201
|
McCalmon SA, Desjardins DM, Ahmad S, Davidoff KS, Snyder CM, Sato K, Ohashi K, Kielbasa OM, Mathew M, Ewen EP, Walsh K, Gavras H, Naya FJ. Modulation of angiotensin II-mediated cardiac remodeling by the MEF2A target gene Xirp2. Circ Res 2010; 106:952-60. [PMID: 20093629 DOI: 10.1161/circresaha.109.209007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE The vasoactive peptide angiotensin II (Ang II) is a potent cardiotoxic hormone whose actions have been well studied, yet questions remain pertaining to the downstream factors that mediate its effects in cardiomyocytes. OBJECTIVE The in vivo role of the myocyte enhancer factor (MEF)2A target gene Xirp2 in Ang II-mediated cardiac remodeling was investigated. METHODS AND RESULTS Here we demonstrate that the MEF2A target gene Xirp2 (also known as cardiomyopathy associated gene 3 [CMYA3]) is an important effector of the Ang II signaling pathway in the heart. Xirp2 belongs to the evolutionarily conserved, muscle-specific, actin-binding Xin gene family and is significantly induced in the heart in response to systemic administration of Ang II. Initially, we characterized the Xirp2 promoter and demonstrate that Ang II activates Xirp2 expression by stimulating MEF2A transcriptional activity. To further characterize the role of Xirp2 downstream of Ang II signaling we generated mice harboring a hypomorphic allele of the Xirp2 gene that resulted in a marked reduction in its expression in the heart. In the absence of Ang II, adult Xirp2 hypomorphic mice displayed cardiac hypertrophy and increased beta myosin heavy chain expression. Strikingly, Xirp2 hypomorphic mice chronically infused with Ang II exhibited altered pathological cardiac remodeling including an attenuated hypertrophic response, as well as diminished fibrosis and apoptosis. CONCLUSIONS These findings reveal a novel MEF2A-Xirp2 pathway that functions downstream of Ang II signaling to modulate its pathological effects in the heart.
Collapse
Affiliation(s)
- Sarah A McCalmon
- Department of Biology, Boston University, 24 Cummington St, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Stretch-induced membrane damage in muscle: comparison of wild-type and mdx mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 682:297-313. [PMID: 20824533 DOI: 10.1007/978-1-4419-6366-6_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One component of stretch-induced muscle damage is an increase in the permeability of the cell membrane. As a result soluble myoplasmic proteins leak out of the muscle into the plasma, extracellular proteins can enter the muscle, and extracellular ions, including calcium, are driven down their electrochemical gradient into the myoplasm. In Duchenne muscular dystrophy, caused by the absence of the cytoskeletal protein dystrophin, stretch-induced membrane damage is much more severe. The most popular theory to explain the occurrence of stretch-induced membrane damage is that stretched-contractions cause transient mechanically-induced defects in the membrane (tears or rips). Dystrophin, which is part of a mechanical link between the contractile machinery and the extracellular matrix, is thought to contribute to membrane strength so that in its absence mechanically-induced defects are worse. In our view the evidence that stretch-induced muscle damage causes increased membrane permeability is overwhelming but the evidence that the increased permeability is caused by mechanically-induced defects is weak. Instead we review the substantial evidence that the membrane permeability is a secondary consequence of the mechanical events in which elevated intracellular calcium and reactive oxygen species are important intermediaries.
Collapse
|
203
|
Kee AJ, Gunning PW, Hardeman EC. Diverse roles of the actin cytoskeleton in striated muscle. J Muscle Res Cell Motil 2009; 30:187-97. [PMID: 19997772 DOI: 10.1007/s10974-009-9193-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/24/2009] [Indexed: 12/14/2022]
Abstract
In addition to the highly specialized contractile apparatus, it is becoming increasingly clear that there is an extensive actin cytoskeleton which underpins a wide range of functions in striated muscle. Isoforms of cytoskeletal actin and actin-associated proteins (non-muscle myosins, cytoskeletal tropomyosins, and cytoskeletal alpha-actinins) have been detected in a number of regions of striated muscle: the sub-sarcolemmal costamere, the Z-disc and the T-tubule/sarcoplasmic reticulum membranes. As the only known function of these proteins is through association with actin filaments, their presence in striated muscles indicates that there are spatially and functionally distinct cytoskeletal actin filament systems in these tissues. These filaments are likely to have important roles in mechanical support, ion channel function, myofibrillogenenous and vesicle trafficking.
Collapse
Affiliation(s)
- Anthony J Kee
- Department of Anatomy, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | |
Collapse
|
204
|
Mechanosensitive channels in striated muscle and the cardiovascular system: not quite a stretch anymore. J Cardiovasc Pharmacol 2009; 54:116-22. [PMID: 19597371 DOI: 10.1097/fjc.0b013e3181aa233f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stretch-activated or mechanosensitive channels transduce mechanical forces into ion fluxes across the cell membrane. These channels have been implicated in several aspects of cardiovascular physiology including regulation of blood pressure, vasoreactivity, and cardiac arrhythmias, as well as the adverse remodeling associated with cardiac hypertrophy and heart failure. This review discusses mechanosensitive channels in skeletal muscle and the cardiovascular system and their role in disease pathogenesis. We describe the regulation of gating of mechanosensitive channels including direct mechanisms and indirect activation by signaling pathways, as well as the influence on activation of these channels by the underlying cytoskeleton and scaffolding proteins. We then focus on the role of transient receptor potential channels, several of which have been implicated as mechanosensitive channels, in the pathogenesis of adverse cardiac remodeling and as potential therapeutic targets in the treatment of heart failure.
Collapse
|
205
|
Kee AJ, Gunning PW, Hardeman EC. A cytoskeletal tropomyosin can compromise the structural integrity of skeletal muscle. ACTA ACUST UNITED AC 2009; 66:710-20. [PMID: 19530183 DOI: 10.1002/cm.20400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have identified a number of extra-sarcomeric actin filaments defined by cytoskeletal tropomyosin (Tm) isoforms. Expression of a cytoskeletal Tm (Tm3) not normally present in skeletal muscle in a transgenic mouse resulted in muscular dystrophy. In the present report we show that muscle pathology in this mouse is late onset (between 2 and 6 months of age) and is predominately in the back and paraspinal muscles. In the Tm3 mice, Evans blue dye uptake in muscle and serum levels of creatine kinase were markedly increased following downhill exercise, and the force drop following a series of lengthening contractions in isolated muscles (extensor digitorum longus) was also significantly increased in these mice. These results demonstrate that expression of an inappropriate Tm in skeletal muscle results in increased susceptibility to contraction-induced damage. The extra-sarcomeric actin cytoskeleton therefore may have an important role in protecting the muscle from contractile stress.
Collapse
Affiliation(s)
- Anthony J Kee
- Department of Anatomy, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
206
|
Ogneva IV, Lebedev DV, Shenkman BS. Lateral mechanics of muscle fibers and its role in signaling. Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s0006350909030208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
207
|
Bennett V, Healy J. Membrane domains based on ankyrin and spectrin associated with cell-cell interactions. Cold Spring Harb Perspect Biol 2009; 1:a003012. [PMID: 20457566 DOI: 10.1101/cshperspect.a003012] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nodes of Ranvier and axon initial segments of myelinated nerves, sites of cell-cell contact in early embryos and epithelial cells, and neuromuscular junctions of skeletal muscle all perform physiological functions that depend on clustering of functionally related but structurally diverse ion transporters and cell adhesion molecules within microdomains of the plasma membrane. These specialized cell surface domains appeared at different times in metazoan evolution, involve a variety of cell types, and are populated by distinct membrane-spanning proteins. Nevertheless, recent work has shown that these domains all share on their cytoplasmic surfaces a membrane skeleton comprised of members of the ankyrin and spectrin families. This review will summarize basic features of ankyrins and spectrins, and will discuss emerging evidence that these proteins are key players in a conserved mechanism responsible for assembly and maintenance of physiologically important domains on the surfaces of diverse cells.
Collapse
Affiliation(s)
- Vann Bennett
- Howard Hughes Medical Institute, and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
208
|
Polizello JC, Carvalho LC, Freitas FC, Padula N, Shimano AC, Mattiello-Sverzut AC. Propriedades mecânicas do músculo gastrocnêmio de ratas, imobilizado e posteriormente submetido a diferentes protocolos de alongamento. REV BRAS MED ESPORTE 2009. [DOI: 10.1590/s1517-86922009000300006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O alongamento é amplamente utilizado na prática clínica da fisioterapia e no desporto, porém, as alterações mecânicas que essa técnica gera no músculo esquelético são pouco exploradas cientificamente. Este estudo avaliou as alterações mecânicas que acometem o músculo gastrocnêmio de ratas Wistar, adultas jovens, após 14 dias de imobilização e, secundariamente, submetido a alongamento manual passivo por 10 dias consecutivos, aplicado uma ou duas vezes ao dia. Foram utilizados 50 animais, sendo 10 para cada grupo: Controle (GC); Imobilizado (GI); Imobilizado e Liberado (GIL); Imobilizado e alongado uma vez ao dia (GIA1); e Imobilizado e alongado duas vezes ao dia (GIA2). O músculo gastrocnêmio foi submetido ao ensaio mecânico de tração, onde foram avaliadas as propriedades de carga e alongamento nos limites máximo e proporcional, além de rigidez e resiliência. A imobilização reduziu os valores das propriedades mecânicas de carga no limite máximo (CLM), carga no limite proporcional (CLP), alongamento no limite máximo (ALM), rigidez e resiliência, em 44,4%, 34,4%, 27,6%, 64,4% e 54%, respectivamente, quando comparados com os valores do GC. A remobilização livre e o alongamento restauraram as propriedades de CLM, CLP, ALM, rigidez e resiliência do músculo, exceto para o GIA2, que foi incapaz de restabelecer a propriedade de ALM (31,3% menor que GC). Concluí-se, portanto que, após 14 dias de imobilização segmentar, cargas individuais de alongamento e a livre movimentação permitem restituir as propriedades mecânicas do tecido muscular.
