201
|
Matsuo AL, Silva LS, Torrecilhas AC, Pascoalino BS, Ramos TC, Rodrigues EG, Schenkman S, Caires ACF, Travassos LR. In vitro and in vivo trypanocidal effects of the cyclopalladated compound 7a, a drug candidate for treatment of Chagas' disease. Antimicrob Agents Chemother 2010; 54:3318-25. [PMID: 20479201 PMCID: PMC2916297 DOI: 10.1128/aac.00323-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/13/2010] [Accepted: 05/07/2010] [Indexed: 11/20/2022] Open
Abstract
Chagas' disease, a neglected tropical infection, affects about 18 million people, and 100 million are at risk. The only drug available, benznidazole, is effective in the acute form and in the early chronic form, but its efficacy and tolerance are inversely related to the age of the patients. Side effects are frequent in elderly patients. The search for new drugs is thus warranted. In the present study we evaluated the in vitro and in vivo effect of a cyclopalladated compound (7a) against Trypanosoma cruzi, the agent of Chagas' disease. The 7a compound inhibits trypomastigote cell invasion, decreases intracellular amastigote proliferation, and is very effective as a trypanocidal drug in vivo, even at very low dosages. It was 340-fold more cytotoxic to parasites than to mammalian cells and was more effective than benznidazole in all in vitro and in vivo experiments. The 7a cyclopalladate complex exerts an apoptosis-like death in T. cruzi trypomastigote forms and causes mitochondrion disruption seen by electron microscopy.
Collapse
Affiliation(s)
- Alisson L Matsuo
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, SP 04023-062 Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Durrant JD, Urbaniak MD, Ferguson MAJ, McCammon JA. Computer-aided identification of Trypanosoma brucei uridine diphosphate galactose 4'-epimerase inhibitors: toward the development of novel therapies for African sleeping sickness. J Med Chem 2010; 53:5025-32. [PMID: 20527952 PMCID: PMC2895357 DOI: 10.1021/jm100456a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Trypanosoma brucei, the causative agent of human African trypanosomiasis, affects tens of thousands of sub-Saharan Africans. As current therapeutics are inadequate due to toxic side effects, drug resistance, and limited effectiveness, novel therapies are urgently needed. UDP-galactose 4′-epimerase (TbGalE), an enzyme of the Leloir pathway of galactose metabolism, is one promising T. brucei drug target. We here use the relaxed complex scheme, an advanced computer-docking methodology that accounts for full protein flexibility, to identify inhibitors of TbGalE. An initial hit rate of 62% was obtained at 100 μM, ultimately leading to the identification of 14 low-micromolar inhibitors. Thirteen of these inhibitors belong to a distinct series with a conserved binding motif that may prove useful in future drug design and optimization.
Collapse
Affiliation(s)
- Jacob D Durrant
- Biomedical Sciences Program, University of California San Diego, 9500 Gilman Drive, Mail Code 0365, La Jolla, California 92093-0365, USA.
| | | | | | | |
Collapse
|
203
|
Crystal Structures of TbCatB and rhodesain, potential chemotherapeutic targets and major cysteine proteases of Trypanosoma brucei. PLoS Negl Trop Dis 2010; 4:e701. [PMID: 20544024 PMCID: PMC2882330 DOI: 10.1371/journal.pntd.0000701] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/08/2010] [Indexed: 12/04/2022] Open
Abstract
Background Trypanosoma brucei is the etiological agent of Human African Trypanosomiasis, an endemic parasitic disease of sub-Saharan Africa. TbCatB and rhodesain are the sole Clan CA papain-like cysteine proteases produced by the parasite during infection of the mammalian host and are implicated in the progression of disease. Of considerable interest is the exploration of these two enzymes as targets for cysteine protease inhibitors that are effective against T. brucei. Methods and Findings We have determined, by X-ray crystallography, the first reported structure of TbCatB in complex with the cathepsin B selective inhibitor CA074. In addition we report the structure of rhodesain in complex with the vinyl-sulfone K11002. Conclusions The mature domain of our TbCat•CA074 structure contains unique features for a cathepsin B-like enzyme including an elongated N-terminus extending 16 residues past the predicted maturation cleavage site. N-terminal Edman sequencing reveals an even longer extension than is observed amongst the ordered portions of the crystal structure. The TbCat•CA074 structure confirms that the occluding loop, which is an essential part of the substrate-binding site, creates a larger prime side pocket in the active site cleft than is found in mammalian cathepsin B-small molecule structures. Our data further highlight enhanced flexibility in the occluding loop main chain and structural deviations from mammalian cathepsin B enzymes that may affect activity and inhibitor design. Comparisons with the rhodesain•K11002 structure highlight key differences that may impact the design of cysteine protease inhibitors as anti-trypanosomal drugs. Proteases are ubiquitous in all forms of life and catalyze the enzymatic degradation of proteins. These enzymes regulate and coordinate a vast number of cellular processes and are therefore essential to many organisms. While serine proteases dominate in mammals, parasitic organisms commonly rely on cysteine proteases of the Clan CA family throughout their lifecycle. Clan CA cysteine proteases are therefore regarded as promising targets for the selective design of drugs to treat parasitic diseases, such as Human African Trypanosomiasis caused by Trypanosoma brucei. The genomes of kinetoplastids such as Trypanosoma spp. and Leishmania spp. encode two Clan CA C1 family cysteine proteases and in T. brucei these are represented by rhodesain and TbCatB. We have determined three-dimensional structures of these two enzymes as part of our ongoing efforts to synthesize more effective anti-trypanosomal drugs.
