201
|
Zeng Z, Huang B, Huang S, Zhang R, Yan S, Yu X, Shu Y, Zhao C, Lei J, Zhang W, Yang C, Wu K, Wu Y, An L, Ji X, Gong C, Yuan C, Zhang L, Liu W, Feng Y, Zhang B, Dai Z, Shen Y, Wang X, Luo W, Haydon RC, Luu HH, Zhou L, Reid RR, He TC, Wu X. The development of a sensitive fluorescent protein-based transcript reporter for high throughput screening of negative modulators of lncRNAs. Genes Dis 2018; 5:62-74. [PMID: 30159383 PMCID: PMC6110536 DOI: 10.1016/j.gendis.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
While the human genome is pervasively transcribed, <2% of the human genome is transcribed into protein-coding mRNAs, leaving most of the transcripts as noncoding RNAs, such as microRNAs and long-noncoding RNAs (lncRNAs), which are critical components of epigenetic regulation. lncRNAs are emerging as critical regulators of gene expression and genomic stability. However, it remains largely unknown about how lncRNAs are regulated. Here, we develop a highly sensitive and dynamic reporter that allows us to identify and/or monitor negative modulators of lncRNA transcript levels in a high throughput fashion. Specifically, we engineer a fluorescent fusion protein by fusing three copies of the PEST destruction domain of mouse ornithine decarboxylase (MODC) to the C-terminal end of the codon-optimized bilirubin-inducible fluorescent protein, designated as dBiFP, and show that the dBiFP protein is highly destabilized, compared with the commonly-used eGFP protein. We further demonstrate that the dBiFP signal is effectively down-regulated when the dBiFP and mouse lncRNA H19 chimeric transcript is silenced by mouse H19-specific siRNAs. Therefore, our results strongly suggest that the dBiFP fusion protein may serve as a sensitive and dynamic transcript reporter to monitor the inhibition of lncRNAs by microRNAs, synthetic regulatory RNA molecules, RNA binding proteins, and/or small molecule inhibitors so that novel and efficacious inhibitors targeting the epigenetic circuit can be discovered to treat human diseases such as cancer and other chronic disorders.
Collapse
Affiliation(s)
- Zongyue Zeng
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Bo Huang
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Shifeng Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Clinical Laboratory Medicine, General Surgery, Orthopedic Surgery, Nephrology, and Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ruyi Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Shujuan Yan
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Xinyi Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Clinical Laboratory Medicine, General Surgery, Orthopedic Surgery, Nephrology, and Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Children's Hospital, Chongqing Medical University, Chongqing, 400014, China
| | - Chen Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Clinical Laboratory Medicine, General Surgery, Orthopedic Surgery, Nephrology, and Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiayan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Clinical Laboratory Medicine, General Surgery, Orthopedic Surgery, Nephrology, and Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Laboratory Medicine and Clinical Diagnostics, The Affiliated Yantai Hospital, Binzhou Medical University, Yantai, 264100, China
| | - Chao Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Children's Hospital, Chongqing Medical University, Chongqing, 400014, China
| | - Ke Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Ying Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Immunology and Microbiology, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liping An
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Xiaojuan Ji
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Children's Hospital, Chongqing Medical University, Chongqing, 400014, China
| | - Cheng Gong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang, 443002, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Children's Hospital, Chongqing Medical University, Chongqing, 400014, China
| | - Wei Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Clinical Laboratory Medicine, General Surgery, Orthopedic Surgery, Nephrology, and Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Clinical Laboratory Medicine, General Surgery, Orthopedic Surgery, Nephrology, and Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhengyu Dai
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yi Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, Xiangya Second Hospital of Central South University, Changsha, 410011, China
| | - Xi Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
- The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, 401147, China
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Clinical Laboratory Medicine, General Surgery, Orthopedic Surgery, Nephrology, and Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Clinical Laboratory Medicine, General Surgery, Orthopedic Surgery, Nephrology, and Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lan Zhou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Clinical Laboratory Medicine, General Surgery, Orthopedic Surgery, Nephrology, and Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Xingye Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Clinical Laboratory Medicine, General Surgery, Orthopedic Surgery, Nephrology, and Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
202
|
Zhao W, Pferdehirt L, Segatori L. Quantitatively Predictable Control of Cellular Protein Levels through Proteasomal Degradation. ACS Synth Biol 2018; 7:540-552. [PMID: 29061039 DOI: 10.1021/acssynbio.7b00325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein function is typically studied and engineered by modulating protein levels within the complex cellular environment. To achieve fast, targeted, and predictable control of cellular protein levels without genetic manipulation of the target, we developed a technology for post-translational depletion based on a bifunctional molecule (NanoDeg) consisting of the antigen-binding fragment from the Camelidae species heavy-chain antibody (nanobody) fused to a degron signal that mediates degradation through the proteasome. We provide proof-of-principle demonstration of targeted degradation using a nanobody against the green fluorescent protein (GFP). Guided by predictive modeling, we show that customizing the NanoDeg rate of synthesis, rate of degradation, and mode of degradation enables quantitative and predictable control over the target's levels. Integrating the GFP-specific NanoDeg within a genetic circuit based on stimulus-dependent GFP output results in enhanced dynamic range and resolution of the output signal. By providing predictable control over cellular proteins' levels, the NanoDeg system could be readily used for a variety of systems-level analyses of cellular protein function.
Collapse
Affiliation(s)
- Wenting Zhao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Lara Pferdehirt
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Laura Segatori
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
203
|
Cellular recovery from exposure to sub-optimal concentrations of AB toxins that inhibit protein synthesis. Sci Rep 2018; 8:2494. [PMID: 29410492 PMCID: PMC5802730 DOI: 10.1038/s41598-018-20861-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/25/2018] [Indexed: 01/31/2023] Open
Abstract
Ricin, Shiga toxin, exotoxin A, and diphtheria toxin are AB-type protein toxins that act within the host cytosol and kill the host cell through pathways involving the inhibition of protein synthesis. It is thought that a single molecule of cytosolic toxin is sufficient to kill the host cell. Intoxication is therefore viewed as an irreversible process. Using flow cytometry and a fluorescent reporter system to monitor protein synthesis, we show a single molecule of cytosolic toxin is not sufficient for complete inhibition of protein synthesis or cell death. Furthermore, cells can recover from intoxication: cells with a partial loss of protein synthesis will, upon removal of the toxin, increase the level of protein production and survive the toxin challenge. Thus, in contrast to the prevailing model, ongoing toxin delivery to the cytosol appears to be required for the death of cells exposed to sub-optimal toxin concentrations.
Collapse
|
204
|
Abstract
Reporter gene assays are widely used in high-throughput screening (HTS) to identify compounds that modulate gene expression. Traditionally a reporter gene assay is built by cloning an endogenous promoter sequence or synthetic response elements in the regulatory region of a reporter gene to monitor transcriptional activity of a specific biological process (exogenous reporter assay). In contrast, an endogenous locus reporter has a reporter gene inserted in the endogenous gene locus that allows the reporter gene to be expressed under the control of the same regulatory elements as the endogenous gene, thus more accurately reflecting the changes seen in the regulation of the actual gene. In this chapter, we introduce some of the considerations behind building a reporter gene assay for high-throughput compound screening and describe the methods we have utilized to establish 1536-well format endogenous locus reporter and exogenous reporter assays for the screening of compounds that modulate Myc pathway activity.
Collapse
Affiliation(s)
- Yaping Liu
- Screening & Protein Sciences, Merck Research Labs, Merck & Co., Inc., West Point, PA, USA
| | - Jeffrey Hermes
- Screening and Translational Enzymology, Roche, Basel, Roche, Basel, Canton of Basel-Stadt, Switzerland
| | - Jing Li
- Screening & Protein Sciences, Merck Research Labs, Merck & Co., Inc., West Point, PA, USA
| | - Matthew Tudor
- Screening & Protein Sciences, Merck Research Labs, Merck & Co., Inc., West Point, PA, USA.
| |
Collapse
|
205
|
Slavcev RA, Sum CH, St Jean J, Huh H, Nafissi N. Specific Systems for Evaluation. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 110:99-123. [PMID: 30536228 DOI: 10.1007/978-3-319-78259-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorescent-based visualization techniques have long been used to monitor biological activity. This chapter explores the delivery of reporter genes as a means to assay and track activity in biological systems. Bioluminescence is the production of light due to biochemical processes. By encoding genes for bioluminescence, biological processes can be visualized based on gene expression. This chapter also discusses the primary applications of bioluminescence as seen through bioluminescent imaging techniques, flow cytometry, and PCR-based methods of gene detection. These techniques are described in terms of researching gene expression, cancer therapy, and protein interactions.
Collapse
Affiliation(s)
| | - Chi Hong Sum
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | - Jesse St Jean
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | - Haein Huh
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | - Nafiseh Nafissi
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| |
Collapse
|
206
|
Site-specific chromosomal gene insertion: Flp recombinase versus Cas9 nuclease. Sci Rep 2017; 7:17771. [PMID: 29259215 PMCID: PMC5736728 DOI: 10.1038/s41598-017-17651-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/24/2017] [Indexed: 12/16/2022] Open
Abstract
Site-specific recombination systems like those based on the Flp recombinase proved themselves as efficient tools for cell line engineering. The recent emergence of designer nucleases, especially RNA guided endonucleases like Cas9, has considerably broadened the available toolbox for applications like targeted transgene insertions. Here we established a recombinase-mediated cassette exchange (RMCE) protocol for the fast and effective, drug-free isolation of recombinant cells. Distinct fluorescent protein patterns identified the recombination status of individual cells. In derivatives of a CHO master cell line the expression of the introduced transgene of interest could be dramatically increased almost 20-fold by subsequent deletion of the fluorescent protein gene that provided the initial isolation principle. The same master cell line was employed in a comparative analysis using CRISPR/Cas9 for transgene integration in identical loci. Even though the overall targeting efficacy was comparable, multi-loci targeting was considerably more effective for Cas9-mediated transgene insertion when compared to RMCE. While Cas9 is inherently more flexible, our results also alert to the risk of aberrant recombination events around the cut site. Together, this study points at the individual strengths in performance of both systems and provides guidance for their appropriate use.
