201
|
Fili O, Michaelevski I, Bledi Y, Chikvashvili D, Singer-Lahat D, Boshwitz H, Linial M, Lotan I. Direct interaction of a brain voltage-gated K+ channel with syntaxin 1A: functional impact on channel gating. J Neurosci 2001; 21:1964-74. [PMID: 11245681 PMCID: PMC6762600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Presynaptic voltage-gated K(+) (Kv) channels play a physiological role in the regulation of transmitter release by virtue of their ability to shape presynaptic action potentials. However, the possibility of a direct interaction of these channels with the exocytotic apparatus has never been examined. We report the existence of a physical interaction in brain synaptosomes between Kvalpha1.1 and Kvbeta subunits with syntaxin 1A, occurring, at least partially, within the context of a macromolecular complex containing syntaxin, synaptotagmin, and SNAP-25. The interaction was altered after stimulation of neurotransmitter release. The interaction with syntaxin was further characterized in Xenopus oocytes by both overexpression and antisense knock-down of syntaxin. Direct physical interaction of syntaxin with the channel protein resulted in an increase in the extent of fast inactivation of the Kv1.1/Kvbeta1.1 channel. Syntaxin also affected the channel amplitude in a biphasic manner, depending on its concentration. At low syntaxin concentrations there was a significant increase in amplitudes, with no detectable change in cell-surface channel expression. At higher concentrations, however, the amplitudes decreased, probably because of a concomitant decrease in cell-surface channel expression, consistent with the role of syntaxin in regulation of vesicle trafficking. The observed physical and functional interactions between syntaxin 1A and a Kv channel may play a role in synaptic efficacy and neuronal excitability.
Collapse
Affiliation(s)
- O Fili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, 69978 Ramat-Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Abstract
Voltage-gated Ca(2+) channels mediate Ca(2+) entry into cells in response to membrane depolarization. Electrophysiological studies reveal different Ca(2+) currents designated L-, N-, P-, Q-, R-, and T-type. The high-voltage-activated Ca(2+) channels that have been characterized biochemically are complexes of a pore-forming alpha1 subunit of approximately 190-250 kDa; a transmembrane, disulfide-linked complex of alpha2 and delta subunits; an intracellular beta subunit; and in some cases a transmembrane gamma subunit. Ten alpha1 subunits, four alpha2delta complexes, four beta subunits, and two gamma subunits are known. The Cav1 family of alpha1 subunits conduct L-type Ca(2+) currents, which initiate muscle contraction, endocrine secretion, and gene transcription, and are regulated primarily by second messenger-activated protein phosphorylation pathways. The Cav2 family of alpha1 subunits conduct N-type, P/Q-type, and R-type Ca(2+) currents, which initiate rapid synaptic transmission and are regulated primarily by direct interaction with G proteins and SNARE proteins and secondarily by protein phosphorylation. The Cav3 family of alpha1 subunits conduct T-type Ca(2+) currents, which are activated and inactivated more rapidly and at more negative membrane potentials than other Ca(2+) current types. The distinct structures and patterns of regulation of these three families of Ca(2+) channels provide a flexible array of Ca(2+) entry pathways in response to changes in membrane potential and a range of possibilities for regulation of Ca(2+) entry by second messenger pathways and interacting proteins.
Collapse
Affiliation(s)
- W A Catterall
- Department of Pharmacology, Box 357280, University of Washington, Seattle, Washington 98195-7280, USA.
| |
Collapse
|
203
|
Tokumaru H, Umayahara K, Pellegrini LL, Ishizuka T, Saisu H, Betz H, Augustine GJ, Abe T. SNARE complex oligomerization by synaphin/complexin is essential for synaptic vesicle exocytosis. Cell 2001; 104:421-32. [PMID: 11239399 DOI: 10.1016/s0092-8674(01)00229-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Synaphin/complexin is a cytosolic protein that preferentially binds to syntaxin within the SNARE complex. We find that synaphin promotes SNAREs to form precomplexes that oligomerize into higher order structures. A peptide from the central, syntaxin binding domain of synaphin competitively inhibits these two proteins from interacting and prevents SNARE complexes from oligomerizing. Injection of this peptide into squid giant presynaptic terminals inhibited neurotransmitter release at a late prefusion step of synaptic vesicle exocytosis. We propose that oligomerization of SNARE complexes into a higher order structure creates a SNARE scaffold for efficient, regulated fusion of synaptic vesicles.
Collapse
Affiliation(s)
- H Tokumaru
- Department of Neurobiology, Duke University Medical Center, Box 3209, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Vajna R, Klöckner U, Pereverzev A, Weiergräber M, Chen X, Miljanich G, Klugbauer N, Hescheler J, Perez-Reyes E, Schneider T. Functional coupling between 'R-type' Ca2+ channels and insulin secretion in the insulinoma cell line INS-1. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1066-75. [PMID: 11179973 DOI: 10.1046/j.1432-1327.2001.01969.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Among voltage-gated Ca2+ channels the non-dihydropyridine-sensitive alpha1E subunit is functionally less well characterized than the structurally related alpha1A (omega-agatoxin-IVA sensitive, P- /Q-type) and alpha1B (omega-conotoxin-GVIA sensitive, N-type) subunits. In the rat insulinoma cell line, INS-1, a tissue-specific splice variant of alpha1E (alpha1Ee) has been characterized at the mRNA and protein levels, suggesting that INS-1 cells are a suitable model for investigating the function of alpha1Ee. In alpha1E-transfected human embryonic kidney (HEK-293) cells the alpha1E-selective peptide antagonist SNX-482 (100 nM) reduces alpha1Ed- and alpha1Ee-induced Ba2+ inward currents in the absence and presence of the auxiliary subunits beta3 and alpha2delta-2 by more than 80%. The inhibition is fast and only partially reversible. No effect of SNX-482 was detected on the recombinant T-type Ca2+ channel subunits alpha1G, alpha1H, and alpha1I showing that the toxin from the venom of Hysterocrates gigas is useful as an alpha1E-selective antagonist. After blocking known components of Ca2+ channel inward current in INS-1 cells by 2 microM (+/-)-isradipine plus 0.5 microM omega-conotoxin-MVIIC, the remaining current is reduced by 100 nM SNX-482 from -12.4 +/- 1.2 pA/pF to -7.6 +/- 0.5 pA/pF (n = 9). Furthermore, in INS-1 cells, glucose- and KCl-induced insulin release are reduced by SNX-482 in a dose-dependent manner leading to the conclusion that alpha1E, in addition to L-type and non-L-type (alpha1A-mediated) Ca2+ currents, is involved in Ca2+ dependent insulin secretion of INS-1 cells.
