201
|
Wang X, Yen J, Kaiser P, Huang L. Regulation of the 26S proteasome complex during oxidative stress. Sci Signal 2010; 3:ra88. [PMID: 21139140 DOI: 10.1126/scisignal.2001232] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The proteasome plays a pivotal role in the cellular response to oxidative stress. Here, we used biochemical and mass spectrometric methods to investigate structural changes in the 26S proteasomes from yeast and mammalian cells exposed to hydrogen peroxide (H₂O₂). Oxidative stress induced the dissociation of the 20S core particle from the 19S regulatory particle of the 26S proteasome, which resulted in loss of the activities of the 26S proteasome and accumulation of ubiquitinated proteins. H₂O₂ triggered the increased association of the proteasome-interacting protein Ecm29 with the purified 19S particle. Deletion of ECM29 in yeast cells prevented the disassembly of the 26S proteasome in response to oxidative stress, and ecm29 mutants were more sensitive to H₂O₂ than were wild-type cells, suggesting that separation of the 19S and 20S particles is important for cellular recovery from oxidative stress. The increased amount of free 20S core particles was required to degrade oxidized proteins. The Ecm29-dependent dissociation of the proteasome was independent of Yap1, a transcription factor that is critical for the oxidative stress response in yeast, and thus functions as a parallel defense pathway against H₂O₂-induced stress.
Collapse
Affiliation(s)
- Xiaorong Wang
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
202
|
Johnson AE, Gould KL. Dma1 ubiquitinates the SIN scaffold, Sid4, to impede the mitotic localization of Plo1 kinase. EMBO J 2010; 30:341-54. [PMID: 21131906 DOI: 10.1038/emboj.2010.317] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/12/2010] [Indexed: 01/23/2023] Open
Abstract
Proper cell division requires strict coordination between mitotic exit and cytokinesis. In the event of a mitotic error, cytokinesis must be inhibited to ensure equal partitioning of genetic material. In the fission yeast, Schizosaccharomyces pombe, the checkpoint protein and E3 ubiquitin ligase, Dma1, delays cytokinesis by inhibiting the septation initiation network (SIN) when chromosomes are not attached to the mitotic spindle. To elucidate the mechanism by which Dma1 inhibits the SIN, we screened all SIN components as potential Dma1 substrates and found that the SIN scaffold protein, Sid4, is ubiquitinated in vivo in a Dma1-dependent manner. To investigate the role of Sid4 ubiquitination in checkpoint function, a ubiquitination deficient sid4 allele was generated and our data indicate that Sid4 ubiquitination by Dma1 is required to prevent cytokinesis during a mitotic checkpoint arrest. Furthermore, Sid4 ubiquitination delays recruitment of the Polo-like kinase and SIN activator, Plo1, to spindle pole bodies (SPBs), while at the same time prolonging residence of the SIN inhibitor, Byr4, providing a mechanistic link between Dma1 activity and cytokinesis inhibition.
Collapse
Affiliation(s)
- Alyssa E Johnson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
203
|
Interaction proteomics: characterization of protein complexes using tandem affinity purification-mass spectrometry. Biochem Soc Trans 2010; 38:883-7. [PMID: 20658971 DOI: 10.1042/bst0380883] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most cellular processes are carried out by a multitude of proteins that assemble into multimeric complexes. Thus a precise understanding of the biological pathways that control cellular events relies on the identification and on the biochemical characterization of the proteins involved in such multimeric assemblies. Advances in MS have made possible the identification of multisubunit protein complexes isolated from cell lysates with high sensitivity and accuracy, whereas the TAP (tandem affinity purification) methodology efficiently isolates native protein complexes from cells for proteomics analysis. TAP is a generic method based on the sequential utilization of two affinity tags to purify protein assemblies. During the first purification step, the Protein A moiety of the TAP tag is bound to IgG beads, and protein components associated with the TAP-tagged protein are retrieved by TEV (tobacco etch virus) protease cleavage. This enzyme is a sequence-specific protease cleaving a seven-amino-acid recognition site located between the first and second tags. In the second affinity step, the protein complex is immobilized to calmodulin-coated beads via the CBP (calmodulin-binding peptide) of the TAP tag. The CBP-calmodulin interaction is calcium-dependent and calcium-chelating agents are used in the second elution step to release the final protein complex preparation used for protein identification by MS. The TAP-MS approach has proven to efficiently permit the characterization of protein complexes from bacteria, yeast and mammalian cells, as well as from multicellular organisms such as Caenorhabditis elegans, Drosophila and mice.
Collapse
|
204
|
Wang P, Wu F, Zhang J, McMullen T, Young LC, Ingham RJ, Li L, Lai R. Serine phosphorylation of NPM-ALK, which is dependent on the auto-activation of the kinase activation loop, contributes to its oncogenic potential. Carcinogenesis 2010; 32:146-53. [DOI: 10.1093/carcin/bgq229] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
205
|
McKay SL, Johnson TL. A bird's-eye view of post-translational modifications in the spliceosome and their roles in spliceosome dynamics. MOLECULAR BIOSYSTEMS 2010; 6:2093-102. [PMID: 20672149 PMCID: PMC4065859 DOI: 10.1039/c002828b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pre-mRNA splicing, the removal of noncoding intron sequences from the pre-mRNA, is a critical reaction in eukaryotic gene expression. Pre-mRNA splicing is carried out by a remarkable macromolecular machine, the spliceosome, which undergoes dynamic rearrangements of its RNA and protein components to assemble its catalytic center. While significant progress has been made in describing the "moving parts" of this machine, the mechanisms by which spliceosomal proteins mediate the ordered rearrangements within the spliceosome remain elusive. Here we explore recent evidence from proteomics studies revealing extensive post-translational modification of splicing factors. While the functional significance of most of these modifications remains to be characterized, we describe recent studies in which the roles of specific post-translational modifications of splicing factors have been characterized. These examples illustrate the importance of post-translational modifications in spliceosome dynamics.
Collapse
Affiliation(s)
- Susannah L. McKay
- Division of Biological Sciences, Molecular Biology Section MC-0377, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| | - Tracy L. Johnson
- Division of Biological Sciences, Molecular Biology Section MC-0377, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| |
Collapse
|
206
|
Shi Y, Chan DW, Jung SY, Malovannaya A, Wang Y, Qin J. A data set of human endogenous protein ubiquitination sites. Mol Cell Proteomics 2010; 10:M110.002089. [PMID: 20972266 DOI: 10.1074/mcp.m110.002089] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysine ubiquitination is an important and versatile protein post-translational modification. Numerous cellular functions are regulated by ubiquitination, suggesting that extensive numbers of proteins, if not all, are modified with ubiquitin at certain times. However, proteome-wide profiling of ubiquitination sites in the mammalian system is technically challenging. We report the design and characterization of an engineered protein affinity reagent for the isolation of ubiquitinated proteins and the identification of ubiquitination sites with mass spectrometry. This recombinant protein consists of four tandem repeats of ubiquitin-associated domain from UBQLN1 fused to a GST tag. We used this GST-qUBA reagent to isolate polyubiquitinated proteins and identified 294 endogenous ubiquitination sites on 223 proteins from human 293T cells without proteasome inhibitors or overexpression of ubiquitin. Mitochondrial proteins constitute 14.7% of this data set, implicating ubiquitination in a wide range of mitochondrial functions.
Collapse
Affiliation(s)
- Yi Shi
- Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
207
|
Yoshida S, Imoto J, Minato T, Oouchi R, Kamada Y, Tomita M, Soga T, Yoshimoto H. A novel mechanism regulates H2S and SO2 production in Saccharomyces cerevisiae. Yeast 2010; 28:109-21. [DOI: 10.1002/yea.1823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/27/2010] [Indexed: 11/06/2022] Open
|
208
|
Franco M, Seyfried NT, Brand AH, Peng J, Mayor U. A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol Cell Proteomics 2010; 10:M110.002188. [PMID: 20861518 PMCID: PMC3098581 DOI: 10.1074/mcp.m110.002188] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system.