Collapse
|
207
|
Eich C, Arlt J, Vink CS, Solaimani Kartalaei P, Kaimakis P, Mariani SA, van der Linden R, van Cappellen WA, Dzierzak E. In vivo single cell analysis reveals Gata2 dynamics in cells transitioning to hematopoietic fate. J Exp Med 2017; 215:233-248. [PMID: 29217535 PMCID: PMC5748852 DOI: 10.1084/jem.20170807] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/12/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023] Open
Abstract
Eich et al. reveal the dynamic expression of the Gata2 transcription factor in single aortic cells transitioning to hematopoietic fate by vital imaging of Gata2Venus mouse embryos. Pulsatile expression level changes highlight an unstable genetic state during hematopoietic cell generation. Cell fate is established through coordinated gene expression programs in individual cells. Regulatory networks that include the Gata2 transcription factor play central roles in hematopoietic fate establishment. Although Gata2 is essential to the embryonic development and function of hematopoietic stem cells that form the adult hierarchy, little is known about the in vivo expression dynamics of Gata2 in single cells. Here, we examine Gata2 expression in single aortic cells as they establish hematopoietic fate in Gata2Venus mouse embryos. Time-lapse imaging reveals rapid pulsatile level changes in Gata2 reporter expression in cells undergoing endothelial-to-hematopoietic transition. Moreover, Gata2 reporter pulsatile expression is dramatically altered in Gata2+/− aortic cells, which undergo fewer transitions and are reduced in hematopoietic potential. Our novel finding of dynamic pulsatile expression of Gata2 suggests a highly unstable genetic state in single cells concomitant with their transition to hematopoietic fate. This reinforces the notion that threshold levels of Gata2 influence fate establishment and has implications for transcription factor–related hematologic dysfunctions.
Collapse
Affiliation(s)
- Christina Eich
- Department of Cell Biology, Erasmus Stem Cell Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jochen Arlt
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Chris S Vink
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Polynikis Kaimakis
- Department of Cell Biology, Erasmus Stem Cell Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Samanta A Mariani
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Reinier van der Linden
- Department of Cell Biology, Erasmus Stem Cell Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Wiggert A van Cappellen
- Department of Pathology, Erasmus Optical Imaging Centre, Erasmus Medical Center, Rotterdam, Netherlands
| | - Elaine Dzierzak
- Department of Cell Biology, Erasmus Stem Cell Institute, Erasmus Medical Center, Rotterdam, Netherlands .,Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
208
|
Tools to investigate the ubiquitin proteasome system. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 26:25-31. [PMID: 29249239 DOI: 10.1016/j.ddtec.2017.11.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
Abstract
Ubiquitin is a 76-amino acid regulatory protein involved in many important cellular processes. Ubiquitin can be attached to other proteins at either a lysine residue or to the N-terminus by the consecutive actions of E1, E2, and E3 enzymes. Ubiquitin can also be attached to itself, resulting in poly-ubiquitin chains. Ubiquitination affects substrate proteins in different ways, for example by resulting in degradation of the substrate protein by the 26S proteasome. Ubiquitination can be reversed by deubiquitinating enzymes, which either trim or remove ubiquitin chains from proteins. Many proteins involved in either the ubiquitination, deubiquitination or degradation of proteins are implicated in human diseases and are currently under investigation as potential drug targets.
Collapse
|
209
|
Kim HL, Ryu HC, Park YS. Quantitative analysis by flow cytometry of green fluorescent protein-tagged human phenylalanine hydroxylase expressed in Dictyostelium. Pteridines 2017. [DOI: 10.1515/pterid-2017-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
We have developed a fluorescence assay system to monitor the protein levels of human phenylalanine hydroxylase (hPAH). Wild-type (WT) and three mutant hPAHs (I65T, L255V, and S349L) were expressed as green fluorescent protein (GFP)-tagged forms in a PAH knockout mutant (pah
−) of Dictyostelium discoideum Ax2. The fluorescence-activated cell sorting (FACS) analysis showed that the GFP positive cells were the most frequent in WT but were rare in pah
−, demonstrating the successful expression of GFP-tagged hPAHs in Dictyostelium. The fluorescence levels of mutants relative to WT were higher than expected from the protein amounts determined from the non-tagged forms, probably due to the presence of the N-terminal GFP. However, treatment of the cells with cumene hydroperoxide, which is known to accelerate protein degradation, decreased fluorescence levels, suggesting that protein stability changes in individual mutations can be monitored by FACS analysis. For an evaluation study, a putative pharmacological chaperone effect of yeast extract on S349L was examined by Western blot and FACS analysis. Both the protein amount and the fluorescence levels were increased by yeast extract, supporting that the FACS analysis could replace the time- and labor-consuming procedures such as the Western blot and cell culture. The fluorescence-based cell assay system may be valuable for the high-throughput screening of pharmacological chaperones for phenylketonuria mutations.
Collapse
Affiliation(s)
- Hye-Lim Kim
- School of Biological Sciences , Inje University , Gimhae 50834 , Republic of Korea
| | - Hyun-Chul Ryu
- School of Biological Sciences , Inje University , Gimhae 50834 , Republic of Korea
| | - Young Shik Park
- School of Biological Sciences , Inje University , Gimhae 50834 , Republic of Korea
| |
Collapse
|
210
|
Ventosa M, Wu Z, Lim F. Sustained FXN expression in dorsal root ganglia from a nonreplicative genomic HSV-1 vector. J Gene Med 2017; 19:376-386. [PMID: 29044877 DOI: 10.1002/jgm.2993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Friedreich's ataxia (FA) is an autosomal recessive neurodegenerative disease caused by mutations in the frataxin gene (FXN), which lead to reduced levels of the essential mitochondrial protein frataxin. Currently, there is no effective cure. METHODS With the aim of developing a gene therapy for FA neuropathology, we describe the construction and preliminary characterization of a high-capacity nonreplicative genomic herpes simplex virus type 1 vector (H24B-FXNlac vector) carrying a reduced version of the human FXN genomic locus, comprising the 5-kb promoter and the FXN cDNA with the inclusion of intron 1. RESULTS We show that the transgene cassette contains the elements necessary to preserve physiological neuronal regulation of human FXN expression. Transduction of cultured fetal rat dorsal root ganglia neurons with the H24B-FXNlac vector results in sustained expression of human FXN transcripts and frataxin protein. Rat footpad inoculation with the H24B-FXNlac vector results in human FXN transgene delivery to the dorsal root ganglia, with expression persisting for at least 1 month. CONCLUSIONS The results of the present study support the feasibility of using this vector for sustained neuronal expression of human frataxin for FA gene therapy.
Collapse
Affiliation(s)
- Maria Ventosa
- Department of Neurosurgery, University of Michigan and VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Zetang Wu
- Department of Neurology, University of Michigan and VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Filip Lim
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
211
|
Song W, Filonov GS, Kim H, Hirsch M, Li X, Moon JD, Jaffrey SR. Imaging RNA polymerase III transcription using a photostable RNA-fluorophore complex. Nat Chem Biol 2017; 13:1187-1194. [PMID: 28945233 PMCID: PMC5679246 DOI: 10.1038/nchembio.2477] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 08/09/2017] [Indexed: 11/09/2022]
Abstract
Quantitative measurement of transcription rates in live cells is important for revealing mechanisms of transcriptional regulation. This is particularly challenging when measuring the activity of RNA polymerase III (Pol III), which transcribes growth-promoting small RNAs. To address this issue, we developed Corn, a genetically encoded fluorescent RNA reporter suitable for quantifying RNA transcription in cells. Corn binds and induces fluorescence of 3,5-difluoro-4-hydroxybenzylidene-imidazolinone-2-oxime, which resembles the fluorophore found in red fluorescent protein (RFP). Notably, Corn shows high photostability, enabling quantitative fluorescence imaging of mTOR-dependent Pol III transcription. We found that, unlike actinomycin D, mTOR inhibitors resulted in heterogeneous transcription suppression in individual cells. Quantitative imaging of Corn-tagged Pol III transcript levels revealed distinct Pol III transcription 'trajectories' elicited by mTOR inhibition. Together, these studies provide an approach for quantitative measurement of Pol III transcription by direct imaging of Pol III transcripts containing a photostable RNA-fluorophore complex.