Collapse
Affiliation(s)
- R Vajna
- Institute of Neurophysiology, University of Cologne, Köln, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Zhang W, Efanov A, Yang SN, Fried G, Kolare S, Brown H, Zaitsev S, Berggren PO, Meister B. Munc-18 associates with syntaxin and serves as a negative regulator of exocytosis in the pancreatic beta -cell. J Biol Chem 2000; 275:41521-7. [PMID: 11024017 DOI: 10.1074/jbc.m005479200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Munc-18 protein (mammalian homologue of the unc-18 gene; also called nSec1 or rbSec1) has been identified as an essential component of the synaptic vesicle fusion protein complex. The cellular and subcellular localization and functional role of Munc-18 protein in pancreatic beta-cells was investigated. Subcellular fractionation of insulin-secreting HIT-T15 cells revealed a 67-kDa protein in both cytosol and membrane fractions. Immunohistochemistry showed punctate Munc-18 immunoreactivity in the cytoplasm of rat pancreatic islet cells. Direct double-labeling immunofluorescence histochemistry combined with confocal laser microscopy revealed the presence of Munc-18 immunoreactivity in insulin-, glucagon-, pancreatic polypeptide-, and somatostatin-containing cells. Syntaxin 1 immunoreactivity was detected in extracts of HIT-T15 cells, which were immunoprecipitated using Munc-18 antiserum, suggesting an intimate association of Munc-18 with syntaxin 1. Administration of Munc-18 peptide or Munc-18 antiserum to streptolysin O-permeabilized HIT-T15 cells resulted in significantly increased insulin release, but did not have any significant effect on voltage-gated Ca(2+) channel activity. The findings taken together show that the Munc-18 protein is present in insulin-secreting beta-cells and implicate Munc-18 as a negative regulator of the insulin secretory machinery via a mechanism that does not involve syntaxin-associated Ca(2+) channels.
Collapse
Affiliation(s)
- W Zhang
- Department of Neuroscience, The Rolf Luft's Center for Diabetes Research, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Stewart BA, Mohtashami M, Trimble WS, Boulianne GL. SNARE proteins contribute to calcium cooperativity of synaptic transmission. Proc Natl Acad Sci U S A 2000; 97:13955-60. [PMID: 11095753 PMCID: PMC17682 DOI: 10.1073/pnas.250491397] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A hallmark of calcium-triggered synaptic transmission is the cooperative relationship between calcium and the amount of transmitter released. This relationship is thought to be important for improving the efficiency of synaptic vesicle exocytosis. Although it is generally held that cooperativity arises from the interaction of multiple calcium ions with a single calcium-sensing molecule, the precise molecular basis of this phenomenon is not known. The SNARE proteins are known to be critical for synaptic vesicle exocytosis. We therefore tested for a contribution of SNARE proteins to cooperativity by genetically reducing the levels of syntaxin IA and neuronal-synaptobrevin in Drosophila. Surprisingly, we found that reducing these SNARE proteins also reduced Ca(2+) cooperativity. Thus, SNARE proteins are important for determining the cooperative relationship between calcium and synaptic transmission.
Collapse
Affiliation(s)
- B A Stewart
- Department of Molecular and Medical Genetics, Zoology, and Biochemistry, University of Toronto, 555 University Avenue, Toronto, ON, Canada
| | | | | | | |
Collapse
|
207
|
Bezprozvanny I, Zhong P, Scheller RH, Tsien RW. Molecular determinants of the functional interaction between syntaxin and N-type Ca2+ channel gating. Proc Natl Acad Sci U S A 2000; 97:13943-8. [PMID: 11087812 PMCID: PMC17680 DOI: 10.1073/pnas.220389697] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Syntaxin is a key presynaptic protein that binds to N- and P/Q-type Ca(2+) channels in biochemical studies and affects gating of these Ca(2+) channels in expression systems and in synaptosomes. The present study was aimed at understanding the molecular basis of syntaxin modulation of N-type channel gating. Mutagenesis of either syntaxin 1A or the pore-forming alpha(1B) subunit of N-type Ca(2+) channels was combined with functional assays of N-type channel gating in a Xenopus oocyte coexpression system and in biochemical binding experiments in vitro. Our analysis showed that the transmembrane region of syntaxin and a short region within the H3 helical cytoplasmic domain of syntaxin, containing residues Ala-240 and Val-244, appeared critical for the channel modulation but not for biochemical association with the "synprint site" in the II/III loop of alpha(1B). These results suggest that syntaxin and the alpha(1B) subunit engage in two kinds of interactions: an anchoring interaction via the II/III loop synprint site and a modulatory interaction via another site located elsewhere in the channel sequence. The segment of syntaxin H3 found to be involved in the modulatory interaction would lie hidden within the four-helix structure of the SNARE complex, supporting the hypothesis that syntaxin's ability to regulate N-type Ca(2+) channels would be enabled after SNARE complex disassembly after synaptic vesicle exocytosis.