Collapse
Affiliation(s)
- Maribel Franco
- CIC Biogune, Bizkaia Teknologi Parkea, 48160 Derio, Spain
| | | | | | | | | |
Collapse
|
209
|
Kouranti I, McLean JR, Feoktistova A, Liang P, Johnson AE, Roberts-Galbraith RH, Gould KL. A global census of fission yeast deubiquitinating enzyme localization and interaction networks reveals distinct compartmentalization profiles and overlapping functions in endocytosis and polarity. PLoS Biol 2010; 8. [PMID: 20838651 PMCID: PMC2935449 DOI: 10.1371/journal.pbio.1000471] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/20/2010] [Indexed: 11/20/2022] Open
Abstract
Proteomic, localization, and enzymatic activity screens in fission yeast reveal how deubiquitinating enzyme localization and function are tuned. Ubiquitination and deubiquitination are reciprocal processes that tune protein stability, function, and/or localization. The removal of ubiquitin and remodeling of ubiquitin chains is catalyzed by deubiquitinating enzymes (DUBs), which are cysteine proteases or metalloproteases. Although ubiquitination has been extensively studied for decades, the complexity of cellular roles for deubiquitinating enzymes has only recently been explored, and there are still several gaps in our understanding of when, where, and how these enzymes function to modulate the fate of polypeptides. To address these questions we performed a systematic analysis of the 20 Schizosaccharomyces pombe DUBs using confocal microscopy, proteomics, and enzymatic activity assays. Our results reveal that S. pombe DUBs are present in almost all cell compartments, and the majority are part of stable protein complexes essential for their function. Interestingly, DUB partners identified by our study include the homolog of a putative tumor suppressor gene not previously linked to the ubiquitin pathway, and two conserved tryptophan-aspartate (WD) repeat proteins that regulate Ubp9, a DUB that we show participates in endocytosis, actin dynamics, and cell polarity. In order to understand how DUB activity affects these processes we constructed multiple DUB mutants and find that a quintuple deletion of ubp4 ubp5 ubp9 ubp15 sst2/amsh displays severe growth, polarity, and endocytosis defects. This mutant allowed the identification of two common substrates for five cytoplasmic DUBs. Through these studies, a common regulatory theme emerged in which DUB localization and/or activity is modulated by interacting partners. Despite apparently distinct cytoplasmic localization patterns, several DUBs cooperate in regulating endocytosis and cell polarity. These studies provide a framework for dissecting DUB signaling pathways in S. pombe and may shed light on DUB functions in metazoans. The post-translational modification of proteins by conjugation of monomers or chains of ubiquitin is a regulatory mechanism for tuning protein stability, localization and function. Given these vital functions, ubiquitination has to be highly regulated so that protein degradation and cell signaling are controlled in space and time. Although the ubiquitin-conjugation machinery has been thoroughly studied, there are still several gaps in our understanding of when, where and how ubiquitin is removed by deubiquitinating enzymes (DUBs). To address these questions we performed a systematic analysis of the 20 DUBs in the fission yeast Schizosaccharomyces pombe using confocal microscopy, proteomics and enzymatic activity assays. We first showed that S. pombe DUBs are present in almost all cell compartments and that the majority are part of stable protein complexes essential for their function. Then, we constructed strains mutant for a number of the DUBs involved in the newly identified protein complexes and showed that five cytoplasmic DUBs have redundant roles in controlling endocytosis and cell polarity. We postulate that regulatory networks identified in our study might be conserved and hence shed light on DUB function in metazoans.
Collapse
Affiliation(s)
- Ilektra Kouranti
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Janel R. McLean
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Anna Feoktistova
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Ping Liang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Alyssa E. Johnson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Rachel H. Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
210
|
Kao A, Chiu CL, Vellucci D, Yang Y, Patel VR, Guan S, Randall A, Baldi P, Rychnovsky SD, Huang L. Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes. Mol Cell Proteomics 2010; 10:M110.002212. [PMID: 20736410 DOI: 10.1074/mcp.m110.002212] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Knowledge of elaborate structures of protein complexes is fundamental for understanding their functions and regulations. Although cross-linking coupled with mass spectrometry (MS) has been presented as a feasible strategy for structural elucidation of large multisubunit protein complexes, this method has proven challenging because of technical difficulties in unambiguous identification of cross-linked peptides and determination of cross-linked sites by MS analysis. In this work, we developed a novel cross-linking strategy using a newly designed MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO). DSSO contains two symmetric collision-induced dissociation (CID)-cleavable sites that allow effective identification of DSSO-cross-linked peptides based on their distinct fragmentation patterns unique to cross-linking types (i.e. interlink, intralink, and dead end). The CID-induced separation of interlinked peptides in MS/MS permits MS(3) analysis of single peptide chain fragment ions with defined modifications (due to DSSO remnants) for easy interpretation and unambiguous identification using existing database searching tools. Integration of data analyses from three generated data sets (MS, MS/MS, and MS(3)) allows high confidence identification of DSSO cross-linked peptides. The efficacy of the newly developed DSSO-based cross-linking strategy was demonstrated using model peptides and proteins. In addition, this method was successfully used for structural characterization of the yeast 20 S proteasome complex. In total, 13 non-redundant interlinked peptides of the 20 S proteasome were identified, representing the first application of an MS-cleavable cross-linker for the characterization of a multisubunit protein complex. Given its effectiveness and simplicity, this cross-linking strategy can find a broad range of applications in elucidating the structural topology of proteins and protein complexes.
Collapse
Affiliation(s)
- Athit Kao
- Department of Physiology and Biophysics and Developmental and Cell Biology, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Toews J, Rogalski JC, Kast J. Accessibility governs the relative reactivity of basic residues in formaldehyde-induced protein modifications. Anal Chim Acta 2010; 676:60-7. [DOI: 10.1016/j.aca.2010.07.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 07/13/2010] [Accepted: 07/27/2010] [Indexed: 11/29/2022]
|
212
|
A bimolecular affinity purification method under denaturing conditions for rapid isolation of a ubiquitinated protein for mass spectrometry analysis. Nat Protoc 2010; 5:1447-59. [DOI: 10.1038/nprot.2010.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
213
|
Kaake RM, Milenković T, Przulj N, Kaiser P, Huang L. Characterization of cell cycle specific protein interaction networks of the yeast 26S proteasome complex by the QTAX strategy. J Proteome Res 2010; 9:2016-29. [PMID: 20170199 DOI: 10.1021/pr1000175] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ubiquitin-proteasome dependent protein degradation plays a fundamental role in the regulation of the eukaryotic cell cycle. Cell cycle transitions between different phases are tightly regulated to prevent uncontrolled cell proliferation, which is characteristic of cancer cells. To understand cell cycle phase specific regulation of the 26S proteasome and reveal the molecular mechanisms underlying the ubiquitin-proteasome degradation pathway during cell cycle progression, we have carried out comprehensive characterization of cell cycle phase specific proteasome interacting proteins (PIPs) by QTAX analysis of synchronized yeast cells. Our efforts have generated specific proteasome interaction networks for the G1, S, and M phases of the cell cycle and identified a total of 677 PIPs, 266 of which were not previously identified from unsynchronized cells. On the basis of the dynamic changes of their SILAC ratios across the three cell cycle phases, we have employed a profile vector-based clustering approach and identified 20 functionally significant groups of PIPs, 3 of which are enriched with cell cycle related functions. This work presents the first step toward understanding how dynamic proteasome interactions are involved in various cellular pathways during the cell cycle.
