201
|
Li CM, Brown I, Mansfield J, Stevens C, Boureau T, Romantschuk M, Taira S. The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation of the effector protein HrpZ. EMBO J 2002; 21:1909-15. [PMID: 11953310 PMCID: PMC125372 DOI: 10.1093/emboj/21.8.1909] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The type III secretion system (TTSS) is an essential requirement for the virulence of many Gram-negative bacteria infecting plants, animals and man. Pathogens use the TTSS to deliver effector proteins from the bacterial cytoplasm to the eukaryotic host cell, where the effectors subvert host defences. Plant pathogens have to translocate their effector proteins through the plant cell wall barrier. The best candidates for directing effector protein traffic are bacterial appendages attached to the membrane-bound components of the TTSS. We have investigated the protein secretion route in relation to the TTSS appendage, termed the Hrp pilus, of the plant pathogen Pseudomonas syringae pv. tomato. By pulse expression of proteins combined with immunoelectron microscopy, we show that the Hrp pilus elongates by the addition of HrpA pilin subunits at the distal end, and that the effector protein HrpZ is secreted only from the pilus tip. Our results indicate that both HrpA and HrpZ travel through the Hrp pilus, which functions as a conduit for the long-distance translocation of effector proteins.
Collapse
Affiliation(s)
| | - Ian Brown
- Department of Biosciences, Division of General Microbiology, University of Helsinki, PO Box 56, FI-00014, University of Helsinki, Finland and
Department of Agricultural Sciences, Imperial College at Wye, University of London, Ashford, Kent TN25 5AH, UK Corresponding author e-mail: C.-M.Li and I.Brown contributed equally to this work
| | - John Mansfield
- Department of Biosciences, Division of General Microbiology, University of Helsinki, PO Box 56, FI-00014, University of Helsinki, Finland and
Department of Agricultural Sciences, Imperial College at Wye, University of London, Ashford, Kent TN25 5AH, UK Corresponding author e-mail: C.-M.Li and I.Brown contributed equally to this work
| | - Conrad Stevens
- Department of Biosciences, Division of General Microbiology, University of Helsinki, PO Box 56, FI-00014, University of Helsinki, Finland and
Department of Agricultural Sciences, Imperial College at Wye, University of London, Ashford, Kent TN25 5AH, UK Corresponding author e-mail: C.-M.Li and I.Brown contributed equally to this work
| | | | | | - Suvi Taira
- Department of Biosciences, Division of General Microbiology, University of Helsinki, PO Box 56, FI-00014, University of Helsinki, Finland and
Department of Agricultural Sciences, Imperial College at Wye, University of London, Ashford, Kent TN25 5AH, UK Corresponding author e-mail: C.-M.Li and I.Brown contributed equally to this work
| |
Collapse
|
202
|
Boch J, Joardar V, Gao L, Robertson TL, Lim M, Kunkel BN. Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana. Mol Microbiol 2002; 44:73-88. [PMID: 11967070 DOI: 10.1046/j.1365-2958.2002.02877.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phytopathogenic bacteria possess a large number of genes that allow them to grow and cause disease on plants. Many of these genes should be induced when the bacteria come in contact with plant tissue. We used a modified in vivo expression technology (IVET) approach to identify genes from the plant pathogen Pseudomonas syringae pv. tomato that are induced upon infection of Arabidopsis thaliana and isolated over 500 in planta-expressed (ipx) promoter fusions. Sequence analysis of 79 fusions revealed several known and potential virulence genes, including hrp/hrc, avr and coronatine biosynthetic genes. In addition, we identified metabolic genes presumably important for adaptation to growth in plant tissue, as well as several genes with unknown function that may encode novel virulence factors. Many ipx fusions, including several corresponding to novel genes, are dependent on HrpL, an alternative RNA polymerase sigma factor that regulates the expression of virulence genes. Expression analysis indicated that several ipx fusions are strongly induced upon inoculation into plant tissue. Disruption of one ipx gene, conserved effector locus (CEL) orf1, encoding a putative lytic murein transglycosylase, resulted in decreased virulence of P. syringae. Our results demonstrate that this screen can be used successfully to isolate genes that are induced in planta, including many novel genes potentially involved in pathogenesis.
Collapse
Affiliation(s)
- Jens Boch
- Department of Biology, Campus Box 1137, Washington University, 1 Brookings Drive, St Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
203
|
Guttman DS, Vinatzer BA, Sarkar SF, Ranall MV, Kettler G, Greenberg JT. A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science 2002; 295:1722-6. [PMID: 11872842 DOI: 10.1126/science.295.5560.1722] [Citation(s) in RCA: 310] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Type III secreted "effector" proteins of bacterial pathogens play central roles in virulence, yet are notoriously difficult to identify. We used an in vivo genetic screen to identify 13 effectors secreted by the type III apparatus (called Hrp, for "hypersensitive response and pathogenicity") of the plant pathogen Pseudomonas syringae. Although sharing little overall homology, the amino-terminal regions of these effectors had strikingly similar amino acid compositions. This feature facilitated the bioinformatic prediction of 38 P. syringae effectors, including 15 previously unknown proteins. The secretion of two of these putative effectors was shown to be type III--dependent. Effectors showed high interstrain variation, supporting a role for some effectors in adaptation to different hosts.
Collapse
Affiliation(s)
- David S Guttman
- Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada.
| | | | | | | | | | | |
Collapse
|
204
|
Katagiri F, Thilmony R, He SY. The Arabidopsis thaliana-pseudomonas syringae interaction. THE ARABIDOPSIS BOOK 2002; 1:e0039. [PMID: 22303207 PMCID: PMC3243347 DOI: 10.1199/tab.0039] [Citation(s) in RCA: 308] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Fumiaki Katagiri
- Plant Health Department, Torrey Mesa Research Institute, 3115 Merryfield Row, San Diego, CA 92121, USA
| | - Roger Thilmony
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Corresponding Author: Sheng Yang He, 206 Plant Biology Bldg., Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA, Tel: (517) 353-9181, Fax: (517) 353 –9168,
| |
Collapse
|
205
|
Hutcheson SW, Bretz J, Sussan T, Jin S, Pak K. Enhancer-binding proteins HrpR and HrpS interact to regulate hrp-encoded type III protein secretion in Pseudomonas syringae strains. J Bacteriol 2001; 183:5589-98. [PMID: 11544221 PMCID: PMC95450 DOI: 10.1128/jb.183.19.5589-5598.2001] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas syringae strains, the hrp-hrc pathogenicity island consists of an HrpL-dependent regulon that encodes a type III protein translocation complex and translocated effector proteins required for pathogenesis. HrpR and HrpS function as positive regulatory factors for the hrpL promoter, but their mechanism of action has not been established. Both HrpR and HrpS are structurally related to enhancer-binding proteins, but they lack receiver domains and do not appear to require a cognate protein kinase for activity. hrpR and hrpS were shown to be expressed as an operon: a promoter was identified 5' to hrpR, and reverse transcriptase PCR detected the presence of an hrpRS transcript. The hrpR promoter and coding sequence were conserved among P. syringae strains. The coding sequences for hrpR and hrpS were cloned into compatible expression vectors, and their activities were monitored in Escherichia coli transformants carrying an hrpL'-lacZ fusion. HrpS could function as a weak activator of the hrpL promoter, but the activity was only 2.5% of the activity detected when both HrpR and HrpS were expressed in the reporter strain. This finding is consistent with a requirement for both HrpR and HrpS in the activation of the hrpL promoter. By using a yeast two-hybrid assay, an interaction between HrpR and HrpS was detected, suggestive of the formation of a heteromeric complex. Physical interaction of HrpR and HrpS was confirmed by column-binding experiments. The results show that HrpR and HrpS physically interact to regulate the sigma(54)-dependent hrpL promoter in P. syringae strains.