Collapse
Affiliation(s)
- I Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | | | | | | |
Collapse
|
208
|
Baltazar G, Tomé A, Carvalho AP, Duarte EP. Differential contribution of syntaxin 1 and SNAP-25 to secretion in noradrenergic and adrenergic chromaffin cells. Eur J Cell Biol 2000; 79:883-91. [PMID: 11152280 DOI: 10.1078/0171-9335-00128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used botulinum neurotoxins (BoNT) to examine whether differences in the secretory activity of noradrenergic and adrenergic chromaffin cells are related to differences in the exocytotic machinery of these two types of bovine adrenal medulla cells. Cleavage of syntaxin and SNAP-25 by BoNT/C1 decreased in a dose-dependent way the release of both noradrenaline and adrenaline, but noradrenaline release was more sensitive to BoNT/C1. Cleavage of SNAP-25 by BoNT/A also had a larger inhibitory effect on noradrenaline release than on adrenaline release. Neither BoNT/C1 nor BoNT/A affected the intracellular Ca2+ responses induced by K+-depolarisation, and the extent of the inhibition of K+-evoked catecholamine release by selective blockers of voltage-gated Ca2+ channels was not affected by BoNT/C1. Therefore, our data do not support the hypothesis of a regulatory effect of syntaxin or SNAP-25 on the activity of Ca2+ channels. The lower sensitivity of adrenaline release to BoNT was not due to a reduced ability of the toxins to enter or to cleave their protein targets in adrenergic cells, since immunoblot analysis showed the cleavage of a larger fraction of syntaxin 1A in adrenergic cells, as compared to the cleavage in noradrenergic cells. The immunoblot analysis also showed larger amounts of syntaxin 1A in noradrenergic chromaffin cells than in adrenergic cells. Thus, in spite of a greater cleavage of syntaxin 1A in adrenergic cells by BoNT/C1, adrenaline release was less sensitive to BoNT/C1, suggesting that the release process in noradrenergic cells might be more dependent on syntaxin 1A and SNAP-25, as compared to adrenergic cells.
Collapse
Affiliation(s)
- G Baltazar
- Department of Cell Biology, Centre for Neuroscience of Coimbra, University of Coimbra, Portugal
| | | | | | | |
Collapse
|
209
|
Satin LS. Localized calcium influx in pancreatic beta-cells: its significance for Ca2+-dependent insulin secretion from the islets of Langerhans. Endocrine 2000; 13:251-62. [PMID: 11216635 DOI: 10.1385/endo:13:3:251] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2000] [Accepted: 06/08/2000] [Indexed: 12/18/2022]
Abstract
Ca2+ influx through voltage-dependent Ca2+ channels plays a crucial role in stimulus-secretion coupling in pancreatic islet beta-cells. Molecular and physiologic studies have identified multiple Ca2+ channel subtypes in rodent islets and insulin-secreting cell lines. The differential targeting of Ca2+ channel subtypes to the vicinity of the insulin secretory apparatus is likely to account for their selective coupling to glucose-dependent insulin secretion. In this article, I review these studies. In addition, I discuss temporal and spatial aspects of Ca2+ signaling in beta-cells, the former involving the oscillatory activation of Ca2+ channels during glucose-induced electrical bursting, and the latter involving [Ca2+]i elevation in restricted microscopic "domains," as well as direct interactions between Ca2+ channels and secretory SNARE proteins. Finally, I review the evidence supporting a possible role for Ca2+ release from the endoplasmic reticulum in glucose-dependent insulin secretion, and evidence to support the existence of novel Ca2+ entry pathways. I also show that the beta-cell has an elaborate and complex set of [Ca2+]i signaling mechanisms that are capable of generating diverse and extremely precise [Ca2+]i patterns. These signals, in turn, are exquisitely coupled in space and time to the beta-cell secretory machinery to produce the precise minute-to-minute control of insulin secretion necessary for body energy homeostasis.
Collapse
Affiliation(s)
- L S Satin
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond 23298-0524, USA.
| |
Collapse
|
210
|
Gao Z, Reavey-Cantwell J, Young RA, Jegier P, Wolf BA. Synaptotagmin III/VII isoforms mediate Ca2+-induced insulin secretion in pancreatic islet beta -cells. J Biol Chem 2000; 275:36079-85. [PMID: 10938083 DOI: 10.1074/jbc.m004284200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptotagmins (Syt) play important roles in Ca(2+)-induced neuroexocytosis. Insulin secretion of the pancreatic beta-cell is dependent on an increase in intracellular Ca(2+); however, Syt involvement in insulin exocytosis is poorly understood. Reverse transcriptase-polymerase chain reaction studies showed the presence of Syt isoforms III, IV, V, and VII in rat pancreatic islets, whereas Syt isoforms I, II, III, IV, V, VII, and VIII were present in insulin-secreting betaTC3 cell. Syt III and VII proteins were identified in rat islets and betaTC3 and RINm5F beta-cells by immunoblotting. Confocal microscopy showed that Syt III and VII co-localized with insulin-containing secretory granules. Two-fold overexpression of Syt III in RINm5F beta-cell (Syt III cell) was achieved by stable transfection, which conferred greater Ca(2+) sensitivity for exocytosis, and resulted in increased insulin secretion. Glyceraldehyde + carbachol-induced insulin secretion in Syt III cells was 2.5-fold higher than control empty vector cells, whereas potassium-induced secretion was 6-fold higher. In permeabilized Syt III cells, Ca(2+)-induced and mastoparan-induced insulin secretion was also increased. In Syt VII-overexpressing RINm5F beta-cells, there was amplification of carbachol-induced insulin secretion in intact cells and of Ca(2+)-induced and mastoparan-induced insulin secretion in permeabilized cells. In conclusion, Syt III/VII are located in insulin-containing secretory granules, and we suggest that Syt III/VII may be the Ca(2+) sensor or one of the Ca(2+) sensors for insulin exocytosis of the beta-cell.
Collapse
Affiliation(s)
- Z Gao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
211
|
Gao T, Hosey MM. Association of L-type calcium channels with a vacuolar H(+)-ATPase G2 subunit. Biochem Biophys Res Commun 2000; 277:611-6. [PMID: 11062002 DOI: 10.1006/bbrc.2000.3729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The class C L-type calcium (Ca(2+)) channels have been implicated in many important physiological processes. Here, we have identified a mouse vacuolar H(+)-ATPase (V-ATPase) G2 subunit protein that bound to the C-terminal domain of the pore-forming alpha(1C) subunit using a yeast two-hybrid screen. Protein-protein interaction between the V-ATPase G subunit and the alpha(1C) subunit was confirmed using in vitro GST pull-down assays and coimmunoprecipitation from intact cells. Moreover, treatment of cells expressing L-type Ca(2+) channels with a specific inhibitor of the V-ATPase blocked proper targeting of the channels to the plasma membrane.