Collapse
Affiliation(s)
- Robyn M Kaake
- Departments of Physiology & Biophysics and Developmental & Cell Biology, University of California, Irvine, California 92697-4560, USA
| | | | | | | | | |
Collapse
|
214
|
Aghajan M, Jonai N, Flick K, Fu F, Luo M, Cai X, Ouni I, Pierce N, Tang X, Lomenick B, Damoiseaux R, Hao R, Del Moral PM, Verma R, Li Y, Li C, Houk KN, Jung ME, Zheng N, Huang L, Deshaies RJ, Kaiser P, Huang J. Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nat Biotechnol 2010; 28:738-42. [PMID: 20581845 PMCID: PMC2902569 DOI: 10.1038/nbt.1645] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 05/09/2010] [Indexed: 01/09/2023]
Abstract
The target of rapamycin (TOR) plays a central role in eukaryotic cell growth control1. With prevalent hyper-activation of the mTOR pathway in human cancers2, novel strategies to enhance TOR pathway inhibition are highly desirable. We used a yeast-based platform to identify small-molecule enhancers of rapamycin (SMERs) and discovered an inhibitor of the SCFMet30 ubiquitin ligase (SMER3). The large SCF (Skp1-Cullin-F-box) family of ubiquitin ligases performs important functions in diverse cellular processes including transcription, cell-cycle control, and immune response3. Accordingly, there would be great value in developing SCF ligase inhibitors that act by a defined mechanism to specifically inactivate ligase activity. We show here that SMER3 selectively inhibits SCFMet30 in vivo and in vitro, but not the closely related SCFCdc4. Our results demonstrate that there is no fundamental barrier to obtaining specific inhibitors to modulate function of individual SCF complexes, and suggest new strategies for combination therapy with rapamycin.
Collapse
Affiliation(s)
- Mariam Aghajan
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Abstract
Cyclin-dependent kinase-associated protein 1 (Cks1) is involved in the control of the transcription of a subset of genes in addition to its role in controlling the cell cycle in the budding yeast Saccharomyces cerevisiae. By directly ligating Cks1 onto a GAL1 promoter-driven reporter, we demonstrated that Cks1 acts as a transcription activator. Using this method, we dissected the downstream events from Cks1 recruitment at the promoter. We showed that subsequent to promoter binding, Cdc28 binding is required to modulate the level of gene expression. The ubiquitin-binding domain of Cks1 is essential for implementing downstream transcription events, which appears to recruit the proteasome via ubiquitylated proteasome subunits. We propose that the selective ability of Cks1 to bind ubiquitin allows this small molecule the flexibility to bind large protein complexes with specificity and that this may represent a novel mechanism of regulating transcriptional activation.
Collapse
|
216
|
Kaake RM, Wang X, Huang L. Profiling of protein interaction networks of protein complexes using affinity purification and quantitative mass spectrometry. Mol Cell Proteomics 2010; 9:1650-65. [PMID: 20445003 DOI: 10.1074/mcp.r110.000265] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions are important for nearly all biological processes, and it is known that aberrant protein-protein interactions can lead to human disease and cancer. Recent evidence has suggested that protein interaction interfaces describe a new class of attractive targets for drug development. Full characterization of protein interaction networks of protein complexes and their dynamics in response to various cellular cues will provide essential information for us to understand how protein complexes work together in cells to maintain cell viability and normal homeostasis. Affinity purification coupled with quantitative mass spectrometry has become the primary method for studying in vivo protein interactions of protein complexes and whole organism proteomes. Recent developments in sample preparation and affinity purification strategies allow the capture, identification, and quantification of protein interactions of protein complexes that are stable, dynamic, transient, and/or weak. Current efforts have mainly focused on generating reliable, reproducible, and high confidence protein interaction data sets for functional characterization. The availability of increasing amounts of information on protein interactions in eukaryotic systems and new bioinformatics tools allow functional analysis of quantitative protein interaction data to unravel the biological significance of the identified protein interactions. Existing studies in this area have laid a solid foundation toward generating a complete map of in vivo protein interaction networks of protein complexes in cells or tissues.
Collapse
Affiliation(s)
- Robyn M Kaake
- Department of Physiology and Biophysics, University of California, Irvine, California 92697-4560, USA
| | | | | |
Collapse
|
217
|
Golebiowski F, Tatham MH, Nakamura A, Hay RT. High-stringency tandem affinity purification of proteins conjugated to ubiquitin-like moieties. Nat Protoc 2010; 5:873-82. [PMID: 20431533 DOI: 10.1038/nprot.2010.40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The post-translational modification of proteins with ubiquitin and ubiquitin-like proteins (Ubl) is vital to many cellular functions, and thus the identification of Ubl targets is key to understanding their function. In most cases, only a small proportion of the cellular pool of proteins is found conjugated to a particular Ubl, making identification of Ubl targets technically challenging. For the purposes of proteomic analyses, we have developed a protocol for the large-scale purification of Ubl-linked proteins that minimizes sample contamination with noncovalent interactors and prevents the cleavage of Ubl-substrate bonds catalyzed by Ubl-specific proteases. This is achieved by introducing a denaturing lysis step (in the presence of sodium dodecyl sulfate and alkylating agents that irreversibly inhibit Ubl proteases) before TAP (tandem affinity purification) that allows for efficient purification of putative Ubl-specific substrates in a form suitable for proteomic analysis. The timescale from cell lysis to purified protein sample is 5-6 d.
Collapse
Affiliation(s)
- Filip Golebiowski
- Welcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| | | | | | | |
Collapse
|
218
|
Tang X, Bruce JE. A new cross-linking strategy: protein interaction reporter (PIR) technology for protein-protein interaction studies. MOLECULAR BIOSYSTEMS 2010; 6:939-47. [PMID: 20485738 DOI: 10.1039/b920876c] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemical cross-linking coupled with mass spectrometry, an emerging approach for protein topology and interaction studies, has gained increasing interest in the past few years. A number of recent proof-of-principle studies on model proteins or protein complex systems with improved cross-linking strategies have shown great promise. However, the heterogeneity and low abundance of the cross-linked products as well as data complexity continue to pose enormous challenges for large-scale application of cross-linking approaches. A novel mass spectrometry-cleavable cross-linking strategy embodied in Protein Interaction Reporter (PIR) technology, first reported in 2005, was recently successfully applied for in vivo identification of protein-protein interactions as well as actual regions of the interacting proteins that share close proximity while present within cells. PIR technology holds great promise for achieving the ultimate goal of mapping protein interaction network at systems level using chemical cross-linking. In this review, we will briefly describe the recent progress in the field of chemical cross-linking development with an emphasis on the PIR concepts, its applications and future directions.
Collapse
Affiliation(s)
- Xiaoting Tang
- Novo Nordisk Inflammation Research Center, Seattle, Washington, USA
| | | |
Collapse
|
219
|
Liu F, Walters KJ. Multitasking with ubiquitin through multivalent interactions. Trends Biochem Sci 2010; 35:352-60. [PMID: 20181483 DOI: 10.1016/j.tibs.2010.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 01/08/2010] [Accepted: 01/14/2010] [Indexed: 01/04/2023]
Abstract
Ubiquitylation - the post-translational modification of proteins with ubiquitin - serves powerful regulatory roles in eukaryotes. It can label proteins for destruction or activate gene transcription. Despite its versatility, ubiquitin is used to signal for cellular events with exquisite specificity. To achieve both versatility and specificity, ubiquitin signaling pathways use multivalency, namely the coordinated use of multiple interaction surfaces. Multivalent interactions regulate each stage of ubiquitin signaling pathways, and appear within the ubiquitin signal, the ubiquitylated substrate, ubiquitin processing enzymes and ubiquitin recognition proteins.
Collapse
Affiliation(s)
- Fen Liu
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
220
|
Abstract
TAP (tandem affinity purification) allows rapid and clean isolation of a tagged protein along with its interacting partners from cell lysates. Initially developed in yeast, the TAP method has subsequently been adapted to other cells and organisms. In combination with MS analysis, this method has become an indispensable tool for systematic identification of target-associated protein complexes. The key feature of TAP is the use of a dual-affinity tag, which is fused to the protein of interest. The original TAP tag consisted of two IgG-binding units of Protein A of Staphylococcus aureus and the calmodulin-binding peptide. As the technique has been widely exploited, a number of alternative TAP tags based on other affinity handles have been developed. The present review gives an overview of the various tag combinations for TAP with a highlight on those alternatives that result in improved yields or unique features. The information provided should assist in the selection and development of TAP tags for specific applications.