Collapse
Affiliation(s)
- S W Hutcheson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | |
Collapse
|
206
|
Noël L, Thieme F, Nennstiel D, Bonas U. cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Mol Microbiol 2001; 41:1271-81. [PMID: 11580833 DOI: 10.1046/j.1365-2958.2001.02567.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Hrp type III protein secretion system is essential for pathogenicity of the Gram-negative plant pathogen Xanthomonas campestris pv. vesicatoria. Expression of the hrp gene cluster is controlled by HrpG, a two-component response regulator, and HrpX, an AraC-type transcriptional activator. Using the cDNA-AFLP technique, 30 hrpG-induced (hgi) and five hrpG-repressed (hgr) cDNA fragments were identified, defining a large hrpG-regulon in X. campestris pv. vesicatoria. Expression of most genes in the hrpG-regulon was dependent on hrpX. Seven cDNA fragments map to the known hrp gene cluster and flanking regions. All other genes appear to be scattered over the chromosome and endogenous plasmids. Sequence analysis identified genes encoding putative extracellular proteases, a putative transcriptional regulator and XopJ and XopB (Xanthomonas outer proteins), homologues of YopJ from Yersinia spp. and the avirulence protein AvrPphD of Pseudomonas syringae respectively. XopB is secreted by the Hrp type III secretion system. Analysis of deletion mutants in several hgi genes revealed a new virulence locus. This study demonstrates that cDNA-AFLP is a powerful tool to study prokaryotic transcriptomes and to identify genes contributing to Xanthomonas virulence and putative effector proteins.
Collapse
Affiliation(s)
- L Noël
- Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | | | | | | |
Collapse
|
207
|
Preston GM, Bertrand N, Rainey PB. Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol Microbiol 2001; 41:999-1014. [PMID: 11555282 DOI: 10.1046/j.1365-2958.2001.02560.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vivo expression technology (IVET) analysis of rhizosphere-induced genes in the plant growth-promoting rhizobacterium (PGPR) Pseudomonas fluorescens SBW25 identified a homologue of the type III secretion system (TTSS) gene hrcC. The hrcC homologue resides within a 20-kb gene cluster that resembles the type III (Hrp) gene cluster of Pseudomonas syringae. The type III (Rsp) gene cluster in P. fluorescens SBW25 is flanked by a homologue of the P. syringae TTSS-secreted protein AvrE. P. fluorescens SBW25 is non-pathogenic and does not elicit the hypersensitive response (HR) in any host plant tested. However, strains constitutively expressing the rsp-specific sigma factor RspL elicit an AvrB-dependent HR in Arabidopsis thaliana ecotype Col-0, and a host-specific HR in Nicotiana clevelandii. The inability of wild-type P. fluorescens SBW25 to elicit a visible HR is therefore partly attributable to low expression of rsp genes in the leaf apoplast. DNA hybridization analysis indicates that rsp genes are present in many plant-colonizing Pseudomonas and PGPR, suggesting that TTSSs may have a significant role in the biology of PGPR. However, rsp and rsc mutants retain the ability to reach high population levels in the rhizosphere. While functionality of the TTSS has been demonstrated, the ecological significance of the rhizosphere-expressed TTSS of P. fluorescens SBW25 remains unclear.
Collapse
Affiliation(s)
- G M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | | | | |
Collapse
|
208
|
Mak CH, Ko RC. DNA-binding activity in the excretory-secretory products of Trichinella pseudospiralis (Nematoda: Trichinelloidea). Parasitology 2001; 123:301-8. [PMID: 11578094 DOI: 10.1017/s0031182001008459] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel DNA-binding peptide of Mr approximately 30 kDa was documented for the first time in the excretory-secretory (E-S) products of the infective-stage larvae of Trichinella pseudospiralis. Larvae recovered from muscles of infected mice were maintained for 48 h in DMEM medium. E-S products of worms extracted from the medium were analysed for DNA-binding activity by the electrophoretic mobility shift assay (EMSA). Multiple DNA-protein complexes were detected. A comparison of the Mr of proteins in the complexes indicated that they could bind to the target DNA as a dimer, tetramer or multiples of tetramers. Site selection and competition analysis showed that the binding has a low specificity. A (G/C-rich)-gap-(G/T-rich)-DNA sequence pattern was extracted from a pool of degenerate PCR fragments binding to the E-S products. Results of immunoprecipitation and electrophoretic mobility supershift assay confirmed the authenticity of the DNA-binding protein as an E-S product.
Collapse
Affiliation(s)
- C H Mak
- Department of Zoology, The University of Hong Kong, Pokfulam, China
| | | |
Collapse
|
209
|
Nimchuk Z, Rohmer L, Chang JH, Dangl JL. Knowing the dancer from the dance: R-gene products and their interactions with other proteins from host and pathogen. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:288-294. [PMID: 11418337 DOI: 10.1016/s1369-5266(00)00175-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cloning of plant disease resistance genes is now commonplace in model plants. Recent attention has turned to how the proteins that they encode function biochemically to recognize their cognate Avirulence protein and to initiate the disease-resistance response. In addition, attention has turned to how the Avirulence proteins of pathogens might alter susceptible hosts for the benefit of the pathogen, and what plant proteins might be required for that process.
Collapse
Affiliation(s)
- Z Nimchuk
- Department of Biology and Curriculum in Genetics, Coker Hall, Room 108, CB#3280, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | |
Collapse
|
210
|
Rantakari A, Virtaharju O, Vähämiko S, Taira S, Palva ET, Saarilahti HT, Romantschuk M. Type III secretion contributes to the pathogenesis of the soft-rot pathogen Erwinia carotovora: partial characterization of the hrp gene cluster. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:962-968. [PMID: 11497468 DOI: 10.1094/mpmi.2001.14.8.962] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The virulence of soft-rot Erwinia species is dependent mainly upon secreted enzymes such as pectinases, pectin lyases, and proteases that cause maceration of plant tissue. Some soft-rot Erwinia spp. also harbor genes homologous to the hypersensitive reaction and pathogenesis (hrp) gene cluster, encoding components of the type III secretion system. The hrp genes are essential virulence determinants for numerous nonmacerating gram-negative plant pathogens but their role in the virulence of soft-rot Erwinia spp. is not clear. We isolated and characterized 11 hrp genes of Erwinia carotovora subsp. carotovora. Three putative sigmaL-dependent Hrp box promoter sequences were found. The genes were expressed when the bacteria were grown in Hrp-inducing medium. The operon structure of the hrp genes was determined by mRNA hybridization, and the results were in accordance with the location of the Hrp boxes. An E. carotovora strain with mutated hrcC, an essential hrp gene, was constructed. The hrcC- strain was able to multiply and cause disease in Arabidopsis, but the population kinetics were altered so that growth was delayed during the early stages of infection.
Collapse
Affiliation(s)
- A Rantakari
- Department of Biosciences, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
211
|
Venkatesan MM, Goldberg MB, Rose DJ, Grotbeck EJ, Burland V, Blattner FR. Complete DNA sequence and analysis of the large virulence plasmid of Shigella flexneri. Infect Immun 2001; 69:3271-85. [PMID: 11292750 PMCID: PMC98286 DOI: 10.1128/iai.69.5.3271-3285.2001] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete sequence analysis of the 210-kb Shigella flexneri 5a virulence plasmid was determined. Shigella spp. cause dysentery and diarrhea by invasion and spread through the colonic mucosa. Most of the known Shigella virulence determinants are encoded on a large plasmid that is unique to virulent strains of Shigella and enteroinvasive Escherichia coli; these known genes account for approximately 30 to 35% of the virulence plasmid. In the complete sequence of the virulence plasmid, 286 open reading frames (ORFs) were identified. An astonishing 153 (53%) of these were related to known and putative insertion sequence (IS) elements; no known bacterial plasmid has previously been described with such a high proportion of IS elements. Four new IS elements were identified. Fifty putative proteins show no significant homology to proteins of known function; of these, 18 have a G+C content of less than 40%, typical of known virulence genes on the plasmid. These 18 constitute potentially unknown virulence genes. Two alleles of shet2 and five alleles of ipaH were also identified on the plasmid. Thus, the plasmid sequence suggests a remarkable history of IS-mediated acquisition of DNA across bacterial species. The complete sequence will permit targeted characterization of potential new Shigella virulence determinants.