Collapse
|
209
|
Colombelli J, Besser A, Kress H, Reynaud EG, Girard P, Caussinus E, Haselmann U, Small JV, Schwarz US, Stelzer EHK. Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J Cell Sci 2009; 122:1665-79. [DOI: 10.1242/jcs.042986] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanics of the actin cytoskeleton have a central role in the regulation of cells and tissues, but the details of how molecular sensors recognize deformations and forces are elusive. By performing cytoskeleton laser nanosurgery in cultured epithelial cells and fibroblasts, we show that the retraction of stress fibers (SFs) is restricted to the proximity of the cut and that new adhesions form at the retracting end. This suggests that SFs are attached to the substrate. A new computational model for SFs confirms this hypothesis and predicts the distribution and propagation of contractile forces along the SF. We then analyzed the dynamics of zyxin, a focal adhesion protein present in SFs. Fluorescent redistribution after laser nanosurgery and drug treatment shows a high correlation between the experimentally measured localization of zyxin and the computed localization of forces along SFs. Correlative electron microscopy reveals that zyxin is recruited very fast to intermediate substrate anchor points that are highly tensed upon SF release. A similar acute localization response is found if SFs are mechanically perturbed with the cantilever of an atomic force microscope. If actin bundles are cut by nanosurgery in living Drosophila egg chambers, we also find that zyxin redistribution dynamics correlate to force propagation and that zyxin relocates at tensed SF anchor points, demonstrating that these processes also occur in living organisms. In summary, our quantitative analysis shows that force and protein localization are closely correlated in stress fibers, suggesting a very direct force-sensing mechanism along actin bundles.
Collapse
Affiliation(s)
- Julien Colombelli
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Achim Besser
- University of Heidelberg, Bioquant, BQ0013 BIOMS Schwarz, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany
| | - Holger Kress
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
- Department of Mechanical Engineering, Yale University, New Haven, CT 06511, USA
| | - Emmanuel G. Reynaud
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Philippe Girard
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | - Uta Haselmann
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - John V. Small
- Institute of Molecular Biotechnology Austrian Academy of Sciences (IMBA), Dr Bohrgasse 7, A-1030, Vienna, Austria
| | - Ulrich S. Schwarz
- University of Heidelberg, Bioquant, BQ0013 BIOMS Schwarz, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany
| | - Ernst H. K. Stelzer
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| |
Collapse
|
210
|
Dystrophin and utrophin have distinct effects on the structural dynamics of actin. Proc Natl Acad Sci U S A 2009; 106:7822-7. [PMID: 19416869 DOI: 10.1073/pnas.0812007106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used time-resolved spectroscopy to investigate the structural dynamics of actin interaction with dystrophin and utrophin in relationship to the pathology of muscular dystrophy. Dystrophin and utrophin bind actin in vitro with similar affinities, but the molecular contacts of these two proteins with actin are different. It has been hypothesized that the presence of two low-affinity actin-binding sites in dystrophin allows more elastic response of the actin-dystrophin-sarcolemma linkage to muscle stretches, compared with utrophin, which binds via one contiguous actin-binding domain. We have directly tested this hypothesis by determining the effects of dystrophin and utrophin on the microsecond rotational dynamics of a phosphorescent dye attached to C374 on actin, as detected by transient phosphorescence anisotropy (TPA). Binding of dystrophin or utrophin to actin resulted in significant changes in the TPA decay, increasing the final anisotropy (restricting the rotational amplitude) and decreasing the rotational correlation times (increasing the rotational rates and the torsional flexibility). This paradoxical combination of effects on actin dynamics (decreased amplitude but increased rate) has not been observed for other actin-binding proteins. Thus, when dystrophin or utrophin binds, actin becomes less like cast iron (strong but brittle) and more like steel (stronger and more resilient). At low levels of saturation, the binding of dystrophin and utrophin has similar effects, but at higher levels, utrophin caused much greater restrictions in amplitude and increases in rate. The effects of dystrophin and utrophin on actin dynamics provide molecular insight into the pathology of muscular dystrophy.
Collapse
|
211
|
Legardinier S, Raguénès-Nicol C, Tascon C, Rocher C, Hardy S, Hubert JF, Le Rumeur E. Mapping of the lipid-binding and stability properties of the central rod domain of human dystrophin. J Mol Biol 2009; 389:546-58. [PMID: 19379759 DOI: 10.1016/j.jmb.2009.04.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/31/2009] [Accepted: 04/11/2009] [Indexed: 11/28/2022]
Abstract
Dystrophin is a cytoskeletal protein that confers resistance to the sarcolemma against the stress of contraction-relaxation cycles by interacting with cytoskeletal and membrane partners. Apart from several proteins, membrane phospholipids are a partner of the central rod domain made up of 24 spectrin-like repeats, separated into sub-domains by four hinges. We previously showed that repeats 1 to 3 bind to membrane anionic phospholipids, while repeats 20 to 24 are not able to do so. We focus here on the phospholipid-binding properties of the major part of the central rod domain, namely, the sub-domain delineated by hinges 2 and 3 comprising 16 repeats ranging from repeat 4 to 19 (R4-19). We designed and produced multirepeat proteins comprising three to five repeats and report their lipid-binding properties as well as their thermal stabilities. When these proteins are mixed with liposomes including the anionic lipid phosphatidylserine, they form stable protein-vesicle complexes as determined by gel-filtration chromatography. The absence of an anionic lipid precludes the formation of such complexes. Spectroscopic analyses by circular dichroism and tryptophan fluorescence show that, while the alpha-helical secondary structures are not modified by the binding, protein trans conformation leads to the movement of tryptophan residues into more hydrophobic environments. In addition, the decrease in the molar ellipticity ratio at 222/208 nm as observed by circular dichroism indicates that lipid binding reduces the inter-helical interactions of multirepeat proteins, thus suggesting partly "opened" coiled-coil structures. Combining these results with data from our previous studies, we propose a new model of the dystrophin molecule lying along the membrane bilayer, in which the two sub-domains R1-3 and R4-19 interact with lipids and F-actin, while the distal sub-domain R20-24 does not exhibit any interaction. These lipid-binding domains should thus maintain a structural link between cytoskeletal actin and sarcolemma via the membrane phospholipids.
Collapse
Affiliation(s)
- Sébastien Legardinier
- Université de Rennes 1, UMR CNRS 6026, Interactions cellulaires et moléculaires, IFR 140, Faculté de Médecine, CS 34317, 35043 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
212
|
The value of mammalian models for duchenne muscular dystrophy in developing therapeutic strategies. Curr Top Dev Biol 2009; 84:431-53. [PMID: 19186250 DOI: 10.1016/s0070-2153(08)00609-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy. There is no effective treatment and patients typically die in approximately the third decade. DMD is an X-linked recessive disease caused by mutations in the dystrophin gene. There are three mammalian models of DMD that have been used to understand better the pathogenesis of disease and develop therapeutic strategies. The mdx mouse is the most widely used model of DMD that displays some features of muscle degeneration, but the pathogenesis of disease is comparatively mild. The severity of disease in mice lacking both dystrophin and utrophin is similar to DMD, but one has to account for the discrete functions of utrophin. Canine X-linked muscular dystrophy (cxmd) is the best representation of DMD, but the phenotype of the most widely used golden retriever (GRMD) model is variable, making functional endpoints difficult to ascertain. Although each mammalian model has its limitations, together they have been essential for the development of several treatment strategies for DMD that target dystrophin replacement, disease progression, and muscle regeneration.
Collapse
|
213
|
Sparrow JC, Schöck F. The initial steps of myofibril assembly: integrins pave the way. Nat Rev Mol Cell Biol 2009; 10:293-8. [PMID: 19190670 DOI: 10.1038/nrm2634] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myofibril assembly results in a regular array of identical sarcomeres in striated muscle. Sarcomere structure is conserved across the animal kingdom, which implies that the mechanisms of myofibril assembly are also likely to be conserved. Recent advances from model genetic systems and insights from stress fibre cell biology have shed light on the mechanisms that set sarcomere spacing and the initial assembly of sarcomere arrays. We propose a model of integrin-dependent cell-matrix adhesion as the starting point for myofibrillogenesis.
Collapse
Affiliation(s)
- John C Sparrow
- Department of Biology, University of York, York, YO10 5YW, UK.
| | | |
Collapse
|
214
|
Ayalon G, Davis JQ, Scotland PB, Bennett V. An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 2009; 135:1189-200. [PMID: 19109891 DOI: 10.1016/j.cell.2008.10.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/11/2008] [Accepted: 10/07/2008] [Indexed: 01/15/2023]
Abstract
beta-dystroglycan (DG) and the dystrophin-glycoprotein complex (DGC) are localized at costameres and neuromuscular junctions in the sarcolemma of skeletal muscle. We present evidence for an ankyrin-based mechanism for sarcolemmal localization of dystrophin and beta-DG. Dystrophin binds ankyrin-B and ankyrin-G, while beta-DG binds ankyrin-G. Dystrophin and beta-DG require ankyrin-G for retention at costameres but not delivery to the sarcolemma. Dystrophin and beta-DG remain intracellular in ankyrin-B-depleted muscle, where beta-DG accumulates in a juxta-TGN compartment. The neuromuscular junction requires ankyrin-B for localization of dystrophin/utrophin and beta-DG and for maintenance of its postnatal morphology. A Becker muscular dystrophy mutation reduces ankyrin binding and impairs sarcolemmal localization of dystrophin-Dp71. Ankyrin-B also binds to dynactin-4, a dynactin subunit. Dynactin-4 and a subset of microtubules disappear from sarcolemmal sites in ankyrin-B-depleted muscle. Ankyrin-B thus is an adaptor required for sarcolemmal localization of dystrophin, as well as dynactin-4.