Collapse
Affiliation(s)
- Wenjiao Song
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Grigory S. Filonov
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Hyaeyeong Kim
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Markus Hirsch
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Xing Li
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Jared D. Moon
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Samie R. Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| |
Collapse
|
212
|
Ando H, Hirose M, Kurosawa G, Impey S, Mikoshiba K. Time-lapse imaging of microRNA activity reveals the kinetics of microRNA activation in single living cells. Sci Rep 2017; 7:12642. [PMID: 28974737 PMCID: PMC5626736 DOI: 10.1038/s41598-017-12879-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/15/2017] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play critical roles in the post-transcriptional regulation of gene expression. Although the molecular mechanisms of the biogenesis and activation of miRNA have been extensively studied, the details of their kinetics within individual living cells remain largely unknown. We developed a novel method for time-lapse imaging of the rapid dynamics of miRNA activity in living cells using destabilized fluorescent proteins (dsFPs). Real-time monitoring of dsFP-based miRNA sensors revealed the duration necessary for miRNA biogenesis to occur, from primary miRNA transcription to mature miRNA activation, at single-cell resolution. Mathematical modeling, which included the decay kinetics of the fluorescence of the miRNA sensors, demonstrated that miRNAs induce translational repression depending on their complementarity with targets. We also developed a dual-color imaging system, and demonstrated that miR-9-5p and miR-9-3p were produced and activated from a common hairpin precursor with similar kinetics, in single cells. Furthermore, a dsFP-based miR-132 sensor revealed the rapid kinetics of miR-132 activation in cortical neurons under physiological conditions. The timescale of miRNA biogenesis and activation is much shorter than the median half-lives of the proteome, suggesting that the degradation rates of miRNA target proteins are the dominant rate-limiting factors for miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
| | - Matsumi Hirose
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Gen Kurosawa
- Theoretical Biology Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Soren Impey
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
213
|
Baumann M, Gludovacz E, Sealover N, Bahr S, George H, Lin N, Kayser K, Borth N. Preselection of recombinant gene integration sites enabling high transcription rates in CHO cells using alternate start codons and recombinase mediated cassette exchange. Biotechnol Bioeng 2017; 114:2616-2627. [DOI: 10.1002/bit.26388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/13/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Martina Baumann
- Austrian Centre of Industrial Biotechnology (ACIB); Graz Austria
| | | | | | - Scott Bahr
- MilliporeSigma (SAFC); St. Louis Minnesota
| | | | - Nan Lin
- MilliporeSigma (SAFC); St. Louis Minnesota
| | | | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (ACIB); Graz Austria
- University of Natural Resources and Life Sciences (BOKU); Vienna Austria
| |
Collapse
|
214
|
Monitoring Promoter Activity by Flow Cytometry. Methods Mol Biol 2017. [PMID: 28801900 DOI: 10.1007/978-1-4939-7223-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Genetic reporters have become invaluable tools for indirectly monitoring promoter activities. The quantitative measurement of promoter activities using reporter gene systems is fundamental for pharmaceutical, biomedical, and molecular biology research. Genetic reporters are used not only for measuring promoter activities but also for understanding the mechanisms controlling gene transcription and in the identification, and characterization of cis-acting regulatory elements. Fluorescent reporter proteins including enhanced green fluorescent protein (EGFP ) are reliable for monitoring quantitative underlying differences in promoter activities. The emitted fluorescence intensity of the expressed reporter is measured at the single-cell level by flow cytometry and represents a readout for the promoter activities. In this chapter, the protocol for measurement and analyzing of transfected cells expressing the reporter gene EGFP is thoroughly described and fully illustrated.
Collapse
|
215
|
Hasan SS, Tsaryk R, Lange M, Wisniewski L, Moore JC, Lawson ND, Wojciechowska K, Schnittler H, Siekmann AF. Endothelial Notch signalling limits angiogenesis via control of artery formation. Nat Cell Biol 2017; 19:928-940. [PMID: 28714969 PMCID: PMC5534340 DOI: 10.1038/ncb3574] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/15/2017] [Indexed: 01/01/2023]
Abstract
Angiogenic sprouting needs to be tightly controlled. It has been suggested that the Notch ligand dll4 expressed in leading tip cells restricts angiogenesis by activating Notch signalling in trailing stalk cells. Here, we show using live imaging in zebrafish that activation of Notch signalling is rather required in tip cells. Notch activation initially triggers expression of the chemokine receptor cxcr4a. This allows for proper tip cell migration and connection to the pre-existing arterial circulation, ultimately establishing functional arterial-venous blood flow patterns. Subsequently, Notch signalling reduces cxcr4a expression, thereby preventing excessive blood vessel growth. Finally, we find that Notch signalling is dispensable for limiting blood vessel growth during venous plexus formation that does not generate arteries. Together, these findings link the role of Notch signalling in limiting angiogenesis to its role during artery formation and provide a framework for our understanding of the mechanisms underlying blood vessel network expansion and maturation.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Arteries/cytology
- Arteries/metabolism
- Cell Movement
- Cells, Cultured
- Endothelial Cells/metabolism
- Gene Expression Regulation, Developmental
- Genotype
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Microscopy, Fluorescence
- Microscopy, Video
- Neovascularization, Physiologic
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Phenotype
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Signal Transduction
- Time Factors
- Time-Lapse Imaging
- Transfection
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Sana S. Hasan
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Muenster, Muenster, Germany
| | - Roman Tsaryk
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Muenster, Muenster, Germany
| | - Martin Lange
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Muenster, Muenster, Germany
| | - Laura Wisniewski
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Muenster, Muenster, Germany
| | - John C. Moore
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Nathan D. Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | | | - Hans Schnittler
- Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Muenster, Muenster, Germany
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149 Münster, Germany
| | - Arndt F. Siekmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Muenster, Muenster, Germany
| |
Collapse
|
216
|
Zhang X, Götte M, Ibig-Rehm Y, Schuffenhauer A, Kamke M, Beisner D, Guerini D, Siebert D, Bonamy GMC, Gabriel D, Bodendorf U. Identification of SPPL2a Inhibitors by Multiparametric Analysis of a High-Content Ultra-High-Throughput Screen. SLAS DISCOVERY 2017; 22:1106-1119. [PMID: 28731783 DOI: 10.1177/2472555217719834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The intramembrane protease signal peptide peptidase-like 2a (SPPL2a) is a potential drug target for the treatment of autoimmune diseases due to an essential role in B cells and dendritic cells. To screen a library of 1.4 million compounds for inhibitors of SPPL2a, we developed an imaging assay detecting nuclear translocation of the proteolytically released cytosolic substrate fragment. The state-of-the-art hit calling approach based on nuclear translocation resulted in numerous false-positive hits, mainly interrupting intracellular protein trafficking. To filter the false positives, we extracted 340 image-based readouts and developed a novel multiparametric analysis method that successfully triaged the primary hit list. The identified scaffolds were validated by demonstrating activity on endogenous SPPL2a and substrate CD74/p8 in B cells. The multiparametric analysis discovered diverse cellular phenotypes and provided profiles for the whole library. The principle of the presented imaging assay, the screening strategy, and multiparametric analysis are potentially applicable in future screening campaigns.
Collapse
Affiliation(s)
- Xian Zhang
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marjo Götte
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | - Marion Kamke
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dan Beisner
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA.,Vividion Therapeutics, San Diego, CA, USA
| | - Danilo Guerini
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Daniela Siebert
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Daniela Gabriel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
217
|
Xie Q, Wang ZA. Transcriptional regulation of the Nkx3.1 gene in prostate luminal stem cell specification and cancer initiation via its 3' genomic region. J Biol Chem 2017; 292:13521-13530. [PMID: 28679531 DOI: 10.1074/jbc.m117.788315] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/19/2017] [Indexed: 11/06/2022] Open
Abstract
NK3 homeobox 1 (Nkx3.1), a transcription factor expressed in the prostate epithelium, is crucial for maintaining prostate cell fate and suppressing tumor initiation. Nkx3.1 is ubiquitously expressed in luminal cells of hormonally intact prostate but, upon androgen deprivation, exclusively labels a type of luminal stem cells named castration-resistant Nkx3.1-expressing cells (CARNs). During prostate cancer initiation, Nkx3.1 expression is frequently lost in both humans and mouse models. Therefore, investigating how Nkx3.1 expression is regulated in vivo is important for understanding the mechanisms of prostate stem cell specification and cancer initiation. Here, using a transgenic mouse line with destabilized GFP, we identified an 11-kb genomic region 3' of the Nkx3.1 transcription start site to be responsible for alterations in Nkx3.1 expression patterns under various physiological conditions. We found that androgen cell-autonomously activates Nkx3.1 expression through androgen receptor (AR) binding to the 11-kb region in both normal luminal cells and CARNs and discovered new androgen response elements in the Nkx3.1 3' UTR. In contrast, we found that, in Pten-/- prostate tumors, loss of Nkx3.1 expression is mediated at the transcriptional level through the 11-kb region despite functional AR in the nucleus. Importantly, the GFP reporter specifically labeled CARNs in the regressed prostate only in the presence of cell-autonomous AR, supporting a facultative model for CARN specification.
Collapse
Affiliation(s)
- Qing Xie
- From the Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Zhu A Wang
- From the Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
218
|
Kesavan G, Chekuru A, Machate A, Brand M. CRISPR/Cas9-Mediated Zebrafish Knock-in as a Novel Strategy to Study Midbrain-Hindbrain Boundary Development. Front Neuroanat 2017; 11:52. [PMID: 28713249 PMCID: PMC5492657 DOI: 10.3389/fnana.2017.00052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a. The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development.
Collapse
Affiliation(s)
- Gokul Kesavan
- Biotechnology Center and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| | - Avinash Chekuru
- Biotechnology Center and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| | - Anja Machate
- Biotechnology Center and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| | - Michael Brand
- Biotechnology Center and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| |
Collapse
|
219
|
Distinct cis elements in the 3' UTR of the C. elegans cebp-1 mRNA mediate its regulation in neuronal development. Dev Biol 2017; 429:240-248. [PMID: 28673818 DOI: 10.1016/j.ydbio.2017.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022]
Abstract
The 3' untranslated regions (3' UTRs) of mRNAs mediate post-transcriptional regulation of genes in many biological processes. Cis elements in 3' UTRs can interact with RNA-binding factors in sequence-specific or structure-dependent manners, enabling regulation of mRNA stability, translation, and localization. Caenorhabditis elegans CEBP-1 is a conserved transcription factor of the C/EBP family, and functions in diverse contexts, from neuronal development and axon regeneration to organismal growth. Previous studies revealed that the levels of cebp-1 mRNA in neurons depend on its 3' UTR and are also negatively regulated by the E3 ubiquitin ligase RPM-1. Here, by systematically dissecting cebp-1's 3' UTR, we test the roles of specific cis elements in cebp-1 expression and function in neurons. We present evidence for a putative stem-loop in the cebp-1 3' UTR that contributes to basal expression levels of mRNA and to negative regulation by rpm-1. Mutant animals lacking the endogenous cebp-1 3' UTR showed a noticeable increased expression of cebp-1 mRNA and enhanced the neuronal developmental phenotypes of rpm-1 mutants. Our data reveal multiple cis elements within cebp-1's 3' UTR that help to optimize CEBP-1 expression levels in neuronal development.