Collapse
Affiliation(s)
- M M Venkatesan
- Department of Enteric Infections, Division of Communicable Diseases and Immunology, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA.
| | | | | | | | | | | |
Collapse
|
212
|
Marques MV, da Silva AM, Gomes SL. Genetic organization of plasmid pXF51 from the plant pathogen Xylella fastidiosa. Plasmid 2001; 45:184-99. [PMID: 11407914 DOI: 10.1006/plas.2000.1514] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sequence of plasmid pXF51 from the plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, has been analyzed. This plasmid codes for 65 open reading frames (ORFs), organized into four main regions, containing genes related to replication, mobilization, and conjugative transfer. Twenty-five ORFs have no counterparts in the public sequence databases, and 7 are similar to conserved hypothetical proteins from other bacteria. A pXF51 incompatibility group has not been determined, as we could not find a typical replication origin. One cluster of conjugation-related genes (trb) seems to be incomplete in pXF51, and a copy of this sequence is found in the chromosome, suggesting it was generated by a duplication event. A second cluster (tra) contains all genes necessary for conjugation transfer to occur, showing a conserved organization with other conjugative plasmids. An identifiable origin of transfer similar to oriT from IncP plasmids is found adjacent to genes encoding two mobilization proteins. None of the ORFs with putative assigned function could be predicted as having a role in pathogenesis, except for a virulence-associated protein D homolog. These results indicate that even though pXF51 appears not to have a direct role in Xylella pathogenesis, it is a conjugative plasmid that could be important for lateral gene transfer in this bacterium. This property may be of great importance for future development of transformation techniques in X. fastidiosa.
Collapse
Affiliation(s)
- M V Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Spain.
| | | | | |
Collapse
|
213
|
Arnold DL, Jackson RW, Fillingham AJ, Goss SC, Taylor JD, Mansfield JW, Vivian A. Highly conserved sequences flank avirulence genes: isolation of novel avirulence genes from Pseudomonas syringae pv. pisi. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1171-1182. [PMID: 11320120 DOI: 10.1099/00221287-147-5-1171] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA sequences flanking two avr genes (avrPpiA1 and avrPpiB1) from Pseudomonas syringae pv. pisi show a high degree of similarity. Specific primers designed from the conserved regions were used in PCR amplifications with all P. syringae pv. pisi races. As well as amplifying the expected avrPpiA- and avrPpiB-containing fragments, two additional fragments were amplified: one contained a single open reading frame (ORF1) and was found in races of genomic group II (2, 3A, 4A and 6); the second fragment contained two open reading frames (ORF2 and ORF3), separated by 658 nt, and was detected in all races. All three ORFs had G+C ratios (46.9-48 mol%) that were significantly less than that for P. syringae and each was preceded by a potential hrp box promoter. In P. syringae pv. phaseolicola, ORF1 and ORF2 each elicited a strong non-host hypersensitive reaction on bean leaves; ORF1 was designated avrPpiG, the product of which had strong similarity to AvrRxv, AvrBsT and YopP. ORF2 was identical to a gene, designated avrPpiC, previously isolated from P. syringae pv. pisi race 5. ORF3 was always found in association with avrPpiC and both were detected in a wide range of P. syringae pathovars. In contrast, avrPpiG was only detected in strains of P. syringae pv. pisi genomic group II and P. syringae pv. coronafaciens (ICMP 3113). In P. syringae pv. pisi, avrPpiG was plasmid-borne and avrPpiC and ORF3 were chromosomal. This conservation of flanking sequences has implications for the horizontal transfer of avirulence and virulence genes, suggesting that specific regions of the bacterial genome act as sites for their integration/excision.
Collapse
Affiliation(s)
- Dawn L Arnold
- Centre for Research in Plant Science, Faculty of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK1
| | - Robert W Jackson
- Centre for Research in Plant Science, Faculty of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK1
| | - A Jane Fillingham
- Department of Biological Sciences, Imperial College, Wye, Ashford, Kent TN25 5AH, UK2
| | - Susan C Goss
- Department of Biological Sciences, Imperial College, Wye, Ashford, Kent TN25 5AH, UK2
| | - John D Taylor
- Horticulture Research International, Wellesbourne, Warwick CV35 9EF, UK3
| | - John W Mansfield
- Department of Biological Sciences, Imperial College, Wye, Ashford, Kent TN25 5AH, UK2
| | - Alan Vivian
- Centre for Research in Plant Science, Faculty of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK1
| |
Collapse
|
214
|
Vivian A, Murillo J, Jackson RW. The roles of plasmids in phytopathogenic bacteria: mobile arsenals? MICROBIOLOGY (READING, ENGLAND) 2001; 147:763-780. [PMID: 11283273 DOI: 10.1099/00221287-147-4-763] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Alan Vivian
- Centre for Research in Plant Science, Faculty of Applied Sciences, UWE-Bristol, Coldharbour Lane, Bristol BS16 1QY, UK1
| | - Jesús Murillo
- Centre for Research in Plant Science, Faculty of Applied Sciences, UWE-Bristol, Coldharbour Lane, Bristol BS16 1QY, UK1
| | - Robert W Jackson
- Centre for Research in Plant Science, Faculty of Applied Sciences, UWE-Bristol, Coldharbour Lane, Bristol BS16 1QY, UK1
| |
Collapse
|
215
|
Hernández-Guzmán G, Alvarez-Morales A. Isolation and characterization of the gene coding for the amidinotransferase involved in the biosynthesis of phaseolotoxin in Pseudomonas syringae pv. phaseolicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:545-554. [PMID: 11310742 DOI: 10.1094/mpmi.2001.14.4.545] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pseudomonas syringae pv. phaseolicola is the causal agent of the "halo blight" disease of beans. A key component in the development of the disease is a nonhost-specific toxin, Ndelta-(N'-sulphodiaminophosphinyl)-ornithyl-alanyl-homoarginine, known as phaseolotoxin. The homoarginine residue in this molecule has been suggested to be the product of L-arginine:lysine amidinotransferase activity, previously detected in extracts of P. syringae pv. phaseolicola grown under conditions of phaseolotoxin production. We report the isolation and characterization of an amidinotransferase gene (amtA) from P. syringae pv. phaseolicola coding for a polypeptide of 362 residues (41.36 kDa) and showing approximately 40% sequence similarity to L-arginine:inosamine-phosphate amidinotransferase from three species of Streptomyces spp. and 50.4% with an L-arginine:glycine amidinotransferase from human mitochondria. The cysteine, histidine, and aspartic acid residues involved in substrate binding are conserved. Furthermore, expression of the amtA and argK genes and phaseolotoxin production occurs at 18 degrees C but not at 28 degrees C. An amidinotransferase insertion mutant was obtained that lost the capacity to synthesize homoarginine and phaseolotoxin. These results show that the amtA gene isolated is responsible for the amidinotransferase activity detected previously and that phaseolotoxin production depends upon the activity of this gene.
Collapse
|
216
|
Brown IR, Mansfield JW, Taira S, Roine E, Romantschuk M. Immunocytochemical localization of HrpA and HrpZ supports a role for the Hrp pilus in the transfer of effector proteins from Pseudomonas syringae pv. tomato across the host plant cell wall. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:394-404. [PMID: 11277437 DOI: 10.1094/mpmi.2001.14.3.394] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Hrp pilus, composed of HrpA subunits, is an essential component of the type III secretion system in Pseudomonas syringae. We used electron microscopy (EM) and immunocytochemistry to examine production of the pilus in vitro from P. syringae pv. tomato strain DC3000 grown under hrp-inducing conditions on EM grids. Pili, when labeled with antibodies to HrpA, developed rapidly in a nonpolar manner shortly after the detection of the hrpA transcript and extended up to 5 microm into surrounding media. Structures at the base of the pilus were clearly differentiated from the basal bodies of flagella. The HrpZ protein, also secreted via the type III system, was found by immunogold labeling to be associated with the pilus in vitro. Accumulation and secretion of HrpA and HrpZ were also examined quantitatively after the inoculation of wild-type DC3000 and hrpA and hrpZ mutants into leaves of Arabidopsis thaliana. The functional pilus crossed the plant cell wall to generate tracks of immunogold labeling for HrpA and HrpZ. Mutants that produced HrpA but did not assemble pili were nonpathogenic, did not secrete HrpA protein, and were compromised for the accumulation of HrpZ. A model is proposed in which the rapidly elongating Hrp pilus acts as a moving conveyor, facilitating transfer of effector proteins from bacteria to the plant cytoplasm across the formidable barrier of the plant cell wall.