Collapse
|
221
|
Abstract
In order to balance the cellular requirements for copper with its toxic properties, an elegant set of mechanisms has evolved to regulate and buffer intracellular copper. The X-linked inhibitor of apoptosis (XIAP) protein was recently identified as a copper-binding protein and regulator of copper homeostasis, although the mechanism by which XIAP binds copper in the cytosol is unclear. Here we describe the identification of the copper chaperone for superoxide dismutase (CCS) as a mediator of copper delivery to XIAP in cells. We also find that CCS is a target of the E3 ubiquitin ligase activity of XIAP, although interestingly, ubiquitination of CCS by XIAP was found to lead to enhancement of its chaperone activity toward its physiologic target, superoxide dismutase 1, rather than proteasomal degradation. Collectively, our results reveal novel links among apoptosis, copper metabolism, and redox regulation through the XIAP-CCS complex.
Collapse
|
222
|
Nittis T, Guittat L, LeDuc RD, Dao B, Duxin JP, Rohrs H, Townsend RR, Stewart SA. Revealing novel telomere proteins using in vivo cross-linking, tandem affinity purification, and label-free quantitative LC-FTICR-MS. Mol Cell Proteomics 2010; 9:1144-56. [PMID: 20097687 DOI: 10.1074/mcp.m900490-mcp200] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Telomeres are DNA-protein structures that protect chromosome ends from the actions of the DNA repair machinery. When telomeric integrity is compromised, genomic instability ensues. Considerable effort has focused on identification of telomere-binding proteins and elucidation of their functions. To date, protein identification has relied on classical immunoprecipitation and mass spectrometric approaches, primarily under conditions that favor isolation of proteins with strong or long lived interactions that are present at sufficient quantities to visualize by SDS-PAGE. To facilitate identification of low abundance and transiently associated telomere-binding proteins, we developed a novel approach that combines in vivo protein-protein cross-linking, tandem affinity purification, and stringent sequential endoprotease digestion. Peptides were identified by label-free comparative nano-LC-FTICR-MS. Here, we expressed an epitope-tagged telomere-binding protein and utilized a modified chromatin immunoprecipitation approach to cross-link associated proteins. The resulting immunoprecipitant contained telomeric DNA, establishing that this approach captures bona fide telomere binding complexes. To identify proteins present in the immunocaptured complexes, samples were reduced, alkylated, and digested with sequential endoprotease treatment. The resulting peptides were purified using a microscale porous graphite stationary phase and analyzed using nano-LC-FTICR-MS. Proteins enriched in cells expressing HA-FLAG-TIN2 were identified by label-free quantitative analysis of the FTICR mass spectra from different samples and ion trap tandem mass spectrometry followed by database searching. We identified all of the proteins that constitute the telomeric shelterin complex, thus validating the robustness of this approach. We also identified 62 novel telomere-binding proteins. These results demonstrate that DNA-bound protein complexes, including those present at low molar ratios, can be identified by this approach. The success of this approach will allow us to create a more complete understanding of telomere maintenance and have broad applicability.
Collapse
Affiliation(s)
- Thalia Nittis
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Investigation of protein-protein interactions in living cells by chemical crosslinking and mass spectrometry. Anal Bioanal Chem 2010; 397:3433-40. [PMID: 20076950 DOI: 10.1007/s00216-009-3405-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/12/2009] [Accepted: 12/14/2009] [Indexed: 01/26/2023]
Abstract
The identification of protein-protein interactions within their physiological environment is the key to understanding biological processes at the molecular level. However, the artificial nature of in vitro experiments, with their lack of other cellular components, may obstruct observations of specific cellular processes. In vivo analyses can provide information on the processes within a cell that might not be observed in vitro. Chemical crosslinking combined with mass spectrometric analysis of the covalently connected binding partners allows us to identify interacting proteins and to map their interface regions directly in the cell. In this paper, different in vivo crosslinking strategies for deriving information on protein-protein interactions in their physiological environment are described.
Collapse
|
224
|
Terentiev AA, Moldogazieva NT, Shaitan KV. Dynamic proteomics in modeling of the living cell. Protein-protein interactions. BIOCHEMISTRY (MOSCOW) 2010; 74:1586-607. [DOI: 10.1134/s0006297909130112] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
225
|
Puts CF, Lenoir G, Krijgsveld J, Williamson P, Holthuis JCM. A P4-ATPase Protein Interaction Network Reveals a Link between Aminophospholipid Transport and Phosphoinositide Metabolism. J Proteome Res 2009; 9:833-42. [DOI: 10.1021/pr900743b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Catheleyne F. Puts
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, and Biomolecular Mass Spectometry and Proteomics Group, Bijvoet Center and Netherlands Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands and Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Guillaume Lenoir
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, and Biomolecular Mass Spectometry and Proteomics Group, Bijvoet Center and Netherlands Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands and Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Jeroen Krijgsveld
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, and Biomolecular Mass Spectometry and Proteomics Group, Bijvoet Center and Netherlands Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands and Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Patrick Williamson
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, and Biomolecular Mass Spectometry and Proteomics Group, Bijvoet Center and Netherlands Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands and Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Joost C. M. Holthuis
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, and Biomolecular Mass Spectometry and Proteomics Group, Bijvoet Center and Netherlands Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands and Department of Biology, Amherst College, Amherst, Massachusetts 01002
| |
Collapse
|
226
|
Thompson LM, Aiken CT, Kaltenbach LS, Agrawal N, Illes K, Khoshnan A, Martinez-Vincente M, Arrasate M, O'Rourke JG, Khashwji H, Lukacsovich T, Zhu YZ, Lau AL, Massey A, Hayden MR, Zeitlin SO, Finkbeiner S, Green KN, LaFerla FM, Bates G, Huang L, Patterson PH, Lo DC, Cuervo AM, Marsh JL, Steffan JS. IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. ACTA ACUST UNITED AC 2009; 187:1083-99. [PMID: 20026656 PMCID: PMC2806289 DOI: 10.1083/jcb.200909067] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expansion of the polyglutamine repeat within the protein Huntingtin (Htt) causes Huntington's disease, a neurodegenerative disease associated with aging and the accumulation of mutant Htt in diseased neurons. Understanding the mechanisms that influence Htt cellular degradation may target treatments designed to activate mutant Htt clearance pathways. We find that Htt is phosphorylated by the inflammatory kinase IKK, enhancing its normal clearance by the proteasome and lysosome. Phosphorylation of Htt regulates additional post-translational modifications, including Htt ubiquitination, SUMOylation, and acetylation, and increases Htt nuclear localization, cleavage, and clearance mediated by lysosomal-associated membrane protein 2A and Hsc70. We propose that IKK activates mutant Htt clearance until an age-related loss of proteasome/lysosome function promotes accumulation of toxic post-translationally modified mutant Htt. Thus, IKK activation may modulate mutant Htt neurotoxicity depending on the cell's ability to degrade the modified species.
Collapse
|
227
|
Smart SK, Mackintosh SG, Edmondson RD, Taverna SD, Tackett AJ. Mapping the local protein interactome of the NuA3 histone acetyltransferase. Protein Sci 2009; 18:1987-97. [PMID: 19621382 DOI: 10.1002/pro.212] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein-protein interactions modulate cellular functions ranging from the activity of enzymes to signal transduction cascades. A technology termed transient isotopic differentiation of interactions as random or targeted (transient I-DIRT) is described for the identification of stable and transient protein-protein interactions in vivo. The procedure combines mild in vivo chemical cross-linking and non-stringent affinity purification to isolate low abundance chromatin-associated protein complexes. Using isotopic labeling and mass spectrometric readout, purified proteins are categorized with respect to the protein 'bait' as stable, transient, or contaminant. Here we characterize the local interactome of the chromatin-associated NuA3 histone lysine-acetyltransferase protein complex. We describe transient associations with the yFACT nucleosome assembly complex, RSC chromatin remodeling complex and a nucleosome assembly protein. These novel, physical associations with yFACT, RSC, and Nap1 provide insight into the mechanism of NuA3-associated transcription and chromatin regulation.