Collapse
|
204
|
Pal TK, Dey T, Chakrabarty A, Dey D, Ghosh SK, Pathak T. First synthesis and antiprotozoal activities of divinyl sulfone-modified carbohydrates. Bioorg Med Chem Lett 2010; 20:3777-80. [DOI: 10.1016/j.bmcl.2010.04.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 02/28/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
|
205
|
Durrant JD, Keränen H, Wilson BA, McCammon JA. Computational identification of uncharacterized cruzain binding sites. PLoS Negl Trop Dis 2010; 4:e676. [PMID: 20485483 PMCID: PMC2867933 DOI: 10.1371/journal.pntd.0000676] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 03/23/2010] [Indexed: 12/03/2022] Open
Abstract
Chagas disease, caused by the unicellular parasite Trypanosoma cruzi, claims 50,000 lives annually and is the leading cause of infectious myocarditis in the world. As current antichagastic therapies like nifurtimox and benznidazole are highly toxic, ineffective at parasite eradication, and subject to increasing resistance, novel therapeutics are urgently needed. Cruzain, the major cysteine protease of Trypanosoma cruzi, is one attractive drug target. In the current work, molecular dynamics simulations and a sequence alignment of a non-redundant, unbiased set of peptidase C1 family members are used to identify uncharacterized cruzain binding sites. The two sites identified may serve as targets for future pharmacological intervention. Chagas disease, an infection that afflicts millions of people in Central and South America, is caused by the unicellular parasite Trypanosoma cruzi. In the chronic stage of the disease, patients' hearts are adversely affected. Chagas is the leading cause of infectious heart disease in the world. The current drugs used to treat Chagas disease are highly toxic, unable to eradiate the parasite, and subject to increasing drug resistance. Consequently, researchers are actively looking for new treatments. One attractive drug target is a Chagas protein called cruzain, which is required for the parasite's survival. Drugs that can inhibit the correct functioning of cruzain within the parasite may one day serve as powerful treatments in the fight against this devastating tropical disease. To design drugs that will be effective against cruzain, we need to know what portions of the protein are crucial for its functionality. For example, portions of the protein that bind to other proteins or to small molecules are likely to be critical. These regions are called “binding sites.” In the current work, we identify two uncharacterized cruzain binding sites. With this knowledge in hand, future researchers may be able to design drugs that target these sites.
Collapse
Affiliation(s)
- Jacob D Durrant
- Biomedical Sciences Program, University of California San Diego, La Jolla, California, United States of America.
| | | | | | | |
Collapse
|
206
|
He C, Nora GP, Schneider EL, Kerr ID, Hansell E, Hirata K, Gonzalez D, Sajid M, Boyd SE, Hruz P, Cobo ER, Le C, Liu WT, Eckmann L, Dorrestein PC, Houpt ER, Brinen LS, Craik CS, Roush WR, McKerrow J, Reed SL. A novel Entamoeba histolytica cysteine proteinase, EhCP4, is key for invasive amebiasis and a therapeutic target. J Biol Chem 2010; 285:18516-27. [PMID: 20378535 DOI: 10.1074/jbc.m109.086181] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Entamoeba histolytica cysteine proteinases (EhCPs) play a key role in disrupting the colonic epithelial barrier and the innate host immune response during invasion of E. histolytica, the protozoan cause of human amebiasis. EhCPs are encoded by 50 genes, of which ehcp4 (ehcp-a4) is the most up-regulated during invasion and colonization in a mouse cecal model of amebiasis. Up-regulation of ehcp4 in vivo correlated with our finding that co-culture of E. histolytica trophozoites with mucin-producing T84 cells increased ehcp4 expression up to 6-fold. We have expressed recombinant EhCP4, which was autocatalytically activated at acidic pH but had highest proteolytic activity at neutral pH. In contrast to the other amebic cysteine proteinases characterized so far, which have a preference for arginine in the P2 position, EhCP4 displayed a unique preference for valine and isoleucine at P2. This preference was confirmed by homology modeling, which revealed a shallow, hydrophobic S2 pocket. Endogenous EhCP4 localized to cytoplasmic vesicles, the nuclear region, and perinuclear endoplasmic reticulum (ER). Following co-culture with colonic cells, EhCP4 appeared in acidic vesicles and was released extracellularly. A specific vinyl sulfone inhibitor, WRR605, synthesized based on the substrate specificity of EhCP4, inhibited the recombinant enzyme in vitro and significantly reduced parasite burden and inflammation in the mouse cecal model. The unique expression pattern, localization, and biochemical properties of EhCP4 could be exploited as a potential target for drug design.