Collapse
Affiliation(s)
- I R Brown
- Department of Biological Sciences, Imperial College at Wye, University of London, Ashford, Kent, UK
| | | | | | | | | |
Collapse
|
217
|
Innes RW. Targeting the targets of Type III effector proteins secreted by phytopathogenic bacteria. MOLECULAR PLANT PATHOLOGY 2001; 2:109-115. [PMID: 20572998 DOI: 10.1046/j.1364-3703.2001.00057.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- R W Innes
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA
| |
Collapse
|
218
|
Abstract
Type III secretion systems allow Yersinia spp., Salmonella spp., Shigella spp., Bordetella spp., and Pseudomonas aeruginosa and enteropathogenic Escherichia coli adhering at the surface of a eukaryotic cell to inject bacterial proteins across the two bacterial membranes and the eukaryotic cell membrane to destroy or subvert the target cell. These systems consist of a secretion apparatus, made of approximately 25 proteins, and an array of proteins released by this apparatus. Some of these released proteins are "effectors," which are delivered into the cytosol of the target cell, whereas the others are "translocators," which help the effectors to cross the membrane of the eukaryotic cell. Most of the effectors act on the cytoskeleton or on intracellular-signaling cascades. A protein injected by the enteropathogenic E. coli serves as a membrane receptor for the docking of the bacterium itself at the surface of the cell. Type III secretion systems also occur in plant pathogens where they are involved both in causing disease in susceptible hosts and in eliciting the so-called hypersensitive response in resistant or nonhost plants. They consist of 15-20 Hrp proteins building a secretion apparatus and two groups of effectors: harpins and avirulence proteins. Harpins are presumably secreted in the extracellular compartment, whereas avirulence proteins are thought to be targeted into plant cells. Although a coherent picture is clearly emerging, basic questions remain to be answered. In particular, little is known about how the type III apparatus fits together to deliver proteins in animal cells. It is even more mysterious for plant cells where a thick wall has to be crossed. In spite of these haunting questions, type III secretion appears as a fascinating trans-kingdom communication device.
Collapse
Affiliation(s)
- G R Cornelis
- Microbial Pathogenesis Unit, Christian de Duve Institute of Cellular Pathology and Faculté de Médecine, Université Catholique de Louvain, B-1200 Brussels, Belgium.
| | | |
Collapse
|
219
|
Abstract
Virulence factors of pathogenic bacteria (adhesins, toxins, invasins, protein secretion systems, iron uptake systems, and others) may be encoded by particular regions of the prokaryotic genome termed pathogenicity islands. Pathogenicity islands were first described in human pathogens of the species Escherichia coli, but have recently been found in the genomes of various pathogens of humans, animals, and plants. Pathogenicity islands comprise large genomic regions [10-200 kilobases (kb) in size] that are present on the genomes of pathogenic strains but absent from the genomes of nonpathogenic members of the same or related species. The finding that the G+C content of pathogenicity islands often differs from that of the rest of the genome, the presence of direct repeats at their ends, the association of pathogenicity islands with transfer RNA genes, the presence of integrase determinants and other mobility loci, and their genetic instability argue for the generation of pathogenicity islands by horizontal gene transfer, a process that is well known to contribute to microbial evolution. In this article we review these and other aspects of pathogenicity islands and discuss the concept that they represent a subclass of genomic islands. Genomic islands are present in the majority of genomes of pathogenic as well as nonpathogenic bacteria and may encode accessory functions which have been previously spread among bacterial populations.
Collapse
Affiliation(s)
- J Hacker
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, D-97070 Würzburg, Germany.
| | | |
Collapse
|
220
|
Guttman DS, Greenberg JT. Functional analysis of the type III effectors AvrRpt2 and AvrRpm1 of Pseudomonas syringae with the use of a single-copy genomic integration system. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:145-55. [PMID: 11204777 DOI: 10.1094/mpmi.2001.14.2.145] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gram-negative phytopathogenic bacteria require a type III secretion apparatus for pathogenesis, presumably to deliver Avr effector proteins directly into plant cells. To extend previous studies of Avr effectors that employed plasmids encoding Avr proteins, we developed a system that permits the integration of any gene into the Pseudomonas syringae genome in single copy. With this system, we confirmed earlier findings showing that P. syringae pv. maculicola strain PsmES4326 expressing the AvrRpt2 effector induces a resistance response in plants with the cognate R gene, RPS2. Chromosomally located avrRpt2, however, provoked a stronger resistance response than that observed with plasmid-expressed AvrRpt2 in RPS2+ plants. Additionally, chromosomal expression of AvrRpt2 conferred a fitness advantage on P. syringae grown in rps2- plants, aiding in growth within leaves and escape to leaf surfaces that was difficult to detect with plasmid-borne avrRpt2. Finally, with the use of the genomic integration system, we found that a chimeric protein composed of the N terminus of the heterologous AvrRpml effector and the C-terminal effector region of AvrRpt2 was delivered to plant cells. Because the C terminus of AvrRpt2 cannot translocate into plant cells on its own, this indicates that the N-terminal region can direct secretion and translocation during an infection, which supports the view that Avr proteins have a modular design. This work establishes a readily manipulatable system to study type III effectors in a biologically realistic context.
Collapse
Affiliation(s)
- D S Guttman
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 60637, USA.
| | | |
Collapse
|
221
|
Göttfert M, Röthlisberger S, Kündig C, Beck C, Marty R, Hennecke H. Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 2001; 183:1405-12. [PMID: 11157954 PMCID: PMC95015 DOI: 10.1128/jb.183.4.1405-1412.2001] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physical and genetic map of the Bradyrhizobium japonicum chromosome revealed that nitrogen fixation and nodulation genes are clustered. Because of the complex interactions between the bacterium and the plant, we expected this chromosomal sector to contain additional genes that are involved in the maintenance of an efficient symbiosis. Therefore, we determined the nucleotide sequence of a 410-kb region. The overall G+C nucleotide content was 59.1%. Using a minimum gene length of 150 nucleotides, 388 open reading frames (ORFs) were selected as coding regions. Thirty-five percent of the predicted proteins showed similarity to proteins of rhizobia. Sixteen percent were similar only to proteins of other bacteria. No database match was found for 29%. Repetitive DNA sequence-derived ORFs accounted for the rest. The sequenced region contained all nitrogen fixation genes and, apart from nodM, all nodulation genes that were known to exist in B. japonicum. We found several genes that seem to encode transport systems for ferric citrate, molybdate, or carbon sources. Some of them are preceded by -24/-12 promoter elements. A number of putative outer membrane proteins and cell wall-modifying enzymes as well as a type III secretion system might be involved in the interaction with the host.
Collapse
Affiliation(s)
- M Göttfert
- Institut für Genetik, Technische Universität Dresden, D-01062 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
222
|
Lu M, Tang X, Zhou JM. Arabidopsis NHO1 is required for general resistance against Pseudomonas bacteria. THE PLANT CELL 2001; 13:437-47. [PMID: 11226196 PMCID: PMC102253 DOI: 10.1105/tpc.13.2.437] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2000] [Accepted: 12/12/2000] [Indexed: 05/17/2023]
Abstract
Nonhost interactions are prevalent between plants and specialized phytopathogens. Although it has great potential for providing crop plants with durable resistance, nonhost resistance is poorly understood. Here, we show that nonhost resistance is controlled, at least in part, by general resistance. Arabidopsis plants are resistant to the nonhost pathogen Pseudomonas syringae pv phaseolicola NPS3121 and completely arrest bacterial multiplication in the plant. Ten Arabidopsis mutants were isolated that were compromised in nonhost (nho) resistance to P. s. phaseolicola. Among these, nho1 is caused by a single recessive mutation that defines a novel gene. nho1 is defective in nonspecific resistance to Pseudomonas bacteria, because it also supported the growth of P. s. tabaci and P. fluorescens bacteria, both of which are nonpathogenic on Arabidopsis. In addition, the nho1 mutation also compromised resistance mediated by RPS2, RPS4, RPS5, and RPM1. Interestingly, the nho1 mutation had no effect on the growth of the virulent bacteria P. s. maculicola ES4326 and P. s. tomato DC3000, but it partially restored the in planta growth of the DC3000 hrpS(-) mutant bacteria. Thus, the virulent bacteria appear to evade or suppress NHO1-mediated resistance by means of an Hrp-dependent virulence mechanism.