Collapse
Affiliation(s)
- Gai Ayalon
- Howard Hughes Medical Institute and Departments of Cell Biology, Biochemistry, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
215
|
Martin PT, Xu R, Rodino-Klapac LR, Oglesbay E, Camboni M, Montgomery CL, Shontz K, Chicoine LG, Clark KR, Sahenk Z, Mendell JR, Janssen PML. Overexpression of Galgt2 in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice. Am J Physiol Cell Physiol 2008; 296:C476-88. [PMID: 19109526 DOI: 10.1152/ajpcell.00456.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytotoxic T cell (CT) GalNAc transferase, or Galgt2, is a UDP-GalNAc:beta1,4-N-acetylgalactosaminyltransferase that is localized to the neuromuscular synapse in adult skeletal muscle, where it creates the synaptic CT carbohydrate antigen {GalNAcbeta1,4[NeuAc(orGc)alpha2, 3]Galbeta1,4GlcNAcbeta-}. Overexpression of Galgt2 in the skeletal muscles of transgenic mice inhibits the development of muscular dystrophy in mdx mice, a model for Duchenne muscular dystrophy. Here, we provide physiological evidence as to how Galgt2 may inhibit the development of muscle pathology in mdx animals. Both Galgt2 transgenic wild-type and mdx skeletal muscles showed a marked improvement in normalized isometric force during repetitive eccentric contractions relative to nontransgenic littermates, even using a paradigm where nontransgenic muscles had force reductions of 95% or more. Muscles from Galgt2 transgenic mice, however, showed a significant decrement in normalized specific force and in hindlimb and forelimb grip strength at some ages. Overexpression of Galgt2 in muscles of young adult mdx mice, where Galgt2 has no effect on muscle size, also caused a significant decrease in force drop during eccentric contractions and increased normalized specific force. A comparison of Galgt2 and microdystrophin overexpression using a therapeutically relevant intravascular gene delivery protocol showed Galgt2 was as effective as microdystrophin at preventing loss of force during eccentric contractions. These experiments provide a mechanism to explain why Galgt2 overexpression inhibits muscular dystrophy in mdx muscles. That overexpression also prevents loss of force in nondystrophic muscles suggests that Galgt2 is a therapeutic target with broad potential applications.
Collapse
Affiliation(s)
- Paul T Martin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State Univ. College of Medicine, 304 Hamilton Hall, 1645 Neil Ave., Columbus, OH 43210-1218, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Sáenz A, Azpitarte M, Armañanzas R, Leturcq F, Alzualde A, Inza I, García-Bragado F, De la Herran G, Corcuera J, Cabello A, Navarro C, De la Torre C, Gallardo E, Illa I, López de Munain A. Gene expression profiling in limb-girdle muscular dystrophy 2A. PLoS One 2008; 3:e3750. [PMID: 19015733 PMCID: PMC2582180 DOI: 10.1371/journal.pone.0003750] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 10/25/2008] [Indexed: 11/18/2022] Open
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3). Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens), cell adhesion (fibronectin), muscle development (myosins and melusin) and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB) is upregulated in LGMD2A muscle samples, it could be hypothesized that beta-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1). Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies.
Collapse
Affiliation(s)
- Amets Sáenz
- Experimental Unit, Hospital Donostia, Donostia-San Sebastián, Basque Country, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM. Designing heart performance by gene transfer. Physiol Rev 2008; 88:1567-651. [PMID: 18923190 DOI: 10.1152/physrev.00039.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The birth of molecular cardiology can be traced to the development and implementation of high-fidelity genetic approaches for manipulating the heart. Recombinant viral vector-based technology offers a highly effective approach to genetically engineer cardiac muscle in vitro and in vivo. This review highlights discoveries made in cardiac muscle physiology through the use of targeted viral-mediated genetic modification. Here the history of cardiac gene transfer technology and the strengths and limitations of viral and nonviral vectors for gene delivery are reviewed. A comprehensive account is given of the application of gene transfer technology for studying key cardiac muscle targets including Ca(2+) handling, the sarcomere, the cytoskeleton, and signaling molecules and their posttranslational modifications. The primary objective of this review is to provide a thorough analysis of gene transfer studies for understanding cardiac physiology in health and disease. By comparing results obtained from gene transfer with those obtained from transgenesis and biophysical and biochemical methodologies, this review provides a global view of cardiac structure-function with an eye towards future areas of research. The data presented here serve as a basis for discovery of new therapeutic targets for remediation of acquired and inherited cardiac diseases.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Thompson O, Kleino I, Crimaldi L, Gimona M, Saksela K, Winder SJ. Dystroglycan, Tks5 and Src mediated assembly of podosomes in myoblasts. PLoS One 2008; 3:e3638. [PMID: 18982058 PMCID: PMC2572840 DOI: 10.1371/journal.pone.0003638] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 10/17/2008] [Indexed: 01/07/2023] Open
Abstract
Background Dystroglycan is a ubiquitously expressed cell adhesion receptor best understood in its role as part of the dystrophin glycoprotein complex of mature skeletal muscle. Less is known of the role of dystroglycan in more fundamental aspects of cell adhesion in other cell types, nor of its role in myoblast cell adhesion. Principal Findings We have examined the role of dystroglycan in the early stages of myoblast adhesion and spreading and found that dystroglycan initially associates with other adhesion proteins in large puncta morphologically similar to podosomes. Using a human SH3 domain phage display library we identified Tks5, a key regulator of podosomes, as interacting with β-dystroglycan. We verified the interaction by immunoprecipitation, GST-pulldown and immunfluorescence localisation. Both proteins localise to puncta during early phases of spreading, but importantly following stimulation with phorbol ester, also localise to structures indistinguishable from podosomes. Dystroglycan overexpression inhibited podosome formation by sequestering Tks5 and Src. Mutation of dystroglycan tyrosine 890, previously identified as a Src substrate, restored podosome formation. Conclusions We propose therefore, that Src-dependent phosphorylation of β-dystroglycan results in the formation of a Src/dystroglycan complex that drives the SH3-mediated association between dystroglycan and Tks5 which together regulate podosome formation in myoblasts.
Collapse
Affiliation(s)
- Oliver Thompson
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Iivari Kleino
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Luca Crimaldi
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Mario Gimona
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Kalle Saksela
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Steve J. Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
219
|
Waardenberg AJ, Reverter A, Wells CA, Dalrymple BP. Using a 3D virtual muscle model to link gene expression changes during myogenesis to protein spatial location in muscle. BMC SYSTEMS BIOLOGY 2008; 2:88. [PMID: 18945372 PMCID: PMC2596796 DOI: 10.1186/1752-0509-2-88] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 10/22/2008] [Indexed: 11/23/2022]
Abstract
Background Myogenesis is an ordered process whereby mononucleated muscle precursor cells (myoblasts) fuse into multinucleated myotubes that eventually differentiate into myofibres, involving substantial changes in gene expression and the organisation of structural components of the cells. To gain further insight into the orchestration of these structural changes we have overlaid the spatial organisation of the protein components of a muscle cell with their gene expression changes during differentiation using a new 3D visualisation tool: the Virtual Muscle 3D (VMus3D). Results Sets of generic striated muscle costamere, Z-disk and filament proteins were constructed from the literature and protein-interaction databases. Expression profiles of the genes encoding these proteins were obtained from mouse C2C12 cells undergoing myogenesis in vitro, as well as a mouse tissue survey dataset. Visualisation of the expression data in VMus3D yielded novel observations with significant relationships between the spatial location and the temporal expression profiles of the structural protein products of these genes. A muscle specificity index was calculated based on muscle expression relative to the median expression in all tissues and, as expected, genes with the highest muscle specificity were also expressed most dynamically during differentiation. Interestingly, most genes encoding costamere as well as some Z-disk proteins appeared to be broadly expressed across most tissues and showed little change in expression during muscle differentiation, in line with the broader cellular role described for some of these proteins. Conclusion By studying gene expression patterns from a structural perspective we have demonstrated that not all genes encoding proteins that are part of muscle specific structures are simply up-regulated during muscle cell differentiation. Indeed, a group of genes whose expression program appears to be minimally affected by the differentiation process, code for proteins participating in vital skeletal muscle structures. Expression alone is a poor metric of gene behaviour. Instead, the "connectivity model of muscle development" is proposed as a mechanism for muscle development: whereby the closer to the myofibril core of muscle cells, the greater the gene expression changes during muscle differentiation and the greater the muscle specificity.