Collapse
Affiliation(s)
- Sherri K Smart
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
228
|
Shi T, Weerasekera R, Yan C, Reginold W, Ball H, Kislinger T, Schmitt-Ulms G. Method for the Affinity Purification of Covalently Linked Peptides Following Cyanogen Bromide Cleavage of Proteins. Anal Chem 2009; 81:9885-95. [DOI: 10.1021/ac901373q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tujin Shi
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, Texas, and Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Rasanjala Weerasekera
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, Texas, and Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Chen Yan
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, Texas, and Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - William Reginold
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, Texas, and Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Haydn Ball
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, Texas, and Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, Texas, and Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Gerold Schmitt-Ulms
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, Texas, and Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario, Canada
| |
Collapse
|
229
|
Wang P, Wu F, Ma Y, Li L, Lai R, Young LC. Functional characterization of the kinase activation loop in nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) using tandem affinity purification and liquid chromatography-mass spectrometry. J Biol Chem 2009; 285:95-103. [PMID: 19887368 DOI: 10.1074/jbc.m109.059758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that the kinase activation loop (KAL) of the oncogenic fusion protein NPM-ALK regulates its overall tyrosine phosphorylation status and tumorigenicity. Using tandem affinity purification-mass spectrometry, we assessed how the KAL of NPM-ALK regulates the phosphorylation status of its individual tyrosines. Using the lysates of GP293 cells transfected with NPM-ALK, our highly reproducible results showed evidence of phosphorylation in all 3 tyrosines in KAL and 8 tyrosines outside KAL. We created 7 KAL mutants, each of which carried a Tyr-to-Phe mutation of >or=1 of the 3 tyrosines in KAL. A complete loss of the 8 phosphotyrosines outside KAL was found in 3 KAL mutants, and their oncogenicity (assessed by cell viability, colony formation, and the ability to phosphorylate effector proteins) was abrogated. A partial loss of the 8 phosphotyrosines was found in 4 KAL mutants, but their oncogenicity did not show simple correlation with the number of residual phosphotyrosines. Tyr-to-Phe mutations of each of the 8 phosphotyrosines outside KAL did not result in a significant decrease in the oncogenicity. In conclusion, we have provided details of how the KAL in NPM-ALK regulates its tyrosine phosphorylation pattern. Our results challenge some of the current concepts regarding the relationship between the tyrosine phosphorylation and oncogenicity of NPM-ALK.
Collapse
Affiliation(s)
- Peng Wang
- Department of Laboratory Medicine and Pathology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta T6G 2Z2, Canada
| | | | | | | | | | | |
Collapse
|
230
|
Zhao X, Jäntti J. Functional characterization of the trans-membrane domain interactions of the Sec61 protein translocation complex beta-subunit. BMC Cell Biol 2009; 10:76. [PMID: 19857245 PMCID: PMC2770995 DOI: 10.1186/1471-2121-10-76] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/26/2009] [Indexed: 01/19/2023] Open
Abstract
Background In eukaryotic cells co- and post-translational protein translocation is mediated by the trimeric Sec61 complex. Currently, the role of the Sec61 complex β-subunit in protein translocation is poorly understood. We have shown previously that in Saccharomyces cerevisiae the trans-membrane domain alone is sufficient for the function of the β-subunit Sbh1p in co-translational protein translocation. In addition, Sbh1p co-purifies not only with the protein translocation channel subunits Sec61p and Sss1p, but also with the reticulon family protein Rtn1p. Results We used random mutagenesis to generate novel Sbh1p mutants in order to functionally map the Sbh1p trans-membrane domain. These mutants were analyzed for their interactions with Sec61p and how they support co-translational protein translocation. The distribution of mutations identifies one side of the Sbh1p trans-membrane domain α-helix that is involved in interactions with Sec61p and that is important for Sbh1p function in protein translocation. At the same time, these mutations do not affect Sbh1p interaction with Rtn1p. Furthermore we show that Sbh1p is found in protein complexes containing not only Rtn1p, but also the two other reticulon-like proteins Rtn2p and Yop1p. Conclusion Our results identify functionally important amino acids in the Sbh1p trans-membrane domain. In addition, our results provide additional support for the involvement of Sec61β in processes unlinked to protein translocation.
Collapse
Affiliation(s)
- Xueqiang Zhao
- Research Program in Cell and Molecular Biology, Institute of Biotechnology, P,O, Box 56, 00014 University of Helsinki, Finland.
| | | |
Collapse
|
231
|
Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep 2009; 10:1250-8. [PMID: 19798103 DOI: 10.1038/embor.2009.192] [Citation(s) in RCA: 374] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 07/09/2009] [Accepted: 07/20/2009] [Indexed: 11/08/2022] Open
Abstract
Post-translational modification with ubiquitin is one of the most important mechanisms in the regulation of protein stability and function. However, the high reversibility of this modification is the main obstacle for the isolation and characterization of ubiquitylated proteins. To overcome this problem, we have developed tandem-repeated ubiquitin-binding entities (TUBEs) based on ubiquitin-associated (UBA) domains. TUBEs recognize tetra-ubiquitin with a markedly higher affinity than single UBA domains, allowing poly-ubiquitylated proteins to be efficiently purified from cell extracts in native conditions. More significant is the fact that TUBEs protect poly-ubiquitin-conjugated proteins, such as p53 and IkappaBalpha, both from proteasomal degradation and de-ubiquitylating activity present in cell extracts, as well as from existing proteasome and cysteine protease inhibitors. Therefore, these new 'molecular traps' should become valuable tools for purifying endogenous poly-ubiquitylated proteins, thus contributing to a better characterization of many essential functions regulated by these post-translational modifications.
Collapse
|
232
|
Yan P, Wang T, Newton GJ, Knyushko TV, Xiong Y, Bigelow DJ, Squier TC, Mayer MU. A targeted releasable affinity probe (TRAP) for in vivo photocrosslinking. Chembiochem 2009; 10:1507-18. [PMID: 19441027 DOI: 10.1002/cbic.200900029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein crosslinking, especially coupled to mass-spectrometric identification, is increasingly used to determine protein binding partners and protein-protein interfaces for isolated protein complexes. The modification of crosslinkers to permit their targeted use in living cells is of considerable importance for studying protein-interaction networks, which are commonly modulated through weak interactions that are formed transiently to permit rapid cellular response to environmental changes. We have therefore synthesized a targeted and releasable affinity probe (TRAP) consisting of a biarsenical fluorescein linked to benzophenone that binds to a tetracysteine sequence in a protein engineered for specific labeling. Here, the utility of TRAP for capturing protein binding partners upon photoactivation of the benzophenone moiety has been demonstrated in living bacteria and mammalian cells. In addition, ligand exchange of the arsenic-sulfur bonds between TRAP and the tetracysteine sequence to added dithiols results in fluorophore transfer to the crosslinked binding partner. In isolated protein complexes, this release from the original binding site permits the identification of the proximal binding interface through mass spectrometric fragmentation and computational sequence identification.
Collapse
Affiliation(s)
- Ping Yan
- Novozymes, Inc., 1445 Drew Ave, Davis, CA 95618, USA
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Zhao LJ, Kuppuswamy M, Vijayalingam S, Chinnadurai G. Interaction of ZEB and histone deacetylase with the PLDLS-binding cleft region of monomeric C-terminal binding protein 2. BMC Mol Biol 2009; 10:89. [PMID: 19754958 PMCID: PMC2749851 DOI: 10.1186/1471-2199-10-89] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 09/15/2009] [Indexed: 11/25/2022] Open
Abstract
Background Proteins of the C-terminal binding protein (CtBP) family, CtBP1 and CtBP2 are closely related transcriptional regulators that are coded by two different gene loci in the vertebrate genomes. They perform redundant and unique functions during animal development. CtBP proteins mediate their transcriptional function through interaction with various DNA-binding repressors that contain PLDLS-like motifs and chromatin modifying enzymes, such as class I histone deacetylases (HDAC) that do not contain such motifs. The N-terminal region of CtBP1/2 forms a hydrophobic cleft and is involved in interaction with both PLDLS-containing factors and non-PLDLS factors. CtBP proteins function as dimers to mediate transcriptional repression and dimerization is modulated by specific binding to NAD/NADH. Results In this study, we have investigated the role of dimerization of CtBP2 in recruitment of PLDLS-motif cofactors and non-PLDLS cofactors. Our results indicate that mutations in CtBP2 that interfere with dimerization abolish CtBP2 interaction with most cellular factors, except the PLDLS-motif factor zinc-finger E-box binding homeobox (ZEB) and the non-PLDLS factor HDAC2. Unlike most PLDLS-containing CtBP-binding proteins, ZEB contains three PLDLS-like motifs and all three contribute to the interaction with the CtBP2 monomer. Despite the ability to interact with ZEB and HDAC, the CtBP2 monomer fails to mediate ZEB-dependent transcriptional repression. The lack of repression activity of the CtBP2 monomer is correlated with the competition between ZEB and HDAC for interaction with the CtBP2 monomer. Conclusion These results suggest a competition between the canonical PLDLS-motif factors such as E1A and non-PLDLS factor HDAC for interaction with CtBP. They also indicate that the affinity for the CtBP monomer may be determined by the number as well as amino acid sequence compositions of the PLDLS-like motifs. Our results are consistent with a model that the CtBP2 dimer may interact with a PLDLS-containing repressor through one monomer and recruit HDAC and other chromatin modifying enzymes through the second monomer in the CtBP2 dimer.