Collapse
Affiliation(s)
- M Lu
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
223
|
Lee J, Klusener B, Tsiamis G, Stevens C, Neyt C, Tampakaki AP, Panopoulos NJ, Nöller J, Weiler EW, Cornelis GR, Mansfield JW, Nürnberger T. HrpZPsph from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc Natl Acad Sci U S A 2001; 98:289-94. [PMID: 11134504 PMCID: PMC14583 DOI: 10.1073/pnas.98.1.289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hrp gene clusters of plant pathogenic bacteria control pathogenicity on their host plants and ability to elicit the hypersensitive reaction in resistant plants. Some hrp gene products constitute elements of the type III secretion system, by which effector proteins are exported and delivered into plant cells. Here, we show that the hrpZ gene product from the bean halo-blight pathogen, Pseudomonas syringae pv. phaseolicola (HrpZ(Psph)), is secreted in an hrp-dependent manner in P. syringae pv. phaseolicola and exported by the type III secretion system in the mammalian pathogen Yersinia enterocolitica. HrpZ(Psph) was found to associate stably with liposomes and synthetic bilayer membranes. Under symmetric ionic conditions, addition of 2 nM of purified recombinant HrpZ(Psph) to the cis compartment of planar lipid bilayers provoked an ion current with a large unitary conductivity of 207 pS. HrpZ(Psph)-related proteins from P. syringae pv. tomato or syringae triggered ion currents similar to those stimulated by HrpZ(Psph). The HrpZ(Psph)-mediated ion-conducting pore was permeable for cations but did not mediate fluxes of Cl-. Such pore-forming activity may allow nutrient release and/or delivery of virulence factors during bacterial colonization of host plants.
Collapse
Affiliation(s)
- J Lee
- Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, D-06120 Halle, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
HrpZ(Psph) from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc Natl Acad Sci U S A 2001. [PMID: 11134504 PMCID: PMC14583 DOI: 10.1073/pnas.011265298] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hrp gene clusters of plant pathogenic bacteria control pathogenicity on their host plants and ability to elicit the hypersensitive reaction in resistant plants. Some hrp gene products constitute elements of the type III secretion system, by which effector proteins are exported and delivered into plant cells. Here, we show that the hrpZ gene product from the bean halo-blight pathogen, Pseudomonas syringae pv. phaseolicola (HrpZ(Psph)), is secreted in an hrp-dependent manner in P. syringae pv. phaseolicola and exported by the type III secretion system in the mammalian pathogen Yersinia enterocolitica. HrpZ(Psph) was found to associate stably with liposomes and synthetic bilayer membranes. Under symmetric ionic conditions, addition of 2 nM of purified recombinant HrpZ(Psph) to the cis compartment of planar lipid bilayers provoked an ion current with a large unitary conductivity of 207 pS. HrpZ(Psph)-related proteins from P. syringae pv. tomato or syringae triggered ion currents similar to those stimulated by HrpZ(Psph). The HrpZ(Psph)-mediated ion-conducting pore was permeable for cations but did not mediate fluxes of Cl-. Such pore-forming activity may allow nutrient release and/or delivery of virulence factors during bacterial colonization of host plants.
Collapse
|
225
|
Leach JE, Vera Cruz CM, Bai J, Leung H. Pathogen fitness penalty as a predictor of durability of disease resistance genes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2001; 39:187-224. [PMID: 11701864 DOI: 10.1146/annurev.phyto.39.1.187] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Host plant resistance has been used extensively for disease control in many crop species; however, the resistance conferred by many sources is not durable as a result of rapid changes in the pathogen. Although many resistance genes have been identified in plant germplasm, there is no easy way to predict the quality or durability of these resistance genes. In this review, we revisit the hypothesis that resistance genes imposing a high penalty to the pathogen for adaptation will likely be durable. By elucidating the molecular changes involved in pathogen adaptation and the associated fitness cost, a proactive approach may be developed to predict the durability of resistance genes available for deployment.
Collapse
Affiliation(s)
- J E Leach
- Department of Plant Pathology, 4024 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, Kansas 66506-5502, USA.
| | | | | | | |
Collapse
|
226
|
Al-Hasani K, Rajakumar K, Bulach D, Robins-Browne R, Adler B, Sakellaris H. Genetic organization of the she pathogenicity island in Shigella flexneri 2a. Microb Pathog 2001; 30:1-8. [PMID: 11162180 DOI: 10.1006/mpat.2000.0404] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study we report the complete nucleotide sequence and genetic organization of the she pathogenicity island (PAI) of Shigella flexneri 2a strain YSH6000T. The 46 603 bp she PAI is situated adjacent to the 3' terminus of the pheV tRNA gene and includes an imperfect direct repeat of the 3'-terminal 22 bp of the pheV gene at the right boundary of the PAI. The she PAI carries a bacteriophage P4-like integrase gene within the pheV -proximal boundary of the PAI, intact and truncated mobile genetic elements, plasmid-related sequences, open reading frames exhibiting high sequence similarity to those found on the locus of enterocyte effacement (LEE) PAI of enterohemorrhagic Escherichia coli (EHEC), and the SHI-2 PAI of S. flexneri and several other open reading frames of unknown function. The she PAI also encodes two autotransporter proteins, including SigA, a cytopathic protease that contributes to intestinal fluid accumulation and Pic, a protease with mucinase, and hemagglutinin activities. In addition, an open reading frame (orf) termed sap, has high sequence similarity to the gene encoding Antigen 43, a surface-located autotransporter protein of E. coli. The ShET1 enterotoxin genes, associated predominantly with S. flexneri 2a strains, are also located on the she PAI.
Collapse
Affiliation(s)
- K Al-Hasani
- Department of Microbiology, Monash University, Victoria, 3800, Australia
| | | | | | | | | | | |
Collapse
|
227
|
Abstract
Using high resolution molecular fingerprinting techniques like random amplification of polymorphic DNA, repetitive extragenic palindromic PCR and multilocus enzyme electrophoresis, a high bacterial diversity below the species and subspecies level (microdiversity) is revealed. It became apparent that bacteria of a certain species living in close association with different plants either as associated rhizosphere bacteria or as plant pathogens or symbiotic organisms, typically reflect this relationship in their genetic relatedness. The strain composition within a population of soil bacterial species at a given field site, which can be identified by these high resolution fingerprinting techniques, was markedly influenced by soil management and soil features. The observed bacterial microdiversity reflected the conditions of the habitat, which select for better adapted forms. In addition, influences of spatial separation on specific groupings of bacteria were found, which argue for the occurrence of isolated microevolution. In this review, examples are presented of bacterial microdiversity as influenced by different ecological factors, with the main emphasis on bacteria from the natural environment. In addition, information available from some of the first complete genome sequences of bacteria (Helicobacter pylori and Escherichia coli) was used to highlight possible mechanisms of molecular evolution through which mutations are created; these include mutator enzymes. Definitions of bacterial species and subspecies ranks are discussed in the light of detailed information from whole genome typing approaches.
Collapse
Affiliation(s)
- M Schloter
- GSF-National Research Center for Environment and Health, Institute of Soil Ecology, Neuherberg, Germany.
| | | | | | | |
Collapse
|
228
|
Sundin GW, Jacobs JL, Murillo J. Sequence diversity of rulA among natural isolates of Pseudomonas syringae and effect on function of rulAB-mediated UV radiation tolerance. Appl Environ Microbiol 2000; 66:5167-73. [PMID: 11097885 PMCID: PMC92439 DOI: 10.1128/aem.66.12.5167-5173.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rulAB locus confers tolerance to UV radiation and is borne on plasmids of the pPT23A family in Pseudomonas syringae. We sequenced 14 rulA alleles from P. syringae strains representing seven pathovars and found sequence differences of 1 to 12% within pathovar syringae, and up to 15% differences between pathovars. Since the sequence variation within rulA was similar to that of P. syringae chromosomal alleles, we hypothesized that rulAB has evolved over a long time period in P. syringae. A phylogenetic analysis of the deduced amino acid sequences of rulA resulted in seven clusters. Strains from the same plant host grouped together in three cases; however, strains from different pathovars grouped together in two cases. In particular, the rulA alleles from P. syringae pv. lachrymans and P. syringae pv. pisi were grouped but were clearly distinct from the other sequenced alleles, suggesting the possibility of a recent interpathovar transfer. We constructed chimeric rulAB expression clones and found that the observed sequence differences resulted in significant differences in UV (wavelength) radiation sensitivity. Our results suggest that specific amino acid changes in RulA could alter UV radiation tolerance and the competitiveness of the P. syringae host in the phyllosphere.