Collapse
Affiliation(s)
- Ashley J Waardenberg
- CSIRO, Food Futures Flagship, Queensland Bioscience Precinct, 306 Carmody Road, St, Lucia, QLD 4067, Australia.
| | | | | | | |
Collapse
|
220
|
Bian W, Bursac N. Tissue engineering of functional skeletal muscle: challenges and recent advances. ACTA ACUST UNITED AC 2008; 27:109-13. [PMID: 18799400 DOI: 10.1109/memb.2008.928460] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
221
|
Banks GB, Combs AC, Chamberlain JR, Chamberlain JS. Molecular and cellular adaptations to chronic myotendinous strain injury in mdx mice expressing a truncated dystrophin. Hum Mol Genet 2008; 17:3975-86. [PMID: 18799475 DOI: 10.1093/hmg/ddn301] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myotendinous strain injury is the most common injury of human skeletal muscles because the majority of muscle forces are transmitted through this region. Although the immediate response to strain injury is well characterized, the chronic response to myotendinous strain injury is less clear. Here we examined the molecular and cellular adaptations to chronic myotendinous strain injury in mdx mice expressing a microdystrophin transgene (microdystrophin(DeltaR4-R23)). We found that muscles with myotendinous strain injury had an increased expression of utrophin and alpha7-integrin together with the dramatic restructuring of peripheral myofibrils into concentric rings. The sarcolemma of the microdystrophin(DeltaR4-R23)/mdx gastrocnemius muscles was highly protected from experimental lengthening contractions, better than wild-type muscles. We also found a positive correlation between myotendinous strain injury and ringed fibers in the HSA(LR) (human skeletal actin, long repeat) mouse model of myotonic dystrophy. We suggest that changes in protein expression and the formation of rings are adaptations to myotendinous strain injury that help to prevent muscle necrosis and retain the function of necessary muscles during injury, ageing and disease.
Collapse
Affiliation(s)
- Glen B Banks
- Department of Neurology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
222
|
Ajima R, Akazawa H, Kodama M, Takeshita F, Otsuka A, Kohno T, Komuro I, Ochiya T, Yokota J. Deficiency of Myo18B in mice results in embryonic lethality with cardiac myofibrillar aberrations. Genes Cells 2008; 13:987-99. [PMID: 18761673 DOI: 10.1111/j.1365-2443.2008.01226.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myo18B is an unconventional myosin family protein expressed predominantly in muscle cells. Although conventional myosins are known to be localized on the A-bands and function as a molecular motor for muscle contraction, Myo18B protein was localized on the Z-lines of myofibrils in striated muscles. Like Myo18A, another 18th class of myosin, the N-terminal unique domain of the protein and not the motor domain and the coiled-coil tail is critical for its localization to F-actin in myocytes. Myo18B expression was induced by myogenic differentiation through the binding of myocyte-specific enhancer factor-2 to its promoter. Deficiency of Myo18B caused an embryonic lethality in mice accompanied by disruption of myofibrillar structures in cardiac myocytes at embryonic day 10.5. Thus, Myo18B is a unique unconventional myosin that is predominantly expressed in myocytes and whose expression is essential for the development and/or maintenance of myofibrillar structure.
Collapse
Affiliation(s)
- Rieko Ajima
- Biology Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
A broken heart: a stretch too far: an overview of mouse models with mutations in stretch-sensor components. Int J Cardiol 2008; 131:33-44. [PMID: 18715658 DOI: 10.1016/j.ijcard.2008.06.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 05/07/2008] [Accepted: 06/03/2008] [Indexed: 12/11/2022]
Abstract
With every heartbeat the heart must contract and relax. This seemingly trivial process critically needs tight control of contraction and relaxation phases, and extremely efficient coordination between these two phases to control blood flow and maintain cardiac homeostasis. To achieve this, specialized sensors are required to detect the inherent repeatedly changing environment and needs. One sensor is a stretch-sensor that monitors the filling of the ventricles. Its molecular identity and localization are only partly understood. Here we give a synopsis of the genetic models that leap into our understanding of stretch-sensors. We focus on the widely acknowledged sarcomeric sensor at the Z-disc and the costamere sensor at the sarcolemma. Recently, several novel components of both sensors were discovered. Given that these two sensors seem physically connected, it is likely that these two models are not mutually exclusive and might even communicate. We describe briefly how candidate and known proteins within these sensors receive and transduce mechanical signals in the cardiomyocyte that lead to changes in gene expression underlying homeostasis and its restoration in the heart. Emphasis is placed on the putative link between altered stretch-sensor function and heart failure observed in different genetic mouse models of stretch-sensor components.
Collapse
|
224
|
Abstract
The distribution of proteins in the sarcomeres of skeletal and cardiac muscle gives rise to the striated pattern of these muscles. Sarcomeric protein localization is not, however, permanently fixed. There is dynamic exchange of proteins between a cytosolic pool and the sarcomere, addition of newly synthesized proteins during development and repair, and aberrant redistribution of proteins due to mutations. Recent studies have shown that two groups of proteins that localize in the sarcomere Z band can relocate, in one case to the A band, and in the other to the nucleus.
Collapse
Affiliation(s)
- Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY 13210, USA
| | | |
Collapse
|
225
|
Dowling JJ, Vreede AP, Kim S, Golden J, Feldman EL. Kindlin-2 is required for myocyte elongation and is essential for myogenesis. BMC Cell Biol 2008; 9:36. [PMID: 18611274 PMCID: PMC2478659 DOI: 10.1186/1471-2121-9-36] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 07/08/2008] [Indexed: 11/10/2022] Open
Abstract
Background Integrins are required for normal muscle differentiation and disruptions in integrin signaling result in human muscle disease. The intracellular components that regulate integrin function during myogenesis are poorly understood. Unc-112 is an integrin-associated protein required for muscle development in C. elegans. To better understand the intracellular effectors of integrin signaling in muscle, we examined the mammalian homolog of Unc-112, kindlin-2. Results Kindlin-2 expression is upregulated during differentiation and highly enriched at sites of integrin localization. RNAi knockdown of kindlin-2 in C2C12 cells results in significant abnormalities during the early stages of myogenesis. Specifically, differentiating myocytes lacking kindlin-2 are unable to elongate and fail to fuse into multinucleated myotubes. These changes are correlated with decreased cell substratum adhesion and increased cell motility. They are also associated with redistribution of a known kindlin-2 binding partner, integrin linked kinase (ILK), to the membrane insoluble subcellular fraction. Conclusion In all, our study reveals kindlin-2 as a novel integrin adaptor protein important for muscle differentiation, and identifies it particularly as a critical regulator of myocyte elongation.
Collapse
Affiliation(s)
- James J Dowling
- Department of Pediatrics, University of Michigan, Ann Arbor, USA.
| | | | | | | | | |
Collapse
|
226
|
Prins KW, Lowe DA, Ervasti JM. Skeletal muscle-specific ablation of gamma(cyto)-actin does not exacerbate the mdx phenotype. PLoS One 2008; 3:e2419. [PMID: 18545671 PMCID: PMC2409075 DOI: 10.1371/journal.pone.0002419] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 05/08/2008] [Indexed: 11/29/2022] Open
Abstract
We previously documented a ten-fold increase in γcyto-actin expression in dystrophin-deficient skeletal muscle and hypothesized that increased γcyto-actin expression may participate in an adaptive cytoskeletal remodeling response. To explore whether increased γcyto-actin fortifies the cortical cytoskeleton in dystrophic skeletal muscle, we generated double knockout mice lacking both dystrophin and γcyto-actin specifically in skeletal muscle (ms-DKO). Surprisingly, dystrophin-deficient mdx and ms-DKO mice presented with comparable levels of myofiber necrosis, membrane instability, and deficits in muscle function. The lack of an exacerbated phenotype in ms-DKO mice suggests γcyto-actin and dystrophin function in a common pathway. Finally, because both mdx and ms-DKO skeletal muscle showed similar levels of utrophin expression and presented with identical dystrophies, we conclude utrophin can partially compensate for the loss of dystrophin independent of a γcyto-actin-utrophin interaction.
Collapse
Affiliation(s)
- Kurt W. Prins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dawn A. Lowe
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - James M. Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
227
|
Konieczny P, Fuchs P, Reipert S, Kunz WS, Zeöld A, Fischer I, Paulin D, Schröder R, Wiche G. Myofiber integrity depends on desmin network targeting to Z-disks and costameres via distinct plectin isoforms. ACTA ACUST UNITED AC 2008; 181:667-81. [PMID: 18490514 PMCID: PMC2386106 DOI: 10.1083/jcb.200711058] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dysfunction of plectin, a 500-kD cytolinker protein, leads to skin blistering and muscular dystrophy. Using conditional gene targeting in mice, we show that plectin deficiency results in progressive degenerative alterations in striated muscle, including aggregation and partial loss of intermediate filament (IF) networks, detachment of the contractile apparatus from the sarcolemma, profound changes in myofiber costameric cytoarchitecture, and decreased mitochondrial number and function. Analysis of newly generated plectin isoform-specific knockout mouse models revealed that IF aggregates accumulate in distinct cytoplasmic compartments, depending on which isoform is missing. Our data show that two major plectin isoforms expressed in muscle, plectin 1d and 1f, integrate fibers by specifically targeting and linking desmin IFs to Z-disks and costameres, whereas plectin 1b establishes a linkage to mitochondria. Furthermore, disruption of Z-disk and costamere linkages leads to the pathological condition of epidermolysis bullosa with muscular dystrophy. Our findings establish plectin as the major organizer of desmin IFs in myofibers and provide new insights into plectin- and desmin-related muscular dystrophies.