Collapse
|
220
|
Protein degradation, the main hub in the regulation of cellular polyamines. Biochem J 2017; 473:4551-4558. [PMID: 27941031 DOI: 10.1042/bcj20160519c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022]
Abstract
Ornithine decarboxylase (ODC) is the first and rate-limiting enzyme in the biosynthesis of polyamines, low-molecular-mass aliphatic polycations that are ubiquitously present in all living cells and are essential for fundamental cellular processes. Most cellular polyamines are bound, whereas the free pools, which regulate cellular functions, are subjected to tight regulation. The regulation of the free polyamine pools is manifested by modulation of their synthesis, catabolism, uptake and excretion. A central element that enables this regulation is the rapid degradation of key enzymes and regulators of these processes, particularly that of ODC. ODC degradation is part of an autoregulatory circuit that responds to the intracellular level of the free polyamines. The driving force of this regulatory circuit is a protein termed antizyme (Az). Az stimulates the degradation of ODC and inhibits polyamine uptake. Az acts as a sensor of the free intracellular polyamine pools as it is expressed via a polyamine-stimulated ribosomal frameshifting. Az binds to monomeric ODC subunits to prevent their reassociation into active homodimers and facilitates their ubiquitin-independent degradation by the 26S proteasome. In addition, through a yet unidentified mechanism, Az inhibits polyamine uptake. Interestingly, a protein, termed antizyme inhibitor (AzI) that is highly homologous with ODC, but retains no ornithine decarboxylating activity, seems to regulate cellular polyamines through its ability to negate Az. Overall, the degradation of ODC is a net result of interactions with regulatory proteins and possession of signals that mediate its ubiquitin-independent recognition by the proteasome.
Collapse
|
221
|
Effect of APOL1 disease risk variants on APOL1 gene product. Biosci Rep 2017; 37:BSR20160531. [PMID: 28385815 PMCID: PMC5408699 DOI: 10.1042/bsr20160531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/18/2017] [Accepted: 04/06/2017] [Indexed: 11/17/2022] Open
Abstract
Gene sequence mutations may alter mRNA transcription, transcript stability, protein translation, protein stability and protein folding. Apolipoprotein L1 (APOL1) has two sets of sequence variants that are risk factors for kidney disease development, APOL1G1 (substitution mutation) and APOL1G2 (deletion mutation). Our present study focuses on the impact of these variants on APOL1 mRNA transcription and translation. APOL1 plasmids (EV, G0, G1 and G2) were transfected into human embryonic kidney (HEK) 293T cells. APOL1 variant expression was observed to be significantly lower than that of APOL1G0. Podocyte cell lines stably expressing APOL1 transgenes also showed lower levels of APOL1 expression of APOL1 variants (G1 and G2) compared with APOL1G0 by Western blotting and FACS analysis. The enhanced expression of GRP78 by podocytes expressing APOL1 variants would indicate endoplasmic reticulum (ER) stress. Bioinformatics evaluation using two different programs (MUPro and I-Mutant 2.0) predicted that APOL1 variants were less stable than APOL1G0. Concomitant with protein levels, APOL1 mRNA levels were also depressed following induction of APOL1 variant compared with APOL1G0 in both proliferating and differentiated podocytes. APOL1 mRNA transcript stability was tested after actinomycin D pulsing; APOL1G1 and APOL1G2 mRNAs transcript decayed 10–15% and 15–20% (within a period of 0.5–3 h) respectively. Our data suggest that down-regulated APOL1 protein expression in APOL1 variants is due to compromised transcription and decay of the APOL1 variant transcripts.
Collapse
|
222
|
Cartledge DM, Robbins KM, Drake KM, Sternberg R, Stabley DL, Gripp KW, Kolb EA, Sol-Church K, Napper AD. Cytotoxicity of Zardaverine in Embryonal Rhabdomyosarcoma from a Costello Syndrome Patient. Front Oncol 2017; 7:42. [PMID: 28421158 PMCID: PMC5376947 DOI: 10.3389/fonc.2017.00042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/03/2017] [Indexed: 01/27/2023] Open
Abstract
Costello syndrome (CS) patients suffer from a very high 10% incidence of embryonal rhabdomyosarcoma (ERMS). As tools to discover targeted therapeutic leads, we used a CS patient-derived ERMS cell line (CS242 ERMS) harboring a homozygous p.G12A mutation in HRAS, and a control cell line derived from the same patient comprising non-malignant CS242 fibroblasts with a heterozygous p.G12A HRAS mutation. A library of 2,000 compounds with known pharmacological activities was screened for their effect on CS242 ERMS cell viability. Follow-up testing in a panel of cell lines revealed that various compounds originally developed for other indications were remarkably selective; notably, the phosphodiesterase (PDE) inhibitor zardaverine was at least 1,000-fold more potent in CS242 ERMS than in the patient-matched non-malignant CS242 fibroblasts, other ERMS, or normal fibroblasts. Chronic treatment with zardaverine led to the emergence of resistant cells, consistent with CS242 ERMS comprising a mixed population of cells. Many PDE inhibitors in addition to zardaverine were tested on CS242 ERMS, but almost all had no effect. Interestingly, zardaverine and analogs showed a similar cytotoxicity profile in CS242 ERMS and cervical carcinoma-derived HeLa cells, suggesting a mechanism of action common to both cell types that does not require the presence of an HRAS mutation (HeLa contains wild type HRAS). Two recent studies presented possible mechanistic explanations for the cytotoxicity of zardaverine in HeLa cells. One revealed that zardaverine inhibited a HeLa cell-based screen measuring glucocorticoid receptor (GR) activation; however, using engineered HeLa cells, we ruled out a specific effect of zardaverine on signaling through the GR. The second attributed zardaverine toxicity in HeLa cells to promotion of the interaction of phosphodiesterase 3A and the growth regulatory protein Schlafen 12. We speculate that this work may provide a possible mechanism for zardaverine action in CS242 ERMS, although we have not yet tested this hypothesis. In conclusion, we have identified zardaverine as a potent cytotoxic agent in a CS-derived ERMS cell line and in HeLa. Although we have ruled out some possibilities, the mechanism of action of zardaverine in CS242 ERMS remains to be determined.
Collapse
Affiliation(s)
- Donna M Cartledge
- High-Throughput Screening and Drug Discovery Laboratory, Nemours Center for Childhood Cancer Research, Nemours Biomedical Research, Nemours/A.I. duPont Hospital for Children, Wilmington, DE, USA
| | - Katherine M Robbins
- Nemours Biomolecular Core Laboratory, Nemours Biomedical Research, Nemours/A.I. duPont Hospital for Children, Wilmington, DE, USA.,Biological Sciences, University of Delaware, Newark, DE, USA
| | - Katherine M Drake
- High-Throughput Screening and Drug Discovery Laboratory, Nemours Center for Childhood Cancer Research, Nemours Biomedical Research, Nemours/A.I. duPont Hospital for Children, Wilmington, DE, USA
| | - Rachel Sternberg
- High-Throughput Screening and Drug Discovery Laboratory, Nemours Center for Childhood Cancer Research, Nemours Biomedical Research, Nemours/A.I. duPont Hospital for Children, Wilmington, DE, USA
| | - Deborah L Stabley
- Nemours Biomolecular Core Laboratory, Nemours Biomedical Research, Nemours/A.I. duPont Hospital for Children, Wilmington, DE, USA
| | - Karen W Gripp
- Division of Genetics, Nemours/A.I. duPont Hospital for Children, Wilmington, DE, USA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Nemours/A.I. duPont Hospital for Children, Wilmington, DE, USA
| | - Katia Sol-Church
- Nemours Biomolecular Core Laboratory, Nemours Biomedical Research, Nemours/A.I. duPont Hospital for Children, Wilmington, DE, USA
| | - Andrew D Napper
- High-Throughput Screening and Drug Discovery Laboratory, Nemours Center for Childhood Cancer Research, Nemours Biomedical Research, Nemours/A.I. duPont Hospital for Children, Wilmington, DE, USA
| |
Collapse
|
223
|
Im E, Yoon JB, Lee HW, Chung KC. Human Telomerase Reverse Transcriptase (hTERT) Positively Regulates 26S Proteasome Activity. J Cell Physiol 2017; 232:2083-2093. [PMID: 27648923 DOI: 10.1002/jcp.25607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/19/2016] [Indexed: 02/02/2023]
Abstract
Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase, an RNA-dependent DNA polymerase that elongates telomeric DNA. hTERT displays several extra-telomeric functions that are independent of its telomere-regulatory function, including tumor progression, and neuronal cell death regulation. In this study, we evaluated these additional hTERT non-telomeric functions. We determined that hTERT interacts with several 19S and 20S proteasome subunits. The 19S regulatory particle and 20S core particle are part of 26S proteasome complex, which plays a central role in ubiquitin-dependent proteolysis. In addition, hTERT positively regulated 26S proteasome activity independent of its enzymatic activity. Moreover, hTERT enhanced subunit interactions, which may underlie hTERT's ability of hTERT to stimulate the 26S proteasome. Furthermore, hTERT displayed cytoprotective effect against ER stress via the activation of 26S proteasome in acute myeloid leukemia cells. Our data suggest that hTERT acts as a novel chaperone to promote 26S proteasome assembly and maintenance. J. Cell. Physiol. 232: 2083-2093, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eunju Im
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jong Bok Yoon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
224
|
Namjoshi SV, Raab-Graham KF. Screening the Molecular Framework Underlying Local Dendritic mRNA Translation. Front Mol Neurosci 2017; 10:45. [PMID: 28286470 PMCID: PMC5323403 DOI: 10.3389/fnmol.2017.00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
In the last decade, bioinformatic analyses of high-throughput proteomics and transcriptomics data have enabled researchers to gain insight into the molecular networks that may underlie lasting changes in synaptic efficacy. Development and utilization of these techniques have advanced the field of learning and memory significantly. It is now possible to move from the study of activity-dependent changes of a single protein to modeling entire network changes that require local protein synthesis. This data revolution has necessitated the development of alternative computational and statistical techniques to analyze and understand the patterns contained within. Thus, the focus of this review is to provide a synopsis of the journey and evolution toward big data techniques to address still unanswered questions regarding how synapses are modified to strengthen neuronal circuits. We first review the seminal studies that demonstrated the pivotal role played by local mRNA translation as the mechanism underlying the enhancement of enduring synaptic activity. In the interest of those who are new to the field, we provide a brief overview of molecular biology and biochemical techniques utilized for sample preparation to identify locally translated proteins using RNA sequencing and proteomics, as well as the computational approaches used to analyze these data. While many mRNAs have been identified, few have been shown to be locally synthesized. To this end, we review techniques currently being utilized to visualize new protein synthesis, a task that has proven to be the most difficult aspect of the field. Finally, we provide examples of future applications to test the physiological relevance of locally synthesized proteins identified by big data approaches.