Collapse
Affiliation(s)
- G W Sundin
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132, USA.
| | | | | |
Collapse
|
229
|
Chen Z, Kloek AP, Boch J, Katagiri F, Kunkel BN. The Pseudomonas syringae avrRpt2 gene product promotes pathogen virulence from inside plant cells. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:1312-21. [PMID: 11106023 DOI: 10.1094/mpmi.2000.13.12.1312] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Several bacterial avr genes have been shown to contribute to virulence on susceptible plants lacking the corresponding resistance (R) gene. The mechanisms by which avr genes promote parasitism and disease, however, are not well understood. We investigated the role of the Pseudomonas syringae pv. tomato avrRpt2 gene in pathogenesis by studying the interaction of P. syringae pv. tomato strain PstDC3000 expressing avrRpt2 with several Arabidopsis thaliana lines lacking the corresponding R gene, RPS2. We found that PstDC3000 expressing avrRpt2 grew to significantly higher levels and often resulted in the formation of more severe disease symptoms in ecotype No-0 plants carrying a mutant RPS2 allele, as well as in two Col-0 mutant lines, cpr5 rps2 and coil rps2, that exhibit enhanced resistance. We also generated transgenic A. thaliana lines expressing avrRpt2 and demonstrated, by using several different assays, that expression of avrRpt2 within the plant also promotes virulence of PstDC3000. Thus, AvrRpt2 appears to promote pathogen virulence from within the plant cell.
Collapse
Affiliation(s)
- Z Chen
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
230
|
Sesma A, Sundin GW, Murillo J. Phylogeny of the replication regions of pPT23A-like plasmids from Pseudomonas syringae. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2375-2384. [PMID: 11021914 DOI: 10.1099/00221287-146-10-2375] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It was previously shown that most Pseudomonas syringae strains contain one or more plasmids with cross-hybridizing replication regions and other areas of homology, and these plasmids were designated the pPT23A-like family. The majority of these plasmids encode genes conferring epiphytic fitness or resistance to antibacterial compounds and those investigated in this study are essential for pathogenicity or increased virulence. The phylogeny of 14 pPT23A-like plasmids from five P. syringae pathovars was studied by comparing a fragment of the sequence of their repA genes (encoding a replicase essential for replication). In the phylogenetic tree obtained, four groups (< or =88.8% identity between their members) could be identified. The first group contained the plasmids from three P. syringae pv. tomato strains, a P. syringae pv. apii strain and five out of the seven P. syringae pv. syringae strains, with identity ranging between 88.8 and 100%. The clustering of the pv. syringae strains did not reflect host specialization or previously reported phylogenetic relationships. The second group contained the plasmids from two strains of pv. glycinea and pv. tomato (95.5% identity), and it also included the previously sequenced replicon of a pathogenicity plasmid from P. syringae pv. phaseolicola. The plasmids from the remaining two pv. syringae strains were distantly related to the other plasmid sequences. Hybridization experiments using different genes or transposable elements previously described as plasmid-borne in P. syringae, showed that the gene content of highly related plasmids could be dissimilar, suggesting the occurrence of major plasmid reorganizations. Additionally, the phylogeny of the different native plasmids did not always correlate with the phylogeny of their harbouring strains, as determined by the analysis of extragenic repetitive consensus (ERIC) and arbitrarily primed PCR (AP-PCR) products. Collectively, these results suggest that pPT23A-like plasmids were, in most cases, acquired early during evolution.
Collapse
Affiliation(s)
- Ane Sesma
- Instituto de Agrobiotecnologı́a y Recursos Naturales, CSIC-UPNA, and Laboratorio de Patologı́a Vegetal, Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain1
| | - George W Sundin
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA2
| | - Jesús Murillo
- Instituto de Agrobiotecnologı́a y Recursos Naturales, CSIC-UPNA, and Laboratorio de Patologı́a Vegetal, Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain1
| |
Collapse
|
231
|
Jackson RW, Mansfield JW, Arnold DL, Sesma A, Paynter CD, Murillo J, Taylor JD, Vivian A. Excision from tRNA genes of a large chromosomal region, carrying avrPphB, associated with race change in the bean pathogen, Pseudomonas syringae pv. phaseolicola. Mol Microbiol 2000; 38:186-97. [PMID: 11069647 DOI: 10.1046/j.1365-2958.2000.02133.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas syringae pv. phaseolicola (Pph) race 4 strain 1302A carries avirulence gene avrPphB. Strain RJ3, a sectoral variant from a 1302A culture, exhibited an extended host range in cultivars of bean and soybean resulting from the absence of avrPphB from the RJ3 chromosome. Complementation of RJ3 with avrPphB restored the race 4 phenotype. Both strains showed similar in planta growth in susceptible bean cultivars. Analysis of RJ3 indicated loss of > 40 kb of DNA surrounding avrPphB. Collinearity of the two genomes was determined for the left and right junctions of the deleted avrPphB region; the left junction is approximately 19 kb and the right junction > 20 kb from avrPphB in 1302A. Sequencing revealed that the region containing avrPphB was inserted into a tRNALYS gene, which was re-formed at the right junction in strain 1302A. A putative lysine tRNA pseudogene (PsitRNALYS) was found at the left junction of the insertion. All tRNA genes were in identical orientation in the chromosome. Genes near the left junction exhibited predicted protein homologies with gene products associated with a virulence locus of the periodontal pathogen Actinobacillus actinomycetemcomitans. Specific oligonucleotide primers that differentiate 1302A from RJ3 were designed and used to demonstrate that avrPphB was located in different regions of the chromosome in other strains of Pph. Deletion of a large region of the chromosome containing an avirulence gene represents a new route to race change in Pph.
Collapse
Affiliation(s)
- R W Jackson
- Centre for Research in Plant Science, Faculty of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK.
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2385-2394. [PMID: 11021915 DOI: 10.1099/00221287-146-10-2385] [Citation(s) in RCA: 348] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phylogenetic analysis of the genus Pseudomonas: was conducted by using the combined gyrB and rpoD nucleotide sequences of 31 validly described species of Pseudomonas: (a total of 125 strains). Pseudomonas: strains diverged into two major clusters designated intrageneric cluster I (IGC I) and intrageneric cluster II (IGC II). IGC I was further split into two subclusters, the 'P: aeruginosa complex', which included P: aeruginosa, P: alcaligenes, P: citronellolis, P: mendocina, P: oleovorans and P: pseudoalcaligenes, and the 'P: stutzeri complex', which included P: balearica and P: stutzeri. IGC II was further split into three subclusters that were designated the 'P: putida complex', the 'P: syringae complex' and the 'P: fluorescens complex'. The 'P: putida complex' included P: putida and P: fulva. The 'P: syringae complex' was the cluster of phytopathogens including P: amygdali, P: caricapapayae, P: cichorii, P: ficuserectae, P: viridiflava and the pathovars of P. savastanoi and P. syringae. The 'P. fluorescens complex' was further divided into two subpopulations, the 'P. fluorescens lineage' and the 'P. chlororaphis lineage'. The 'P. fluorescens lineage' contained P. fluorescens biotypes A, B and C, P. azotoformans, P. marginalis pathovars, P. mucidolens, P. synxantha and P. tolaasii, while the 'P. chlororaphis lineage' included P. chlororaphis, P. agarici, P. asplenii, P. corrugata, P. fluorescens biotypes B and G and P. putida biovar B. The strains of P. fluorescens biotypes formed a polyphyletic group within the 'P. fluorescens complex'.