Collapse
Affiliation(s)
- T Gao
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois, 60611, USA.
| | | |
Collapse
|
212
|
Segura J, Gil A, Soria B. Modeling study of exocytosis in neuroendocrine cells: influence of the geometrical parameters. Biophys J 2000; 79:1771-86. [PMID: 11023885 PMCID: PMC1301071 DOI: 10.1016/s0006-3495(00)76429-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Exocytosis in neuroendocrine cells is a process triggered by Ca(2+). A Monte Carlo simulation of secretion has been developed which, together with the diffusion of calcium, buffered by endogenous and/or exogenously added chelators, also accounts for the dynamics of exocytosis for a pool of readily releasable vesicles. Different distributions of channels and vesicles (random or correlated) are studied. A local study of exocytosis is carried out by obtaining capacitance time courses for the different types of release-ready vesicle pools (correlated or not with Ca(2+) channels). Also, depending upon the kinetic constants for the exocytotic process, we study the levels of local Ca(2+) needed to trigger secretion. Our simulations show that a strong heterogeneity in the calcium concentrations at the different sites of exocytosis is a requirement for reproducing the experimentally observed biphasic response in chromaffin cells in situ (Voets, T., E. Neher, and T. Moser. 1999. Neuron. 23:607-615). Correlated nonuniform distributions of channels and vesicles and the existence of diffusion barriers are shown to quantitatively explain the experimental data on chromaffin cells in situ. The first description requires a deeply heterogeneous distribution, with vesicles attached to the channels or far from them, but never at middle distances. The second description is able to reproduce biphasic release even for uniformly (readily releasable) distributed vesicles. We quantify the degree of inhomogeneity in the distribution of vesicles and how porous the diffusion barriers should be to account for the observed biphasic response.
Collapse
Affiliation(s)
- J Segura
- Instituto de Bioingeniería, Universidad Miguel Hernández, Alicante, Spain
| | | | | |
Collapse
|
213
|
Abstract
Regulated beta -granule exocytosis is critical for the ability of the beta -cell to finely control body glucose homeostasis. This is now understood to be a multistage process whereby beta -granules are transported from biosynthetic/storage sites in the cell cytoplasm and targeted to specific regions of the plasma membrane. Exocytosis is achieved when these granules are triggered to fuse with the membrane by an elevated cytosolic Ca(2+). Dramatic advances have been made recently in our understanding of the protein-protein interactions and regulatory signals that govern intracellular transport and fusion. Although best understood for exocytosis from neurons and neuroendocrine cells, similar processes are thought to be conserved in the beta -cell.
Collapse
Affiliation(s)
- R A Easom
- Department of Molecular Biology & Immunology, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107-2699, USA.
| |
Collapse
|
214
|
Abstract
Neurotransmission at chemical synapses involves regulated exocytosis of neurotransmitter from the presynaptic terminal. Neurotransmitter release is thought to be triggered by calcium influx through specific classes of voltage-gated calcium channels. Here we report genetic and functional analysis implicating a specific calcium channel gene product in neurotransmitter release. We have isolated a temperature-sensitive paralytic allele of the Drosophila calcium channel alpha1 subunit gene, cacophony (cac). This mutant, referred to as cac(TS2), allows functional analysis of synaptic transmission after acute perturbation of a specific alpha1 subunit. Electrophysiological analysis at neuromuscular synapses revealed that neurotransmitter release in cac(TS2) is markedly reduced at elevated temperatures, indicating that cac encodes a primary alpha1 subunit functioning in synaptic transmission. These observations further define the molecular basis of voltage-gated calcium entry at synapses and provide a new starting point for further genetic analysis of synaptic mechanisms.
Collapse
|
215
|
Kawasaki F, Felling R, Ordway RW. A temperature-sensitive paralytic mutant defines a primary synaptic calcium channel in Drosophila. J Neurosci 2000; 20:4885-9. [PMID: 10864946 PMCID: PMC6772286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Neurotransmission at chemical synapses involves regulated exocytosis of neurotransmitter from the presynaptic terminal. Neurotransmitter release is thought to be triggered by calcium influx through specific classes of voltage-gated calcium channels. Here we report genetic and functional analysis implicating a specific calcium channel gene product in neurotransmitter release. We have isolated a temperature-sensitive paralytic allele of the Drosophila calcium channel alpha1 subunit gene, cacophony (cac). This mutant, referred to as cac(TS2), allows functional analysis of synaptic transmission after acute perturbation of a specific alpha1 subunit. Electrophysiological analysis at neuromuscular synapses revealed that neurotransmitter release in cac(TS2) is markedly reduced at elevated temperatures, indicating that cac encodes a primary alpha1 subunit functioning in synaptic transmission. These observations further define the molecular basis of voltage-gated calcium entry at synapses and provide a new starting point for further genetic analysis of synaptic mechanisms.
Collapse
Affiliation(s)
- F Kawasaki
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
216
|
Abstract
When the presynaptic membrane protein syntaxin is coexpressed in Xenopus oocytes with N- or P/Q-type Ca(2+) channels, it promotes their inactivation (Bezprozvanny et al., 1995; Wiser et al., 1996, 1999; Degtiar et al., 2000) (I. B. Bezprozvanny, P. Zhong, R. H. Scheller, and R. W. Tsien, unpublished observations). These findings led to the hypothesis that syntaxin influences Ca(2+) channel function in presynaptic endings, in a reversal of the conventional flow of information from Ca(2+) channels to the release machinery. We examined this effect in isolated mammalian nerve terminals (synaptosomes). Botulinum neurotoxin type C1 (BoNtC1), which cleaves syntaxin, was applied to rat neocortical synaptosomes at concentrations that completely blocked neurotransmitter release. This treatment altered the pattern of Ca(2+) entry monitored with fura-2. Whereas the initial Ca(2+) rise induced by depolarization with K(+)-rich solution was unchanged, late Ca(2+) entry was strongly augmented by syntaxin cleavage. Similar results were obtained when Ca(2+) influx arose from repetitive firing induced by the K(+)-channel blocker 4-aminopyridine. Cleavage of vesicle-associated membrane protein with BoNtD or SNAP-25 with BoNtE failed to produce a significant change in Ca(2+) entry. The BoNtC1-induced alteration in Ca(2+) signaling was specific to voltage-gated Ca(2+) channels, not Ca(2+) extrusion or buffering, and it involved N-, P/Q- and R-type channels, the high voltage-activated channels most intimately associated with presynaptic release machinery. The modulatory effect of syntaxin was not immediately manifest when synaptosomes had been K(+)-predepolarized in the absence of external Ca(2+), but developed with a delay after admission of Ca(2+), suggesting that vesicular turnover may be necessary to make syntaxin available for its stabilizing effect on Ca(2+) channel inactivation.