Collapse
Affiliation(s)
- Sanjeev V Namjoshi
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, AustinTX, USA
| | - Kimberly F Raab-Graham
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, AustinTX, USA; Department of Physiology and Pharmacology, Wake Forest Health Sciences, Medical Center Boulevard, Winston-SalemNC, USA
| |
Collapse
|
225
|
Pocock GM, Zimdars LL, Yuan M, Eliceiri KW, Ahlquist P, Sherer NM. Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging. Mol Biol Cell 2017; 28:476-487. [PMID: 27903772 PMCID: PMC5341730 DOI: 10.1091/mbc.e16-08-0612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023] Open
Abstract
Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include "burst" RNA nuclear export dynamics regulated by HIV-1's Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element-specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Cell Nucleus/metabolism
- Gene Expression Regulation, Viral
- Gene Products, rev/metabolism
- Genes, env/physiology
- HIV-1
- Mason-Pfizer monkey virus
- Molecular Imaging/methods
- RNA Processing, Post-Transcriptional/physiology
- RNA, Messenger/metabolism
- RNA, Viral
- Regulatory Sequences, Nucleic Acid/genetics
- Regulatory Sequences, Nucleic Acid/physiology
- Regulatory Sequences, Ribonucleic Acid/genetics
- Regulatory Sequences, Ribonucleic Acid/physiology
- Single-Cell Analysis/methods
Collapse
Affiliation(s)
- Ginger M Pocock
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Laraine L Zimdars
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| | - Ming Yuan
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706
| | - Kevin W Eliceiri
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
226
|
Jaiswal MK. Therapeutic opportunities and challenges of induced pluripotent stem cells-derived motor neurons for treatment of amyotrophic lateral sclerosis and motor neuron disease. Neural Regen Res 2017; 12:723-736. [PMID: 28616022 PMCID: PMC5461603 DOI: 10.4103/1673-5374.206635] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and motor neuron diseases (MNDs) are progressive neurodegenerative diseases that affect nerve cells in the brain affecting upper and lower motor neurons (UMNs/LMNs), brain stem and spinal cord. The clinical phenotype is characterized by loss of motor neurons (MNs), muscular weakness and atrophy eventually leading to paralysis and death due to respiratory failure within 3-5 years after disease onset. No effective treatment or cure is currently available that halts or reverses ALS and MND except FDA approved drug riluzole that only modestly slows the progression of ALS in some patients. Recent advances in human derived induced pluripotent stem cells have made it possible for the first time to obtain substantial amounts of human cells to recapitulate in vitro "disease in dish" and test some of the underlying pathogenetic mechanisms involved in ALS and MNDs. In this review, I discussed the opportunities and challenges of induced pluropotent stem cells-derived motor neurons for treatment of ALS and MND patients with special emphasis on their implications in finding a cure for ALS and MNDs.
Collapse
Affiliation(s)
- Manoj Kumar Jaiswal
- Molecular Imaging and Neuropathology Division, New York State Psychiatry Institute, Columbia University, New York, NY, USA.,Department of Psychiatry, Columbia University, New York, NY, USA
| |
Collapse
|
227
|
A Cell-Based Fluorescent Assay to Detect the Activity of AB Toxins that Inhibit Protein Synthesis. Methods Mol Biol 2017; 1600:25-36. [PMID: 28478554 DOI: 10.1007/978-1-4939-6958-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many AB toxins elicit a cytotoxic effect involving the inhibition of protein synthesis. In this chapter, we describe a simple cell-based fluorescent assay to detect and quantify the inhibition of protein synthesis. The assay can also identify and characterize toxin inhibitors.
Collapse
|
228
|
Abstract
Recent advances in the development of light-inducible transgene expression systems have overcome many inherent drawbacks of conventional chemically regulated systems. The latest generation of those light-regulated systems that are specifically responsive to different wavelengths allows spatiotemporal control of gene expression in a so far unprecedented manner.In this chapter, we first describe the available light-inducible gene expression systems compatible with mammalian cells and explain their underlying mechanisms. Afterward, we give a detailed protocol for the implementation of a UVB light-inducible expression system in mammalian cells.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Konrad Müller
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Novartis Pharma AG, Biologics Technical Development and Manufacturing, Basel, Switzerland
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
229
|
Takata N, Sakakura E, Sakuma T, Yamamoto T. Genetic Tools for Self-Organizing Culture of Mouse Embryonic Stem Cells via Small Regulatory RNA-Mediated Technologies, CRISPR/Cas9, and Inducible RNAi. Methods Mol Biol 2017; 1622:269-292. [PMID: 28674815 DOI: 10.1007/978-1-4939-7108-4_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approaches to investigate gene functions in experimental biology are becoming more diverse and reliable. Furthermore, several kinds of tissues and organs that possess their original identities can be generated in petri dishes from stem cells including embryonic, adult and induced pluripotent stem cells. Researchers now have several choices of experimental methods and their combinations to analyze gene functions in various biological systems. Here, as an example we describe one of the better protocols, which combines three-dimensional embryonic stem cell culture with small regulatory RNA-mediated technologies, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), and inducible RNA interference (RNAi). This protocol allows investigation of genes of interest to better understand gene functions in target tissues (or organs) during in vitro development.
Collapse
Affiliation(s)
- Nozomu Takata
- Laboratory for In Vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo, Kobe, Hyogo, 650-0047, Japan. .,Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, 60611, Illinois, USA.
| | - Eriko Sakakura
- Laboratory for In Vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo, Kobe, Hyogo, 650-0047, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
230
|
Bertero A, Pawlowski M, Ortmann D, Snijders K, Yiangou L, Cardoso de Brito M, Brown S, Bernard WG, Cooper JD, Giacomelli E, Gambardella L, Hannan NRF, Iyer D, Sampaziotis F, Serrano F, Zonneveld MCF, Sinha S, Kotter M, Vallier L. Optimized inducible shRNA and CRISPR/Cas9 platforms for in vitro studies of human development using hPSCs. Development 2016; 143:4405-4418. [PMID: 27899508 PMCID: PMC5201041 DOI: 10.1242/dev.138081] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/07/2016] [Indexed: 12/22/2022]
Abstract
Inducible loss of gene function experiments are necessary to uncover mechanisms underlying development, physiology and disease. However, current methods are complex, lack robustness and do not work in multiple cell types. Here we address these limitations by developing single-step optimized inducible gene knockdown or knockout (sOPTiKD or sOPTiKO) platforms. These are based on genetic engineering of human genomic safe harbors combined with an improved tetracycline-inducible system and CRISPR/Cas9 technology. We exemplify the efficacy of these methods in human pluripotent stem cells (hPSCs), and show that generation of sOPTiKD/KO hPSCs is simple, rapid and allows tightly controlled individual or multiplexed gene knockdown or knockout in hPSCs and in a wide variety of differentiated cells. Finally, we illustrate the general applicability of this approach by investigating the function of transcription factors (OCT4 and T), cell cycle regulators (cyclin D family members) and epigenetic modifiers (DPY30). Overall, sOPTiKD and sOPTiKO provide a unique opportunity for functional analyses in multiple cell types relevant for the study of human development.
Collapse
Affiliation(s)
- Alessandro Bertero
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Matthias Pawlowski
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Daniel Ortmann
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Kirsten Snijders
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Loukia Yiangou
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Miguel Cardoso de Brito
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephanie Brown
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - William G Bernard
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - James D Cooper
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Elisa Giacomelli
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Laure Gambardella
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Nicholas R F Hannan
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Dharini Iyer
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Fotios Sampaziotis
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Felipe Serrano
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Mariëlle C F Zonneveld
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sanjay Sinha
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Mark Kotter
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ludovic Vallier
- Wellcome Trust-MRC Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, CB2 0SZ, UK
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| |
Collapse
|
231
|
Maillard PV, Van der Veen AG, Deddouche-Grass S, Rogers NC, Merits A, Reis e Sousa C. Inactivation of the type I interferon pathway reveals long double-stranded RNA-mediated RNA interference in mammalian cells. EMBO J 2016; 35:2505-2518. [PMID: 27815315 PMCID: PMC5167344 DOI: 10.15252/embj.201695086] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) elicited by long double-stranded (ds) or base-paired viral RNA constitutes the major mechanism of antiviral defence in plants and invertebrates. In contrast, it is controversial whether it acts in chordates. Rather, in vertebrates, viral RNAs induce a distinct defence system known as the interferon (IFN) response. Here, we tested the possibility that the IFN response masks or inhibits antiviral RNAi in mammalian cells. Consistent with that notion, we find that sequence-specific gene silencing can be triggered by long dsRNAs in differentiated mouse cells rendered deficient in components of the IFN pathway. This unveiled response is dependent on the canonical RNAi machinery and is lost upon treatment of IFN-responsive cells with type I IFN Notably, transfection with long dsRNA specifically vaccinates IFN-deficient cells against infection with viruses bearing a homologous sequence. Thus, our data reveal that RNAi constitutes an ancient antiviral strategy conserved from plants to mammals that precedes but has not been superseded by vertebrate evolution of the IFN system.
Collapse
Affiliation(s)
| | | | | | - Neil C Rogers
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
232
|
Nierode G, Kwon PS, Dordick JS, Kwon SJ. Cell-Based Assay Design for High-Content Screening of Drug Candidates. J Microbiol Biotechnol 2016; 26:213-25. [PMID: 26428732 DOI: 10.4014/jmb.1508.08007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as highcontent screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.