Collapse
Affiliation(s)
- Satoshi Yamamoto
- Marine Biotechnology Institute, Kamaishi Laboratories, Kamaishi City, Iwate 026, Japan1
| | - Hiroaki Kasai
- Marine Biotechnology Institute, Kamaishi Laboratories, Kamaishi City, Iwate 026, Japan1
| | - Dawn L Arnold
- Centre for Research in Plant Science, Faculty of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK2
| | - Robert W Jackson
- Centre for Research in Plant Science, Faculty of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK2
| | - Alan Vivian
- Centre for Research in Plant Science, Faculty of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK2
| | - Shigeaki Harayama
- Marine Biotechnology Institute, Kamaishi Laboratories, Kamaishi City, Iwate 026, Japan1
| |
Collapse
|
233
|
Spiers AJ, Buckling A, Rainey PB. The causes of Pseudomonas diversity. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2345-2350. [PMID: 11021911 DOI: 10.1099/00221287-146-10-2345] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Andrew J Spiers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK1
| | - Angus Buckling
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK1
| | - Paul B Rainey
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK1
| |
Collapse
|
234
|
Preston GM. Pseudomonas syringae pv. tomato: the right pathogen, of the right plant, at the right time. MOLECULAR PLANT PATHOLOGY 2000; 1:263-75. [PMID: 20572973 DOI: 10.1046/j.1364-3703.2000.00036.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
UNLABELLED Abstract Pseudomonas syringae pv. tomato and the closely related pathovar P. s. pv. maculicola have been the focus of intensive research in recent years, not only because of the diseases they cause on tomato and crucifers, but because strains such as P. s. pv. tomato DC3000 and P. s. pv. maculicola ES4326 are pathogens of the model plant Arabidopsis thaliana. Consequently, both P. s. pv. tomato and P. s. pv. maculicola have been widely used to study the molecular mechanisms of host responses to infection. Analyses of the molecular basis of pathogenesis in P. s. pv. tomato reveal a complex and intimate interaction between bacteria and plant cells that depends on the coordinated expression of multiple pathogenicity and virulence factors. These include toxins, extracellular proteins and polysaccharides, and the translocation of proteins into plant cells by the type III (Hrp) secretion system. The contribution of individual virulence factors to parasitism and disease development varies significantly between strains. Application of functional genomics and cell biology to both pathogen and host within the P. s. pv. tomato/A. thaliana pathosystem provides a unique opportunity to unravel the molecular interactions underlying plant pathogenesis. Taxonomic relationship: Bacteria; Proteobacteria; gamma subdivision; Pseudomonadaceae/Moraxellaceae group; Pseudomonadaceae family; Pseudomonas genus; Pseudomonas syringae species; tomato pathovar. Microbiological properties: Gram-negative, aerobic, motile, rod-shaped, polar flagella, oxidase negative, arginine dihydrolase negative, DNA 58-60 mol% GC, elicits the hypersensitive response on tobacco. HOST RANGE Primarily studied as the causal agent of bacterial speck of tomato and as a model pathogen of A. thaliana, although it has been isolated from a wide range of crop and weed species. Disease symptoms: Tomato (Lycopersicon esculentum): Brown-black leaf spots sometimes surrounded by chlorotic margin; dark superficial specks on green fruit; specks on ripe fruit may become sunken, and are surrounded by a zone of delayed ripening. Stunting and yield loss, particularly if young plants are infected. Reduced market value of speckled fruit. A. thaliana: Water-soaked, spreading lesions, sometimes surrounded by chlorotic margin. EPIDEMIOLOGY Seed borne. Survives as a saprophyte in plant debris, soil and on leaf surfaces. Dispersed by aerosols and rain splash. Development of disease symptoms favoured by leaf wetness and cool temperatures (55-77 degrees F/13-25 degrees C). Disease control: Pathogen-free seed and transplants. Resistant and tolerant cultivars. Sanitation, rotation, and drip irrigation to reduce leaf wetness. Some measure of control with bactericides (copper, streptomycin).
Collapse
Affiliation(s)
- G M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
235
|
Davis EL, Hussey RS, Baum TJ, Bakker J, Schots A, Rosso MN, Abad P. Nematode Parasitism Genes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2000; 38:365-396. [PMID: 11701847 DOI: 10.1146/annurev.phyto.38.1.365] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The ability of nematodes to live on plant hosts involves multiple parasitism genes. The most pronounced morphological adaptations of nematodes for plant parasitism include a hollow, protrusible stylet (feeding spear) connected to three enlarged esophageal gland cells that express products that are secreted into plant tissues through the stylet. Reverse genetic and expressed sequence tag (EST) approaches are being used to discover the parasitism genes expressed in nematode esophageal gland cells. Some genes cloned from root-knot (Meloidogyne spp.) and cyst (Heterodera and Globodera spp.) nematodes have homologues reported in genomic analyses of Caenorhabditis elegans and animal-parasitic nematodes. To date, however, the candidate parasitism genes endogenous to the esophageal glands of plant nematodes (such as the ß-1,4-endoglucanases) have their greatest similarity to microbial genes, prompting speculation that genes for plant parasitism by nematodes may have been acquired by horizontal gene transfer.
Collapse
Affiliation(s)
- Eric L Davis
- Department of Plant Pathology, North Carolina State University, Campus Box 7616, Raleigh, North Carolina 27695; e-mail:
| | - Richard S Hussey
- Department of Plant Pathology, University of Georgia, 2309 Miller Plant Science Building, Athens, Georgia 30602-7274; e-mail:
| | - Thomas J Baum
- Department of Plant Pathology, Iowa State University, 351 Bessey Hall, Ames, Iowa 50011; e-mail:
| | - Jaap Bakker
- Department of Nematology, Wageningen University and Research Centre, Binnenhaven 10, PD Wageningen, 6709 The Netherlands; e-mail: ;
| | - Arjen Schots
- Department of Nematology, Wageningen University and Research Centre, Binnenhaven 10, PD Wageningen, 6709 The Netherlands; e-mail: ;
| | - Marie-Noëlle Rosso
- Laboratoire de Biologie des Invertebres, Institut National de la Recherche Agronomique, 123 Boulevarde Francis Meilland, Cedex Antibes, 06600 France; e-mail: ;
| | - Pierre Abad
- Laboratoire de Biologie des Invertebres, Institut National de la Recherche Agronomique, 123 Boulevarde Francis Meilland, Cedex Antibes, 06600 France; e-mail: ;
| |
Collapse
|
236
|
Yang B, Zhu W, Johnson LB, White FF. The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent nuclear-localized double-stranded DNA-binding protein. Proc Natl Acad Sci U S A 2000; 97:9807-12. [PMID: 10931960 PMCID: PMC16946 DOI: 10.1073/pnas.170286897] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AvrXa7 is a member of the avrBs3 avirulence gene family, which encodes proteins targeted to plant cells by a type III secretion apparatus. AvrXa7, the product of avrXa7, is also a virulence factor in strain PXO86 of Xanthomonas oryzae pv. oryzae. Avirulence and virulence specificities are associated with the central repeat domain, which, in avrXa7, consists of 25.5 direct repeat units. Mutations in three C-terminal nuclear localization signal motifs eliminated avirulence and virulence activities in rice and severely reduced nuclear localization in a yeast assay system. Both pathogenicity functions and nuclear localization were restored on the addition of the sequence for the nuclear localization signal motif from SV40 T-antigen. The loss of avirulence activity because of mutations in the acidic transcriptional activation domain was restored by addition of the activation domain from the herpes simplex viral protein VP16. The activation domain was also required for virulence activity. However, the VP16 domain could not substitute for the endogenous domain in virulence assays. In gel shift assays, AvrXa7 bound double-stranded DNA with a preference for dA/dT rich sequences. The results indicate that products of the avrBs3-related genes are virulence factors targeted to host cell nuclei and have the potential to interact with the host DNA and transcriptional machinery as part of their mode of action. The results also suggest that the host defensive recognition mechanisms are targeted to the virulence factor site of action.