Collapse
|
217
|
Bergsman JB, Tsien RW. Syntaxin modulation of calcium channels in cortical synaptosomes as revealed by botulinum toxin C1. J Neurosci 2000; 20:4368-78. [PMID: 10844005 PMCID: PMC6772436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
When the presynaptic membrane protein syntaxin is coexpressed in Xenopus oocytes with N- or P/Q-type Ca(2+) channels, it promotes their inactivation (Bezprozvanny et al., 1995; Wiser et al., 1996, 1999; Degtiar et al., 2000) (I. B. Bezprozvanny, P. Zhong, R. H. Scheller, and R. W. Tsien, unpublished observations). These findings led to the hypothesis that syntaxin influences Ca(2+) channel function in presynaptic endings, in a reversal of the conventional flow of information from Ca(2+) channels to the release machinery. We examined this effect in isolated mammalian nerve terminals (synaptosomes). Botulinum neurotoxin type C1 (BoNtC1), which cleaves syntaxin, was applied to rat neocortical synaptosomes at concentrations that completely blocked neurotransmitter release. This treatment altered the pattern of Ca(2+) entry monitored with fura-2. Whereas the initial Ca(2+) rise induced by depolarization with K(+)-rich solution was unchanged, late Ca(2+) entry was strongly augmented by syntaxin cleavage. Similar results were obtained when Ca(2+) influx arose from repetitive firing induced by the K(+)-channel blocker 4-aminopyridine. Cleavage of vesicle-associated membrane protein with BoNtD or SNAP-25 with BoNtE failed to produce a significant change in Ca(2+) entry. The BoNtC1-induced alteration in Ca(2+) signaling was specific to voltage-gated Ca(2+) channels, not Ca(2+) extrusion or buffering, and it involved N-, P/Q- and R-type channels, the high voltage-activated channels most intimately associated with presynaptic release machinery. The modulatory effect of syntaxin was not immediately manifest when synaptosomes had been K(+)-predepolarized in the absence of external Ca(2+), but developed with a delay after admission of Ca(2+), suggesting that vesicular turnover may be necessary to make syntaxin available for its stabilizing effect on Ca(2+) channel inactivation.
Collapse
Affiliation(s)
- J B Bergsman
- Neurosciences Program, and Department of Molecular and Cellular Physiology, Beckman Center, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
218
|
Yazejian B, Sun XP, Grinnell AD. Tracking presynaptic Ca2+ dynamics during neurotransmitter release with Ca2+-activated K+ channels. Nat Neurosci 2000; 3:566-71. [PMID: 10816312 DOI: 10.1038/75737] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurotransmitter release during action potentials is thought to require transient, localized [Ca2+]i as high as hundreds of micromolar near presynaptic release sites. Most experimental attempts to characterize the magnitude and time course of these Ca2+ domains involve optical methods that sample large volumes, require washout of endogenous buffers and often affect Ca2+ kinetics and transmitter release. Endogenous calcium-activated potassium (KCa) channels colocalize with presynaptic Ca2+ channels in Xenopus nerve-muscle cultures. We used these channels to quantify the rapid, dynamic changes in [Ca2+]i at active zones during synaptic activity. Confirming Ca2+-domain predictions, these KCa channels revealed [Ca2+]i over 100 microM during synaptic activity and much faster buildup and decay of Ca2+ domains than shown using other techniques.
Collapse
Affiliation(s)
- B Yazejian
- Department of Physiology and Jerry Lewis Neuromuscular Research Center, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
219
|
Weiergräber M, Pereverzev A, Vajna R, Henry M, Schramm M, Nastainczyk W, Grabsch H, Schneider T. Immunodetection of alpha1E voltage-gated Ca(2+) channel in chromogranin-positive muscle cells of rat heart, and in distal tubules of human kidney. J Histochem Cytochem 2000; 48:807-19. [PMID: 10820154 DOI: 10.1177/002215540004800609] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The calcium channel alpha1E subunit was originally cloned from mammalian brain. A new splice variant was recently identified in rat islets of Langerhans and in human kidney by the polymerase chain reaction. The same isoform of alpha1E was detected in rat and guinea pig heart by amplifying indicative cDNA fragments and by immunostaining using peptide-specific antibodies. The apparent molecular size of cardiac alpha1E was determined by SDS-PAGE and immunoblotting (218 +/- 6 kD; n = 3). Compared to alpha1E from stably transfected HEK-293 cells, this is smaller by 28 kD. The distribution of alpha1E in cardiac muscle cells of the conducting system and in the cardiomyoblast cell line H9c2 was compared to the distribution of chromogranin, a marker of neuroendocrine cells, and to the distribution of atrial natriuretic peptide (ANP). In serial sections from atrial and ventricular regions of rat heart, co-localization of alpha1E with ANP was detected in atrium and with chromogranin A/B in Purkinje fibers of the conducting system in both rat atrium and ventricle. The kidney is another organ in which natriuretic peptide hormones are secreted. The detection of alpha1E in the distal tubules of human kidney, where urodilatin is stored and secreted, led to the conclusion that the expression of alpha1E in rat heart and human kidney is linked to regions with endocrine functions and therefore is involved in the Ca(2+)-dependent secretion of peptide hormones such as ANP and urodilatin.