Collapse
Affiliation(s)
- Gregory Nierode
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Paul S Kwon
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
233
|
Butler DC, Joshi SN, Genst ED, Baghel AS, Dobson CM, Messer A. Bifunctional Anti-Non-Amyloid Component α-Synuclein Nanobodies Are Protective In Situ. PLoS One 2016; 11:e0165964. [PMID: 27824888 PMCID: PMC5100967 DOI: 10.1371/journal.pone.0165964] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/20/2016] [Indexed: 12/22/2022] Open
Abstract
Misfolding, abnormal accumulation, and secretion of α-Synuclein (α-Syn) are closely associated with synucleinopathies, including Parkinson’s disease (PD). VH14 is a human single domain intrabody selected against the non-amyloid component (NAC) hydrophobic interaction region of α-Syn, which is critical for initial aggregation. Using neuronal cell lines, we show that as a bifunctional nanobody fused to a proteasome targeting signal, VH14PEST can counteract heterologous proteostatic effects of mutant α-Syn on mutant huntingtin Exon1 and protect against α-Syn toxicity using propidium iodide or Annexin V readouts. We compared this anti-NAC candidate to NbSyn87, which binds to the C-terminus of α-Syn. NbSyn87PEST degrades α-Syn as well or better than VH14PEST. However, while both candidates reduced toxicity, VH14PEST appears more effective in both proteostatic stress and toxicity assays. These results show that the approach of reducing intracellular monomeric targets with novel antibody engineering technology should allow in vivo modulation of proteostatic pathologies.
Collapse
Affiliation(s)
- David C. Butler
- Neural Stem Cell Institute, Rensselaer, NY, 12144, United States of America; and Department of Biomedical Sciences; University at Albany, Albany, NY, 12208, United States of America
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States of America
| | - Shubhada N. Joshi
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States of America
| | - Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Ankit S. Baghel
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States of America
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Anne Messer
- Neural Stem Cell Institute, Rensselaer, NY, 12144, United States of America; and Department of Biomedical Sciences; University at Albany, Albany, NY, 12208, United States of America
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States of America
- * E-mail:
| |
Collapse
|
234
|
Capturing and Manipulating Activated Neuronal Ensembles with CANE Delineates a Hypothalamic Social-Fear Circuit. Neuron 2016; 92:739-753. [PMID: 27974160 DOI: 10.1016/j.neuron.2016.10.015] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/22/2016] [Accepted: 10/03/2016] [Indexed: 01/03/2023]
Abstract
We developed a technology (capturing activated neuronal ensembles [CANE]) to label, manipulate, and transsynaptically trace neural circuits that are transiently activated in behavioral contexts with high efficiency and temporal precision. CANE consists of a knockin mouse and engineered viruses designed to specifically infect activated neurons. Using CANE, we selectively labeled neurons that were activated by either fearful or aggressive social encounters in a hypothalamic subnucleus previously known as a locus for aggression, and discovered that social-fear and aggression neurons are intermixed but largely distinct. Optogenetic stimulation of CANE-captured social-fear neurons (SFNs) is sufficient to evoke fear-like behaviors in normal social contexts, whereas silencing SFNs resulted in reduced social avoidance. CANE-based mapping of axonal projections and presynaptic inputs to SFNs further revealed a highly distributed and recurrent neural network. CANE is a broadly applicable technology for dissecting causality and connectivity of spatially intermingled but functionally distinct ensembles.
Collapse
|
235
|
Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commun 2016; 7:13029. [PMID: 27701378 PMCID: PMC5059468 DOI: 10.1038/ncomms13029] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022] Open
Abstract
Photoreceptor replacement by transplantation is proposed as a treatment for blindness. Transplantation of healthy photoreceptor precursor cells into diseased murine eyes leads to the presence of functional photoreceptors within host retinae that express an array of donor-specific proteins. The resulting improvement in visual function was understood to be due to donor cells integrating within host retinae. Here, however, we show that while integration occurs the majority of donor-reporter-labelled cells in the host arises as a result of material transfer between donor and host photoreceptors. Material transfer does not involve permanent donor–host nuclear or cell–cell fusion, or the uptake of free protein or nucleic acid from the extracellular environment. Instead, RNA and/or protein are exchanged between donor and host cells in vivo. These data require a re-evaluation of the mechanisms underlying rescue by photoreceptor transplantation and raise the possibility of material transfer as a strategy for the treatment of retinal disorders. Transplantation of healthy photoreceptor cells has been shown to rescue blindness. Here, the authors show that rather than donor cells integrating into the host retina, the predominant mechanism underlying this rescue involves exchange of cytoplasmic material between donor and host cells in vivo.
Collapse
|
236
|
Nwokeoha S, Carlisle R, Cleveland RO. The Application of Clinical Lithotripter Shock Waves to RNA Nucleotide Delivery to Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2478-2492. [PMID: 27444864 DOI: 10.1016/j.ultrasmedbio.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/15/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
The delivery of genes into cells through the transfer of ribonucleic acids (RNAs) has been found to cause a change in the level of target protein expression. RNA-based transfection is conceptually more efficient than commonly delivered plasmid DNA because it does not require division or damage of the nuclear envelope, thereby increasing the chances of the cell remaining viable. Shock waves (SWs) have been found to induce cellular uptake by transiently altering the permeability of the plasma membrane, thereby overcoming a critical step in gene therapy. However, accompanying SW bio-effects include dose-dependent irreversible cell injury and cytotoxicity. Here, the effect of SWs generated by a clinical lithotripter on the viability and permeabilisation of three different cell lines in vitro was investigated. Comparison of RNA stability before and after SW exposure revealed no statistically significant difference. Optimal SW exposure parameters were identified to minimise cell death and maximise permeabilisation, and applied to enhanced green fluorescent protein (eGFP) messenger RNA (mRNA) or anti-eGFP small interfering RNA delivery. As a result, eGFP mRNA expression levels increased up to 52-fold in CT26 cells, whereas a 2-fold decrease in GFP expression was achieved after anti-eGFP small interfering RNA delivery to MCF-7/GFP cells. These results indicate that SW parameters can be employed to achieve effective nucleotide delivery, laying the foundation for non-invasive and high-tolerability RNA-based gene therapy.
Collapse
Affiliation(s)
- Sandra Nwokeoha
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
| | - Robert Carlisle
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Robin O Cleveland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
237
|
Gautam P, Recino A, Foale RD, Zhao J, Gan SU, Wallberg M, Calne R, Lever AML. Promoter optimisation of lentiviral vectors for efficient insulin gene expression in canine mesenchymal stromal cells: potential surrogate beta cells. J Gene Med 2016; 18:312-321. [PMID: 27572655 DOI: 10.1002/jgm.2900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/02/2016] [Accepted: 08/25/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The lack of an ideal cell type that can be easily acquired, modified to produce insulin, and re-implanted has been a limitation for ex vivo insulin gene therapy. Canine diabetes is currently treated with human insulin and is a good model for human diabetes. Mesenchymal stromal cells (MSCs) are a promising candidate cell type for gene therapy. In the present study, we optimised insulin production using lentiviral transduced canine MSCs (cMSCs), aiming to evaluate their ability for use as surrogate beta cells. METHODS Canine MSCs were derived from bone marrow and validated by measuring the expression of MSC lineage specific markers. Lentivirus vectors encoding the proinsulin gene (with or without a Kozak sequence) under the control of spleen focus forming virus, cytomegalovirus, elongation factor 1α and simian virus 40 promotors were generated and used to transduce primary cMSCs and a hepatocyte cell line. The insulin-producing capacity of transduced primary cMSCs was assessed by measuring the concentration of C-peptide produced. RESULTS Primary cMSC could be readily expanded in culture and efficiently transduced using lentiviral vectors encoding proinsulin. Increasing the multiplicity of infection from 3 to 20 led to an increase in C-peptide secretion (from 1700 to 4000 pmol/l). The spleen focus forming virus promoter conferred the strongest transcriptional ability. CONCLUSIONS The results of the present study suggest that optimised lentiviral transduction of the insulin gene into primary cMSCs renders these cells capable of secreting insulin over both the short- and long-term, in sufficient quantities in vitro to support their potential use in insulin gene therapy.
Collapse
Affiliation(s)
- Pratigya Gautam
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Asha Recino
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Robert D Foale
- Dick White Referrals, Station Farm, Six Mile Bottom, Suffolk, UK
| | - Jing Zhao
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Shu Uin Gan
- Department of Surgery, National Institute of Singapore, Singapore
| | - Maja Wallberg
- Dick White Referrals, Station Farm, Six Mile Bottom, Suffolk, UK
| | - Roy Calne
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
238
|
Ortega-Villasante C, Burén S, Barón-Sola Á, Martínez F, Hernández LE. In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives. Methods 2016; 109:92-104. [DOI: 10.1016/j.ymeth.2016.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022] Open
|
239
|
Sørensen AT, Cooper YA, Baratta MV, Weng FJ, Zhang Y, Ramamoorthi K, Fropf R, LaVerriere E, Xue J, Young A, Schneider C, Gøtzsche CR, Hemberg M, Yin JC, Maier SF, Lin Y. A robust activity marking system for exploring active neuronal ensembles. eLife 2016; 5. [PMID: 27661450 PMCID: PMC5035142 DOI: 10.7554/elife.13918] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Abstract
Understanding how the brain captures transient experience and converts it into long lasting changes in neural circuits requires the identification and investigation of the specific ensembles of neurons that are responsible for the encoding of each experience. We have developed a Robust Activity Marking (RAM) system that allows for the identification and interrogation of ensembles of neurons. The RAM system provides unprecedented high sensitivity and selectivity through the use of an optimized synthetic activity-regulated promoter that is strongly induced by neuronal activity and a modified Tet-Off system that achieves improved temporal control. Due to its compact design, RAM can be packaged into a single adeno-associated virus (AAV), providing great versatility and ease of use, including application to mice, rats, flies, and potentially many other species. Cre-dependent RAM, CRAM, allows for the study of active ensembles of a specific cell type and anatomical connectivity, further expanding the RAM system's versatility.