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, St, Louis, Missouri 63104, USA.
| | | | | | | |
Collapse
|
234
|
Aiken CT, Steffan JS, Guerrero CM, Khashwji H, Lukacsovich T, Simmons D, Purcell JM, Menhaji K, Zhu YZ, Green K, Laferla F, Huang L, Thompson LM, Marsh JL. Phosphorylation of threonine 3: implications for Huntingtin aggregation and neurotoxicity. J Biol Chem 2009; 284:29427-36. [PMID: 19710014 DOI: 10.1074/jbc.m109.013193] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntingtin (Htt) is a widely expressed protein that causes tissue-specific degeneration when mutated to contain an expanded polyglutamine (poly(Q)) domain. Although Htt is large, 350 kDa, the appearance of amino-terminal fragments of Htt in extracts of postmortem brain tissue from patients with Huntington disease (HD), and the fact that an amino-terminal fragment, Htt exon 1 protein (Httex1p), is sufficient to cause disease in models of HD, points to the importance of the amino-terminal region of Htt in the disease process. The first exon of Htt encodes 17 amino acids followed by a poly(Q) repeat of variable length and culminating with a proline-rich domain of 50 amino acids. Because modifications to this fragment have the potential to directly affect pathogenesis in several ways, we have surveyed this fragment for potential post-translational modifications that might affect Htt behavior and detected several modifications of Httex1p. Here we report that the most prevalent modifications of Httex1p are NH(2)-terminal acetylation and phosphorylation of threonine 3 (pThr-3). We demonstrate that pThr-3 occurs on full-length Htt in vivo, and that this modification affects the aggregation and pathogenic properties of Htt. Thus, therapeutic strategies that modulate these events could in turn affect Htt pathogenesis.
Collapse
Affiliation(s)
- Charity T Aiken
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
van Heusden GPH. 14-3-3 Proteins: insights from genome-wide studies in yeast. Genomics 2009; 94:287-93. [PMID: 19631734 DOI: 10.1016/j.ygeno.2009.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/10/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
14-3-3 proteins form a family of highly conserved, acidic, dimeric proteins. These proteins have been identified in all eukaryotic species investigated, often in multiple isoforms, up to 13 in the plant Arabidopsis thaliana. Hundreds of proteins, from diverse eukaryotic organisms, implicated in numerous cellular processes, have been identified as binding partners of 14-3-3 proteins. Therefore, the major activity of 14-3-3 proteins seems to be its ability to bind other intracellular proteins. Binding to 14-3-3 proteins may result in a conformational change of the protein required for its full activity or for inhibition of its activity, in interaction between two binding partners or in a different subcellular localization. Most of these interactions take place after phosphorylation of the binding partners. These observations suggest a major role of 14-3-3 proteins in regulatory networks. Here, the information on 14-3-3 proteins gathered from several genome- and proteome-wide studies in the yeast Saccharomyces cerevisiae is reviewed. In particular, the protein kinases responsible for the phosphorylation of 14-3-3 binding partners, phosphorylation of 14-3-3 proteins themselves, the transcriptional regulation of the 14-3-3 genes, and the role of 14-3-3 proteins in transcription are addressed. These large scale studies may help understand the function of 14-3-3 proteins at a cellular level rather than at the level of a single process.
Collapse
Affiliation(s)
- G Paul H van Heusden
- Section Molecular and Developmental Genetics, Institute of Biology, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands.
| |
Collapse
|
236
|
Chowdhury SM, Shi L, Yoon H, Ansong C, Rommereim LM, Norbeck AD, Auberry KJ, Moore RJ, Adkins JN, Heffron F, Smith RD. A method for investigating protein-protein interactions related to salmonella typhimurium pathogenesis. J Proteome Res 2009; 8:1504-14. [PMID: 19206470 DOI: 10.1021/pr800865d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We successfully modified an existing method to investigate protein-protein interactions in the pathogenic bacterium Salmonella enterica serovar Typhimurium (Salmonella Typhimurium). This method includes (i) addition of a histidine-biotin-histidine tag to the bait proteins via recombinant DNA techniques, (ii) in vivo cross-linking with formaldehyde, (iii) tandem affinity purification of bait proteins under fully denaturing conditions, and (iv) identification of the proteins cross-linked to the bait proteins by liquid-chromatography in conjunction with tandem mass-spectrometry. In vivo cross-linking stabilized protein interactions and permitted the subsequent two-step purification step conducted under denaturing conditions. The two-step purification greatly reduced nonspecific binding of noncross-linked proteins to bait proteins. Two different negative controls were employed to eliminate the possibility of identifying background and nonspecific proteins as interacting partners, especially those caused by nonspecific binding to the stationary phase used for protein purification. In an initial demonstration of this approach, we tagged three Salmonella proteinsHimD, PduB and PhoPwith known binding partners that ranged from stable (e.g., HimD) to transient (i.e., PhoP). Distinct sets of interacting proteins were identified for each bait protein, including the known binding partners such as HimA for HimD, as well as unexpected binding partners. Our results suggest that novel protein-protein interactions identified may be critical to pathogenesis by Salmonella.
Collapse
Affiliation(s)
- Saiful M Chowdhury
- Pacific Northwest National Laboratory, Richland, Washington 99352, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Saracco SA, Hansson M, Scalf M, Walker JM, Smith LM, Vierstra RD. Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:344-58. [PMID: 19292762 PMCID: PMC3639010 DOI: 10.1111/j.1365-313x.2009.03862.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein ubiquitylation is a central regulatory mechanism that controls numerous processes in plants, including hormone signaling, developmental progression, responses to biotic and abiotic challenges, protein trafficking and chromatin structure. Despite data implicating thousands of plant proteins as targets, so far only a few have been conclusively shown to be ubiquitylated in planta. Here we describe a method to isolate ubiquitin-protein conjugates from Arabidopsis that exploits a stable transgenic line expressing a synthetic poly-UBQ gene encoding ubiquitin (Ub) monomers N-terminally tagged with hexahistidine. Following sequential enrichment by Ub-affinity and nickel chelate-affinity chromatography, the ubiquitylated proteins were trypsinized, separated by two-dimensional liquid chromatography, and analyzed by mass spectrometry. Our list of 54 non-redundant targets, expressed by as many as 90 possible isoforms, included those predicted by genetic studies to be ubiquitylated in plants (EIN3 and JAZ6) or shown to be ubiquitylated in other eukaryotes (ribosomal subunits, elongation factor 1alpha, histone H1, HSP70 and CDC48), as well as candidates whose control by the Ub/26S proteasome system is not yet appreciated. Ub attachment site(s) were resolved for a subset of these proteins, but surprisingly little sequence consensus was detected, implying that specific residues surrounding the modified lysine are not important determinants for ubiquitylation. We also identified six of the seven available lysine residues on Ub itself as Ub attachment sites, together with evidence for a branched mixed-linkage chain, suggesting that the topologies of Ub chains can be highly complex in plants. Taken together, our method provides a widely applicable strategy to define ubiquitylation in any tissue of intact plants exposed to a wide range of conditions.