Collapse
Affiliation(s)
- M Weiergräber
- Institute of Neurophysiology, University of Köln, Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Iezzi M, Regazzi R, Wollheim CB. The Rab3-interacting molecule RIM is expressed in pancreatic beta-cells and is implicated in insulin exocytosis. FEBS Lett 2000; 474:66-70. [PMID: 10828453 DOI: 10.1016/s0014-5793(00)01572-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The putative Rab3 effector RIM (Rab3-interacting molecule) was detected by Northern blotting, RT-PCR and Western blotting in native pancreatic beta-cells as well as in the derived cell lines INS-1E and HIT-T15. RIM was localized on the plasma membrane of INS-1E cells and beta-cells. An involvement of RIM in insulin exocytosis was indicated by transfection experiments of INS-1E cells with the Rab3 binding domain of RIM. This domain enhanced glucose-stimulated secretion in intact cells and Ca(2+)-stimulated exocytosis in permeabilized cells. Co-expression of Rab3A reversed the effect of RIM on exocytosis. These results suggest an implication of RIM in the control of insulin secretion.
Collapse
Affiliation(s)
- M Iezzi
- Division de Biochimie Clinique, Centre Médical Universitaire, Departement de Médecine Interne, Université de Genevé, Switzerland
| | | | | |
Collapse
|
221
|
Enhancement of the dense-core vesicle secretory cycle by glucocorticoid differentiation of PC12 cells: characteristics of rapid exocytosis and endocytosis. J Neurosci 2000. [PMID: 10729329 DOI: 10.1523/jneurosci.20-07-02495.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The secretory cycle of dense-core vesicles (DCVs) in physiologically stimulated patch-clamped PC12 cells was analyzed using both amperometry and capacitance measurements. Untreated cells had low or undetectable Ca currents and sparse secretory responses to short depolarizations. Dexamethasone (5 microM) treatment for 5-7 d tripled Ca current magnitude and dramatically increased quantal secretion in response to depolarization with action potentials. Such cells expressed L-, N-, and P-type Ca channels, and depolarization evoked rapid catecholamine secretion recorded as amperometric spikes; the average latency was approximately 50 msec. These spikes were much smaller and shorter than those of primary adrenal chromaffin cells, reflecting the smaller size of DCVs in PC12 cells. Depolarizing pulse trains also elicited a rapid increase in membrane capacitance corresponding to exocytosis in differentiated but not in naïve cells. On termination of stimulation, membrane capacitance declined within 20 sec to baseline indicative of rapid endocytosis (RE). RE did not take place when secretion was stimulated in the presence of Ba or Sr, indicating that RE is Ca-specific. RE was blocked when either anti-dynamin antibodies or the pleckstrin homology domain of dynamin-1 was loaded into the cell via the patch pipette. These studies indicate that neuroendocrine differentiation of PC12 cells with glucocorticoids enhances the development of the excitable membrane and increases the coupling between Ca channels and vesicle release sites, leading to rapid exocytosis and endocytosis. Slow catecholamine secretion in undifferentiated cells may be caused in part by a lack of localized secretory machinery rather than being an intrinsic property of dense-core vesicles.
Collapse
|
222
|
Dellinger B, Felling R, Ordway RW. Genetic modifiers of the Drosophila NSF mutant, comatose, include a temperature-sensitive paralytic allele of the calcium channel alpha1-subunit gene, cacophony. Genetics 2000; 155:203-11. [PMID: 10790395 PMCID: PMC1461054 DOI: 10.1093/genetics/155.1.203] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The N-ethylmaleimide-sensitive fusion protein (NSF) has been implicated in vesicle trafficking in perhaps all eukaryotic cells. The Drosophila comatose (comt) gene encodes an NSF homolog, dNSF1. Our previous work with temperature-sensitive (TS) paralytic alleles of comt has revealed a function for dNSF1 at synapses, where it appears to prime synaptic vesicles for neurotransmitter release. To further examine the molecular basis of dNSF1 function and to broaden our analysis of synaptic transmission to other gene products, we have performed a genetic screen for mutations that interact with comt. Here we report the isolation and analysis of four mutations that modify TS paralysis in comt, including two intragenic modifiers (one enhancer and one suppressor) and two extragenic modifiers (both enhancers). The intragenic mutations will contribute to structure-function analysis of dNSF1 and the extragenic mutations identify gene products with related functions in synaptic transmission. Both extragenic enhancers result in TS behavioral phenotypes when separated from comt, and both map to loci not previously identified in screens for TS mutants. One of these mutations is a TS paralytic allele of the calcium channel alpha1-subunit gene, cacophony (cac). Analysis of synaptic function in these mutants alone and in combination will further define the in vivo functions and interactions of specific gene products in synaptic transmission.
Collapse
Affiliation(s)
- B Dellinger
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
223
|
Elhamdani A, Brown ME, Artalejo CR, Palfrey HC. Enhancement of the dense-core vesicle secretory cycle by glucocorticoid differentiation of PC12 cells: characteristics of rapid exocytosis and endocytosis. J Neurosci 2000; 20:2495-503. [PMID: 10729329 PMCID: PMC6772253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The secretory cycle of dense-core vesicles (DCVs) in physiologically stimulated patch-clamped PC12 cells was analyzed using both amperometry and capacitance measurements. Untreated cells had low or undetectable Ca currents and sparse secretory responses to short depolarizations. Dexamethasone (5 microM) treatment for 5-7 d tripled Ca current magnitude and dramatically increased quantal secretion in response to depolarization with action potentials. Such cells expressed L-, N-, and P-type Ca channels, and depolarization evoked rapid catecholamine secretion recorded as amperometric spikes; the average latency was approximately 50 msec. These spikes were much smaller and shorter than those of primary adrenal chromaffin cells, reflecting the smaller size of DCVs in PC12 cells. Depolarizing pulse trains also elicited a rapid increase in membrane capacitance corresponding to exocytosis in differentiated but not in naïve cells. On termination of stimulation, membrane capacitance declined within 20 sec to baseline indicative of rapid endocytosis (RE). RE did not take place when secretion was stimulated in the presence of Ba or Sr, indicating that RE is Ca-specific. RE was blocked when either anti-dynamin antibodies or the pleckstrin homology domain of dynamin-1 was loaded into the cell via the patch pipette. These studies indicate that neuroendocrine differentiation of PC12 cells with glucocorticoids enhances the development of the excitable membrane and increases the coupling between Ca channels and vesicle release sites, leading to rapid exocytosis and endocytosis. Slow catecholamine secretion in undifferentiated cells may be caused in part by a lack of localized secretory machinery rather than being an intrinsic property of dense-core vesicles.
