIGNIFICANCE STATEMENT Whereas the involvement of subcortical regions into higher level cognitive processing, such as attention and reward attribution, has been already indicated in previous studies, little is known about its relationship with the functional oscillatory underpinnings of said processes. In particular, interhemispheric modulation of alpha band (8-13 Hz) oscillations, as recorded with magnetoencephalography, has been previously shown to vary as a function of salience (i.e., monetary reward/loss) in a spatial attention task. We here provide novel insights into the link between subcortical and cortical control of visual attention. Using the same reward-related spatial attention paradigm, we show that the volumetric lateralization of subcortical structures (specifically globus pallidus and thalamus) explains individual biases in the modulation of visual alpha activity.
Collapse
|