Collapse
Affiliation(s)
- Patryk Konieczny
- Max F. Perutz Laboratories, Department of Molecular Cell Biology, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Elsherif L, Huang MS, Shai SY, Yang Y, Li RY, Chun J, Mekany MA, Chu AL, Kaufman SJ, Ross RS. Combined deficiency of dystrophin and beta1 integrin in the cardiac myocyte causes myocardial dysfunction, fibrosis and calcification. Circ Res 2008; 102:1109-17. [PMID: 18340010 DOI: 10.1161/circresaha.108.173153] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The dystrophin-glycoprotein complex is a large complex of membrane-associated proteins linking the cytoskeleton to the extracellular matrix in muscle. Transmembrane heterodimeric (alphabeta) integrins serve also as cellular adhesion molecules and mechanotransducers. In the animal model for Duchenne muscular dystrophy, the mdx mouse, loss of dystrophin causes more severe abnormalities in skeletal than in cardiac muscle. We hypothesized that ablation of cardiac myocyte integrins in the mdx background would lead to a severe cardiomyopathic phenotype. Mdx mice were crossed to ones with cardiac myocyte-specific deletion of beta1 integrin (beta1KO) to generate beta1KOmdx. Unstressed beta1KOmdx mice were viable and had normal cardiac function; however, high mortality was seen in peri- and postpartum females by 6 months of age, when severe myocardial necrosis and fibrosis and extensive dystrophic calcification was seen. Decreased ventricular function and blunted adrenergic responsiveness was found in the beta1KOmdx mice compared with control (Lox/Lox, no Cre), beta1KO, and mdx. Similarly, adult beta1KOmdx males were more prone to isoproterenol-induced heart failure and death compared with control groups. Given the extensive calcification, we analyzed transcript levels of genes linked to fibrosis and calcification and found matrix gamma-carboxyglutamic acid protein, decorin, periostin, and the osteoblast transcription factor Runx2/Cbfa1 significantly increased in beta1KOmdx cardiac muscle. Our data show that combined deficiency of dystrophin and integrins in murine cardiac myocytes results in more severe cardiomyopathic changes in the stressed myocardium than reduction of either dystrophin or integrins alone and predisposes to myocardial calcification.
Collapse
Affiliation(s)
- Laila Elsherif
- Department of Medicine, University of California at San Diego School of Medicine, La Jolla, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Jani K, Schöck F. Zasp is required for the assembly of functional integrin adhesion sites. ACTA ACUST UNITED AC 2008; 179:1583-97. [PMID: 18166658 PMCID: PMC2373490 DOI: 10.1083/jcb.200707045] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The integrin family of heterodimeric transmembrane receptors mediates cell–matrix adhesion. Integrins often localize in highly organized structures, such as focal adhesions in tissue culture and myotendinous junctions in muscles. Our RNA interference screen for genes that prevent integrin-dependent cell spreading identifies Z band alternatively spliced PDZ-motif protein (zasp), encoding the only known Drosophila melanogaster Alp/Enigma PDZ-LIM domain protein. Zasp localizes to integrin adhesion sites and its depletion disrupts integrin adhesion sites. In tissues, Zasp colocalizes with βPS integrin in myotendinous junctions and with α-actinin in muscle Z lines. Zasp also physically interacts with α-actinin. Fly larvae lacking Zasp do not form Z lines and fail to recruit α-actinin to the Z line. At the myotendinous junction, muscles detach in zasp mutants with the onset of contractility. Finally, Zasp interacts genetically with integrins, showing that it regulates integrin function. Our observations point to an important function for Zasp in the assembly of integrin adhesion sites both in cell culture and in tissues.
Collapse
Affiliation(s)
- Klodiana Jani
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
230
|
Abstract
Synemin is a very large, unique member of the IF (intermediate filament) protein superfamily. Association of synemin with the major IF proteins, desmin and/or vimentin, within muscle cells forms heteropolymeric IFs. We have previously identified interactions of avian synemin with alpha-actinin and vinculin. Avian synemin, however, is expressed as only one form, whereas human synemin is expressed as two major splice variants, namely alpha- and beta-synemins. The larger alpha-synemin contains an additional 312-amino-acid insert (termed SNTIII) located near the end of the long C-terminal tail domain. Whether alpha- and beta-synemins have different cellular functions is unclear. In the present study we show, by in vitro protein-protein interaction assays, that SNTIII interacts directly with both vinculin and metavinculin. Furthermore, SNTIII interacts with vinculin in vivo, and this association is promoted by PtdIns(4,5)P(2). SNTIII also specifically co-localizes with vinculin within focal adhesions when transiently expressed in mammalian cells. In contrast, other regions of synemin show distinct localization patterns in comparison with those of SNTIII, without labelling focal adhesions. Our results indicate that alpha-synemin, but not beta-synemin, interacts with both vinculin and metavinculin, thereby linking the heteropolymeric IFs to adhesion-type junctions, such as the costameres located within human striated muscle cells.
Collapse
|
231
|
Sheikh F, Bang ML, Lange S, Chen J. "Z"eroing in on the role of Cypher in striated muscle function, signaling, and human disease. Trends Cardiovasc Med 2008; 17:258-62. [PMID: 18021935 DOI: 10.1016/j.tcm.2007.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 09/10/2007] [Accepted: 09/13/2007] [Indexed: 11/24/2022]
Abstract
The striated muscle Z line, a multiprotein complex at the boundary between sarcomeres, plays an integral role in maintaining striated muscle structure and function. Multiple Z-line-associated proteins have been identified and shown to play an increasingly important role in the pathogenesis of human muscle disease. Cypher/Z-band alternatively spliced PDZ-motif protein, a PDZ-LIM protein in the Z line, binds to alpha-actinin (via its PDZ domain) and has been suggested to function as a linker-strut to maintain cytoskeletal structural integrity during contraction. Cypher may also participate in signaling pathways by binding to protein kinase C via its LIM domains. Analysis of Cypher-deficient mice has revealed that Cypher plays an integral role in Z-line maintenance/integrity of striated muscles and the pathogenesis of congenital myopathies, including cardiomyopathy. These studies have led to the subsequent discovery of Cypher mutations in human patients with dilated cardiomyopathy, hypertrophic cardiomyopathy, as well as skeletal muscle myopathies, which have been recently termed zaspopathies. The recent discovery of various alternatively spliced isoforms of Cypher with potentially distinct structural and signaling roles brings a different level of complexity to the mechanisms underlying Cypher-based human myopathies. This review will focus on recent developments on the role of Cypher and its isoforms in striated muscle structure, signaling, and disease to provide insights into the mechanisms involved in the pathogenesis of Z-line-associated human myopathies.
Collapse
Affiliation(s)
- Farah Sheikh
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
232
|
Mice lacking Homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity. Mol Cell Biol 2008; 28:2637-47. [PMID: 18268005 DOI: 10.1128/mcb.01601-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transient receptor potential (TRP) channels are nonselective cation channels, several of which are expressed in striated muscle. Because the scaffolding protein Homer 1 has been implicated in TRP channel regulation, we hypothesized that Homer proteins play a significant role in skeletal muscle function. Mice lacking Homer 1 exhibited a myopathy characterized by decreased muscle fiber cross-sectional area and decreased skeletal muscle force generation. Homer 1 knockout myotubes displayed increased basal current density and spontaneous cation influx. This spontaneous cation influx in Homer 1 knockout myotubes was blocked by reexpression of Homer 1b, but not Homer 1a, and by gene silencing of TRPC1. Moreover, diminished Homer 1 expression in mouse models of Duchenne's muscular dystrophy suggests that loss of Homer 1 scaffolding of TRP channels may contribute to the increased stretch-activated channel activity observed in mdx myofibers. These findings provide direct evidence that Homer 1 functions as an important scaffold for TRP channels and regulates mechanotransduction in skeletal muscle.
Collapse
|
233
|
Reynolds JG, McCalmon SA, Donaghey JA, Naya FJ. Deregulated protein kinase A signaling and myospryn expression in muscular dystrophy. J Biol Chem 2008; 283:8070-4. [PMID: 18252718 DOI: 10.1074/jbc.c700221200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alterations in signaling pathway activity have been implicated in the pathogenesis of Duchenne muscular dystrophy, a degenerative muscle disease caused by a deficiency in the costameric protein dystrophin. Accordingly, the notion of the dystrophin-glycoprotein complex, and by extension the costamere, as harboring signaling components has received increased attention in recent years. The localization of most, if not all, signaling enzymes to this subcellular region relies on interactions with scaffolding proteins directly or indirectly associated with the dystrophin-glycoprotein complex. One of these scaffolds is myospryn, a large, muscle-specific protein kinase A (PKA) anchoring protein or AKAP. Previous studies have demonstrated a dysregulation of myospryn expression in human Duchenne muscular dystrophy, suggesting a connection to the pathophysiology of the disorder. Here we report that dystrophic muscle exhibits reduced PKA activity resulting, in part, from severely mislocalized myospryn and the type II regulatory subunit (RIIalpha) of PKA. Furthermore, we show that myospryn and dystrophin coimmunoprecipitate in native muscle extracts and directly interact in vitro. Our findings reveal for the first time abnormalities in the PKA signal transduction pathway and myospryn regulation in dystrophin deficiency.