Collapse
Affiliation(s)
- A Elhamdani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
224
|
Naren AP, Kirk KL. CFTR Chloride Channels: Binding Partners and Regulatory Networks. NEWS IN PHYSIOLOGICAL SCIENCES : AN INTERNATIONAL JOURNAL OF PHYSIOLOGY PRODUCED JOINTLY BY THE INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES AND THE AMERICAN PHYSIOLOGICAL SOCIETY 2000; 15:57-61. [PMID: 11390879 DOI: 10.1152/physiologyonline.2000.15.2.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cystic fibrosis gene encodes a chloride channel (CFTR) that regulates transepithelial salt and water transport. Two classes of CFTR-binding proteins appear to link the opposing cytoplasmic tails of this channel to distinct regulatory networks. Such interactions may constitute new paradigms for modulating CFTR activity in health and disease.
Collapse
Affiliation(s)
- Anjaparavanda P. Naren
- Gregory Fleming James Cystic Fibrosis Research Center and the Department of Physiology and Biophysics at the University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | |
Collapse
|
225
|
Mehler MF. Brain dystrophin, neurogenetics and mental retardation. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:277-307. [PMID: 10751678 DOI: 10.1016/s0165-0173(99)00090-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) and the allelic disorder Becker muscular dystrophy (BMD) are common X-linked recessive neuromuscular disorders that are associated with a spectrum of genetically based developmental cognitive and behavioral disabilities. Seven promoters scattered throughout the huge DMD/BMD gene locus normally code for distinct isoforms of the gene product, dystrophin, that exhibit nervous system developmental, regional and cell-type specificity. Dystrophin is a complex plasmalemmal-cytoskeletal linker protein that possesses multiple functional domains, autosomal and X-linked homologs and associated binding proteins that form multiunit signaling complexes whose composition is unique to each cellular and developmental context. Through additional interactions with a variety of proteins of the extracellular matrix, plasma membrane, cytoskeleton and distinct intracellular compartments, brain dystrophin acquires the capability to participate in the modulatory actions of a large number of cellular signaling pathways. During neural development, dystrophin is expressed within the neural tube and selected areas of the embryonic and postnatal neuraxis, and may regulate distinct aspects of neurogenesis, neuronal migration and cellular differentiation. By contrast, in the mature brain, dystrophin is preferentially expressed by specific regional neuronal subpopulations within proximal somadendritic microdomains associated with synaptic terminal membranes. Increasing experimental evidence suggests that in adult life, dystrophin normally modulates synaptic terminal integrity, distinct forms of synaptic plasticity and regional cellular signal integration. At a systems level, dystrophin may regulate essential components of an integrated sensorimotor attentional network. Dystrophin deficiency in DMD/BMD patients and in the mdx mouse model appears to impair intracellular calcium homeostasis and to disrupt multiple protein-protein interactions that normally promote information transfer and signal integration from the extracellular environment to the nucleus within regulated microdomains. In DMD/BMD, the individual profiles of cognitive and behavioral deficits, mental retardation and other phenotypic variations appear to depend on complex profiles of transcriptional regulation associated with individual dystrophin mutations that result in the corresponding presence or absence of individual brain dystrophin isoforms that normally exhibit developmental, regional and cell-type-specific expression and functional regulation. This composite experimental model will allow fine-level mapping of cognitive-neurogenetic associations that encompass the interrelationships between molecular, cellular and systems levels of signal integration, and will further our understanding of complex gene-environmental interactions and the pathogenetic basis of developmental disorders associated with mental retardation.
Collapse
Affiliation(s)
- M F Mehler
- Departments of Neurology, Neuroscience and Psychiatry, the Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
226
|
Zeng N, Athmann C, Kang T, Walsh JH, Sachs G. Role of neuropeptide-sensitive L-type Ca(2+) channels in histamine release in gastric enterochromaffin-like cells. Am J Physiol Gastrointest Liver Physiol 2000; 277:G1268-80. [PMID: 10600825 DOI: 10.1152/ajpgi.1999.277.6.g1268] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Peptides release histamine from enterochromaffin-like (ECL) cells because of elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) by either receptor-operated or voltage-dependent Ca(2+) channels (VDCC). To determine whether VDCCs contribute to histamine release stimulated by gastrin or pituitary adenylate cyclase-activating polypeptide (PACAP), the presence of VDCCs and their possible modulation by peptides was investigated in a 48-h cultured rat gastric cell population containing 85% ECL cells. Video imaging of fura 2-loaded cells was used to measure [Ca(2+)](i), and histamine was assayed by RIA. Cells were depolarized by increasing extracellular K(+) concentrations or by 20 mM tetraethylammonium (TEA(+)). Cell depolarization increased transient and steady-state [Ca(2+)](i) and resulted in histamine release, dependent on extracellular Ca(2+). These K(+)- or TEA(+)-dependent effects on histamine release from ECL cells were coupled to activation of parietal cells in intact rabbit gastric glands, and L-type channel blockade by 2 microM nifedipine inhibited 50% of [Ca(2+)](i) elevation and histamine release. N-type channel blockade by 1 microM omega-conotoxin GVIA inhibited 25% of [Ca(2+)](i) elevation and 14% of histamine release. Inhibition was additive. The effects of 20 mM TEA(+) were fully inhibited by 2 microM nifedipine. Both classes of Ca(2+) channels were found in ECL cells, but not in parietal cells, by RT-PCR. Nifedipine reduced PACAP-induced (but not gastrin-stimulated) Ca(2+) entry and histamine release by 40%. Somatostatin, peptide YY (PYY), and galanin dose dependently inhibited L-type Ca(2+) channels via a pertussis toxin-sensitive pathway. L-type VDCCs play a role in PACAP but not gastrin stimulation of histamine release from ECL cells, and the channel opening is inhibited by somatostatin, PYY, and galanin by interaction with a G(i) or G(o) protein.