Collapse
Affiliation(s)
- Andreas T Sørensen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yonatan A Cooper
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Michael V Baratta
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, United States
| | - Feng-Ju Weng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yuxiang Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Kartik Ramamoorthi
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Robin Fropf
- Department of Genetics, University of Wisconsin-Madison, Madison, United States.,Department of Neurology, University of Wisconsin-Madison, Madison, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, United States
| | - Emily LaVerriere
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Jian Xue
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Andrew Young
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Colleen Schneider
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Casper René Gøtzsche
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Jerry Cp Yin
- Department of Genetics, University of Wisconsin-Madison, Madison, United States.,Department of Neurology, University of Wisconsin-Madison, Madison, United States
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, United States
| | - Yingxi Lin
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
240
|
Youssef S, Ren W, Ai HW. A Genetically Encoded FRET Sensor for Hypoxia and Prolyl Hydroxylases. ACS Chem Biol 2016; 11:2492-8. [PMID: 27385075 DOI: 10.1021/acschembio.6b00330] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Oxygen is vital for all aerobic life forms. Oxygen-dependent hydroxylation of hypoxia-inducible factor (HIF)-1α by prolyl hydroxylase domain enzymes (PHDs) is an important step for controlling the expression of oxygen-regulated genes in metazoan species, thereby constituting a molecular mechanism for oxygen sensing and response. Herein, we report a genetically encoded dual-emission ratiometric fluorescent sensor, ProCY, which responds to PHD activities in vitro and in live cells. We demonstrated that ProCY could monitor hypoxia in mammalian cells. By targeting this novel genetically encoded biosensor to the cell nucleus and cytosol, we determined that, under normoxic conditions, the HIF-prolyl hydroxylase activity was mainly confined to the cytosol of HEK 293T cells. The results collectively suggest broad applications of ProCY on the evaluation of hypoxia and PHD activities and understanding of pathways for the control of hypoxic responses.
Collapse
Affiliation(s)
- Suzan Youssef
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Wei Ren
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Hui-wang Ai
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| |
Collapse
|
241
|
Diener Y, Bosio A, Bissels U. Delivery of RNA-based molecules to human hematopoietic stem and progenitor cells for modulation of gene expression. Exp Hematol 2016; 44:991-1001. [PMID: 27576131 DOI: 10.1016/j.exphem.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/01/2016] [Accepted: 08/18/2016] [Indexed: 12/26/2022]
Abstract
Gene modulation of human hematopoietic stem and progenitor cells (HSPCs) harbors great potential for therapeutic application of these cells and presents a versatile tool in basic research to enhance our understanding of HSPC biology. However, stable genetic modification might be adverse, particularly in clinical settings. Here, we review a broad range of approaches to transient, nonviral modulation of protein expression with a focus on RNA-based methods. We compare different delivery methods and describe the usefulness of RNA molecules for overexpression as well as downregulation of proteins in HSPCs.
Collapse
Affiliation(s)
| | | | - Ute Bissels
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany.
| |
Collapse
|
242
|
Chu L, Ewe D, Río Bártulos C, Kroth PG, Gruber A. Rapid induction of GFP expression by the nitrate reductase promoter in the diatom Phaeodactylum tricornutum. PeerJ 2016; 4:e2344. [PMID: 27635322 PMCID: PMC5012323 DOI: 10.7717/peerj.2344] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023] Open
Abstract
An essential prerequisite for a controlled transgene expression is the choice of a suitable promoter. In the model diatom Phaeodactylum tricornutum, the most commonly used promoters for trans-gene expression are the light dependent lhcf1 promoters (derived from two endogenous genes encoding fucoxanthin chlorophyll a/c binding proteins) and the nitrate dependent nr promoter (derived from the endogenous nitrate reductase gene). In this study, we investigated the time dependent expression of the green fluorescent protein (GFP) reporter under control of the nitrate reductase promoter in independently genetically transformed P. tricornutum cell lines following induction of expression by change of the nitrogen source in the medium via flow cytometry, microscopy and western blotting. In all investigated cell lines, GFP fluorescence started to increase 1 h after change of the medium, the fastest increase rates were observed between 2 and 3 h. Fluorescence continued to increase slightly for up to 7 h even after transfer of the cells to ammonium medium. The subsequent decrease of GFP fluorescence was much slower than the increase, probably due to the stability of GFP. The investigation of several cell lines transformed with nr based constructs revealed that, also in the absence of nitrate, the promoter may show residual activity. Furthermore, we observed a strong variation of gene expression between independent cell lines, emphasising the importance of a thorough characterisation of genetically modified cell lines and their individual expression patterns.
Collapse
Affiliation(s)
- Lili Chu
- Fachbereich Biologie, Universität Konstanz , Konstanz , Germany
| | - Daniela Ewe
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany; Current affiliation: Centre Algatech, Institute of Microbiology, The Czech Academy of Science, Třeboň, Czech Republic
| | | | - Peter G Kroth
- Fachbereich Biologie, Universität Konstanz , Konstanz , Germany
| | - Ansgar Gruber
- Fachbereich Biologie, Universität Konstanz , Konstanz , Germany
| |
Collapse
|
243
|
de Solis CA, Ho A, Holehonnur R, Ploski JE. The Development of a Viral Mediated CRISPR/Cas9 System with Doxycycline Dependent gRNA Expression for Inducible In vitro and In vivo Genome Editing. Front Mol Neurosci 2016; 9:70. [PMID: 27587996 PMCID: PMC4988984 DOI: 10.3389/fnmol.2016.00070] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/29/2016] [Indexed: 01/06/2023] Open
Abstract
The RNA-guided Cas9 nuclease, from the type II prokaryotic Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) adaptive immune system, has been adapted and utilized by scientists to edit the genomes of eukaryotic cells. Here, we report the development of a viral mediated CRISPR/Cas9 system that can be rendered inducible utilizing doxycycline (Dox) and can be delivered to cells in vitro and in vivo utilizing adeno-associated virus (AAV). Specifically, we developed an inducible gRNA (gRNAi) AAV vector that is designed to express the gRNA from a H1/TO promoter. This AAV vector is also designed to express the Tet repressor (TetR) to regulate the expression of the gRNAi in a Dox dependent manner. We show that H1/TO promoters of varying length and a U6/TO promoter can edit DNA with similar efficiency in vitro, in a Dox dependent manner. We also demonstrate that our inducible gRNAi vector can be used to edit the genomes of neurons in vivo within the mouse brain in a Dox dependent manner. Genome editing can be induced in vivo with this system by supplying animals Dox containing food for as little as 1 day. This system might be cross compatible with many existing S. pyogenes Cas9 systems (i.e., Cas9 mouse, CRISPRi, etc.), and therefore it likely can be used to render these systems inducible as well.
Collapse
Affiliation(s)
- Christopher A de Solis
- School of Behavioral and Brain Sciences, Department of Molecular and Cell Biology, University of Texas at Dallas Richardson, TX, USA
| | - Anthony Ho
- School of Behavioral and Brain Sciences, Department of Molecular and Cell Biology, University of Texas at Dallas Richardson, TX, USA
| | - Roopashri Holehonnur
- School of Behavioral and Brain Sciences, Department of Molecular and Cell Biology, University of Texas at Dallas Richardson, TX, USA
| | - Jonathan E Ploski
- School of Behavioral and Brain Sciences, Department of Molecular and Cell Biology, University of Texas at Dallas Richardson, TX, USA
| |
Collapse
|
244
|
Jones JR, McMahon DG. The core clock gene Per1 phases molecular and electrical circadian rhythms in SCN neurons. PeerJ 2016; 4:e2297. [PMID: 27602274 PMCID: PMC4991845 DOI: 10.7717/peerj.2297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/06/2016] [Indexed: 11/20/2022] Open
Abstract
The brain’s biological clock, the suprachiasmatic nucleus (SCN), exhibits endogenous 24-hour rhythms in gene expression and spontaneous firing rate; however, the functional relationship between these neuronal rhythms is not fully understood. Here, we used a Per1::GFP transgenic mouse line that allows for the simultaneous quantification of molecular clock state and firing rate in SCN neurons to examine the relationship between these key components of the circadian clock. We find that there is a stable, phased relationship between E-box-driven clock gene expression and spontaneous firing rate in SCN neurons and that these relationships are independent of light input onto the system or of GABAA receptor-mediated synaptic activity. Importantly, the concordant phasing of gene and neural rhythms is disrupted in the absence of the homologous clock gene Per1, but persists in the absence of the core clock gene Per2. These results suggest that Per1 plays a unique, non-redundant role in phasing gene expression and firing rate rhythms in SCN neurons to increase the robustness of cellular timekeeping.