Collapse
Affiliation(s)
- Joseph G Reynolds
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
234
|
Faulkner JA, Ng R, Davis CS, Li S, Chamberlain JS. Diaphragm muscle strip preparation for evaluation of gene therapies in mdx mice. Clin Exp Pharmacol Physiol 2008; 35:725-9. [PMID: 18215182 DOI: 10.1111/j.1440-1681.2007.04865.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Duchenne muscular dystrophy (DMD), a severe muscle wasting disease of young boys with an incidence of one in every 3000, results from a mutation in the gene that encodes dystrophin. The absence of dystrophin expression in skeletal muscles and heart results in the degeneration of muscle fibres and, consequently, severe muscle weakness and wasting. The mdx mouse discovered in 1984, with some adjustments for differences, has proven to be an invaluable model for scientific investigations of dystrophy. 2. The development of the diaphagm strip preparation provided an ideal experimental model for investigations of skeletal muscle impairments in structure and function induced by interactions of disease- and age-related factors. Unlike the limb muscles of the mdx mouse, which show adaptive changes in structure and function, the diaphragm strip preparation reflects accurately the deterioration in muscle structure and function observed in boys with DMD. 3. The advent of sophisticated servo motors and force transducers interfaced with state-of-the-art software packages to drive complex experimental designs during the 1990s greatly enhanced the capability of the mdx mouse and the diaphragm strip preparation to evaluate more accurately the impact of the disease on the structure-function relationships throughout the life span of the mouse. 4. Finally, during the 1990s and through the early years of the 21st century, many promising, sophisticated genetic techniques have been designed to ameliorate the devastating impact of muscular dystrophy on the structure and function of skeletal muscles. During this period of rapid development of promising genetic therapies, the combination of the mdx mouse and the diaphragm strip preparation has provided an ideal model for the evaluation of the success, or failure, of these genetic techniques to improve dystrophic muscle structure, function or both. With the 2 year life span of the mdx mouse, the impact of age-related effects can be studied in this model.
Collapse
Affiliation(s)
- John A Faulkner
- Department of Molecular and Integrative Physiology, School of Medicine, University of Ann Arbor, Michigan 48109-2200, USA.
| | | | | | | | | |
Collapse
|
235
|
Muscular Integrity—A Matter of Interlinking Distinct Structures via Plectin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 642:165-75. [DOI: 10.1007/978-0-387-84847-1_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
236
|
Lecroisey C, Martin E, Mariol MC, Granger L, Schwab Y, Labouesse M, Ségalat L, Gieseler K. DYC-1, a protein functionally linked to dystrophin in Caenorhabditis elegans is associated with the dense body, where it interacts with the muscle LIM domain protein ZYX-1. Mol Biol Cell 2007; 19:785-96. [PMID: 18094057 DOI: 10.1091/mbc.e07-05-0497] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Caenorhabditis elegans, mutations of the dystrophin homologue, dys-1, produce a peculiar behavioral phenotype (hyperactivity and a tendency to hypercontract). In a sensitized genetic background, dys-1 mutations also lead to muscle necrosis. The dyc-1 gene was previously identified in a genetic screen because its mutation leads to the same phenotype as dys-1, suggesting that the two genes are functionally linked. Here, we report the detailed characterization of the dyc-1 gene. dyc-1 encodes two isoforms, which are expressed in neurons and muscles. Isoform-specific RNAi experiments show that the absence of the muscle isoform, and not that of the neuronal isoform, is responsible for the dyc-1 mutant phenotype. In the sarcomere, the DYC-1 protein is localized at the edges of the dense body, the nematode muscle adhesion structure where actin filaments are anchored and linked to the sarcolemma. In yeast two-hybrid assays, DYC-1 interacts with ZYX-1, the homologue of the vertebrate focal adhesion LIM domain protein zyxin. ZYX-1 localizes at dense bodies and M-lines as well as in the nucleus of C. elegans striated muscles. The DYC-1 protein possesses a highly conserved 19 amino acid sequence, which is involved in the interaction with ZYX-1 and which is sufficient for addressing DYC-1 to the dense body. Altogether our findings indicate that DYC-1 may be involved in dense body function and stability. This, taken together with the functional link between the C. elegans DYC-1 and DYS-1 proteins, furthermore suggests a requirement of dystrophin function at this structure. As the dense body shares functional similarity with both the vertebrate Z-disk and the costamere, we therefore postulate that disruption of muscle cell adhesion structures might be the primary event of muscle degeneration occurring in the absence of dystrophin, in C. elegans as well as vertebrates.
Collapse
Affiliation(s)
- Claire Lecroisey
- Université Lyon 1, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5534, Centre de Génétique Moléculaire et Cellulaire, Bâtiment Mendel, Villeurbanne, F-69622, France
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Toward physiological conditions for cell analyses: forces of heart muscle cells suspended between elastic micropillars. Biophys J 2007; 94:1854-66. [PMID: 17981895 DOI: 10.1529/biophysj.107.115766] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Almost each mammalian cell permanently applies forces to its environment. These forces are essential for many vital processes such as tissue formation or cell movement. In turn, the environmental conditions of cells strongly affect force production. Here we report on the development of an array of elastomeric micropillars as cellular environment. Within these micropillar arrays, we cultivated rat heart muscle cells (cardiac myocytes). For lattice constants between 20 and 30 mum, cells strongly preferred spanning between the elastic micropillars over adhering to the underlying flat substrate. In addition, the architectures of the cytoskeleton and of protein complexes formed for adhesion were strongly dependent on the environment of the cell. On flat parts of the substrates, we observed prominent stress fibers and focal adhesion sites. In contrast, cells suspended between micropillars exhibited well organized myofibers and costameric adhesions at the locations of Z-bands. These observations argue for close-to-nature environmental conditions within micropillar arrays. Resting as well as contraction forces of myocytes resulted in measurable pillar bending. Using an approximate theoretical treatment of elastically founded micropillars, we calculated average cell forces of 140 nN in the relaxed and 400 nN in the contracted state.
Collapse
|
238
|
Frank D, Kuhn C, Katus HA, Frey N. Role of the sarcomeric Z-disc in the pathogenesis of cardiomyopathy. Future Cardiol 2007; 3:611-22. [DOI: 10.2217/14796678.3.6.611] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Z-disc has traditionally been viewed as a structure required to maintain sarcomeric function and integrity. More recently, the sarcomeric Z-disc has also emerged as a nodal point in cardiomyocyte signaling and mechanotransduction. This notion is not only supported by several transgenic animal models, but also by the identification of mutations in various Z-disc proteins, resulting in dilated or hypertrophic cardiomyopathy in patients. This review will thus focus on the role of the sarcomeric Z-disc and its associated proteins in the pathogenesis of cardiomyopathy.
Collapse
Affiliation(s)
- Derk Frank
- University of Heidelberg, Department of Internal Medicine III, Germany
| | - Christian Kuhn
- University of Heidelberg, Department of Internal Medicine III, Germany
| | - Hugo A Katus
- University of Heidelberg, Department of Internal Medicine III, Germany
| | - Norbert Frey
- Im Neuenheimer Feld 350, D-69120 Heidelberg, Germany
| |
Collapse
|
239
|
Stone MR, O'Neill A, Lovering RM, Strong J, Resneck WG, Reed PW, Toivola DM, Ursitti JA, Omary MB, Bloch RJ. Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization. J Cell Sci 2007; 120:3999-4008. [PMID: 17971417 DOI: 10.1242/jcs.009241] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intermediate filaments, composed of desmin and of keratins, play important roles in linking contractile elements to each other and to the sarcolemma in striated muscle. We examined the contractile properties and morphology of fast-twitch skeletal muscle from mice lacking keratin 19. Tibialis anterior muscles of keratin-19-null mice showed a small but significant decrease in mean fiber diameter and in the specific force of tetanic contraction, as well as increased plasma creatine kinase levels. Costameres at the sarcolemma of keratin-19-null muscle, visualized with antibodies against spectrin or dystrophin, were disrupted and the sarcolemma was separated from adjacent myofibrils by a large gap in which mitochondria accumulated. The costameric dystrophin-dystroglycan complex, which co-purified with gamma-actin, keratin 8 and keratin 19 from striated muscles of wild-type mice, co-purified with gamma-actin but not keratin 8 in the mutant. Our results suggest that keratin 19 in fast-twitch skeletal muscle helps organize costameres and links them to the contractile apparatus, and that the absence of keratin 19 disrupts these structures, resulting in loss of contractile force, altered distribution of mitochondria and mild myopathy. This is the first demonstration of a mammalian phenotype associated with a genetic perturbation of keratin 19.
Collapse
Affiliation(s)
- Michele R Stone
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Zanchi NE, Lancha AH. Mechanical stimuli of skeletal muscle: implications on mTOR/p70s6k and protein synthesis. Eur J Appl Physiol 2007; 102:253-63. [PMID: 17940791 DOI: 10.1007/s00421-007-0588-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2007] [Indexed: 12/22/2022]
Abstract
The skeletal muscle is a tissue with adaptive properties which are essential to the survival of many species. When mechanically stimulated it is liable to undergo remodeling, namely, changes in its mass/volume resulting mainly from myofibrillar protein accumulation. The mTOR pathway (mammalian target of rapamycin) via its effector p70s6k (ribosomal protein kinase S6) has been reported to be of importance to the control of skeletal muscle mass, particularly under mechanical stimulation. However, not all mechanical stimuli are capable of activating this pathway, and among those who are, there are differences in the activation magnitude. Likewise, not all skeletal muscle fibers respond to the same extent to mechanical stimulation. Such evidences suggest specific mechanical stimuli through appropriate cellular signaling to be responsible for the final physiological response, namely, the accumulation of myofibrillar protein. Lately, after the mTOR signaling pathway has been acknowledged as of importance for remodeling, the interest for the mechanical/chemical mediators capable of activating it has increased. Apart from the already known MGF (mechano growth factor), some other mediators such as phosphatidic acid (PA) have been identified. This review article comprises and discusses relevant information on the mechano-chemical transduction of the pathway mTOR, with special emphasis on the muscle protein synthesis.