Collapse
Affiliation(s)
- N Zeng
- Wadsworth Veterans Affairs Hospital, Los Angeles, California 90073, USA
| | | | | | | | | |
Collapse
|
227
|
Pertusa JA, Sanchez-Andres JV, Martín F, Soria B. Effects of calcium buffering on glucose-induced insulin release in mouse pancreatic islets: an approximation to the calcium sensor. J Physiol 1999; 520 Pt 2:473-83. [PMID: 10523416 PMCID: PMC2269605 DOI: 10.1111/j.1469-7793.1999.00473.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/1999] [Accepted: 07/06/1999] [Indexed: 11/30/2022] Open
Abstract
1. The properties of the calcium sensor for glucose-induced insulin secretion have been studied using cell-permeant Ca2+ buffers with distinct kinetics and affinities. In addition, submembrane cytosolic Ca2+ distribution has been modelled after trains of glucose-induced action potential-like depolarizations. 2. Slow Ca2+ buffers (around 1 mmol l-1 intracellular concentration) with different affinities (EGTA and Calcium Orange-5N) did not significantly affect glucose-induced insulin release. Modelling showed no effect on cytosolic Ca2+ concentrations at the outermost shell (0.05 microm), their effects being observed in the innermost shells dependent on Ca2+ affinity. 3. In contrast, fast Ca2+ buffers (around 1 mmol l-1 intracellular concentration) with different affinities (BAPTA and Calcium Green-5N) caused a 50 % inhibition of early insulin response and completely blocked the late phase of glucose-induced insulin response, their simulations showing a decrease of [Ca2+]i at both the inner and outermost shells. 4. These data are consistent with the existence in pancreatic beta-cells of a higher affinity Ca2+ sensor than that proposed for neurons. Moreover, these data are consistent with the proposed existence of two distinct pools of granules: (i) 'primed' vesicles, colocalized with Ca2+ channels and responsible of the first phase of insulin release; and (ii) 'reserved pool' vesicles, not colocalized and responsible for the second phase.
Collapse
Affiliation(s)
- J A Pertusa
- Departmento de Fisiología e Instituto de Bioingeniería and Universidad Miguel Hernandez, 03550 San Juan, Alicante, Spain
| | | | | | | |
Collapse
|
228
|
Yang SN, Larsson O, Bränström R, Bertorello AM, Leibiger B, Leibiger IB, Moede T, Köhler M, Meister B, Berggren PO. Syntaxin 1 interacts with the L(D) subtype of voltage-gated Ca(2+) channels in pancreatic beta cells. Proc Natl Acad Sci U S A 1999; 96:10164-9. [PMID: 10468580 PMCID: PMC17860 DOI: 10.1073/pnas.96.18.10164] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interaction of syntaxin 1 with the alpha(1D) subunit of the voltage-gated L type Ca(2+) channel was investigated in the pancreatic beta cell. Coexpression of the enhanced green fluorescent protein-linked alpha(1D) subunit with the enhanced blue fluorescent protein-linked syntaxin 1 and Western blot analysis together with subcellular fractionation demonstrated that the alpha(1D) subunit and syntaxin 1 were colocalized in the plasma membrane. Furthermore, the alpha(1D) subunit was coimmunoprecipitated efficiently by a polyclonal antibody against syntaxin 1. Syntaxin 1 also played a central role in the modulation of L type Ca(2+) channel activity because there was a faster Ca(2+) current run-down in cells incubated with antisyntaxin 1 compared with controls. In parallel, antisyntaxin 1 markedly reduced insulin release in both intact and permeabilized cells, subsequent to depolarization with K(+) or exposure to high Ca(2+). Exchanging Ca(2+) for Ba(2+) abolished the effect of antisyntaxin 1 on both Ca(2+) channel activity and insulin exocytosis. Moreover, antisyntaxin 1 had no significant effects on Ca(2+)-independent insulin release trigged by hypertonic stimulation. This suggests that there is a structure-function relationship between the alpha(1D) subunit of the L type Ca(2+) channel and the exocytotic machinery in the pancreatic beta cell.
Collapse
Affiliation(s)
- S N Yang
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institutet, Karolinska Hospital, S-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Emmanouilidou E, Teschemacher AG, Pouli AE, Nicholls LI, Seward EP, Rutter GA. Imaging Ca2+ concentration changes at the secretory vesicle surface with a recombinant targeted cameleon. Curr Biol 1999; 9:915-8. [PMID: 10469598 DOI: 10.1016/s0960-9822(99)80398-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Regulated exocytosis involves the Ca(2+)-triggered fusion of secretory vesicles with the plasma membrane, by activation of vesicle membrane Ca(2+)-binding proteins [1]. The Ca(2+)-binding sites of these proteins are likely to lie within 30 nm of the vesicle surface, a domain in which changes in Ca2+ concentration cannot be resolved by conventional fluorescence microscopy. A fluorescent indicator for Ca2+ called a yellow 'cameleon' (Ycam2) - comprising a fusion between a cyan-emitting mutant of the green fluorescent protein (GFP), calmodulin, the calmodulin-binding peptide M13 and an enhanced yellow-emitting GFP - which is targetable to specific intracellular locations, has been described [2]. Here, we generated a fusion between phogrin, a protein that is localised to secretory granule membranes [3], and Ycam2 (phogrin-Ycam2) to monitor changes in Ca2+ concentration ([Ca2+]) at the secretory vesicle surface ([Ca2+]gd) through alterations in fluorescence resonance energy transfer (FRET) between the linked cyan and yellow fluorescent proteins (CFP and YFP, respectively) in Ycam2. In both neuroendocrine PC12 and MIN6 pancreatic beta cells, apparent resting values of cytosolic [Ca2+] and [Ca2+](gd) were similar throughout the cell. In MIN6 cells following the activation of Ca2+ influx, the minority of vesicles that were within approximately 1 microm of the plasma membrane underwent increases in [Ca2+](gd) that were significantly greater than those experienced by deeper vesicles, and greater than the apparent cytosolic [Ca2+] change. The ability to image both global and compartmentalised [Ca2+] changes with recombinant targeted cameleons should extend the usefulness of these new Ca2+ probes.
Collapse
Affiliation(s)
- E Emmanouilidou
- Department of Biochemistry School of Medical Sciences University of Bristol Bristol, BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|