Collapse
Affiliation(s)
- Jeff R Jones
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, United States; Current affiliation: Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Douglas G McMahon
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, United States; Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
245
|
Gallagher CM, Walter P. Ceapins inhibit ATF6α signaling by selectively preventing transport of ATF6α to the Golgi apparatus during ER stress. eLife 2016; 5. [PMID: 27435962 PMCID: PMC4954756 DOI: 10.7554/elife.11880] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 05/22/2016] [Indexed: 02/07/2023] Open
Abstract
The membrane-bound transcription factor ATF6α is activated by proteolysis during endoplasmic reticulum (ER) stress. ATF6α target genes encode foldases, chaperones, and lipid biosynthesis enzymes that increase protein-folding capacity in response to demand. The off-state of ATF6α is maintained by its spatial separation in the ER from Golgi-resident proteases that activate it. ER stress induces trafficking of ATF6α. We discovered Ceapins, a class of pyrazole amides, as selective inhibitors of ATF6α signaling that do not inhibit the Golgi proteases or other UPR branches. We show that Ceapins block ATF6α signaling by trapping it in ER-resident foci that are excluded from ER exit sites. Removing the requirement for trafficking by pharmacological elimination of the spatial separation of the ER and Golgi apparatus restored cleavage of ATF6α in the presence of Ceapins. Washout of Ceapins resensitized ATF6α to ER stress. These results suggest that trafficking of ATF6α is regulated by its oligomeric state. DOI:http://dx.doi.org/10.7554/eLife.11880.001 Newly made proteins must be folded into specific three-dimensional shapes before they can perform their roles in cells. Many proteins are folded in a cell compartment called the endoplasmic reticulum. The cell closely monitors the quality of the work done by this compartment. If the endoplasmic reticulum has more proteins to fold than it can handle, unfolded or misfolded proteins accumulate and trigger a stress response called the unfolded protein response. This increases the capacity of the endoplasmic reticulum to fold proteins to match the demand. However, if the stress persists, then the unfolded protein response instructs the cell to die to protect the rest of the body. A protein called ATF6α is one of three branches of the unfolded protein response. This protein is found in the endoplasmic reticulum where it is inactive. Endoplasmic stress causes ATF6α to move from the endoplasmic reticulum to another compartment called the Golgi apparatus. There, two enzymes cut ATF6α to release a fragment of the protein that then moves to the nucleus to increase the production of the machinery needed to fold proteins in the endoplasmic reticulum. In a related study, Gallagher et al. identified a group of small molecules called Ceapins, which inhibit ATF6α activity. Here, Gallagher and Walter investigate how Ceapins act on ATF6α. The experiments show that Ceapin causes ATF6α molecules to form clusters that prevent the protein from moving to the Golgi apparatus by keeping it away from the machinery that moves proteins between these compartments. When the enzymes that cut ATF6α are sent to the endoplasmic reticulum, Ceapin treatment no longer prevents ATF6α activation, which shows that these small molecules specifically inhibit the stress-induced movement of ATF6α. When Ceapins are washed out of cells, the ATF6α clusters fall apart and ATF6α can now move to the Golgi. These experiments show that ATF6α is actively held in the endoplasmic reticulum by a mechanism that is stabilized by Ceapins. Gallagher and Walter propose that the small clusters of ATF6α in unstressed cells act to keep this protein in the endoplasmic reticulum. However, when cells experience stress, the ATF6α clusters fall apart to allow the protein to move to the Golgi. The next steps following on from this work are to find out what these clusters are, how they are influenced by endoplasmic reticulum stress and exactly how the Ceapins stabilize these clusters. DOI:http://dx.doi.org/10.7554/eLife.11880.002
Collapse
Affiliation(s)
- Ciara M Gallagher
- Howard Hughes MedicaI Institute, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Peter Walter
- Howard Hughes MedicaI Institute, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
246
|
Balasubramanian S, Wurm FM, Hacker DL. Multigene expression in stable CHO cell pools generated with the piggyBac transposon system. Biotechnol Prog 2016; 32:1308-1317. [DOI: 10.1002/btpr.2319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/07/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Sowmya Balasubramanian
- Laboratory of Cellular Biotechnology (LBTC); École Polytechnique Fédérale de Lausanne (EPFL); Lausanne CH-1015 Switzerland
| | - Florian M. Wurm
- Laboratory of Cellular Biotechnology (LBTC); École Polytechnique Fédérale de Lausanne (EPFL); Lausanne CH-1015 Switzerland
| | - David L. Hacker
- Laboratory of Cellular Biotechnology (LBTC); École Polytechnique Fédérale de Lausanne (EPFL); Lausanne CH-1015 Switzerland
- Protein Expression Core Facility (PECF), École Polytechnique Fédérale de Lausanne (EPFL); Lausanne CH-1015 Switzerland
| |
Collapse
|
247
|
Anderl I, Vesala L, Ihalainen TO, Vanha-aho LM, Andó I, Rämet M, Hultmark D. Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection. PLoS Pathog 2016; 12:e1005746. [PMID: 27414410 PMCID: PMC4945071 DOI: 10.1371/journal.ppat.1005746] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022] Open
Abstract
Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail.
Collapse
Affiliation(s)
- Ines Anderl
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Laura Vesala
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
| | - Teemu O. Ihalainen
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
| | - Leena-Maija Vanha-aho
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
| | - István Andó
- Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Mika Rämet
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
- PEDEGO Research Unit, and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Dan Hultmark
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
248
|
Semerci F, Maletic-Savatic M. Transgenic mouse models for studying adult neurogenesis. ACTA ACUST UNITED AC 2016; 11:151-167. [PMID: 28473846 DOI: 10.1007/s11515-016-1405-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian hippocampus shows a remarkable capacity for continued neurogenesis throughout life. Newborn neurons, generated by the radial neural stem cells (NSCs), are important for learning and memory as well as mood control. During aging, the number and responses of NSCs to neurogenic stimuli diminish, leading to decreased neurogenesis and age-associated cognitive decline and psychiatric disorders. Thus, adult hippocampal neurogenesis has garnered significant interest because targeting it could be a novel potential therapeutic strategy for these disorders. However, if we are to use neurogenesis to halt or reverse hippocampal-related pathology, we need to understand better the core molecular machinery that governs NSC and their progeny. In this review, we summarize a wide variety of mouse models used in adult neurogenesis field, present their advantages and disadvantages based on specificity and efficiency of labeling of different cell types, and review their contribution to our understanding of the biology and the heterogeneity of different cell types found in adult neurogenic niches.
Collapse
Affiliation(s)
- Fatih Semerci
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Mirjana Maletic-Savatic
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Department of Pediatrics-Neurology, Department of Neuroscience, and Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
249
|
Suryamohan K, Hanson C, Andrews E, Sinha S, Scheel MD, Halfon MS. Redeployment of a conserved gene regulatory network during Aedes aegypti development. Dev Biol 2016; 416:402-13. [PMID: 27341759 DOI: 10.1016/j.ydbio.2016.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
Changes in gene regulatory networks (GRNs) underlie the evolution of morphological novelty and developmental system drift. The fruitfly Drosophila melanogaster and the dengue and Zika vector mosquito Aedes aegypti have substantially similar nervous system morphology. Nevertheless, they show significant divergence in a set of genes co-expressed in the midline of the Drosophila central nervous system, including the master regulator single minded and downstream genes including short gastrulation, Star, and NetrinA. In contrast to Drosophila, we find that midline expression of these genes is either absent or severely diminished in A. aegypti. Instead, they are co-expressed in the lateral nervous system. This suggests that in A. aegypti this "midline GRN" has been redeployed to a new location while lost from its previous site of activity. In order to characterize the relevant GRNs, we employed the SCRMshaw method we previously developed to identify transcriptional cis-regulatory modules in both species. Analysis of these regulatory sequences in transgenic Drosophila suggests that the altered gene expression observed in A. aegypti is the result of trans-dependent redeployment of the GRN, potentially stemming from cis-mediated changes in the expression of sim and other as-yet unidentified regulators. Our results illustrate a novel "repeal, replace, and redeploy" mode of evolution in which a conserved GRN acquires a different function at a new site while its original function is co-opted by a different GRN. This represents a striking example of developmental system drift in which the dramatic shift in gene expression does not result in gross morphological changes, but in more subtle differences in development and function of the late embryonic nervous system.
Collapse
Affiliation(s)
- Kushal Suryamohan
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY, United States; NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States
| | - Casey Hanson
- Department of Computer Science, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Emily Andrews
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, South Bend, IN, United States
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Molly Duman Scheel
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, South Bend, IN, United States; University of Notre Dame, Eck Inst. for Global Health and Department of Biological Sciences, South Bend, IN, United States
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY, United States; NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States; Department of Biological Sciences and Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY, United States; Department of Molecular and Cellular Biology and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, United States.
| |
Collapse
|
250
|
Toneff MJ, Sreekumar A, Tinnirello A, Hollander PD, Habib S, Li S, Ellis MJ, Xin L, Mani SA, Rosen JM. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol 2016; 14:47. [PMID: 27317311 PMCID: PMC4912796 DOI: 10.1186/s12915-016-0269-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/31/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The epithelial to mesenchymal transition (EMT) has been implicated in metastasis and therapy resistance of carcinomas and can endow cancer cells with cancer stem cell (CSC) properties. The ability to detect cancer cells that are undergoing or have completed EMT has typically relied on the expression of cell surface antigens that correlate with an EMT/CSC phenotype. Alternatively these cells may be permanently marked through Cre-mediated recombination or through immunostaining of fixed cells. The EMT process is dynamic, and these existing methods cannot reveal such changes within live cells. The development of fluorescent sensors that mirror the dynamic EMT state by following the expression of bona fide EMT regulators in live cells would provide a valuable new tool for characterizing EMT. In addition, these sensors will allow direct observation of cellular plasticity with respect to the epithelial/mesenchymal state to enable more effective studies of EMT in cancer and development. RESULTS We generated a lentiviral-based, dual fluorescent reporter system, designated as the Z-cad dual sensor, comprising destabilized green fluorescent protein containing the ZEB1 3' UTR and red fluorescent protein driven by the E-cadherin (CDH1) promoter. Using this sensor, we robustly detected EMT and mesenchymal to epithelial transition (MET) in breast cancer cells by flow cytometry and fluorescence microscopy. Importantly, we observed dynamic changes in cellular populations undergoing MET. Additionally, we used the Z-cad sensor to identify and isolate minor subpopulations of cells displaying mesenchymal properties within a population comprising predominately epithelial-like cells. The Z-cad dual sensor identified cells with CSC-like properties more effectively than either the ZEB1 3' UTR or E-cadherin sensor alone. CONCLUSIONS The Z-cad dual sensor effectively reports the activities of two factors critical in determining the epithelial/mesenchymal state of carcinoma cells. The ability of this stably integrating dual sensor system to detect dynamic fluctuations between these two states through live cell imaging offers a significant improvement over existing methods and helps facilitate the study of EMT/MET plasticity in response to different stimuli and in cancer pathogenesis. Finally, the versatile Z-cad sensor can be adapted to a variety of in vitro or in vivo systems to elucidate whether EMT/MET contributes to normal and disease phenotypes.
Collapse
Affiliation(s)
- M J Toneff
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - A Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - A Tinnirello
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Habib
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - S Li
- Washington University Institute of Clinical and Translational Sciences, St. Louis, MO, USA
| | - M J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - L Xin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - S A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|