Collapse
Affiliation(s)
- Chen He
- Department of Pathology and Medicine, University of California, San Diego, California 92103-8416, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Brak K, Kerr ID, Barrett KT, Fuchi N, Debnath M, Ang K, Engel JC, McKerrow JH, Doyle PS, Brinen LS, Ellman JA. Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for Chagas disease chemotherapy. J Med Chem 2010; 53:1763-73. [PMID: 20088534 DOI: 10.1021/jm901633v] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A century after discovering that the Trypanosoma cruzi parasite is the etiological agent of Chagas disease, treatment is still plagued by limited efficacy, toxicity, and the emergence of drug resistance. The development of inhibitors of the major T. cruzi cysteine protease, cruzain, has been demonstrated to be a promising drug discovery avenue for this neglected disease. Here we establish that a nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitor substantially ameliorates symptoms of acute Chagas disease in a mouse model with no apparent toxicity. A high-resolution crystal structure confirmed the mode of inhibition and revealed key binding interactions of this novel inhibitor class. Subsequent structure-guided optimization then resulted in inhibitor analogues with improvements in potency despite minimal or no additions in molecular weight. Evaluation of the analogues in cell culture showed enhanced activity. These results suggest that nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors have the potential to fulfill the urgent need for improved Chagas disease chemotherapy.
Collapse
Affiliation(s)
- Katrien Brak
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Juliana C, Fernandes-Alnemri T, Wu J, Datta P, Solorzano L, Yu JW, Meng R, Quong AA, Latz E, Scott CP, Alnemri ES. Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem 2010; 285:9792-9802. [PMID: 20093358 DOI: 10.1074/jbc.m109.082305] [Citation(s) in RCA: 472] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Activation of the inflammasome generates the pro-inflammatory cytokines interleukin-1 beta and -18, which are important mediators of inflammation. Abnormal activation of the inflammasome leads to many inflammatory diseases, including gout, silicosis, neurodegeneration, and genetically inherited periodic fever syndromes. Therefore, identification of small molecule inhibitors that target the inflammasome is an important step toward developing effective therapeutics for the treatment of inflammation. Here, we show that the herbal NF-kappaB inhibitory compound parthenolide inhibits the activity of multiple inflammasomes in macrophages by directly inhibiting the protease activity of caspase-1. Additional investigations of other NF-kappaB inhibitors revealed that the synthetic I kappaB kinase-beta inhibitor Bay 11-7082 and structurally related vinyl sulfone compounds selectively inhibit NLRP3 inflammasome activity in macrophages independent of their inhibitory effect on NF-kappaB activity. In vitro assays of the effect of parthenolide and Bay 11-7082 on the ATPase activity of NLRP3 demonstrated that both compounds inhibit the ATPase activity of NLRP3, suggesting that the inhibitory effect of these compounds on inflammasome activity could be mediated in part through their effect on the ATPase activity of NLRP3. Our results thus elucidate the molecular mechanism for the therapeutic anti-inflammatory activity of parthenolide and identify vinyl sulfones as a new class of potential therapeutics that target the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Christine Juliana
- Departments of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107
| | | | - Jianghong Wu
- Departments of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107
| | - Pinaki Datta
- Departments of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107
| | - Leobaldo Solorzano
- Departments of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107
| | - Je-Wook Yu
- Departments of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107
| | - Rong Meng
- Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Andrew A Quong
- Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Eicke Latz
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605; Institute of Innate Immunity, University of Bonn, D53012 Bonn, Germany
| | - Charles P Scott
- Departments of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107
| | - Emad S Alnemri
- Departments of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
209
|
Bhattacharya R, Kesharwani MK, Manna C, Ganguly B, Suresh CG, Pathak T. An Experimental and Theoretical Study on the Remarkable Influence of Protecting Groups on the Selectivity of Addition of Amines to Vinyl Sulfone-Modified Hex-2-enopyranosides. J Org Chem 2009; 75:303-14. [DOI: 10.1021/jo902046g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rahul Bhattacharya
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India
| | - Manoj K. Kesharwani
- Analytical Science Discipline, Central Salt & Marine Chemicals Research Institute (CSIR), Bhavnagar 364 002, Gujarat, India
| | - Chinmoy Manna
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India
| | - Bishwajit Ganguly
- Analytical Science Discipline, Central Salt & Marine Chemicals Research Institute (CSIR), Bhavnagar 364 002, Gujarat, India
| | | | - Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India
| |
Collapse
|
210
|
Abstract
The protozoan parasitesTrypanosoma bruceiandTrypanosoma cruziare the causative agents of African trypanosomiasis and Chagas disease, respectively. These are debilitating infections that exert a considerable health burden on some of the poorest people on the planet. Treatment of trypanosome infections is dependent on a small number of drugs that have limited efficacy and can cause severe side effects. Here, we review the properties of these drugs and describe new findings on their modes of action and the mechanisms by which resistance can arise. We further outline how a greater understanding of parasite biology is being exploited in the search for novel chemotherapeutic agents. This effort is being facilitated by new research networks that involve academic and biotechnology/pharmaceutical organisations, supported by public–private partnerships, and are bringing a new dynamism and purpose to the search for trypanocidal agents.
Collapse
|