Collapse
Affiliation(s)
- Scott A. Saracco
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706-1574, USA
| | - Maria Hansson
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706-1574, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706-1574, USA
| | - Joseph M. Walker
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706-1574, USA
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706-1574, USA
| | - Richard D. Vierstra
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706-1574, USA
| |
Collapse
|
238
|
Caldarola S, De Stefano MC, Amaldi F, Loreni F. Synthesis and function of ribosomal proteins--fading models and new perspectives. FEBS J 2009; 276:3199-210. [PMID: 19438715 DOI: 10.1111/j.1742-4658.2009.07036.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The synthesis of ribosomal proteins (RPs) has long been known to be a process strongly linked to the growth status of the cell. In vertebrates, this coordination is dependent on RP mRNA translational efficiency, which changes according to physiological circumstances. Despite many years of investigation, the trans-acting factors and the signaling pathways involved in this regulation are still elusive. At the same time, however, new techniques and classic approaches have opened up new perspectives as regards RP regulation and function. In fact, the proteasome seems to play a crucial and unpredicted role in regulating the availability of RPs for subunit assembly. In addition, the study of human ribosomal pathologies and animal models for these diseases has revealed that perturbation in the synthesis and/or function of an RP activates a p53-dependent stress response. Surprisingly, the effect of the ribosomal stress is more dramatic in specific physiological processes: hemopoiesis in humans, and pigmentation in mice. Moreover, alteration of each RP impacts differently on the development of an organism.
Collapse
Affiliation(s)
- Sara Caldarola
- Department of Biology, University 'Tor Vergata', Roma, Italy
| | | | | | | |
Collapse
|
239
|
Mao X, Gluck N, Li D, Maine GN, Li H, Zaidi IW, Repaka A, Mayo MW, Burstein E. GCN5 is a required cofactor for a ubiquitin ligase that targets NF-kappaB/RelA. Genes Dev 2009; 23:849-61. [PMID: 19339690 DOI: 10.1101/gad.1748409] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The transcription factor NF-kappaB is a critical regulator of inflammatory and cell survival signals. Proteasomal degradation of NF-kappaB subunits plays an important role in the termination of NF-kappaB activity, and at least one of the identified ubiquitin ligases is a multimeric complex containing Copper Metabolism Murr1 Domain 1 (COMMD1) and Cul2. We report here that GCN5, a histone acetyltransferase, associates with COMMD1 and other components of the ligase, promotes RelA ubiquitination, and represses kappaB-dependent transcription. In this role, the acetyltransferase activity of GCN5 is not required. Interestingly, GCN5 binds more avidly to RelA after phosphorylation on Ser 468, an event that is dependent on IKK activity. Consistent with this, we find that both GCN5 and the IkappaB Kinase (IKK) complex promote RelA degradation. Collectively, the data indicate that GCN5 participates in the ubiquitination process as an accessory factor for a ubiquitin ligase, where it provides a novel link between phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Xicheng Mao
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Venancio TM, Balaji S, Iyer LM, Aravind L. Reconstructing the ubiquitin network: cross-talk with other systems and identification of novel functions. Genome Biol 2009; 10:R33. [PMID: 19331687 PMCID: PMC2691004 DOI: 10.1186/gb-2009-10-3-r33] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/11/2009] [Accepted: 03/30/2009] [Indexed: 12/31/2022] Open
Abstract
A computational model of the yeast Ubiquitin system highlights interesting biological features including functional interactions between components and interplay with other regulatory mechanisms. Background The ubiquitin system (Ub-system) can be defined as the ensemble of components including Ub/ubiquitin-like proteins, their conjugation and deconjugation apparatus, binding partners and the proteasomal system. While several studies have concentrated on structure-function relationships and evolution of individual components of the Ub-system, a study of the system as a whole is largely lacking. Results Using numerous genome-scale datasets, we assemble for the first time a comprehensive reconstruction of the budding yeast Ub-system, revealing static and dynamic properties. We devised two novel representations, the rank plot to understand the functional diversification of different components and the clique-specific point-wise mutual-information network to identify significant interactions in the Ub-system. Conclusions Using these representations, evidence is provided for the functional diversification of components such as SUMO-dependent Ub-ligases. We also identify novel components of SCF (Skp1-cullin-F-box)-dependent complexes, receptors in the ERAD (endoplasmic reticulum associated degradation) system and a key role for Sus1 in coordinating multiple Ub-related processes in chromatin dynamics. We present evidence for a major impact of the Ub-system on large parts of the proteome via its interaction with the transcription regulatory network. Furthermore, the dynamics of the Ub-network suggests that Ub and SUMO modifications might function cooperatively with transcription control in regulating cell-cycle-stage-specific complexes and in reinforcing periodicities in gene expression. Combined with evolutionary information, the structure of this network helps in understanding the lineage-specific expansion of SCF complexes with a potential role in pathogen response and the origin of the ERAD and ESCRT systems.
Collapse
Affiliation(s)
- Thiago M Venancio
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
241
|
Rodland KD, Adkins JN, Ansong C, Chowdhury S, Manes NP, Shi L, Yoon H, Smith RD, Heffron F. Use of high-throughput mass spectrometry to elucidate host-pathogen interactions in Salmonella. Future Microbiol 2009; 3:625-34. [PMID: 19072180 DOI: 10.2217/17460913.3.6.625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis and, most important from the standpoint of this review, much higher throughput, allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach has enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions and new insights into virulence and expression of Salmonella proteins within host cells. One of the most significant findings is that a relatively high percentage of all the annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high-throughput mass spectrometry provides a new view of host-pathogen interactions, emphasizing the protein products and defining how protein interactions determine the outcome of infection.
Collapse
Affiliation(s)
- Karin D Rodland
- Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Wu F, Wang P, Young LC, Lai R, Li L. Proteome-wide identification of novel binding partners to the oncogenic fusion gene protein, NPM-ALK, using tandem affinity purification and mass spectrometry. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:361-70. [PMID: 19131589 DOI: 10.2353/ajpath.2009.080521] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), an oncogenic fusion gene protein that is characteristically found in a subset of anaplastic large cell lymphomas, promotes tumorigenesis through its functional and physical interactions with various biologically important proteins. The identification of these interacting proteins has proven to be useful to further our understanding of NPM-ALK-mediated tumorigenesis. For the first time, we performed a proteome-wide identification of NPM-ALK-binding proteins using tandem affinity purification and a highly sensitive mass spectrometric technique. Tandem affinity purification is a recently developed method that carries a lower background and higher sensitivity compared with the conventional immunoprecipitation-based protein purification protocols. The NPM-ALK gene was cloned into an HB-tagged vector and expressed in GP293 cells. Three independent experiments were performed and the reproducibility of the data was 68%. The vast majority of the previously reported NPM-ALK-binding proteins were detected. We also identified proteins that are involved in various cellular processes that were not previously described in association with NPM-ALK, such as MCM6 and MSH2 (DNA repair), Nup98 and importin 8 (subcellular protein transport), Stim1 (calcium signaling), 82Fip (RNA regulation), and BAG2 (proteosome degradation). We believe that these data highlight the functional diversity of NPM-ALK and provide new research directions for the study of the biology of this oncoprotein.
Collapse
Affiliation(s)
- Fang Wu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
243
|
Doolittle MH, Ben-Zeev O, Bassilian S, Whitelegge JP, Péterfy M, Wong H. Hepatic lipase maturation: a partial proteome of interacting factors. J Lipid Res 2009; 50:1173-84. [PMID: 19136429 DOI: 10.1194/jlr.m800603-jlr200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tandem affinity purification (TAP) has been used to isolate proteins that interact with human hepatic lipase (HL) during its maturation in Chinese hamster ovary cells. Using mass spectrometry and Western blotting, we identified 28 proteins in HL-TAP isolated complexes, 16 of which localized to the endoplasmic reticulum (ER), the site of HL folding and assembly. Of the 12 remaining proteins located outside the ER, five function in protein translation or ER-associated degradation (ERAD). Components of the two major ER chaperone systems were identified, the BiP/Grp94 and the calnexin (CNX)/calreticulin (CRT) systems. All factors involved in CNX/CRT chaperone cycling were identified, including UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT), glucosidase II, and the 57 kDa oxidoreductase (ERp57). We also show that CNX, and not CRT, is the lectin chaperone of choice during HL maturation. Along with the 78 kDa glucose-regulated protein (Grp78; BiP) and the 94 kDa glucose-regulated protein (Grp94), an associated peptidyl-prolyl cis-trans isomerase and protein disulfide isomerase were also detected. Finally, several factors in ERAD were identified, and we provide evidence that terminally misfolded HL is degraded by the ubiquitin-mediated proteasomal pathway. We propose that newly synthesized HL emerging from the translocon first associates with CNX, ERp57, and glucosidase II, followed by repeated posttranslational cycles of CNX binding that is mediated by UGGT. BiP/Grp94 may stabilize misfolded HL during its transition between cycles of CNX binding and may help direct its eventual degradation.