Collapse
Affiliation(s)
- Nelo Eidy Zanchi
- Laboratory of Applied Nutrition and Metabolism, Physical Education and Sport School, University of São Paulo, Av. Prof. Mello Moraes, 65, PO Box 05508-900, São Paulo, SP, Brazil.
| | | |
Collapse
|
241
|
Protein kinase A, Ca2+/calmodulin-dependent kinase II, and calcineurin regulate the intracellular trafficking of myopodin between the Z-disc and the nucleus of cardiac myocytes. Mol Cell Biol 2007; 27:8215-27. [PMID: 17923693 DOI: 10.1128/mcb.00950-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spatial and temporal resolution of intracellular signaling can be achieved by compartmentalizing transduction units. Myopodin is a dual-compartment, actin-bundling protein that shuttles between the nucleus and the Z-disc of myocytes in a differentiation- and stress-dependent fashion. Importin alpha binding and nuclear import of myopodin are regulated by serine/threonine phosphorylation-dependent binding of myopodin to 14-3-3. Here we show that in the heart myopodin forms a Z-disc signaling complex with alpha-actinin, calcineurin, Ca2+/calmodulin-dependent kinase II (CaMKII), muscle-specific A-kinase anchoring protein, and myomegalin. Phosphorylation of myopodin by protein kinase A (PKA) or CaMKII mediates 14-3-3 binding and nuclear import in myoblasts. Dephosphorylation of myopodin by calcineurin abrogates 14-3-3beta binding. Activation of PKA or inhibition of calcineurin in adult cardiac myocytes releases myopodin from the Z-disc and induces its nuclear import. The identification of myopodin as a direct target of PKA, CaMKII, and calcineurin defines a novel intracellular signaling pathway whereby changes in Z-disc dynamics may translate into compartmentalized signal transduction in the heart.
Collapse
|
242
|
Zhang M, Liu J, Cheng A, DeYoung SM, Saltiel AR. Identification of CAP as a costameric protein that interacts with filamin C. Mol Biol Cell 2007; 18:4731-40. [PMID: 17898075 PMCID: PMC2096606 DOI: 10.1091/mbc.e07-06-0628] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cbl-associated protein (CAP) is an adaptor protein that interacts with both signaling and cytoskeletal proteins. Here, we characterize the expression, localization and potential function of CAP in striated muscle. CAP is markedly induced during myoblast differentiation, and colocalizes with vinculin during costamerogenesis. In adult mice, CAP is enriched in oxidative muscle fibers, and it is found in membrane anchorage complexes, including intercalated discs, costameres, and myotendinous junctions. Using both yeast two-hybrid and proteomic approaches, we identified the sarcomeric protein filamin C (FLNc) as a binding partner for CAP. When overexpressed, CAP recruits FLNc to cell-extracellular matrix adhesions, where the two proteins cooperatively regulate actin reorganization. Moreover, overexpression of CAP inhibits FLNc-induced cell spreading on fibronectin. In dystrophin-deficient mdx mice, the expression and membrane localization of CAP is increased, concomitant with the elevated plasma membrane content of FLNc, suggesting that CAP may compensate for the reduced membrane linkage of the myofibrils due to the loss of the dystroglycan-sarcoglycan complex in these mice. Thus, through its interaction with FLNc, CAP provides another link between the myofibril cytoskeleton and the plasma membrane of muscle cells, and it may play a dynamic role in the regulation and maintenance of muscle structural integrity.
Collapse
Affiliation(s)
- Mei Zhang
- Departments of Internal Medicine and Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jun Liu
- Departments of Internal Medicine and Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Alan Cheng
- Departments of Internal Medicine and Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Stephanie M. DeYoung
- Departments of Internal Medicine and Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Alan R. Saltiel
- Departments of Internal Medicine and Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
243
|
Allikian MJ, Bhabha G, Dospoy P, Heydemann A, Ryder P, Earley JU, Wolf MJ, Rockman HA, McNally EM. Reduced life span with heart and muscle dysfunction in Drosophila sarcoglycan mutants. Hum Mol Genet 2007; 16:2933-43. [PMID: 17855453 DOI: 10.1093/hmg/ddm254] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In humans, genetically diverse forms of muscular dystrophy are associated with a disrupted sarcoglycan complex. The sarcoglycan complex resides at the muscle plasma membrane where it associates with dystrophin. There are six known sarcoglycan proteins in mammals whereas there are only three in Drosophila melanogaster. Using imprecise P element excision, we generated three different alleles at the Drosophila delta-sarcoglycan locus. Each of these deletions encompassed progressively larger regions of the delta-sarcoglycan gene. Line 840 contained a large deletion of the delta-sarcoglycan gene, and this line displayed progressive impairment in locomotive ability, reduced heart tube function and a shortened life span. In line 840, deletion of the Drosophila delta-sarcoglycan gene produced disrupted flight muscles with shortened sarcomeres and disorganized M lines. Unlike mammalian muscle where degeneration is coupled with ongoing regeneration, no evidence for regeneration was seen in this Drosophila sarcoglycan mutant. In contrast, line 28 was characterized with a much smaller deletion that affected only a portion of the cytoplasmic region of the delta-sarcoglycan protein and left intact the transmembrane and extracellular domains. Line 28 had a very mild phenotype with near normal life span, intact cardiac function and normal locomotive activity. Together, these data demonstrate the essential nature of the transmembrane and extracellular domains of Drosophila delta-sarcoglycan for normal muscle structure and function.
Collapse
|
244
|
Qadota H, Mercer KB, Miller RK, Kaibuchi K, Benian GM. Two LIM domain proteins and UNC-96 link UNC-97/pinch to myosin thick filaments in Caenorhabditis elegans muscle. Mol Biol Cell 2007; 18:4317-26. [PMID: 17761533 PMCID: PMC2043538 DOI: 10.1091/mbc.e07-03-0278] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
By yeast two-hybrid screening, we found three novel interactors (UNC-95, LIM-8, and LIM-9) for UNC-97/PINCH in Caenorhabditis elegans. All three proteins contain LIM domains that are required for binding. Among the three interactors, LIM-8 and LIM-9 also bind to UNC-96, a component of sarcomeric M-lines. UNC-96 and LIM-8 also bind to the C-terminal portion of a myosin heavy chain (MHC), MHC A, which resides in the middle of thick filaments in the proximity of M-lines. All interactions identified by yeast two-hybrid assays were confirmed by in vitro binding assays using purified proteins. All three novel UNC-97 interactors are expressed in body wall muscle and by antibodies localize to M-lines. Either a decreased or an increased dosage of UNC-96 results in disorganization of thick filaments. Our previous studies showed that UNC-98, a C2H2 Zn finger protein, acts as a linkage between UNC-97, an integrin-associated protein, and MHC A in myosin thick filaments. In this study, we demonstrate another mechanism by which this linkage occurs: from UNC-97 through LIM-8 or LIM-9/UNC-96 to myosin.
Collapse
Affiliation(s)
- Hiroshi Qadota
- *Department of Pathology, Emory University, Atlanta, GA 30322; and
| | | | - Rachel K. Miller
- *Department of Pathology, Emory University, Atlanta, GA 30322; and
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University, Graduate School of Medicine, Aichi 466-8550, Japan
| | - Guy M. Benian
- *Department of Pathology, Emory University, Atlanta, GA 30322; and
| |
Collapse
|
245
|
Kang H, Tian L, Son YJ, Zuo Y, Procaccino D, Love F, Hayworth C, Trachtenberg J, Mikesh M, Sutton L, Ponomareva O, Mignone J, Enikolopov G, Rimer M, Thompson W. Regulation of the intermediate filament protein nestin at rodent neuromuscular junctions by innervation and activity. J Neurosci 2007; 27:5948-57. [PMID: 17537965 PMCID: PMC6672248 DOI: 10.1523/jneurosci.0621-07.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The intermediate filament nestin is localized postsynaptically at rodent neuromuscular junctions. The protein forms a filamentous network beneath and between the synaptic gutters, surrounds myofiber nuclei, and is associated with Z-discs adjacent to the junction. In situ hybridization shows that nestin mRNA is synthesized selectively by synaptic myonuclei. Although weak immunoreactivity is present in myelinating Schwann cells that wrap the preterminal axon, nestin is not detected in the terminal Schwann cells (tSCs) that cover the nerve terminal branches. However, after denervation of muscle, nestin is upregulated in tSCs and in SCs within the nerve distal to the lesion site. In contrast, immunoreactivity is strongly downregulated in the muscle fiber. Transgenic mice in which the nestin neural enhancer drives expression of a green fluorescent protein (GFP) reporter show that the regulation in SCs is transcriptional. However, the postsynaptic expression occurs through enhancer elements distinct from those responsible for regulation in SCs. Application of botulinum toxin shows that the upregulation in tSCs and the loss of immunoreactivity in muscle fibers occurs with blockade of transmitter release. Extrinsic stimulation of denervated muscle maintains the postsynaptic expression of nestin but does not affect the upregulation in SCs. Thus, a nestin-containing cytoskeleton is promoted in the postsynaptic muscle fiber by nerve-evoked muscle activity but suppressed in tSCs by transmitter release. Nestin antibodies and GFP driven by nestin promoter elements serve as excellent markers for the reactive state of SCs. Vital imaging of GFP shows that SCs grow a dynamic set of processes after denervation.