Collapse
Affiliation(s)
- B Yang
- Department of Plant Pathology, Kansas State University, Manhattan 66506, USA
| | | | | | | |
Collapse
|
237
|
Collmer A, Badel JL, Charkowski AO, Deng WL, Fouts DE, Ramos AR, Rehm AH, Anderson DM, Schneewind O, van Dijk K, Alfano JR. Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc Natl Acad Sci U S A 2000; 97:8770-7. [PMID: 10922033 PMCID: PMC34010 DOI: 10.1073/pnas.97.16.8770] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas syringae is a member of an important group of Gram-negative bacterial pathogens of plants and animals that depend on a type III secretion system to inject virulence effector proteins into host cells. In P. syringae, hrp/hrc genes encode the Hrp (type III secretion) system, and avirulence (avr) and Hrp-dependent outer protein (hop) genes encode effector proteins. The hrp/hrc genes of P. syringae pv syringae 61, P. syringae pv syringae B728a, and P. syringae pv tomato DC3000 are flanked by an exchangeable effector locus and a conserved effector locus in a tripartite mosaic Hrp pathogenicity island (Pai) that is linked to a tRNA(Leu) gene found also in Pseudomonas aeruginosa but without linkage to Hrp system genes. Cosmid pHIR11 carries a portion of the strain 61 Hrp pathogenicity island that is sufficient to direct Escherichia coli and Pseudomonas fluorescens to inject HopPsyA into tobacco cells, thereby eliciting a hypersensitive response normally triggered only by plant pathogens. Large deletions in strain DC3000 revealed that the conserved effector locus is essential for pathogenicity but the exchangeable effector locus has only a minor role in growth in tomato. P. syringae secretes HopPsyA and AvrPto in culture in a Hrp-dependent manner at pH and temperature conditions associated with pathogenesis. AvrPto is also secreted by Yersinia enterocolitica. The secretion of AvrPto depends on the first 15 codons, which are also sufficient to direct the secretion of an Npt reporter from Y. enterocolitica, indicating that a universal targeting signal is recognized by the type III secretion systems of both plant and animal pathogens.
Collapse
Affiliation(s)
- A Collmer
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853-4203, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
White FF, Yang B, Johnson LB. Prospects for understanding avirulence gene function. CURRENT OPINION IN PLANT BIOLOGY 2000; 3:291-8. [PMID: 10873850 DOI: 10.1016/s1369-5266(00)00082-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Avirulence genes are originally defined by their negative impact on the ability of a pathogen to infect their host plant. Many avirulence genes are now known to represent a subset of virulence factors involved in the mediation of the host-pathogen interaction. Characterization of avirulence genes has revealed that they encode an amazing assortment of proteins and belong to several gene families. Although the biochemical functions of the avirulence gene products are unknown, studies are beginning to reveal the features and interesting relationships between the avirulence and virulence activities of the proteins. Identification of critical virulence factors and elucidation of their functions promises to provide insight into plant defense mechanisms, and new and improved strategies for the control of plant disease.
Collapse
Affiliation(s)
- F F White
- Department of Plant Pathology, Kansas State University, Manhattan, 66506, USA.
| | | | | |
Collapse
|
239
|
Tsiamis G, Mansfield JW, Hockenhull R, Jackson RW, Sesma A, Athanassopoulos E, Bennett MA, Stevens C, Vivian A, Taylor JD, Murillo J. Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of bean halo-blight disease. EMBO J 2000; 19:3204-14. [PMID: 10880434 PMCID: PMC313945 DOI: 10.1093/emboj/19.13.3204] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2000] [Revised: 05/03/2000] [Accepted: 05/10/2000] [Indexed: 11/13/2022] Open
Abstract
The avrPphF gene was cloned from Pseudomonas syringae pathovar phaseolicola (PPH:) races 5 and 7, based on its ability to confer avirulence towards bean cultivars carrying the R1 gene for halo-blight resistance, such as Red Mexican. avrPphF comprised two open reading frames, which were both required for function, and was located on a 154 kb plasmid (pAV511) in PPH: Strain RW60 of PPH:, lacking pAV511, displayed a loss in virulence to a range of previously susceptible cultivars such as Tendergreen and Canadian Wonder. In Tendergreen virulence was restored to RW60 by avrPphF alone, whereas subcloned avrPphF in the absence of pAV511 greatly accelerated the hypersensitive resistance reaction caused by RW60 in Canadian Wonder. A second gene from pAV511, avrPphC, which controls avirulence to soybean, was found to block the activity of avrPphF in Canadian Wonder, but not in Red Mexican. avrPphF also conferred virulence in soybean. The multiple functions of avrPphF illustrate how effector proteins from plant pathogens have evolved to be recognized by R gene products and, therefore, be classified as encoded by avirulence genes.
Collapse
Affiliation(s)
- G Tsiamis
- Department of Biological Sciences, Wye College, University of London, Ashford, Kent TN25 5AH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Chang JH, Rathjen JP, Bernal AJ, Staskawicz BJ, Michelmore RW. avrPto enhances growth and necrosis caused by Pseudomonas syringae pv.tomato in tomato lines lacking either Pto or Prf. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:568-571. [PMID: 10796023 DOI: 10.1094/mpmi.2000.13.5.568] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
AvrPto was introduced into three tomato genotypes with two biotic agents to study its role in compatible interactions. avrPto enhanced the capacity of the Pseudomonas syringae pv. tomato strain T1 to induce necrotic symptoms on tomato plants that lacked either Pto or Prf genes. The enhanced necrosis correlated with a small increase in bacterial growth. In planta expression of avrPto in isolation did not elicit necrosis in the absence of a functional Prf gene.
Collapse
Affiliation(s)
- J H Chang
- NSF Center for Engineering Plants for Resistance Against Pathogens, University of California, Davis, 95616, USA
| | | | | | | | | |
Collapse
|
241
|
Alfano JR, Charkowski AO, Deng WL, Badel JL, Petnicki-Ocwieja T, van Dijk K, Collmer A. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci U S A 2000; 97:4856-61. [PMID: 10781092 PMCID: PMC18322 DOI: 10.1073/pnas.97.9.4856] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant pathogenic bacterium Pseudomonas syringae is divided into pathovars differing in host specificity, with P. syringae pv. syringae (Psy) and P. syringae pv. tomato (Pto) representing particularly divergent pathovars. P. syringae hrp/hrc genes encode a type III protein secretion system that appears to translocate Avr and Hop effector proteins into plant cells. DNA sequence analysis of the hrp/hrc regions in Psy 61, Psy B728a, and Pto DC3000 has revealed a Hrp pathogenicity island (Pai) with a tripartite mosaic structure. The hrp/hrc gene cluster is conserved in all three strains and is flanked by a unique exchangeable effector locus (EEL) and a conserved effector locus (CEL). The EELs begin 3 nt downstream of the stop codon of hrpK and end, after 2.5-7.3 kb of dissimilar intervening DNA with tRNA(Leu)-queA-tgt sequences that are also found in Pseudomonas aeruginosa but without linkage to any Hrp Pai sequences. The EELs encode diverse putative effectors, including HopPsyA (HrmA) in Psy 61 and proteins similar to AvrPphE and the AvrB/AvrC/AvrPphC and AvrBsT/AvrRxv/YopJ protein families in Psy B728a. The EELs also contain mobile genetic element sequences and have a G + C content significantly lower than the rest of the Hrp Pai or the P. syringae genome. The CEL carries at least seven ORFs that are conserved between Psy B728a and Pto DC3000. Deletion of the Pto DC3000 EEL slightly reduces bacterial growth in tomato, whereas deletion of a large portion of the CEL strongly reduces growth and abolishes pathogenicity in tomato.
Collapse
Affiliation(s)
- J R Alfano
- Department of Biological Sciences, University of Nevada, Las Vegas, NV 89154-4004, USA
| | | | | | | | | | | | | |
Collapse
|
242
|
Kjemtrup S, Nimchuk Z, Dangl JL. Effector proteins of phytopathogenic bacteria: bifunctional signals in virulence and host recognition. Curr Opin Microbiol 2000; 3:73-8. [PMID: 10679421 DOI: 10.1016/s1369-5274(99)00054-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phytopathogenic bacteria deliver effectors of disease into plant hosts via a Type III secretion system. These Type III effectors have genetically determined roles in virulence. They also are among the components recognized by the putative receptors of the plant innate immune system. Recent breakthroughs include localization of some of these Type III effectors to specific host cell compartments, and the first dissection of pathogenicity islands that carry them.
Collapse
Affiliation(s)
- S Kjemtrup
- Department of Biology and Curriculum in Genetics and Molecular Biology (JLD), University of North Carolina, Chapel Hill, NC 27599-380, USA
| | | | | |
Collapse
|
243
|
Carrington JC, Bisseling T, Collmer A, Jones JD. Highlights from the ninth international congress on molecular plant-microbe interactions. THE PLANT CELL 1999; 11:2063-9. [PMID: 10559434 PMCID: PMC1464682 DOI: 10.1105/tpc.11.11.2063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- J C Carrington
- Washington State University Institute of Biological Chemistry Clark Hall Room 289 Pullman, WA 99164, USA.
| | | | | | | |
Collapse
|
244
|
|