Collapse
Affiliation(s)
- Mark H Doolittle
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
244
|
Abstract
Posttranslational modifications (PTMs) of proteins perform crucial roles in regulating the biology of the cell. PTMs are enzymatic, covalent chemical modifications of proteins that typically occur after the translation of mRNAs. These modifications are relevant because they can potentially change a protein's physical or chemical properties, activity, localization, or stability. Some PTMs can be added and removed dynamically as a mechanism for reversibly controlling protein function and cell signaling. Extensive investigations have aimed to identify PTMs and characterize their biological functions. This chapter will discuss the existing and emerging techniques in the field of mass spectrometry and proteomics that are available to identify and quantify PTMs. We will focus on the most frequently studied modifications. In addition, we will include an overview of the available tools and technologies in tandem mass spectrometry instrumentation that affect the ability to identify specific PTMs.
Collapse
Affiliation(s)
- Adam R Farley
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | |
Collapse
|
245
|
Wohlschlegel JA. Identification of SUMO-conjugated proteins and their SUMO attachment sites using proteomic mass spectrometry. Methods Mol Biol 2009; 497:33-49. [PMID: 19107409 DOI: 10.1007/978-1-59745-566-4_3] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The covalent modification of cellular factors by the small ubiquitin-like modifier (SUMO) has emerged as a key regulatory pathway for many biological processes. One recent advance in the field of SUMO modification that has provided important insights into SUMO-mediated regulatory networks is the ability to use proteomic mass spectrometry to identify the substrates of SUMO modification as well as their sites of conjugation (1-10). In this chapter, we describe a global strategy for affinity purifying and identifying a broad spectrum of SUMO-conjugated proteins and a focused approach for purifying a selected SUMO target and mapping its SUMO attachment site(s). Although both methods were initially developed for use in S. cerevisiae, they can be readily adapted to study the SUMO pathway in higher eukaryotes.
Collapse
Affiliation(s)
- James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
246
|
Baranes-Bachar K, Baranes-Bacher K, Khalaila I, Ivantsiv Y, Lavut A, Voloshin O, Raveh D. New interacting partners of the F-box protein Ufo1 of yeast. Yeast 2008; 25:733-43. [PMID: 18949821 DOI: 10.1002/yea.1615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The yeast F-box protein Ufo1 recruits proteins for ubiquitylation by the SCF ubiquitin ligase complex preparing them for proteasomal degradation. Ufo1 has a role in maintenance of genome stability; its substrates include Ho endonuclease and Rad30 polymerase of error-prone DNA repair. Ufo1 is an unusual F-box protein, as it has three ubiquitin interacting motifs (UIMs). Deletion of the genomic UIMs is lethal; ectopic expression of UFO1 Delta UIMs extends protein half-life and arrests the cell cycle. A whole-genome study employing a TAP tag fused to the C-terminal UIMs did not identify Ufo1-interacting proteins. Here we therefore used stabilized N-terminally tagged Ufo1 Delta UIM as a strategy to identify Ufo1-interacting proteins by mass spectroscopy. We identified proteins that function in transcription, and an indirect interaction with Hsp70 molecular chaperones via the Skp1 adaptor; we also show that Ufo1 interacts with the 19S regulatory particle of the proteasome. Thus, our data augment the current network of known Ufo1 interacting proteins. We show directly that the UIMs are crucial for Ufo1 ubiquitylation in vivo, indicating that they facilitate turnover of SCF Ufo1 complexes. This allows recycling of the core subunits of the SCF complex and cell cycle progression.
Collapse
Affiliation(s)
- Keren Baranes-Bachar
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheba, Israel
| | | | | | | | | | | | | |
Collapse
|
247
|
Daulat AM, Maurice P, Jockers R. Recent methodological advances in the discovery of GPCR-associated protein complexes. Trends Pharmacol Sci 2008; 30:72-8. [PMID: 19100631 DOI: 10.1016/j.tips.2008.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/26/2008] [Accepted: 10/27/2008] [Indexed: 12/30/2022]
Abstract
Protein-interaction networks have important roles in cellular homeostasis and the generation of complexity in biological systems. G-protein-coupled receptors (GPCRs), the largest family of membrane receptors and important drug targets, are integral parts of these networks. Ligand stimulation and the dynamic interaction with GPCR-associated protein complexes (GAPCs) constitute two important regulatory mechanisms of GPCR function. Several genomic and proteomic approaches have been developed to identify GAPCs in the past. However, this task turned out to be particularly demanding owing to difficulties in preserving the complex three-dimensional GPCR structure during receptor solubilization and to inherent limitations in the use of isolated receptor domains as bait. Newly emerging methods have the potential to overcome these limitations and will certainly boost the identification of functionally relevant GAPCs to finally increase our knowledge of the regulation of GPCRs and provide novel drug targets. Here, we focus on the comparison of two complementary GAPC purification strategies, which are based on soluble GPCR subdomains and entire GPCRs.
Collapse
Affiliation(s)
- Avais M Daulat
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (UMR 8104), Department of Cell Biology, F-75014 Paris, France
| | | | | |
Collapse
|
248
|
Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin. Proc Natl Acad Sci U S A 2008; 105:20197-202. [PMID: 19091944 DOI: 10.1073/pnas.0810461105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Modification of proteins by the addition of lysine (K)-63-linked polyubiquitin (polyUb) chains is suggested to play important roles in a variety of cellular events, including DNA repair, signal transduction, and receptor endocytosis. However, identifying such modifications in living cells is complex and cumbersome. We have generated a monoclonal antibody (mAb) that specifically recognizes K63-linked polyUb, but not any other isopeptide-linked (K6, K11, K27, K29, K33, or K48) polyUb or monoubiquitin. We demonstrate the sensitivity and specificity of this K63Ub-specific mAb to detect K63Ub-modified proteins in cell lysates by Western blotting and in cells by immunofluorescence, and K63Ub-modified TRAF6 and MEKK1 in vitro and ex vivo. This unique mAb will facilitate the analysis of K63-linked polyubiquitylation ex vivo and presents a strategy for the generation of similar reagents against other forms of polyUb.
Collapse
|
249
|
Ota K, Kito K, Iemura SI, Natsume T, Ito T. A parallel affinity purification method for selective isolation of polyubiquitinated proteins. Proteomics 2008; 8:3004-7. [PMID: 18615433 DOI: 10.1002/pmic.200800271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We developed a parallel affinity purification (PAP) procedure, in which ubiquitinated proteins are purified from the cells that coexpress two affinity-tagged ubiquitins by sequential use of affinity chromatography specific to each tag. In contrast with previous procedures using a single affinity-tagged ubiquitin, the PAP eliminates highly abundant ubiquitin monomers and monoubiquitinated proteins to selectively enrich proteins bearing both affinity-tags, or poly- and multiubiquitinated proteins. Accordingly, it would serve as a powerful method to facilitate mass-spectrometric identification of ubiquitinated proteins.
Collapse
Affiliation(s)
- Kazuhisa Ota
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | | | | | | | | |
Collapse
|
250
|
Sakai M, Furuya M, Endo H, Yamaoka K, Kondo S, Koike T. An Efficient Identification Method of a Specific Binding Protein for a Bioactive Compound Using On-Bead Digestion and Mass Spectrometry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2008. [DOI: 10.1246/bcsj.81.1599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|