Collapse
Affiliation(s)
- Hyuno Kang
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Le Tian
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Young-Jin Son
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Yi Zuo
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Diane Procaccino
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Flora Love
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Christopher Hayworth
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Joshua Trachtenberg
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Michelle Mikesh
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Lee Sutton
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Olga Ponomareva
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - John Mignone
- Cold Spring Harbor Laboratories, Cold Spring Harbor, New York 11724
| | | | - Mendell Rimer
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Wesley Thompson
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| |
Collapse
|
246
|
Rezniczek GA, Konieczny P, Nikolic B, Reipert S, Schneller D, Abrahamsberg C, Davies KE, Winder SJ, Wiche G. Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with beta-dystroglycan. ACTA ACUST UNITED AC 2007; 176:965-77. [PMID: 17389230 PMCID: PMC2064082 DOI: 10.1083/jcb.200604179] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In skeletal muscle, the cytolinker plectin is prominently expressed at Z-disks and the sarcolemma. Alternative splicing of plectin transcripts gives rise to more than eight protein isoforms differing only in small N-terminal sequences (5-180 residues), four of which (plectins 1, 1b, 1d, and 1f) are found at substantial levels in muscle tissue. Using plectin isoform-specific antibodies and isoform expression constructs, we show the differential regulation of plectin isoforms during myotube differentiation and their localization to different compartments of muscle fibers, identifying plectins 1 and 1f as sarcolemma-associated isoforms, whereas plectin 1d localizes exclusively to Z-disks. Coimmunoprecipitation and in vitro binding assays using recombinant protein fragments revealed the direct binding of plectin to dystrophin (utrophin) and beta-dystroglycan, the key components of the dystrophin-glycoprotein complex. We propose a model in which plectin acts as a universal mediator of desmin intermediate filament anchorage at the sarcolemma and Z-disks. It also explains the plectin phenotype observed in dystrophic skeletal muscle of mdx mice and Duchenne muscular dystrophy patients.
Collapse
MESH Headings
- Animals
- Cell Compartmentation/physiology
- Cell Differentiation/physiology
- Cells, Cultured
- Cytoskeleton/metabolism
- Cytoskeleton/ultrastructure
- Desmin/metabolism
- Dystroglycans/metabolism
- Humans
- Immunohistochemistry
- Intermediate Filaments/metabolism
- Intermediate Filaments/ultrastructure
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Models, Biological
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/physiopathology
- Plectin/immunology
- Plectin/metabolism
- Protein Isoforms/immunology
- Protein Isoforms/metabolism
- Rats
- Sarcolemma/metabolism
- Sarcolemma/pathology
- Sarcolemma/ultrastructure
- Utrophin/metabolism
Collapse
Affiliation(s)
- Günther A Rezniczek
- Max F. Perutz Laboratories, Department of Molecular Cell Biology, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Lecroisey C, Ségalat L, Gieseler K. The C. elegans dense body: anchoring and signaling structure of the muscle. J Muscle Res Cell Motil 2007; 28:79-87. [PMID: 17492481 DOI: 10.1007/s10974-007-9104-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
During evolution, both the architecture and the cellular physiology of muscles have been remarkably maintained. Striated muscles of invertebrates, although less complex, strongly resemble vertebrate skeletal muscles. In particular, the basic contractile unit called the sarcomere is almost identical between vertebrates and invertebrates. In vertebrate muscles, sarcomeric actin filaments are anchored to attachment points called Z-disks, which are linked to the extra-cellular matrix (ECM) by a muscle specific focal adhesion site called the costamere. In this review, we focus on the dense body of the animal model Caenorhabditis elegans. The C. elegans dense body is a structure that performs two in one roles at the same time, that of the Z-disk and of the costamere. The dense body is anchored in the muscle membrane and provides rigidity to the muscle by mechanically linking actin filaments to the ECM. In the last few years, it has become increasingly evident that, in addition to its structural role, the dense body also performs a signaling function in muscle cells. In this paper, we review recent advances in the understanding of the C. elegans dense body composition and function.
Collapse
|
248
|
Donker DW, Maessen JG, Verheyen F, Ramaekers FC, Spätjens RLHMG, Kuijpers H, Ramakers C, Schiffers PMH, Vos MA, Crijns HJGM, Volders PGA. Impact of acute and enduring volume overload on mechanotransduction and cytoskeletal integrity of canine left ventricular myocardium. Am J Physiol Heart Circ Physiol 2007; 292:H2324-32. [PMID: 17220194 DOI: 10.1152/ajpheart.00392.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is poorly understood how mechanical stimuli influence in vivo myocardial remodeling during chronic hemodynamic overload. Combined quantitation of ventricular mechanics and expression of key proteins involved in mechanotransduction can improve fundamental understanding. Adult anesthetized dogs ( n = 20) were studied at sinus rhythm (SR) and 0, 3, 10, and 35 days of complete atrioventricular block (AVB). Serial left ventricular (LV) myofiber mechanics were measured. Repeated LV biopsies were analyzed for mRNA and/or protein expression of β1D-integrin, melusin, Akt, GSK3β, muscle LIM protein (MLP), four-and-a-half LIM protein 2 (fhl2), desmin, and calpain. Upon AVB, increased ejection strain (0.29 ± 0.01 vs. 0.13 ± 0.02, SR) and end-diastolic stress (4.8 ± 1.1 vs. 2.7 ± 0.4 kPa) dominated mechanical changes. Brain natriuretic peptide plasma levels were correspondingly high (33 ± 4 vs. 19 ± 1 pg/ml, SR). β1D-Integrin protein expression increased chronically after AVB. Melusin was temporarily overexpressed (+33 ± 9%, 3 days AVB vs. SR), followed by elevated ratios of phosphorylated (P)-Akt to Akt and P-GSK3β to GSK3β (+26 ± 6% and +30 ± 8% at 10 days AVB vs. SR). These changes corresponded to peak hypertrophic growth at 3 to 10 days. MLP increased gradually to maxima at chronic AVB (+36 ± 7%). In contrast, fhl2 (−22 ± 3%, 3 days) and desmin (−30 ± 9%, 10 days AVB) transiently declined but recovered at chronic AVB. Calpain protein expression remained unaltered. In conclusion, volume overload after AVB causes a transient compromise of cytoskeletal integrity based, at least partly, on transcriptional downregulation. Subsequent cytoskeletal reorganization coincides with the upregulation of melusin, P-Akt, P-GSK3β, and MLP, indicating a strong drive to compensated hypertrophy.
Collapse
Affiliation(s)
- Dirk W Donker
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Academic Hospital Maastricht, 6202 AZ Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Chen J, Skinner MA, Shi W, Yu QC, Wildeman AG, Chan YMM. The 16 kDa subunit of vacuolar H+-ATPase is a novel sarcoglycan-interacting protein. Biochim Biophys Acta Mol Basis Dis 2007; 1772:570-9. [PMID: 17382524 DOI: 10.1016/j.bbadis.2007.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/24/2022]
Abstract
The sarcoglycan complex in muscle consists of alpha-, beta-, gamma- and delta-sarcoglycan and is part of the larger dystrophin-glycoprotein complex (DGC), which is essential for maintaining muscle membrane integrity. Mutations in any of the four sarcoglycans cause limb-girdle muscular dystrophies (LGMD). In this report, we have identified a novel interaction between delta-sarcoglycan and the 16 kDa subunit c (16K) of vacuolar H(+)-ATPase. Co-expression studies in heterologous cell system revealed that 16K interacts specifically with delta-sarcoglycan and the highly related gamma-sarcoglycan through the transmembrane domains. In cultured C2C12 myotubes, 16K forms a complex with sarcoglycans at the plasma membrane. Loss of sarcoglycans in the sarcoglycan-deficient BIO14.6 hamster destabilizes the DGC and alters the localization of 16K at the sarcolemma. In addition, the steady state level of beta(1)-integrin is increased. Recent studies have shown that 16K also interacts directly with beta(1)-integrin and our data demonstrated that sarcoglycans, 16K and beta(1)-integrin were immunoprecipitated together in C2C12 myotubes. Since sarcoglycans have been proposed to participate in bi-directional signaling with integrins, our findings suggest that 16K might mediate the communication between sarcoglycans and integrins and play an important role in the pathogenesis of muscular dystrophy.
Collapse
Affiliation(s)
- Jiwei Chen
- Sigfried and Janet Weis Center for Research, The Geisinger Clinic, Danville, PA 17822, USA
| | | | | | | | | | | |
Collapse
|
250
|
van der Plas MC, Pilgram GSK, de Jong AWM, Bansraj MRKS, Fradkin LG, Noordermeer JN. Drosophila Dystrophin is required for integrity of the musculature. Mech Dev 2007; 124:617-30. [PMID: 17543506 DOI: 10.1016/j.mod.2007.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 03/17/2007] [Accepted: 04/16/2007] [Indexed: 11/21/2022]
Abstract
Duchenne muscular dystrophy is caused by mutations in the dystrophin gene and is characterized by progressive muscle wasting. The highly conserved dystrophin gene encodes a number of protein isoforms. The Dystrophin protein is part of a large protein assembly, the Dystrophin glycoprotein complex, which stabilizes the muscle membrane during contraction and acts as a scaffold for signaling molecules. How the absence of Dystrophin results in the onset of muscular dystrophy remains unclear. Here, we have used transgenic RNA interference to examine the roles of the Drosophila Dystrophin isoforms in muscle. We previously reported that one of the Drosophila Dystrophin orthologs, the DLP2 isoform, is not required to maintain muscle integrity, but plays a role in neuromuscular homeostasis by regulating neurotransmitter release. In this report, we show that reduction of all Dystrophin isoform expression levels in the musculature does not apparently affect myogenesis or muscle attachment, but results in progressive muscle degeneration in larvae and adult flies. We find that a recently identified Dystrophin isoform, Dp117, is expressed in the musculature and is required for muscle integrity. Muscle fibers with reduced levels of Dp117 display disorganized actin-myosin filaments and the cellular hallmarks of necrosis. Our results indicate the existence of at least two possibly separate roles of dystrophin in muscle, maintaining synaptic homeostasis and preserving the structural stability of the muscle.
Collapse
Affiliation(s)
- Mariska C van der Plas
- Laboratory of Developmental Neurobiology, Department of Molecular and Cell Biology, Leiden University Medical Center, Einthovenweg 20, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|